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PREFACE 
 
On behalf of the organizing committee and the co-chairs, we would like to welcome you to the 
9th International Conference on Computational Methods (ICCM2018) at the Auditorium 
Antonianum, Rome, Italy, between August 6th and 10th, 2018. The conference aims at providing an 
international forum for scholars, researchers, industry practitioners, engineers and graduate and 
undergraduate students to promote exchange and disseminate recent findings on both contemporary 
and traditional subjects in computational methods, numerical modeling and simulation, and their 
applications in science and engineering. It accommodates presentations on a wide range of topics to 
facilitate interdisciplinary exchange of ideas in science, engineering and allied disciplines, and helps to 
foster collaborations. 

Computational Modelling and Simulation are fundamental subjects in engineering and sciences. They 
can be applied to many of the primary engineering disciplines, including Aerospace, Bio-medical, 
Civil, Chemical, Mechanical, and Materials Engineering among others. Computational Modeling 
and Simulation covers a broad range of research areas, from conventional structural and mechanical 
designs, failure analysis, dynamic and vibration analysis, and fluid mechanics up to cutting-edge 
computational mechanics, nano-micro mechanics, multiscale mechanics, coupled multi-physics 
problems and novel materials. This is reflected in the variety of fields featured in the conference 
topics. 

The genesis of the ICCM series dates back to 2004, when the first ICCM2004 conference was 
held in Singapore founded and chaired by Professor Gui-Rong Liu, followed by ICCM2007 in 
Hiroshima, Japan, ICCM2010 in Zhangjiajie, China, ICCM2012 in Gold Coast, Australia, 
ICCM2014 in Cambridge, UK, and ICCM2015, Auckland, New Zealand, ICCM2016, Berkeley, 
California, USA, ICCM2017, Guilin, Guangxi, China. The present ICCM conference in Rome, Italy 
encompasses about 330 oral presentations organized in 64 Mini-Symposia and general sessions, 
including 3 Plenary Lectures, 14 Thematic Plenary Lectures, and several Keynotes. 

The ICCM conference is unique in the sense that it showcases the current developments and trends 
in the general topic of Computational Methods and their relationship to global priorities in science and 
engineering. We would like to express our gratitude for the contributions of all ICCM2018 
participants and presenters at this international event. We gratefully acknowledge the 
contributions from the International Scientific Committee, Mini-Symposium Organizers, and expert 
reviewers for their efforts and assistance in the organization. Special thanks go to Dr. Nicholas 
Fantuzzi for his efficient assistance to the scientific organization of the Conference and his patient 
handling of bureaucratic issues. We thank also the volunteers and the local staff in helping out in the 
organizing and running this important event. 

Finally, we would like to warmly thank you for the contribution of our authors and participants in 
making ICCM2018 in Rome a very prominent scientific event. We believe the ICCM2018 has 
become a special event that widens the bridge between West and East in our worldwide community 
for computational methods. 

We are looking forward to your participation and continued engagement for the future ICCM 
conferences, and contribute further in the development of computational methods.  

 

Professor Patrizia Trovalusci 
Conference Chairman, ICCM2018 
Sapienza, University of Rome, Italy 

 

Professor Gui-Rong Liu 
Honorary Chairman, ICCM2018 

University of Cincinnati, USA 
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Abstract 

There are some defects in the classical theory of ring pair electrical resistance sensor. 

Aiming at describing the error introduced by the input and output ports, the paper explains 

the reason, shows the simulation results and gives some suggestions to reduce the error. 

Then, comparing with the linear arc resistance values, the exact values are calculated using 

the nonlinear equation. Finally, Considering the temperature difference between the inner 

and outer walls, the nonlinear result is shown in the follow, and it is consistent with the 

results of the linear theory, that is, the pipe wall temperature difference does not affect the 

measurement of corrosion depth. 

Keywords: Corrosion; Ring pair electrical resistance sensor; Error; Resistance 

measurement 

 

1. Introduction 

In recent years, with the depletion of petroleum resources on land, offshore oil exploration 

and development has gradually started to implement. Under the marine special 

environmental conditions, the pipeline corrosion monitoring is particularly important. At 

present, in the field of pipeline corrosion monitoring sensor technology, a variety of new 

excellent sensors began to be put into use. 

 

Ring pair electrical resistance sensor (RPERS) is a new type of resistance sensor. Compared 

with the traditional resistance sensor, its inner and outer diameters is consistent with the 

pipeline, so it can be well integrated into the pipeline system. In addition, As the RPERS 

has no protrusion in the pipeline, it is conducive to the transport of oil and the operation of 

the pig. What's more, the sensor is in the same condition with the pipe wall, so the corrosion 

measurement depth is highly consistent with the corrosion depth of the pipe wall. 

 

Huang Yi[1] has successfully developed a set of corrosion monitoring system by using 

RPERS. Compared with the traditional system, the experimental results have better 

temperature compensation and can also monitor the local corrosion. However, the arc 

resistance and the wall temperature distribution use the approximate calculation method, so 

there may be some theoretical error in the calculation part. This paper focuses on the 

theoretical error caused by input/output ports and nonlinear effect, some suggestions are 

shown after simulation experiments. 

 

2. Sensor theory 
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2.1 The position and shape of RPERS in pipeline 

As shown in Fig.1, the RPERS consists of two metal ring sensors with the same inner 

diameter and material as the pipeline. The two rings are all coated with chromium oxide 

except the internal face of corrosion ring. The corrosion ring and the compensation ring are 

embedded into the pipeline through a connecting ring, which is shown in Fig.1.b. These 

rings are insulated from neighbor rings by coating of Cr2O3, the insulation resistance is 

higher than 1MΩ. 

 

Fig.1 The structure of RPERS 

2.2 The principle of Kelvin four-wire method (KFWM)[2] 

Micro-resistance is generally measured by KFWM to reduce the impact of wire resistance 

and contact resistance[3]. as shown in Fig.2, the traditional RPERS corrosion monitoring 

system using a similar KFWM to measure the resistance. 

 

Fig.2 The schematic diagram of KFWM 

 

In Fig. 2, Rx and Ry are the sum of the wire resistance and the contact resistance of each 

branch. Since R is a micro-resistance, the voltage drop and current through Ry can be 

ignored, the current IR ≈I, and the voltmeter value Uv ≈UR. By Ohm's law. 

 

 
R =

UV
I

 （1） 
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2.3 The measurement principle of RPERS[4] 

When I1 is injected as the red path, the voltage value across the segment 2, 3, 5 and 6 in 

corrosion ring can be measured by using micro ohm meter RM3545. Segment 2 and 3 have 

the same current, so the resistance ratio R2:R3 can be obtained. The segment 5 and 6 have 

the same current, so the resistance ratio R5:R6 can be obtained too. In compensation ring, the 

resistance ratio r2:r3, r5:r6 can be obtained in the same way. Similarly, when I2 is injected as 

the black path, the resistance ratio R3:R4, R1:R6, r3:r4 and r1:r6 can be calculated. When I3 is 

injected as the blue path, the resistance ratio R4:R5, r4:r5, R1:R2 and r1:r2 can be calculated. 

Finally, calculated from the measurement value above, the resistance ratio Ri:Rk and ri:rk 

between the random segments in each ring can be obtained, where i=1,2,...,6, k=1,2,...,6.The 

corrosion ring and the compensation ring are connected in series, so their total current is 

equal, I1 can be expressed as: 

 

 U2
R2
+
U6
R6

=
u2
𝑟2
+
u6
r6
= I1 (2) 

 

where U2, U6 represent the voltage value of segment2, segment6 in corrosion ring, and u2, u6 

represent the voltage value of segment 2, segment6 in compensation ring. In summary, it is 

easy to get the resistance ratio Ri: ri between the corresponding segments of the two rings. 

 

The cross-section parameter of RPERS is shown in Fig.3. 

 

Fig.3 Cross-section parameter 

 

If the inner diameter is much larger than the difference between the inner and outer 

diameters, Arc resistors can be approximately treated as linear resistors. According to the 

Fig.3, the resistance Ri and ri can be expressed as: 

 

 
Ri =

Liρ(T)

aici + bihi
 (3) 

   

 
ri =

Li
′ρ(T)

ai
′ci
′ + bi

′hi
′ (4) 

   

Where Li  and Li
′  represent length of the materials,  ρ(T)  represent resistivity. The 

corrosion ring and the compensation ring have the same ρ(T), if there is no corrosion, the 

resistance ratio between the corresponding segments of the two rings can be expressed as: 
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Ri
ri
=
Li
Li
′ ×

ai
′ci
′ + bi

′hi
′

aici + bihi
 (5) 

   

If the corrosion depth is Δhi, the resistance ratio can be expressed as: 

 

 
Ri
′

ri
′ =

Li
Li
′ ×

ai
′ci
′ + bi

′hi
′

aici + bi(hi − Δhi)
 (6) 

   

Combining Eqs.(5),(6), the relation between the corrosion depth and the resistance value 

can be obtained: 

 

 
Δhi = (

aici
bi

+ hi)(1 −
Riri

′

riRi
′) (7) 

 

3. Theoretical error analysis 

3.1 The error caused by input and output ports. 

As shown in Fig.4, the resistance of the RPERS is measured by the KFWM to calculate the 

resistance ratio of each segment. In actual operation, the current flows from the port a to the 

port d. the potential of the surface C and surface B can be substituted by the potential of the 

port c and port b, only if the surface B and C are equipotential surfaces. 

 

 
Fig.4 KFWM in actual operation 

 

As shown in Fig.5, the current flows into the port a is approximately the point current flows 

into the half infinite plane, so the equipotential surfaces close to the port are hemispherical. 

 

Fig.5 The equipotential surfaces close to the port 

 

Thus, when the cross section B is too close to the cross section A, the cross section B will 
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be affected by the port A and become a non-equipotential surface, which will introduce the 

error of the potential measurement. 

 

3.2  The error caused by resistance calculation 

For the traditional RPERS, when the inside diameter of the sensor is much larger than the 

difference between the inside and outside diameter, the theoretical calculation of the 

resistance value is approximately calculated by using the linear resistance Eq.8. The 

relationship between L and R is linear.  

 

 
R = ρ

L

S
 (8) 

   

At present, the ratio between the ring inner diameter and the sensor thickness is generally 

about 10:1 or at the same order of magnitude, so the theoretical calculation error of the 

resistance is not negligible, i.e. the relationship between L and R is no longer linear. 

 

3.2.1  Theoretical calculation of arc resistance[5-6] 

According to the classical physics theory, the arc resistance is calculated by calculus. As 

shown in Figure.6, the current flows in from the surface A steadily and flows out from the 

surface B. 

 
Fig.6 Resistor parameter diagram 

In the picture above, the resistance value dR can be calculated as 

 

 
dR = ρ

θr

Tdr
 (9) 

 

dR is connected with each other in parallel, so R can be calculated as 

 

 
R =

1

∫
Tdr
ρθr

r2
radius

r1
radius

=
ρθ

Tln (
r2
radius

r1
radius)

 
(10) 

   

As shown in Fig.3, after substituting the geometric parameter, the resistance value of 

segment i can be calculated as 
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Ri =
ρθi

biln (
rf
radius + hi
rf
radius ) + ailn (

rf
radius + hi + ci
rf
radius + hi

)

 
(11) 

   

where rf
radius represent the inner diameter of RPERS. Let 

Riri
′

riRi
′ be Mi, according to the 

Eqs.5,6,7,11. The relationship between Mi and Δhi can be calculated as 

 

Mi =

biln (
rf
radius + hi

rf
radius + Δhi

) + ailn (
rf
radius + hi + ci
rf
radius + hi

)

biln (
rf
radius + hi
rf
radius ) + ailn (

rf
radius + hi + ci
rf
radius + hi

)

 (12) 

  

Combining Eqs.7 and Eqs.12, the non-linear relationship between Mi  and Δhi  can be 

obtained, which is shown in Fig.7,8. 

 

Fig.7 Relationship between linear theory and nonlinear theory 

 

Fig.8 The error rate under different inner diameter conditions 

 

According to Fig.7,8, it can be seen that the theoretical error of linear computation 

decreases with the increase of Mi, and the error rate between the linear and the nonlinear 

theoretical value increase with the increase of Mi. When the cross section of the RPERS is 
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constant, the error rate decreases with the increase of the diameter. When the diameter is 

150mm, the average error rate reaches about 4%, this theoretical error cannot be ignored. 

When the diameter increases to 1m and 2m, the average error rate drops to 0.5% and 0.3%, 

and the error rate decreases slower as the change of Mi value. In Fig.3, Limited by the shape 

of the ring cross section, the range of Δhi is from 0mm to 2mm. In this range, the nonlinear 

curve approximately shows a straight line. In order to reduce the calculation in the actual 

operation, the nonlinear curve can be approximately calculated as a linear line. 

 

3.2.2  Influence of temperature difference between inner and outer pipe wall on ring 

resistance measurement. 

When the arc resistance is approximately treated as linear resistance, the temperature 

distribution between the inner and outer pipe wall is linear, and the influence on the 

calculation of the corrosion depth will be counteracted by the compensation ring[7-8]. In fact, 

the temperature distribution in the pipe wall is not linear. according to the Dirichlet 

boundary condition, it is calculated by the differential equation under cylindrical 

coordinates[9], the relation between the temperature and the radius can be calculated as 

 

 t = t2 − (t2 − t1)

ln (
r

r1
radius)

ln (
r2
radius

r1
radius)

 (13) 

   

Where t2 represents the temperature of inner pipe wall, t1 represents the temperature of 

outer pipe wall, r1
radius represents the inner radius, r2

radius represents the outer radius. The 

relationship between metal resistivity and temperature is linear, combining Eq.10 and Eq.13, 

the arc resistance can be written as 

 

 

R =
1

∫
Tdr

ρ
0
θr

{
 
 

 
 

1 + α

[
 
 
 
 

t2 − (t2 − t1)

ln (
r

r1
radius)

ln (
r2
radius

r1
radius)]

 
 
 
 

}
 
 

 
 

r2

r1

 

(14) 

   

Where ρ
0
 represents the resistivity of arc resistance material at 0℃, α represents the 

resistance coefficient of temperature. Through calculating, R can be written as 

 

 
R =

ρ
0
θα(t2 − t1)

Tln (
r2
radius

r1
radius) ln (

1 + αt2
1 + αt1

)

 
(15) 
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The new Mi can be calculated by using Eqs.15, and the result is consistent with Eqs.13. So 

we can come to the conclusion that, theoretically, the temperature difference between inner 

and outer pipe wall has no influence on the measurement of corrosion depth. 

 

4.  Simulation process and results 

4.1 Simulation of error caused by input and output ports. 

In order to investigate the error of potential measurement in the input and output ports of 

RPERS, finite element analysis software is applied to simulate the process of resistance 

measurement. The paper only analyses the input port because of the symmetry of the input 

and output ports. The sensor model is built in the software interface, the length of inner 

diameter is 150mm, the length of outer diameter is 168mm. As shown in Fig.3, the lengths 

of a, b, c and h are 8mm, 12mm, 7mm and 2mm respectively. A series of cross sections 

close to the input port are created to analyse the potential and current density distributions, 

which is shown in Fig.9. 

 

Fig.9 The location of cross sections 

 

The simulation result is shown in Fig.10 and Fig.11. 

`  

Fig.10 Distribution of current density in each section 
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Fig.11 Potential distribution of each section 

 

The simulation results show that, the potential distribution and current density distribution 

are affected by the input port in varying degrees. The current density distribution is 

approximately spherical in the cross section 1°, 2°, and3°. With the increase of the angle 

between the input port and cross section, the current density gradually becomes more 

uniform. The location of the maximum current density transforms between the cross section 

8° and 9°, the maximum value begins to appear in the bottom section, after 10° the current 

density distribution tends to stable and shows a gradient distribution map. The potential 

distribution changes faster than the current density. After cross section 7°, the simulation 

software is unable to distinguish the potential difference and the faces present equipotential 

surfaces. 

 

According to the data given by Fig.12, the potential error rate of cross section 1° is about 

1.5%, after 8 degrees the error rate between the simulation potential and the theoretical 

value is less than 0.0349%, which fully meets the requirements of measurement and 

calculation.  

 

Fig.12 Simulation potential distribution and theoretical potential distribution 

 

4.2 Simulation of error caused by temperature difference between inner and outer pipe wall 

The volume parameters of the arc resistor are shown in the Fig.6, the element is made of 

pipeline steel. The center angle θ of the arc is 30°, the inner diameter r1
radius is 60mm, the 

outer diameter r2
radius

 is 110mm, and the thickness T is 30mm. The inner surface 

temperature is 200℃. The outer surface temperature is 0℃. All the surfaces except the 

inner and outer surfaces are set to adiabatic surfaces. The resistivity at 25℃ is 17×10-7Ω·m, 

the resistivity temperature coefficient is 5×10-3R/℃. The result is shown in the follow. 
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Table 1 

 

According to the result we can see that, the different temperature conditions lead to different 

resistance value, but the Mi value is identical. 

 

5. Conclusions 

Through theoretical calculation and simulation analysis, the following conclusions can be 

drawn: 

 

(1) There is an error in the potential measurement near the current port. In order to reduce 

the influence, the potential measuring port needs to be away from the current port. the 

distance departing from the current port is determined by the conductor shape, size and 

current input mode. The simulation results show that, when the included angle between the 

current port and the potential measuring port is larger than 8°, the error is negligible, so in 

the classic RPERS theory included angle between the two ports is 30°, which fully meet the 

requirements of the engineering calculation. 

 

(2) When the difference between the inner and outer diameter is far less than the inner 

diameter, the arc resistor can be treated as linear resistor, otherwise the error between the 

linear and arc resistance cannot be ignored. Based on the same cross section, the error rate 

increases with the inner diameter. When the temperature difference between the inner and 

outer pipeline walls exists, the linear and nonlinear calculation show consistent results, that 

is, the temperature difference between the inner and outer pipeline walls does not affect the 

measurement of corrosion depth. 
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Abstract 

Application and analysis method of pulsed eddy current is introduced. The parameters of 

sensors are optimized according to the detection requirement and suitable results and 

conclusions are obtained. The feature named attenuation rate is proposed to measure and 

calculate the thickness of steel plate. Error caused by lift-off effect and other factors is also 

analyzed. 

Key words: Pulsed eddy current; NDT; Finite element; Thickness measurement 

 

Introduction 

With the rapid development of oil and gas transportation pipeline industry, the damage 

prevention and safety maintenance work of pipeline is of great significance. On the one hand, 

the HTHP fluid flowing through the pipe will cause corrosion on the inner wall. On the other 

hand, the protective coating with the function of thermal insulation will cause chemical 

corrosion to the external pipe wall [1] -[3] . Therefore, although the safest and most convenient 

way of offshore oil and gas transportation the submarine pipelines are, they are always taking 

the risk of thinning and damaging [4] -[9] . 

 

The long service time and backward detection technology make the existing submarine 

pipelines leakage accidents easy to occur. In order to ensure the safety in operation, pulsed eddy 

current (PEC) testing technology is used to detect the pipeline. As a kind of new nondestructive 

testing technique, pulsed eddy current testing can be used to measure the corrosion status of 

pipelines without affecting the normal operation and destroying the protective layers of 

submarine pipelines [10] -[16] . And the research of PEC testing technology is of great value 

to ensure the safe and stable operation of submarine pipelines. 

 

The sensor for PEC testing is composed of two parts: the driver coil and the magnetic field 

detector (pickup coil, Hall sensor, GMR, etc.) [17] -[21] . In inspection process, rectangular 

wave current is transmitted to the exciting coil by the drive circuit. The square wave field 

generated by the excitation signal in driver coil is the source magnetic field. The change of 

magnetic field intensity will excite the induced electric field in specimen and the eddy current 

is generated. Magnet field produced by eddy current and the source magnet field together breed 

the induced electromotive force. By analyzing the detection signal and extracting feature 

information, detection of thickness or defect is realized. 

 

Theory 

The analysis of the PEC theory requires understanding of the electromagnetic field and the 

analysis of the Maxwell equations. The wave equation which can be derived from the Maxwell 

equation is written as  

 

 ∇2�̇� = 𝑗𝜔𝜇(𝜎 + 𝑗𝜔𝜀)�̇� (1) 
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For general metallic material, 𝜀0 = 8.85×10−12 𝐹 𝑚⁄ , so 𝜔𝜀 is negligible compared with 𝜎. 

Eq. (1) can be reduced to 

 

 ∇2�̇� = 𝑗𝜔𝜇𝜎�̇� (2) 

 

Similarly, the following equation is derived as  

 

 ∇2�̇� = 𝑗𝜔𝜇𝜎�̇� (3) 

 

 ∇2𝐽̇ = 𝑗𝜔𝜇𝜎𝐽 ̇  (4) 

 

where �̇�, �̇� and 𝐽 ̇ are the complex vector of magnetic field intensity, electric field intensity 

and current density respectively. These are the basic equations for the analysis of PEC 

phenomenon. 

 

However, analytical solution is hardly obtained except for a few simple problems by solving 

the above equations. In order to research the electromagnetic phenomenon of PEC testing, the 

eddy current loop model is used to study the equivalent circuit. The specimen is modeled as 

series connections of inductors and resistors. The driver coil, pickup coil and specimen together 

are simplified as a multi-coil coupling system. Finally, the complex physical field problem is 

converted into the circuit theory calculation. 

 

The circuit model is shown in Fig. 1. The driver coil in the PEC sensor can be equivalent to the 

primary coil of the multi-coil coupling system. And the pickup coil and eddy current ring can 

be equivalent to the secondary coil. The coils are coupled together by magnetic field, and the 

magnetic properties of the coils are described by self-inductance and mutual inductance. 

 

Fig. 1 Circuit model of PEC testing 

The following equation is given according to the circuit theory 

 

 

{
 
 

 
 𝑢1(𝑡) = 𝑅1𝑖1(𝑡) + 𝐿1

d𝑖1(𝑡)

d𝑡
+𝑀12

d𝑖2(𝑡)

d𝑡
+𝑀13

d𝑖3(𝑡)

d𝑡

𝑢𝑜𝑢𝑡(𝑡) = −𝑅𝑐𝑖2(𝑡) = 𝑅2𝑖2(𝑡) + 𝐿2
d𝑖2(𝑡)

d𝑡
+𝑀12

d𝑖1(𝑡)

d𝑡
+𝑀23

d𝑖3(𝑡)

d𝑡

0 = 𝑅𝑝𝑖3(𝑡) + 𝐿3
d𝑖3(𝑡)

d𝑡
+𝑀13

d𝑖1(𝑡)

d𝑡
+𝑀23

d𝑖2(𝑡)

d𝑡

 (5) 
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Where 𝑅1, 𝑅2 and 𝑅𝑝 represent resistance value of driver coil, pickup coil and eddy current 

loop, 𝐿1 , 𝐿2  and 𝐿3  represent self-inductance respectively. M is the mutual inductance 

among the coils. 

 

Although the circuit model is intuitive and convenient, too much approximation reduces the 

scope of application in the process of design and analysis. 

 

Simulation optimization 

In the process of analysis and calculation in PEC testing, a plenty of approximations are needed 

in modeling. The difficulties of obtaining analytical solution are great and the inaccuracy can’t 

be neglected. Hence the numerical simulation model by finite element method is established in 

the time domain. It can simplify the calculation process and calculate the detection signal 

quantitatively. COMSOL is used as simulation software, which is practical with abundant CAD 

modeling tools, powerful meshing ability, a large number of physical modules and extended 

functions. 

 

During pulsed eddy current testing, most of the time the diameter of the pipeline is obviously 

larger than that of the excitation coil. Therefore, the pipeline can be equivalent to a flat plate 

structure and the wall thickness of the pipeline is assumed as the thickness of a plate 

approximately. 

 

The two-dimensional axisymmetric model is used to calculate the solution, which reduces the 

calculation time and lower the difficulty of analysis. Simulation has showed that the three-

dimensional model has no obvious advantages compared with the two-dimensional 

axisymmetric model under the circumstance of a cylindrical coil. 

 

The Maxwell equations and the following equations are applied in the calculation of simulation 

model. 

 

 (jωσ − ω2𝜀)𝐴𝜙 + ∇×(𝜇
−1∇×𝐴𝜙) = 𝐽𝜙

𝑒  (6) 

 

 𝐽𝜙
𝑒 = σε = −(∇JV +

𝜕𝐴𝜙

𝜕𝑡
) (7) 

 

 H =
𝐵

𝜇
=

∇×𝐴𝜙

𝜇0𝜇𝑟
 (8) 

 

Where ω is angular frequency, σ is dielectric constant, 𝜇  is permeability, 𝐽𝜙
𝑒  is current 

density. 

 

In order to analyze the relationship among the structural parameters of the coil, the magnetic 

field around the coil and the eddy current in the test piece, the most important parameters of the 

coil are simulated and analyzed to obtain more accurate detection results. The height, inner 

diameter and outer diameter are considered as the main structural parameters of the coil. Only 

one parameter is changed at a time when variation of eddy current distribution.is researched. 

 

Fig. 2 shows the simulation results of the eddy current distribution in the test parts when inner 

and outer diameter of the coil are the same and the height of coil is 30mm, 20mm and 10mm 

respectively. It can be seen from the graph that the magnetic induction line will come close to 
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the coil with the decrease of coil height when the inner and outer diameter stay the same, which 

is conducive to the improvement of the resolution of the detection system. 

 

 
Fig. 2 Current distribution with different height of coil 

 

Fig. 3 shows the simulation results of the eddy current distribution in the test parts when inner 

diameter and height of the coil are the same, outer diameter is 5mm, 15mm and 25mm 

respectively. It can be seen from the graph that the eddy current intensity will increase with the 

increase of outer diameter when the inner diameter and height of the coil stay the same, which 

is conducive to the improvement of the sensitivity of the detection system. 

 

 
Fig. 3 Current distribution with different outer diameter of coil 

 

Fig. 4 shows the simulation results of the eddy current distribution in the test parts when outer 

diameter and height of the coil are the same, inner diameter is 25mm, 15mm and 5mm 

respectively. It can be seen from the graph that the magnetic field distribution concentrate with 

the decrease of outer diameter but there is no obvious change in eddy current intensity. It 

indicates that the decrease of inner diameter is conducive to the improvement of the resolution 

of the detection system. 
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Fig. 4 Current distribution with different inner diameter of coil 

 

It can be seen from the simulations that a relatively smaller inner diameter, larger outer diameter 

and lower height for the coil are beneficial to the improvement of the resolution and sensitivity 

of a PEC testing system. If necessary, an iron core can be added to reinforced the effect. 

 

Error analysis 

After optimizing the structure of the PEC sensor, steel plate with different thickness is simulated 

to find proper features from the detection signal. The thickness of the steel plate is in the range 

from 10mm to 25mm. Due to the large range of voltage variation in detection coil, the logarithm 

of voltage is taken. As shown in Fig. 5 plotted by time(s) on the horizontal axis and logarithm 

of voltage(V) on the vertical, the rear part of the induction voltage curve on semi log coordinate 

is approximate to right line. And the attenuation rate of the signal increase as the thickness of 

the steel plate decreases. Therefore, the thickness can be calculated by taking the attenuation 

rate of detection signal in the rear part as the feature. 

 

 
Fig. 5 Voltage curves in pickup coil for steel plates 

 

According to the simulation results, a set of PEC testing system is designed and optimized to 

finish the thickness measurement. Thickness of each segment is executed for four times.Signal 

segments from 0.15V to 0.05V are captured to do linear fitting and the feature related to 

thickness, attenuation rate of the signal is calculated and averaged. Measurement results are as 

shown in Table 1, in which M1 to M4 represents the first to fourth measurement. 
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Table 1 Decay rate for measurement of steel plates with different thickness 

Thickness 

（mm） 
M1 

(dB/s) 

M2 

(dB/s) 

M3 

(dB/s) 

M4 

(dB/s) 

Average 

(dB/s) 

9.5 -385.159 -384.046 -385.061 -390.297 -386.141 

12.3 -257.593 -258.678 -258.521 -262.188 -259.245 

14.9 -194.135 -191.178 -191.188 -194.907 -192.852 

17.5 -151.232 -151.171 -152.706 -149.093 -151.0505 

20.1 -109.259 -110.543 -111.276 -110.614 -110.423 

22.5 -92.5183 -92.4155 -91.494 -92.4588 -92.22165 

25.0 -84.9723 -84.057 -84.800 -84.551 -84.59507 

27.6 -85.1229 -84.4194 -84.108 -82.743 -84.09833 

 

Fitting with exponential function, the following equation can be obtained 

 

 𝑦 = −64.363 − 1670.85×𝑒−0.17352𝑥 (9) 

 

Where x is the thickness of steel plate, y is the attenuation rate. 

 

According to the equation above, the thickness of measurement can be calculated. Compared 

with the actual thickness, relative error is computed as shown in Table 2  

 

Table 2 Thickness measurements and relative errors 

measurement 
Actual thickness

（mm） 

decay rate

（dB/s） 

Thickness for 

measurement

（mm） 
relative error 

1st 10.9 -306.004 11.14 2.19% 

2nd 12.2 -267.289 12.15 0.41% 

3rd 14.9 -198.577 14.53 2.53% 

4th 16.2 -174.51 15.67 3.37% 

5th 13.55 -227.587 13.4 1.08% 

6th 21.3 -102.445 21.79 2.26% 

7th 22.55 -96.44 22.78 1.01% 

8th 25.05 -87.035 24.78 1.09% 

9th 23.8 -89.4 24.2 1.69% 

10th 26.3 -87.756 25.7 6.91% 

 

It can be seen from the table that when the measured value is less than 25mm, relative error is 

less than 5%, The relatibe error increases when the thickness of the steel plate is a little bit 

larger. 

 

Simulation proves that lift-off effect has little effect on measurement when attenuation rate is 

taken as a feature.However, actual measurement results shows that the influence of lift-off 

effect cannot be ignored. All the amplifying and filtering or noise in hardware circuit may make 

the lift-off effect more influential. Exponential fitting is not always the best method. Polynomial 

fit in different order or neural network algorithm may bring distinct precision results. Magnetic 

shielding acting on coils can make sensitivity improve. 
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Conclusion 

In PEC testing system, a relatively smaller inner diameter, larger outer diameter and lower 

height for the coil bring about better resolution and sensitivity. Attenuation rate from rear part 

of the induction voltage curve can be used as a feature to measure thickness of steel plate. 

Thicker steel plate will lead to lower measurement accuracy. the influence of lift-off effect 

needs to be take into consideration to reduce errors.  
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 Mode shapes complexity for damage identification of structures experiencing plasticization  
†*Fabrizio Iezzi¹ and Claudio Valente1 1Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, Italy *Presenting author: fabrizio.iezzi@unich.it 
†Corresponding author: fabrizio.iezzi@unich.it Abstract Classically, for structures prone to earthquakes, the damage identification techniques rely on changes of modal parameters between different structural states. Recently, the effects of energy dissipation have been considered as possible alternatives to modal parameters for damage identification. In particular, it is assumed that energy dissipation causes an increase of damping non-proportionality and, consequently, an increase of complexity in the mode shapes. A number of indices have been proposed to measure the damping non-proportionality or complexity in the mode shapes. To be successful in damage detection such indices should possess at least two characteristics: monotony and sensitivity. The work aims to investigate the effectiveness of the indices for structural damage identification. To this end, numerical simulations concerning a plane frame structural model are carried out. The damage is such to produce plastic hinges at selected joints of the model where the energy dissipation is concentrated. Seismic type base motion of progressive increasing intensity is considered to show the relation between damage severity, energy dissipation, damping non-proportionality and mode shapes complexity. Signal processing time domain techniques, EMD and CPR, are applied to the structural dynamic response in order to identify the indices based on the complex mode shapes. The indices are then applied to detect the damage. Keywords: Damage identification; Non-proportional damping; Mode shapes complexity; Damage indices.  Introduction The recent and numerous seismic events that worldwide hit the existing buildings have made very timely and important the development of new techniques for the structural damage identification. In the seismic field, the analysis of the dynamic behavior of a structure can be used to identify the damage occurred. When the damaged structure preserves a quasi-linear behavior, it can be retained that its modal parameters (frequencies, mode shapes and damping) are function of the physical properties (mass, stiffness and energy dissipation). Changes in these latter properties, caused by damage, are reflected, therefore, in modal parameters changes. The comparison of the values attained by the frequencies, mode shapes and damping, or their appropriate function, between different structural states is an effective means to estimate the damage. There exist a number of techniques based on changes in modal parameters and targeted to damage assessment [1]. In general, the frequencies are sensitive to the damage but hardly allow its localization [2]. On the contrary, the modal shapes are identifiable with greater difficulty but are extremely effective to localize the damage [3]. The damping presents the same characteristics of the frequencies but it is more difficult to identify exactly [4][5][6]. 
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Recently, the damping has been used in conjunction with the effects induced on the mode shapes in energy dissipating structures [7][8]. The basic hypothesis is to associate the damage to the energy dissipated during the structural vibrations and to measure the effects generated on the mode shapes in terms of modal complexity. In particular, it is assumed that: the greater the damage is, the greater the energy dissipation is and consequently, the more damped the dynamic response is, the higher the loss of damping proportionality is and so the more complex the mode shapes are. The measure of this non-proportionality (or complexity) is used to estimate the structural damage. A number of indices have been proposed and analyzed to provide an effective measure of non-proportionality [9]. A group of indices requires the knowledge of the damping matrix of the structure; whereas another group of indices requires the knowledge of the mode shapes. In consideration of the difficulty of the experimental identification of the damping matrix, the first group has only a theoretical value. The practical applicability is therefore restricted to the second group of indices. However, to get successful indices, two properties should be fulfilled: monotony and sensitivity both related to uniqueness aspects. In this contingency, it is possible to perform a reliable identification based on the comparison of the values attained by the indices between two different states of a structure.  The work aims to examine the effectiveness of the indices based on the mode shapes for damage identification purposes. To this end, numerical simulations are carried out. The pseudo-experimental data (i.e. the dynamic responses) are generated using a plane frame model endowed with plastic hinges localized in selected joints of the structural model where the energy dissipation, i.e. the damage, is concentrated. The damage is caused by seismic type base motion. The intensity of the base motion is progressively raised in order to increase the damage severity. Each intensity level produce a different state of the structural model. The structural response at each state is processed to identify the mode shapes according to the assumption of quasi-linear behavior of the structure. Then the indices (of the second group) are computed and compared between the different states. In this way it is possible to show the relation between damage severity, hysteretic energy dissipation, damping non-proportionality and mode shapes complexity. Plasticity and modal complexity The discrete form of the motion of a structure with linear behavior endowed with viscous damping has equation:         tttt PKxxCxM  &&&  (1) in which t is the time variable; x , x&  and x&&  are, respectively, the displacement, velocity ad acceleration vectors; in turn M, C and K are the mass, damping and stiffness matrices; P is the load vector.  Even though the matrices M and K are diagonalizable, C can be diagonalizable or not depending whether the damping is proportional or non-proportional (i.e. C is a combination or not of M and K). In the first case, the mode shapes are real and have components with equal phase; in the second case, the mode shapes are complex and have the components with different phase [10]. Further, the more C is non-proportional, the more the imaginary part of the mode shapes is high, that is to say the complexity of the mode shapes increases along with the increase of the C non-proportionality [9][11].  
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In framed structures, the damage is often confined in the beam-column joints where local plasticity occurs accompanied by hysteretic type energy dissipation. In these conditions, the discrete form of the equation of motion Eq. (1) takes the form:        ttt PxHxM &&  (2) where      xxFxH dd  is the matrix of the instantaneous non-linear stiffness that depends on the reaction force  xF . The increase of plasticity (i.e. of damage) implies the stiffness reduction and the energy dissipation increase. These two effects are taken simultaneously into account in Eq. (2) through  xH  that represents their combined effect. Both effects contribute individually to make non-proportional the damping and, hence, to make complex the mode shapes. Actually, the dominant contribution is that due to the energy dissipation [7], therefore the contribution due to the stiffness is not considered in this work. Modal complexity indices for structural damage identification Among the indices based on the knowledge of the mode shapes, collected in [9], and for coherence with those studied in [7][8][11], in the present work five indices are considered: modal imaginary ratio (I1), modal collinearity (I2), modal dispersity (I3), modal phase difference (I4) and modal polygon area (I5). Their formulation is given below:   k kI
Ψ
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         kTkkTk kTkI
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4 ;   k,maxkAAI 5 ; (3) in which N is the number of the degrees of freedom (dofs) of the structures, Ψk is the k-th mode shape, Ψkj is the j-th component of Ψk; Re(.) and Im(.) stand for the real and imaginary part of the quantity in (.); ϕk,max and ϕk,min are, respectively, the maximum and minimum phase angle of Ψk; Ak and Ak,max are respectively the modal polygon area of Ψk and its maximum value; || . || is the Euclidean 2-norm operator and | . | the componentwise absolute value. The meaning of the indices is as follows: I1 weighs the importance of the imaginary part with respect to the overall length of the complex mode shape. I2 measures the degree of interdependence of the real and imaginary parts of a complex mode shape and is directly affected by the damping proportionality: the higher the damping proportionality is, the more correlated the real and imaginary parts of the mode shapes are; if the imaginary part of a complex mode shape is completely dependent on the real parts, the damping is proportional. I3 measures the degree of the scatter of the complex mode shape that is directly related to the amplitude of the imaginary part. The idea behind the I4 and I5 relies on a geometric interpretation. If the components of the mode shape are plotted in the complex plane, the effects of the non-proportional damping become apparent. I4 considers the phase differences between the dofs of a mode shape as a consequence of damping non-proportionality. In fact, each component of a mode shape of a system endowed with proportional damping lies on a straight line, whereas those of a system endowed with non-proportional damping do not; in effect, these latter exhibit an angular dispersion equivalent to the phase differences. If the individual components of a mode shape are connected by straight lines, an N-side polygon is formed. If the damping is proportional, the components of a mode shape lie on a straight line and the polygon area is zero. As the non-proportionality of the damping increases, the area of 

ICCM2018, 6th-10th August 2018, Rome, Italy

21



this polygon also increases. I5 measures the area of this polygon. In practical terms, once the mode shapes are identified they are first normalized using the procedure proposed in [12] that ensures the minimization of the errors in the identification of the imaginary part of the mode shape [8]. Subsequently the normalized mode shapes are used to compute the indices of Eq. (3). Finally, the indices, scaled in the interval [0; 1] and expressed in percentage, are analyzed to infer the damage presence. Case study and methodology The effectiveness of the five modal complexity indices of Eq. (3) to identify the damage in structures experiencing plasticization is analyzed using as pseudo-experimental data generator a basic model of framed structure with the scheme of “strong beam – weak column”.   The reference structure is a plane frame with a single span and three levels. The inter-storey height is 3 m and a mass of 10 t is condensed at each level. The columns have a constant cross-section 0,30 by 0,30 m and a Young modulus equal to 3.107 kN/m2, so the inter-storey stiffness is 1,8.104 kN/m. The damage is simulated by means of plastic hinges that dissipate energy for hysteresis and are localized at the columns base (Fig. 1).   Figure 1. Reference framed structure with simulated damage using plastic hinges localized at the columns base  The excitation of the structure is a seismic type base motion. Seismic input in resonance conditions (ideal) and not (actual) are considered. The “resonance conditions” case corresponds to mono-harmonic input with the excitation frequency equal to any of the structural frequencies. This case allows to obtain output signals typical of the experimental modal analysis in real structures. The “actual conditions” case corresponds to a real earthquake input. The energy dissipation entity of the plastic hinges (i.e. of the damage) is controlled by a damage parameter function of the excitation amplitude: the higher the excitation amplitude is, the higher the value of the damage parameter is.  In order to obtain mono-harmonic output signals of the structural dynamic response, the excitation is endowed with the same natural frequency of the structure to excite, according to the mode shape to identify. The damage parameter ranges from 0 (no damage) to 1 (maximum damage). The pseudo-experimental mode shapes can be derived in principle by any identification technique. In the present context, the Complex Plane Representation (CPR) method [13] is used. Briefly speaking, the CPR method is an output-only time domain technique in which the original signal is mapped in the complex plane by computing its imaginary counterpart via the Hilbert transform [14]. This new representation makes it very 
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simple to identify the phase shift of the motion between the different measurement points and, therefore, it is particularly effective for the identification of complex mode shapes of general viscously damped systems.   Multi-harmonic output signals of the structural dynamic response are obtained by exciting the framed structure with the Northridge earthquake, Arleta and Nordhoff Fire Station, 1994 (Fig. 2). The seismic excitation is gradually increased to increase the damage. In particular, the input intensity is progressively increased by scaling the earthquake profile to the following PGA levels: 0,1g; 0,3g, 0,5g; 0,7g; 0,9g. The elastic response spectrum of pseudo-acceleration (5% damping) is shown in Fig. 3, where the portion of interest of the spectrum is highlighted. In particular, it is important to note that this portion allows to verify the effectiveness of the modal complexity indices. In fact, as damage progresses, the first mode shape of the structure increases its natural period from 0,3 s to 0,5 s and simultaneously reduces, about 25%, the maximum pseudo-acceleration acting on the structure. As an example, the time-histories of the dynamic response in acceleration at the three levels of the structure in Fig. 1 are given below in Fig. 4 and in Fig. 5, respectively, for the minimum and maximum PGA values (0,1g and 0,9g).      Figure 2. Northridge earthquake, comp. 90°, 1994.  Figure 3. Elastic response spectrum - Northridge earthquake, comp. 90°, 1994.     Figure 4. Dynamic response. PGA = 0,1g  Figure 5. Dynamic response. PGA = 0,9g  As shown in Fig. 4 and Fig. 5, the structural response is composed by multi-harmonic signals. Therefore, in order to use the CPR method, to identify the pseudo-experimental mode shapes, it is necessary to decompose the signals in their individual harmonic components (each referred to a particular mode shape). Subsequently, the individual harmonics related to the same mode shape are considered to form a structural response composed by quasi-mono-harmonic signals in each dof of the structure, in such a way to recover the “resonance conditions” and hence the applicability of the CPR method. In this work, the decomposition 
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procedure for obtaining the individual harmonic components of the response signals is carried out using the time domain Empirical Mode Decomposition (EMD) [15]. The EMD method is applied in the time interval [5,5 s; 7,5 s] where the response signals are closer to the stationary (i.e. resonance) conditions necessary to apply the CPR method, see Fig. 4 and Fig. 5.  The results obtained after to apply the EMD method are given from Fig. 6 to Fig. 11 and referred to the minimum (PGA = 0,1g) and maximum (PGA = 0,9g) earthquake intensity. More in detail, the Fig. 6-7, Fig. 8-9 and Fig. 10-11 show, in the order, the results relative to extraction of the first, second and third quasi-harmonic component (i.e. with lower, middle and higher frequency associated to the first, second and third mode shape, respectively) of the multi-harmonic response signals of each frame level.      Figure 6. Quasi-harmonic component with lower frequency (first component) of the dynamic response. PGA = 0,1g  Figure 7. Quasi-harmonic component with lower frequency (first component) of the dynamic response. PGA = 0,9g     Figure 8. Quasi-harmonic component with middle frequency (second component) of the dynamic response. PGA = 0,1g   Figure 9. Quasi-harmonic component with middle frequency (second component) of the dynamic response. PGA = 0,9g  
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   Figure 10. Quasi-harmonic component with higher frequency (third component) of the dynamic response. PGA = 0,1g  Figure 11. Quasi-harmonic component with higher frequency (third component) of the dynamic response. PGA = 0,9g Results As a matter of example, the results obtained in “resonance conditions” (ideal seismic excitation) are shown in the figures below for the two cases of low and high damage severity. In each case, the moment-rotation hysteretic cycle of the plastic hinge localized at the column base, Fig. 12 and Fig. 14, and the displacement time-histories at each floor level, Fig. 13 and Fig. 15, of the structure in Fig. 1, are reported.      Figure 12. Moment-rotation diagram of the plastic hinge at the column base (low damage)  Figure 13. Dynamic response: displacement time history (low damage)     Figure 14. Moment-rotation diagram of the plastic hinge at the column base (high damage)  Figure 15. Dynamic response: displacement time history (high damage)  
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The analysis of the results highlights that as damage increases, both the area of the hysteresis cycle and the phase difference between the response signals of the three levels of the structure increase as well. Now, since the energy dissipation is a function of the area of the hysteresis cycle and the modal complexity is a function of the phase difference, both the energy dissipation and the modal complexity increase in turn along with the damage severity.  In the following figures, the variations of the five modal complexity indices versus the damage severity (damage parameter or PGA) are reported for the first mode shape. The cases of ideal, Fig. 16, and actual, Fig. 17, seismic input are compared.     Figure 16. Indices vs. damage parameter. First mode shape  Figure 17. Indices vs. PGA. First mode shape  The analysis of Fig. 16 and Fig. 17 leads to conclude that the indices show always an increasing monotonous behavior with the damage severity. This property is fundamental when the damage identification is performed through the comparison between different states. As concerns the sensitivity, it is apparent that the indices show a significant difference among them; the more and less sensitive ones are respectively I1 and I2.  Similar results are obtained for the higher order modes as it is shown in Fig. 18 and Fig. 19 for the case of the Northridge seismic input. In particular, it is observed that the indices tend to increase more rapidly along with the order of the mode shape. This is a consequence of the major articulation presented by the higher order mode shapes. In fact, the higher gradient of inter-story displacement demands higher rotations of the plastic hinges and ultimately an increase in energy dissipation.     Figure 18. Indices vs. PGA. Second mode shape  Figure 19. Indices vs. PGA. Third mode shape  However, it is observed from Fig. 17 to Fig. 19 that the indices estimated using the first mode shape are characterized by a sensitivity comparable with those of higher order mode shapes. Therefore, at least in the present case, the indices can be applied to identify the structural damage indifferently from the order of the mode shape selected. Finally, it is worth considering that the monotonic increase of the indices is preserved regardless the spectral 
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form of the input. In fact, in the present case, a drop in the spectral ordinates is observed passing from 0,3 s to 0,5 s (period elongation due to damage), nonetheless the indices appear not to be affected by this reduction of the seismic intensity. Conclusions The work investigates the effectiveness of some indices based on the mode shape complexity to identify the damage in structures experiencing plasticization. The basic idea is the relation between the damage and the complexity of the mode shapes generated by the damping non-proportionality that occurs when a structure subjected to vibration plasticizes dissipating energy. The indices derive from the technical literature and transform the identified complex mode shapes into scalar quantities readily usable in one to one relationships with any measure of the input severity. Presently, the identification of mode shapes is carried out by the joint and sequential use of the CPR and EMD methods. Nonetheless, any available signal processing technique is in principle applicable.  A simple plane frame structure endowed with plastic hinges is used as a case study. The behavior of the indices with respect to the damage is studied using seismic type base motion of progressive increasing intensity. The severity of the input is measured by the PGA of the selected earthquake.   The results confirm the monotony and sensitivity of the indices respect to the structural damage. As consequence, it is possible to identify the damage presence in a very simple form by the comparison of the indices between the current state and a previous (reference) state. More in detail, the results show a higher sensitivity of the indices measured using the higher order modes. This different sensitivity is however modest and it can be concluded that any mode shape can be effectively used to identify the damage in structures. In conclusion, it can be stated that the complexity of the mode shapes is an effective tool for a reliable detection of the structural damage. However, the use of modal complexity indices for the assessment of the damage allows only its identification but not its localization. The effectiveness of these indices rely therefore on their capability of providing synthetic and reliable indications on the structural damage presence. References [1] Gunes, B. and Gunes, O. (2013) Structural health monitoring and damage assessment Part I: A critical review of approaches and methods, International Journal of Physical Sciences Mechanics 8(34), 1694-1702. [2] Salawu, O. S. (1997) Detection of structural damage through change in frequency: a review, Engineering Structures 19(9), 718-723. [3] Shi, Z. Y., Law, S. S., Zhang, L. M. (2000) Damage localization by directly using incomplete mode shapes, Journal of Engineering Mechanics 126(6), 656-660. [4] Curadelli, R. O., Riera, J. D., Ambrosini, D., Amani, M. G. (2008) Damage detection by means of structural damage identification, Engineering Structures 30, 3497-3504. [5] Egba, E. I. (2012) Detection of structural damage in building using changes in modal damping mechanism, I. J. E. M. S. 3(3), 250-255. [6] Lage, Y., Cachão, H., Reis, L., Fonte, M., de Freitas, M., Ribeiro, A. (2014) A damage parameter for HCF and VHCF based on hysteretic damping, International Journal of Fatigue 62, 2-9.  [7] Iezzi, F., Spina, D. and Valente, C. (2015) Damage assessment through changes in mode shapes due to non-proportional damping, Journal of Physics: Conference Series 628(1) 12019-12026(8). [8] Iezzi, F., Valente, C. and Zuccarino, L., The measure of the modal complexity as structural damage indicator (in Italian), Proceedings of the XVI ANIDIS Conference, L’Aquila, Italy, 13-17 September 2015. [9] Iezzi, F., Structural damage identification using complex modes (in Italian), PhD Thesis, University “G. d’Annunzio” of Chieti-Pescara, Italy, 2016. [10] Craig, R. R. and Kurdila, A. J. (2006) Fundamentals of Structural Dynamics, 2nd ed., Wiley, USA. [11] Iezzi, F. and Valente, C. (2017) Modal density influence on modal complexity quantification in dynamic systems, Procedia Engineering 199, 942-947. 
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Abstract 
Plasma radiative properties are fundamental in many topics in plasma physics, such as nuclear 
fusion energy, astrophysics and extreme-ultraviolet lithography. Therefore, they are needed in 
radiation hydrodynamic simulations of those plasmas. However, the calculation of those 
properties involve the generation of huge databases of atomic data such as atomic cross 
sections of several processes that occur in the plasma and the resolution of very large no-
linear coupled rate equations to determine the atomic level populations in the plasma. Since 
these ones depend on the plasma conditions which are determined by the radiation-
hydrodynamic simulations at each instant and position, the whole set of equations must be 
solved self-consistently which makes in-line radiation-hydrodynamics simulations unfeasible. 
One of the solutions is to perform parametrizations of the plasma radiative properties as a 
function of the plasma conditions which leads to considerable reductions in computational 
costs. However, most of the parametrizations available are carried out for particular 
thermodynamic regimes (Coronal or local thermodynamic equilibria) of the plasmas and are 
not accurate out of those regimes. In this work, we present parametrizations of average 
radiative properties as a function of plasma density and temperature useful for astrophysics 
and nuclear fusion applications. The databases of the properties were generated using a recent 
code we have developed where a collisional-radiative model is implemented which ensures 
that the radiative properties obtained are accurate for any thermodynamic regime of the 
plasma. 

Keywords: Non-local thermodynamic equilibrium plasmas, Plasma radiative properties, 
Generation of databases and parametrization of radiative properties, Mono- and 
multicomponent plasmas. 
 
Introduction 
Plasma radiative properties, i.e. the opacity and the emissivity, play a pivotal role in nuclear 
fusion and astrophysics. In astrophysics, the opacities of the stellar mixtures control the 
energy transfer in the stars, affecting their structure and evolution [1] and also govern the 
levitation of metals in stellar interiors [2]. Furthermore, the plasma emissivity is a key 
quantity in the structure, behavior and stability of radiative shock waves which are present in 
many astrophysical scenarios. Hence, for example, the onset of thermal instabilities, that can 
be the responsible of the origin of some astrophysical objects, is related to temperature 
dependence of the radiative power loss (i.e. the frequency integrated emissivity) in the post-
shock medium. In the field of inertial fusion confinement, opacities are relevant in the design 
of hohlraum walls in the indirect drive scheme and also for the dopants embedded in the 
ablator of the target since they control the absorption of the thermal radiation coming from the 
hohlraum [3]. On the other hand, in magnetic confinement fusion, the radiative power loss 
plays an important role in the current decays after disruptions caused by strongly radiating 
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impurities [4] and also in the radiation losses from impurities that can help in the development 
of thermal instabilities at the plasma edge of the fusion devices [5]. 

The numerical simulations of the plasma phenomena above commented require of the 
resolution of the radiation-hydrodynamic equations (RHE). For a single fluid, that does not 
involve interior mass sources, the continuity equation is given by [6] 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ∙ 𝜌𝜌𝒖𝒖 = 0     (1) 

 

where 𝜌𝜌 and 𝒖𝒖 are the fluid density and velocity, respectively. The general transport equations 
for momentum and energy, in the non-relativistic limit, are given by 

𝜌𝜌 �𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 ∙ ∇𝒖𝒖� = −∇(𝑝𝑝 + 𝑝𝑝𝑅𝑅) + ∇ ∙ 𝝈𝝈𝝂𝝂 + 𝑭𝑭𝐸𝐸𝐸𝐸 + 𝑭𝑭′  (2) 

 

and 

 
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝜌𝜌 + 𝜕𝜕𝑢𝑢2

2
+ 𝐸𝐸𝑅𝑅� + ∇ �𝜌𝜌𝒖𝒖 �𝜌𝜌 + 𝑢𝑢2

2
� + 𝑝𝑝𝒖𝒖� = −∇𝑯𝑯 − 𝑱𝑱 ∙ 𝑬𝑬 + 𝑭𝑭′ ∙ 𝒖𝒖    (3) 

 

where 𝑝𝑝 and 𝑝𝑝𝑅𝑅 are the fluid and radiation pressures, respectively, 𝝈𝝈𝝂𝝂 is the viscous stress 
tensor, 𝑭𝑭𝐸𝐸𝐸𝐸 denotes the force density due to the interaction of the electromagnetic fields and 
charges and 𝑭𝑭′ the density of other possible forces. In Eq. (3), 𝜌𝜌 and 𝐸𝐸𝑅𝑅 denote the energy 
density of the fluid and the radiation field, respectively, and 𝑱𝑱 ∙ 𝑬𝑬  represents the volumetric 
heating by the current induced in the plasma by the electromagnetic waves. The divergence of 
the energy flux is given by 

 

∇𝑯𝑯 = ∇�𝓕𝓕𝑅𝑅 + (𝑝𝑝𝑅𝑅 + 𝐸𝐸𝑅𝑅)𝒖𝒖 + 𝑸𝑸− 𝝈𝝈𝝂𝝂 ∙ 𝒖𝒖�    (4) 

 

where 𝓕𝓕𝑅𝑅is the spectral radiation energy flux which is given by 
 

𝓕𝓕𝑅𝑅(𝒓𝒓, 𝑡𝑡) = 1
4𝜋𝜋 ∫ ∫ 𝐼𝐼𝜈𝜈(𝒓𝒓, 𝑡𝑡, 𝜈𝜈)d𝜈𝜈 𝒏𝒏d𝛺𝛺∞

0     (5) 

 

where 𝜈𝜈 is the photon frequency,  𝒏𝒏 is a unit vector in the direction of propagation for any 
value of 𝛺𝛺 and 𝐼𝐼𝜈𝜈 is the spectral radiation intensity. The radiation energy density and the 
radiation pressure also depend on the spectral radiation intensity 

 

 𝐸𝐸𝑅𝑅(𝒓𝒓, 𝑡𝑡) = 1
𝑐𝑐 ∫ ∫ 𝐼𝐼𝜈𝜈(𝒓𝒓, 𝑡𝑡, 𝜈𝜈)d𝜈𝜈 d𝛺𝛺∞

0      (6) 

 

𝑝𝑝𝑅𝑅(𝒓𝒓, 𝑡𝑡) = 1
𝑐𝑐 ∫ ∫ 𝐼𝐼𝜈𝜈(𝒓𝒓, 𝑡𝑡, 𝜈𝜈)cos2𝜃𝜃d𝜈𝜈 d𝛺𝛺∞

0     (7) 
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with c the speed of light. Therefore, the spectral radiation intensity is the basic macroscopic 
quantity to describe the radiative transfer and is obtained solving the radiative transfer 
equation (RTE) given by 

 
1
𝑐𝑐
𝜕𝜕𝐼𝐼𝜈𝜈(𝐫𝐫,𝜕𝜕,𝜈𝜈,𝒏𝒏)

𝜕𝜕𝜕𝜕
+ 𝒏𝒏 ∙ 𝛁𝛁𝐼𝐼𝜈𝜈(𝐫𝐫, 𝑡𝑡, 𝜈𝜈,𝒏𝒏) = −𝜅𝜅(𝐫𝐫, 𝑡𝑡, 𝜈𝜈)𝐼𝐼𝜈𝜈(𝒓𝒓, 𝑡𝑡, 𝜈𝜈,𝒏𝒏) + 𝑗𝑗(𝐫𝐫, 𝑡𝑡, 𝜈𝜈)  (8) 

 

where 𝑗𝑗(𝒓𝒓, 𝑡𝑡, 𝜈𝜈) and 𝜅𝜅(𝒓𝒓, 𝑡𝑡, 𝜈𝜈) are the monochromatic emissivity and absorption coefficients, 
respectively. Both coefficients include electron transitions in the plasma between atom bound 
levels (line transitions or bound-bound contributions), between bound and free levels 
(photoionization and radiative recombination which are bound-free contributions) and 
between electron free levels (direct and inverse bremsstrahlung or free-free contributions). 
The expressions used to calculate them can be found elsewhere [7]. Two ingredients are 
needed to compute them. First, the cross sections of the radiative processes, which are 
obtained through atomic simulations. Secondly, the populations of the atomic levels in the 
plasma. In general, plasmas are in non-local thermodynamic equilibrium (NLTE) regime and 
the atomic-level populations (for a given plasma condition, i.e. for a plasma density and 
temperature) are obtained from the solution of a system of rate equations of a so-called 
collisional-radiative model (CRM) [8][9]. This set of kinetic equations is given by 

 
𝑑𝑑𝑁𝑁𝜁𝜁𝜁𝜁(𝐫𝐫,𝜕𝜕)

𝑑𝑑𝜕𝜕
= ∑ 𝑁𝑁𝜁𝜁′𝑗𝑗(𝐫𝐫, 𝑡𝑡)ℝ𝜁𝜁′𝑗𝑗→𝜁𝜁𝜁𝜁

+ − ∑ 𝑁𝑁𝜁𝜁𝜁𝜁(𝐫𝐫, 𝑡𝑡)ℝ𝜁𝜁𝜁𝜁→𝜁𝜁′𝑗𝑗
−

𝜁𝜁′𝑗𝑗𝜁𝜁′𝑗𝑗    (9) 

 

where 𝑁𝑁𝜁𝜁𝜁𝜁 is the population density of the atomic level 𝑖𝑖 of the ion with charge state 𝜁𝜁. The 
terms ℝ𝜁𝜁′𝑗𝑗→𝜁𝜁𝜁𝜁

+  and ℝ𝜁𝜁𝜁𝜁→𝜁𝜁′𝑗𝑗
−  take into account all the collisional and radiative processes which 

contribute to populate and depopulate the level 𝜁𝜁𝑖𝑖, respectively. Since the rate equations 
included the radiative processes in the plasma, i.e. the absorption and emissivity coefficients, 
these equations are coupled to the RTE. Furthermore, since the CRM depends on the plasma 
density and temperature, which are obtained from the single fluid RHE of the plasma (and an 
equation of state), the rate equations are also coupled to them.  

Radiation-hydrodynamic simulations (RHS) of nuclear fusion and astrophysical plasmas 
require the calculation of plasma radiative properties for density and temperature profiles that 
could include between 102 − 103 different plasma conditions. For each plasma condition, the 
set of rate equations of the CRM must be solved, which could involve around 104 non-linear 
equations including 106 radiative and collisional processes. Furthermore, the RTE for each 
photon frequency, the RHE and the rate equations must be solved self-consistently. Therefore, 
in-line RHS are unfeasible and approximations are usually made. In the RTE is common to 
assume that the radiation does not depend explicitly on time. Moreover, the RTE is solved 
under the grey approach, in which appropriate mean opacities are used (Planck or Rosseland 
mean opacities) instead of monochromatic radiative properties, thus preventing the solution of 
the RTE for each photon frequency. Even so, huge radiative properties databases should be 
generated solving the CRM coupled to the RHE, which is still a complex problem that 
involves large computational times. An appropriate solution to this problem is to perform 
parametrizations of the plasma mean radiative properties in terms of plasma density and 
temperature. Thus, these properties can be obtained for given plasma conditions from 
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polynomial fittings obtained from reduced databases, greatly decreasing the computational 
cost.  

There are several available analytical expressions for the mean radiative properties, but more 
of them are accurate only for Coronal equilibrium [10]-[15], i.e. for plasmas at very low 
density in which they are density independent, or for the range of high photon energies 
assuming the plasma in LTE [16][17], i.e. for high density plasmas, but not for NLTE 
situations. In this work, we present a parametrization of the average radiative properties which 
are essential for RHS of plasmas in nuclear fusion and astrophysics scenarios, such as the 
average ionization, Rosseland and Planck mean opacities (which are weighted averages in 
frequency of the monochromatic opacities) and the radiative power loss, for mono- and multi-
component plasmas. The parametrization was performed using the PARPRA code [18] and is 
based on polynomial functions where the coefficients of the fitting were determined by means 
of a least square regression. A quad-tree algorithm was used to optimize the division of the 
space of plasma conditions to parametrize. The databases of the radiative properties to 
parametrize are generated for a representative set of plasma conditions using the RAPCAL 
code [19][20] using the the plasma atomic level populations obtained from the resolution of 
the rate equations of the CRM implemented in the POLAR code (a recent extension of the 
MIXKIP code [21]) and for this reason the parametrizations obtained are valid for Coronal 
equilibrium, LTE and NLTE regimes. The paper is structures as follows. Next section is 
devoted to a presentation of the theoretical and computational models used to perform the 
parametrizations. Thereafter, some examples of parametrizations for both mono- and 
multicomponent plasmas are shown. Finally, conclusions and future extensions are 
commented.  

Theoretical and computational models 
The POLAR code was developed in order to obtain the atomic level populations at typical 
plasma conditions obtained in nuclear fusion and astrophysics.  For that purpose, a CRM was 
implemented including, in the rate equations (Eq. (9)), the following atomic processes that 
populate and de-populate the atomic levels: collisional ionization and three-body 
recombination, spontaneous decay, collisional excitation and deexcitation, radiative 
recombination, autoionization and electron capture, photoexcitation, photodeexcitation and 
photoionization, which are the most common processes in this kind of plasmas. In this work, 
we have considered that the atomic level populations do not depend on time. Under this 
assumption, the rate equations of the collisional-radiative steady-state (CRSS) model are 
given by 

 

∑ 𝑁𝑁𝜁𝜁′𝑗𝑗(𝐫𝐫, 𝑡𝑡)ℝ𝜁𝜁′𝑗𝑗→𝜁𝜁𝜁𝜁
+ − ∑ 𝑁𝑁𝜁𝜁𝜁𝜁(𝐫𝐫, 𝑡𝑡)ℝ𝜁𝜁𝜁𝜁→𝜁𝜁′𝑗𝑗

−
𝜁𝜁′𝑗𝑗𝜁𝜁′𝑗𝑗 = 0   (10) 

 

Steady-state approach implies that the characteristic times of the atomic processes are 
significantly lower than the characteristic time of the plasma evolution. This approach 
becomes invalid, for example, if the plasma is under the interaction with ultra-short pulsed 
laser (~fs). However, for the plasmas of interest in this work that assumption is accurate. Two 
complementary equations have to be satisfied together with Eq. (10). First, the requirement 
that the sum of fractional level populations equals to the total ion particle density, 𝑛𝑛𝜁𝜁𝑖𝑖𝑖𝑖 
 

∑ ∑ 𝑁𝑁𝜁𝜁𝜁𝜁
𝐸𝐸𝜁𝜁
𝜁𝜁=1

𝑍𝑍
𝜁𝜁=0 = 𝑛𝑛𝜁𝜁𝑖𝑖𝑖𝑖      (11) 
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where 𝑍𝑍 is the atomic number and 𝑀𝑀𝜁𝜁 is the total number of levels for the charge state. 
Second, the charge neutrality condition in the plasma 

 

∑ ∑ 𝜁𝜁𝑁𝑁𝜁𝜁𝜁𝜁
𝐸𝐸𝜁𝜁
𝜁𝜁=1

𝑍𝑍
𝜁𝜁=0 = 𝑛𝑛𝑒𝑒       (12) 

 

with 𝑛𝑛𝑒𝑒 the electron particle density. The average ionization of the plasma, �̅�𝑍, is then defined 
as the ratio between the electron and the ion particle densities.  

The effect of radiative processes in the low density plasmas obtained in magnetic fusion 
devices and stellar atmospheres can be neglected since they can be assumed as optically thin 
(plasma radiation self-absorption is not significant). Furthermore, we have not considered 
external radiation fields in this work. On the other hand, for the high density plasmas obtained 
in stellar interiors and inertial confinement targets the relevance of radiative processes is 
significantly lower than collisional processes and can also be neglected. Therefore, the atomic 
processes considered in the CRSS model were collisional ionization and three-body 
recombination, spontaneous decay, collisional excitation and deexcitation, radiative 
recombination, autoionization and electron capture and the rate equations and the RTE will be 
uncoupled. 

The calculation of the rate coefficients of those processes requires of atomic data such as 
atomic energy levels, oscillator strengths and cross sections.  Before then, the first problem to 
address is the selection of a suitable set of atomic configurations for the CRM since, in 
principle, the number of atomic levels for a given ion is infinite. There is not a priori criterion 
to determine which configurations should be considered in the model and, in general, the kind 
of configurations to include depends on the plasma conditions, the presence of external 
radiation fields (such as thermal radiation or ultra-intense lasers) or the interaction with 
particle beams. However, since we are interested in the generation of databases of radiative 
plasma properties and their parametrization in wide range of plasma conditions, the criterion 
employed was based on a rule of thumb in which the configurations included for each ion in 
the model are those with energies up to twice the ionization energy of the ground 
configuration of the ion. With this criterion we cannot guarantee that all the configurations 
that have some influence in the radiative properties for a given plasma condition are included 
but the ones that have a large contribution are considered. The second question to address is 
related with the degree of detail of the atomic description. The most detailed description is the 
so-called detailed level accounting (DLA) approach. However, this description entails very 
large computational times and, therefore, it is only useful for chemical elements of low atomic 
number. In this work, the atomic data were generated in the detailed configuration accounting 
(DCA) approach. This is a statistical average of the atomic properties obtained in the DLA 
approach and is more accurate for elements of high atomic number. Nevertheless, since we are 
interested in average radiative properties, DCA approach is accurate enough for that purpose. 
Once the set of atomic configurations and the atomic description were selected, the atomic 
data used in the POLAR code were generated with the FAC code [22]. For a given ion with N 
electrons the energy levels are obtained in FAC by means of the diagonalization of the 
relativistic Hamiltonian. The wave functions are then obtained as antisymmetric sums of 
products of N monoelectronic Dirac spinors. Configuration interactions effects are also 
considered. The cross sections of the forward-going processes (collisional ionization, 
collisional excitation and autoionization) are calculated quantum-mechanically in the 
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relativistic distorted wave approach [22]. The cross sections for the corresponding inverse 
processes were determined from the appropriate micro-reversibility relations [23].  

The atomic data provided by the FAC code are obtained for isolated atoms. However, the 
plasma surrounding (ions, free electrons and photons) modify the atomic data since they 
change the potential experimented by the bound electrons. This effect is commonly modelled 
in plasma physics through the so-called continuum lowering, that represents the depression of 
the potential with respect to the isolated situation due to the electric fields generated by the 
plasma charged particles. In this work, the model used for the continuum lowering is based on 
the widely used proposal developed by Stewart and Pyatt [24] where the correction to the 
ionization potential 𝐼𝐼𝜁𝜁 is given by 

 

∆𝐼𝐼𝜁𝜁 = 3𝑎𝑎0𝐼𝐼𝐻𝐻
2𝑅𝑅𝜁𝜁

(𝜁𝜁 + 1) ��1 + �𝐷𝐷
𝑅𝑅𝜁𝜁
�
3
�
2/3

− �𝐷𝐷
𝑅𝑅𝜁𝜁
�
2
�   (13) 

 

where 𝑎𝑎0 is the Bohr radius, 𝐼𝐼𝐻𝐻 is the Rydberg constant, 𝑅𝑅𝜁𝜁 = [3(𝜁𝜁 + 1)/4𝜋𝜋𝑛𝑛𝑒𝑒]1/3 is the 
sphere-ion radius assuming the plasma composed of ions with charge 𝜁𝜁 only and the Debye 
radius is 𝐷𝐷 = �4𝜋𝜋��̅�𝑍 + 𝑍𝑍2����𝑛𝑛𝜁𝜁𝑖𝑖𝑖𝑖/𝑇𝑇𝑒𝑒�

−1/2
, with 𝑇𝑇𝑒𝑒 the electron temperature and 𝑍𝑍2��� the second 

order moment of the population distribution. The inclusion of the continuum lowering the 
kinetics rate equations of the CRSS model imply to solve them iteratively since the atomic 
data are now modified by the shifts caused by plasma effect. 

The set of rate equations constitutes a system of M equations for the level populations, where 
M denotes the total number of levels included in the CRM. Therefore, the size of the 
collisional-radiative matrix scales like M2. Even in the DCA approach, the number of levels 
involved in collisional-radiative simulations can easily reach 104 which entails matrix with 
108 elements. However, in CRM the atomic processes usually connect only levels belonging 
to ions with either the same charge state or to adjacent ones which means that the matrix is 
sparse and for this reason POLAR use sparse techniques to store and operate on only the non-
zero elements, decreasing the memory requirements.  

Once the plasma level populations are calculated with the POLAR code, these ones along with 
the oscillator strengths and the photoionization cross sections obtained using the FAC code 
are the input to the RAPCAL code to calculate the plasma radiative properties. Since in this 
work we show some examples of the parametrization of the radiative power loss, in the 
following we present a brief explanation about its calculation. The method to calculate the 
other plasma radiative properties in RAPCAL can be found in [19][20]. The radiative power 
loss is the frequency integrated plasma emissivity, if the plasma may be considered as 
optically thin. The emissivity, 𝑗𝑗(𝐫𝐫, 𝑡𝑡, 𝜈𝜈), has three contributions. The bound-bound 
contribution, 𝑗𝑗𝑏𝑏𝑏𝑏(𝐫𝐫, 𝑡𝑡, 𝜈𝜈), is given by 
 

𝑗𝑗𝑏𝑏𝑏𝑏(𝜈𝜈) = ∑ ∑ 𝑗𝑗𝜁𝜁𝑗𝑗→𝜁𝜁𝜁𝜁(𝜈𝜈),    𝑗𝑗𝜁𝜁𝑗𝑗→𝜁𝜁𝜁𝜁(𝜈𝜈) = ℎ𝜈𝜈
4𝜋𝜋
𝑁𝑁𝜁𝜁𝑗𝑗𝐴𝐴𝜁𝜁𝑗𝑗→𝜁𝜁𝜁𝜁𝑁𝑁𝑁𝑁𝜁𝜁𝑗𝑗(𝜈𝜈)       𝜁𝜁,𝑗𝑗𝜁𝜁  (14) 

 

where we have omitted the dependence on the position and time in the formula for simplicity. 
𝐴𝐴𝜁𝜁𝑗𝑗→𝜁𝜁𝜁𝜁 is the Einstein coefficient for spontaneous deexcitation between the bound states 𝑗𝑗, 𝑖𝑖 of 
the ion 𝜁𝜁 and ℎ is the Planck’s constant. 𝑁𝑁𝜁𝜁𝑗𝑗(𝜈𝜈) is the line profile and in its evaluation of the 
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line profile, natural, Doppler, and electron-impact [25] broadenings were included and also 
the Unresolved Transition Array width [26], which is a statistical method to take into account 
the atomic fine structure of the spectra in the DCA atomic approach used in this work. The 
line-shape function is applied with the Voigt profile that incorporates all these broadenings. 
The bound-free contribution to the emissivity, 𝑗𝑗𝑏𝑏𝑏𝑏(𝐫𝐫, 𝑡𝑡, 𝜈𝜈), is determined by means of 

 

𝑗𝑗𝑏𝑏𝑏𝑏(𝜈𝜈) = � �𝑗𝑗𝜁𝜁+1,𝑗𝑗→𝜁𝜁,𝜁𝜁(𝜈𝜈)
𝜁𝜁,𝜁𝜁𝜁𝜁+1,𝑗𝑗

 

𝑗𝑗𝜁𝜁+1,𝑗𝑗→𝜁𝜁,𝜁𝜁(𝜈𝜈) = ℎ4𝜈𝜈3𝑖𝑖𝑒𝑒

2𝜋𝜋𝑐𝑐2𝜀𝜀
1
2
� 1
2𝑚𝑚𝑒𝑒

�
3
2 𝑁𝑁𝜁𝜁+1,𝑗𝑗𝑓𝑓(𝜀𝜀) 𝑔𝑔𝜁𝜁,𝜁𝜁

𝑔𝑔𝜁𝜁+1,𝑗𝑗
𝜎𝜎pho𝜁𝜁+1,𝑗𝑗→𝜁𝜁,𝜁𝜁(𝜈𝜈)  (15) 

 

where 𝜀𝜀 is the free electron energy and 𝑚𝑚𝑒𝑒 the electron mass. In this work, a Maxwell-
Boltzmann distribution 𝑓𝑓(𝜀𝜀) at the electron temperature is assumed. Photoionization cross 
section, 𝜎𝜎pho𝜁𝜁+1,𝑗𝑗→𝜁𝜁,𝜁𝜁(𝜈𝜈), were calculated quantum-mechanically using the FAC code in the 
relativistic distorted wave approach. 𝑔𝑔𝜁𝜁,𝜁𝜁 denotes the statistical weight of level 𝑖𝑖. Finally, for 
the free-free contribution to the emissivity a semi-classical expression, based on the Kramer’s 
inverse bremsstrahlung cross section [27], was used  

 

𝑗𝑗𝑏𝑏𝑏𝑏(𝜈𝜈) = 32𝜋𝜋2𝑒𝑒4𝑎𝑎02𝛼𝛼3

√3(2𝜋𝜋𝑚𝑚𝑒𝑒)3/2ℎ
� 𝑚𝑚𝑒𝑒
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒

�
1/2

𝑍𝑍2���𝑛𝑛ion𝑛𝑛𝑒𝑒𝑒𝑒−ℎ𝜈𝜈/𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒  (16) 

 

where 𝑘𝑘𝐵𝐵is the Boltzmann’s constant and 𝛼𝛼 is the fine structure constant. Therefore, the total 
emissivity is the sum of these three contributions and the radiative power loss is the emissivity 
integrated in frequency, as said above.   

The ranges of plasma conditions of interest in RHS are, in general, very wide, covering 
several orders of magnitude in temperature and density. For this reason, we have obtained that 
an optimum grid in which generating the databases of the radiative properties using POLAR is 
based on logarithmic meshes with steps of 0.1 and 0.5 for the temperature and density grids, 
respectively, since the radiative properties are more sensitive to the plasma temperature than 
to the density. Once the databases have been generated we can proceed to their 
parametrization. Due to the nature of the radiative properties, we have obtained that the 
parametrization of the decimal logarithm of the radiative property than the property itself [28] 
shows numerical advantages. The polynomial employed for the fitting is given by 

 

𝑃𝑃(𝑑𝑑,𝑇𝑇𝑒𝑒) = ∑ ∑ 𝐶𝐶𝜁𝜁𝑗𝑗(log𝑑𝑑)𝜁𝜁(log𝑇𝑇𝑒𝑒)𝑗𝑗𝑚𝑚
𝑗𝑗=0

𝑖𝑖
𝜁𝜁=0     (17) 

 

where 𝑑𝑑 denotes either the electron particle density, the ion particle density or the density of 
matter of the plasma. The coefficients of the parametrization, 𝐶𝐶𝜁𝜁𝑗𝑗, are obtained by the 
minimization of the following function through least square regression 

 

𝐹𝐹�𝐶𝐶𝜁𝜁𝑗𝑗� = ∑ ∑ �𝑃𝑃�𝑑𝑑𝑘𝑘,𝑇𝑇𝑒𝑒,𝑙𝑙� − log𝐴𝐴�𝑑𝑑𝑘𝑘,𝑇𝑇𝑒𝑒,𝑙𝑙��
2𝑖𝑖𝑇𝑇

𝑙𝑙=1
𝑖𝑖𝑑𝑑
𝑘𝑘=1   (18) 
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where 𝐴𝐴�𝑑𝑑𝑘𝑘,𝑇𝑇𝑒𝑒,𝑙𝑙� is the radiative property evaluated at a given plasma condition. Then, from 
the equation of the minimization 

 
𝜕𝜕𝜕𝜕�𝐶𝐶𝜁𝜁𝑗𝑗�
𝜕𝜕𝐶𝐶𝜁𝜁𝑗𝑗

= 0      (19) 

 

the following set of  (𝑛𝑛 + 1) ∙ (𝑚𝑚 + 1) coupled algebraic equations is obtained 
 

����𝐶𝐶𝜁𝜁𝑗𝑗(log𝑑𝑑𝑘𝑘)𝜁𝜁+𝑞𝑞�log𝑇𝑇𝑒𝑒,𝑙𝑙�
𝑗𝑗+𝑟𝑟

= �� log𝐴𝐴�𝑑𝑑𝑘𝑘,𝑇𝑇𝑒𝑒,𝑙𝑙�(log𝑑𝑑𝑘𝑘)𝑞𝑞�log𝑇𝑇𝑒𝑒,𝑙𝑙�
𝑟𝑟

𝑖𝑖𝑇𝑇

𝑙𝑙=1

𝑖𝑖𝑑𝑑

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=0

𝑖𝑖

𝜁𝜁=0

𝑖𝑖𝑇𝑇

𝑙𝑙=1

𝑖𝑖𝑑𝑑

𝑘𝑘=1

 

(20) 

 

 

with 𝑞𝑞 = 0, … , 𝑛𝑛 and 𝑟𝑟 = 0, … ,𝑚𝑚. Polynomial of high degree for the fittings can be highly 
oscillatory and may provide very inaccurate values for the radiative properties for plasma 
conditions not belonging to the databases. This fact is avoided fixing the maximum degree of 
the polynomial both for the temperature, 𝑚𝑚, and density, 𝑛𝑛, to 7, which are enough for the 
properties in which we are interested. To obtain the coefficients of the fitting we start from the 
lowest degree and we increase it until the relative difference between the fitting and the 
database value is lower than an imposed criterion. If the maximum degree is reached and the 
criterion has not been fulfilled, then the range of density and temperature considered must be 
sub-divided in short ranges and then the procedure starts again. In order to optimize this 
division, we have employed a quad-tree algorithm. Obviously, the number of polynomials 
obtained (and of sub-divisions of the space of plasma conditions) depends on the criterion 
imposed. As the criterion becomes more restrictive, the number of polynomial needed 
increases. This procedure is integrated in a computational code named PARPRA [18] which, 
in addition, was developed with a graphic interface to ease its use by the user. A detailed 
explanation of the code can be found in [29].  

The databases of the radiative properties are generated for monocomponent plasmas. 
However, both in nuclear fusion and astrophysics, multicomponent plasmas (i.e. plasma 
mixtures) are commonly found. In this case, the fittings of the individual elements of the 
mixture can be used for determining its radiative properties. The procedure followed to obtain 
the mixture radiative properties depend on the type of density given as an input. If the input is 
the electron density, then the procedure is very simple since we only have to add the fitted 
radiative property of each single element, weighted by the abundance of each element in the 
mixture, in order to obtain the total one.  On the other hand, if the input is the ion number 
density or the mass density we have to make an iterative procedure. Hence, we start assuming 
an electron density for the mixture equal to the ion density or to the mass density divided by 
the Avogadro’s number and multiplied by the mixture atomic mass. With this electron density 
we obtain the average ionizations of the different elements in the mixture form the fitting of 
the average ionization of the single elements for that electron density. With this set of average 
ionizations and weighted by their fractional abundances in the mixture we obtain a new 
electron density and we repeat this procedure until the relative difference between the average 
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ionizations of the mixture in two consecutive steps of the iterative procedure will be lower 
than an imposed criterion. We would like to point out the relevance of this procedure since it 
avoids the resolution of the CRM for a mixture which involves to solve as many set of rates 
equations as elements of the mixture, that, for example, in astrophysics can easily reach 26 
elements.   

 

Results 
In this section we present some examples of the fittings of some of relevant microscopic 
radiative properties in order to show the utility and the accuracy of the fitting proposed. In 
Figure 1 we show an example of characteristic databases, generated using POLAR, to 
parametrize. In this case the property is the average ionization for Xe and Kr in a range of 
plasma conditions typically obtained in experiments of laboratory astrophysics in which 
scaled astrophysical phenomena are reproduced in laboratory with ultra-intense laser and 
noble gases.   

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Representation of the databases of the average ionization generated by 
POLAR as a function of the electron temperature and density for plasmas of (a) Kr and 
(b) Xe. 
 

In Figure 2, we present the parametrizations carried out with PARPRA of the average 
ionization and the radiative power loss of a krypton plasma as a function of the temperature 
and for several mass densities. For the fitting, the criterion imposed was a relative error lower 
than 1%. We also show in the figure the relative errors obtained between values obtained with 
POLAR and the parametrization either for plasma conditions used in the parametrization or 
not. We can observe that for the latter the relative error is sometimes larger than the criterion 
used in the fitting although they are still small and near to the criterion (lower than 1.5%). The 
errors obtained are slightly greater for the radiative power loss than for the average ionization 
since the former is a less average property than the latter and, therefore, is more sensitive to 
the plasma conditions. The number of polynomial functions required for the parametrization 
of the whole set of plasma conditions was 4 both for the average ionization and the radiative 
power loss. 

The examples presented in the images correspond to parametrizations of radiative properties 
of monocomponent plasmas (krypton in particular). As commented above, a great advantage 

(a) (b) 

ρ (gcm-3) ρ (gcm-3) 
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of this kind of parametrization is that it can be used to obtain the radiative properties of 
multicomponent plasmas without making any new parametrization or the calculation of the 
databases for the mixture. In Table 1 we present the comparison of the average ionization and 
the radiative power loss for a plasma mixture of four elements (neon, argon, aluminium, 
which are of interest in astrophysics, and xenon, which is commonly used as temperature 
moderator in nuclear fusion chambers) from the database and the ones obtained from the 
parametrization of the individual elements. We have assumed the same relative abundance of 
the four elements in the mixture. The databases of the single elements were parametrized with 
a relative error of 1% for the plasma conditions of the mesh of the database. From the table, 
we can observe that although the radiative properties of the multicomponent plasma in 
PARPRA are generated from the ones fitted for each single element of the mixture, the 
agreement with the values obtained from the collisional-radiative simulations using POLAR is 
really good. This is a remarkable result since this means a considerable reduction both in the 
complexity of the problem of dealing with plasma mixtures and also in the computing time. 
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Figure 2.  Parametrization of the average ionization and radiative power loss for several 
mass densities and for the range of temperatures 1-20 eV for a Kr plasma. The figure 
also shows the relative errors in the fitting for values of the properties belonging or not 
to the database fitted. 

Table 1. Comparison of the average ionization (𝒁𝒁�) and the radiative power loss (RPL), in 
erg/s/cm3, for a plasma mixture of four elements, provided by the POLAR simulations 
and their parametrization with PARPRA. 

T (eV) d (gcm-3) �̅�𝑍 (POLAR) �̅�𝑍 (PARPRA) RPL (POLAR) RPL (PARPRA) 
2 10-5 1.293 1.239 3.564×1013 3.579×1013 
10 10-5 4.046 4.046 5.352×1015 5.351×1015 
20 10-5 6.060 6.058 1.286×1016 1.287×1016 
20 10-4 6.164 6.158 3.963×1017 3.973×1017 

Conclusions 
In this work we have presented a method to parametrize average plasma radiative properties, 
implemented in the PARPRA code in terms of the plasma temperature and density by means 
of polynomial functions, which is very useful in RHS since these parametrizations 
considerably reduce the computational costs. The databases of the radiative properties to 
parametrize are generated using a recently developed code named POLAR which has 
implemented a CRM. Therefore, the radiative properties and, therefore, their parametrizations, 
are accurate for any plasma thermodynamic regime. The criterion imposed in the 
parametrization is fixed by the user. Obviously, as the criterion becomes more restrictive the 
number of polynomial functions required to parametrize the whole set of plasma conditions 
increases. We have presented, as example, a parametrization of the average ionization and the 
radiative power loss of a Kr plasma imposing a relative error in the fitting of 1%. The number 
of polynomials required was 4 for both properties and the errors obtained in the calculation of 
the properties from the parametrization at plasma conditions not included in the fitting were 
also very near to the criterion. We have also showed the utility and the accuracy of the 
parametrization of the radiative properties of the single elements for obtaining those for 
plasma mixtures. It is worth pointing out the advantage of providing this kind of 
parametrizations since the radiative properties are needed in radiation-hydrodynamics 
simulations of plasmas in nuclear fusion and astrophysics in wide range of plasma conditions 
being their calculation very complex and computing time consuming. 

In this work we have limited the parametrization to mean radiative properties since we have 
assumed the gray approach for the RTE in the RHS. However, this may be a rude approach in 
several scenarios. More realistic radiative transfer simulations require more detailed 
descriptions of the radiative properties such as those based on multigroup descriptions (the 
gray approach can be considered as one group approach). Parametrizations of multigroup 
radiative properties as a function of the plasma conditions and photon frequency groups would 
be highly useful and this will be a future goal of this work.  
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Abstract 

The use of the smoothed particle hydrodynamics (SPH) method to simulate the surface 

tension effects requires an efficient description of the three phase contact line among liquid, 

gas, and solid. In this study, based on the continuum surface force (CSF) model, the virtual 

interface method is proposed to implement the contact angle in the SPH multiphase 

simulation. The first step is to create the virtual gas-liquid interface at the triple contact point 

according to the desired contact line. Then, the adjusting force acting on the fluid of the triple 

line can be expressed as the function of the interface curvature, which can gradually adjust the 

dynamic contact line towards the desired contact angle. The proposed method is successfully 

applied to simulate the droplet morphologies on smooth and roughness surfaces. The 

numerical results are in agreement with the previous analytical solutions. These analyses hold 

great potentials in bio-inspired superhydrophobic surfaces, oil displacement, microfluidics, 

and ore floatation, etc.  

 

Keywords: Smoothed particle hydrodynamics (SPH); virtual interface method; 

equilibrium contact angle; droplet morphology; roughness surface substrate. 

 

1. Introduction 

Surface tension and contact line dynamics play a major role in many industrial fields, 

including inkjet printing[1], powder agglomeration[2] and microfluidics[3], etc. These 

phenomena also occur in the nature world, such as the superhydrophobic effect of the surface 

of the lotus leaf[4], nutrition transportation in plants via Phloem and Xylem tissues[5], and 

some aquatic creatures walking on water[6]. Therefore, much effort has been devoted to 

explore this area, both from experimental and numerical viewpoints. It should be mentioned 

that it is not easy to perform experiments in some extreme conditions, and thus numerical 

simulation must be the necessary approach, which can shorten time and lower expenses. A 

main task is to develop the numerical model in consideration of the surface tension.  

 

Currently, two common computational fluid dynamics (CFD) approaches are used in 

multiphase simulations with surface tension effects being considered. The first one is the 

volume-of-fluid method (VOF)[7] which belongs to grid-based methods, and the second one 

can be grouped into the particle-based Lagrangian methods, such as the smoothed particle 
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hydrodynamics (SPH) method[8]. The SPH method was originally proposed to simulate the 

astrophysical phenomena[9] and then widely used in the simulation of hydrodynamics[10] 

and solid mechanics[11]. Up to now, the SPH method has also been applied in the simulation 

of multiphase flows[12–18]. And the Lagrangian nature of SPH makes it a good option for 

simulating complex multiphase problems. 

 

In SPH multiphase simulations, there exist two ways to implement the surface tension. The 

first is based on the van der Waals force implemented through particle-particle 

interactions[20]. Surface tension effects can be simulated by adding the van der Waals force in 

the pressure term. Tartakovsky and Meakin[21] combined the standard SPH equations with 

pairwise fluid-solid particle-particle interactions to simulate capillarity. In their work, the 

simulation of contact lines is realized through the interplay between the pinning forces 

provided by particle-particle interactions, and driving forces from the gravity. The second 

method is the continuum surface force (CSF) method, where the surface tension is expressed 

as a function of the interface normal vector, curvature and surface tension coefficient[22]. The 

CSF method was first implemented in SPH by Morris[23] in use of the color function for the 

interface tracking. It is widely accepted that the CSF method is more perceptible than the first 

method because its formulation contains the surface tension coefficient, which is convenient 

to control the surface tension according to actual physics. 

 

The implementation of the CSF method requires proper boundary conditions to account for 

the three-phase contact. Liu and Liu[24] simulated the micro-channel flow adopting an 

asymmetric SPH model, and the simulation of the contact line with solid surface is realized 

based on the normal correction method proposed by Brackbill et al.[22]. Hu and Adams[25] 

developed a multi-phase SPH method from a particle smoothing function in which the 

neighboring particles only contribute to the specific volume but not density, and this method 

was used to simulate channel flow by using virtual particles to account for the wall-fluid 

interaction. But only the straight channel wall was considered. Das and Das proposed another 

method to handle the wall-fluid interaction, in which the equilibrium contact angle was 

simulated by incrementally translating particles in the triple contact region. In this method, a 

constant reconstruction of the triple line is required, and the method was only tested for 

smooth surfaces also. Breinlinger[28] proposed a smoothed normal correction method to 

modify the interface normal vectors near the triple line, and introduced an adjusting force to 

obtain the desired contact line position. Yeganehdoust[19] adopted a similar way to introduce 

the adjusting force, and proposed a new scheme to correct the normal vectors by re-assigning 

the color values of dummy particles for solid wall. However, the method needs additional 

fitting parameters to tune the result so that it is only applied to smooth surfaces. As we all 

know, most wetting and dewetting phenomena of solid materials are closely related to the 

micro-structures of their surfaces[29]. For example, the leaves of lotus can keep off rain drops 

due to its hierarchical surface structures. Inspired by the skill of superhydrophobicity of lotus, 

rough surfaces with appropriate wetting properties have various applications in industry, e.g., 

porous media, micro-fluidic devices, self-cleaning paints, and glass windows. Therefore, it is 

necessary to develop the numerical model for simulation of surface wetting for roughness 

surface, i.e., the surface with micro-structures. 

 

Following the previous studies, and on the basis of the SPH multiphase algorithm and CSF 

model, a simple and deterministic method of implementing contact angle is proposed, which 

can effectively simulate the droplet morphology on the solid surface. In the method, dummy 

particles of solid wall are used to create the virtual gas-liquid interface near the triple line. 

Then, the adjusting force which is the function of the interface curvature is introduced to 
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adjust the dynamic contact line towards the desired contact angle. The method is suitable for 

both smooth surface and roughness surface substrates. Only two-dimensional problems will 

be considered in this paper, though the presented model and method can be extended to 

three-dimensional cases without too much efforts. 

 

2. Model formulation 

2.1 Field equations 

   

Figure 1 Modeling on a droplet 

We first introduce the schematic of the computational model of a droplet deposited on a 

smooth surface. As shown in Figure 1, at the triple contact line, there is an angle between the 

liquid-gas interface and solid-liquid interface, which is termed as the Young’s contact angle. 

In the two-dimensional case, the morphology of the droplet can be formulated by the elliptic 

integrals once the volume and Young’s contact angle are given. Herein, we want to simulate 

the droplet conFigureuration in use of the SPH method. As demonstrated in Figure 1, a 

computational domain is selected to include the droplet-substrate system. Then the domain is 

discretized by a finite number of particles, and each particle is assigned physical parameter 

values and certain volume.  

 

In this study, the Navier–Stokes equation, in combination with the mass conservation 

equations, are adopted to describe the motion of the fluids, i.e. the gas and liquid. These field 

equations in Lagrangian view are expressed as follows[12]: 

  

  
      , (1) 

 
  

  
               , (2) 

where   is the mass density, t is the time variable,   is the velocity,    is the pressure 

gradient,   ,   , and   are the forces per unit mass, which correspond to the viscous force, 

body force (such as gravity) and surface tension force, respectively.  

 

The fluid is considered as incompressible, so the viscous force per unit mass can be expressed 

as: 

       , (3) 
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where   is the dynamic viscous coefficient.  

 

The surface tension force is computed using the continuum surface force (CSF) method[22]. 

According to the CSF method,    can be written as 

          
(4) 

where   is the surface tension of the liquid, which is assumed as a constant,   is the 

curvature of an arbitrary point in the interface,   is the normal unit vector of the interface, 

and   is a smeared delta function. 

 

An equation of state is compensated to calculate the fluid pressure[10]: 

  
    

 
  

 

  
 
 

      , 
(5) 

where   is the speed of sound,    is the reference density of fluid,   is a constant 

parameter[14], and    is the background pressure which helps to prevent the tensile 

instability, and also keep the particles distributed uniformly[13]. 

 

2.2 SPH discretization 

Evidently, the analytical solutions of Eqs. (1), (2) and (5) are intractable, and thus the 

numerical approach is adopted. Firstly, these equations should be discretized based on the 

SPH method, where the computational domain is initialized by a series of uniformly 

distributed particles. Considering there is a high density ratio between the two fluids, Eqs. (7) 

and (8) are discretized in the form of[12]: 

          , 
(6) 

  
   

  
   

 

  
      

      
            

    
    

 , (7) 

where the subscripts i and j are the particle indices. The symbol    
  

  
 is the volume of the 

ith particle,     represents the renormalized Gaussian kernel function           [14], 

where    is the position vector of the ith particle, and h is the smoothing length. In the 

simulation, the value of h is set as a constant, which reads:         , and    is the initial 

particle spacing. 

 

The viscous force per unit mass is discretized by the following equation[30]: 

  
      

  
    

 

  

             

       
 
         

        , (8) 

where      
     

     
  is the mean inter particle viscosity,    and    are the dynamic 

viscosity of the ith particle and the jth particle. 

 

2.3 Surface tension modeling 

According to the Eq. (4), the surface tension force is correlated with the interface normal 

vector and curvature, so these two parameters should be calculated first. In the two phase flow, 
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for the ith particle of fluid 1, if some particles of fluid 2 exist in the supporting domain of the 

ith particle, the surface tension force  
 can be expressed as[17]: 

  
                , (9) 

where      represents the surface tension between fluid 1 and 2. The parameter    is the 

curvature of the ith particle which is located in the interface, and   is the so-called color 

function and is defined as a pairwise form[17]: 

  
 
  

   
     

                                                                         

                                                                                     

  (10) 

 

The normal unit vector at the ith particle is calculated using the following equation: 

   
   

     
, (11) 

where     is the gradient of the color function and its expression is[17] 

    
 

  
    

    
   

  
    

 

 
     . (12) 

 

Then, the curvature of the ith particle is calculated based on the results of normal unit vectors: 

     
       

 
            

                   
, (13) 

where   
 
 is defined similar to the color function[17]: 

  
 
  

                                                                 
                                                            

  (14) 

 

The function of   
 
 is to reverse the direction of the normal vector in the neighbouring phase. 

 

2.4 Time-stepping scheme 

A modified prediction-correction time-stepping scheme[14], which is proposed for multiphase 

droplet dynamics with high density ratio, is applied. The explicit time-stepping scheme is 

subject to the Courant-Friedrichs-Levy (CFL) condition for stability. The time step is 

determined according to the following criterion: 

        
 

      
, (15) 

where CLFc is the coefficient set as         ,      is the maximum velocity in the fluid 

field. Besides, the magnitude of the time step    is also determined based on the following 

criterions: 

         
   

   
 
   

, (16) 
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, (17) 

where the coefficients are set as         ,           . The final time step is 

determined as                     . 
 

3. Contact angle implementation 

In this section, the method of implementing contact angle is proposed to simulate the droplet 

morphology with the desired contact angle value. The equilibrium contact angle     are 

given as the input parameters.  

 

3.1 Interfacial forces at the triple line 

    
Figure 2 Illustration of interface tensions at the liquid-gas ( ), the solid-liquid (   ), and 

the solid-gas (   ) interface. 

 

As shown in Figure 2, according to the Young’s equation, the interfacial forces acting on the 

fluids of the droplet near the triple line can be expressed as: 

                 , 
(18) 

where  ,     and     are the interface tensions at the liquid-gas, the solid-liquid, and the 

solid-gas interface, respectively.  

 

In the dynamic simulation using SPH, if the instantaneous contact angle   of a droplet is not 

consistent with the equilibrium contact angle    , the adjusting force should be introduced 

based on the following equation[28]: 

                 , (19) 

where    is the adjusting force, which is distributed into fluid particles near the triple line as 

the following equation: 

      
 

      

 (20) 

where   
  is the force acting on the jth particle of fluids;      represents the domain near the 

triple line, and it is determined by the circle (     ) centered on the triple contact point, as 

shown in Figure 3. 
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Figure 3 Shadowy circles mark the liquid particles located in the triple contact region. 

The adjusting force is distributed on these particles. 

 

3.2 The virtual interface method 

 

Here, we introduce the following equation to calculate the adjusting force: 

  
             , 

(21) 

where   is an coefficient and is set equal to      in this study,    is the tangential unit 

vector of the solid surface,    and       are calculated by the Eqs. (11), (12), and (13).  

 

Before implementing Eq. (21), the dummy particles of the solid boundary should be treated 

first. As shown in Figure 4, the dummy particles are divided into two classes by the desired 

contact line. One part is attributed to type 1 and is given the same mass density as the liquid 

(as the solid circle marks in Figure 4), the other is attribute to type 2 which is given the same 

mass density as the gas. This is equivalent to create a dummy liquid-gas interface at the end of 

the real liquid-gas interface. Based on above treatment, the adjusting force (Eq. (21)) which 

has the same formulation as the surface tension force (Eq. (9)), is able to eliminate the 

concave or convex at the triple contact point. The is the basic principle of the virtual interface 

method. 

 

 

(a) 
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(b) 

Figure 4 A droplet is deposited on the surface. Illustration of the distribution of dummy 

particles. (a) Non-equilibrium droplet with      , (b) Non-equilibrium droplet with 

     . 

Figure 4 presents two situations that droplets are in non-equilibrium state with the 

instantaneous contact angle       and      , respectively. If      , as shown in 

Figure 4 (a), the adjusting force tends to stretch the droplet outwards due to the concave 

curvature at the triple contact point. While for the case of       (see Figure 4(b)), the 

adjusting force will stretch the droplet inwards. The equilibrium contact angle can be 

gradually approached under the effect of the adjusting force.  

 

Figure 5 shows the distribution of interface normal vectors near the triple line. As shown in 

the Figure, for the case without using the virtual interface method, the fluid particles near the 

triple line have insufficient supporting particles because of the cutoff of the supporting 

domain by the wall boundary, which leads to incorrect results of normal vectors. Figure 5 (b) 

shows the results of normal vectors with the virtual interface method. The dash line represents 

the virtual liquid-gas interface which can be seen as the extension of the real liquid-gas 

interface. It shows that better distribution of normal vectors are obtained when the virtual 

interface method is used. 

   

                         (a)                        (b)                            

Figure 5 Normal vectors at the triple line (a) without using the virtual interface method 

and (b) using the virtual interface method 

 

It can seen that the first step of implementing the virtual interface method is to detect the 

triple contact points.  

 

3.3 Implementation 
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Figure 6 Detection of the triple contact point 

For the two-dimensional problem, the triple contact point can be defined as the intersection 

between liquid-gas interface and solid surface. We propose the following procedure to 

identify the three-phase contact point in 2D as: 

1) Search the boundary particles of the liquid and gas phases, respectively. 

2) Identify two most downward interface particles close to solid surface, labeled as 

points g and l. 

3) Take the mean coordinates of g and l as the intermediate point p, and then the 

projection of point p on the solid surface (  ) is regarded as the triple contact point. 

 

Following the method proposed by Dilts [32], the boundary particles can be detected by 

scanning the 3h-radius (3h is the radius of the support domain) circle around an SPH particle. 

If the circle of the SPH particle is not completely covered by the circles of its neighbors, this 

particle is labeled as a boundary particle. Otherwise, it is an inner particle.  

 

Figure 7 illustrates the complete procedure of implementing the virtual interface method. 

 

Figure 7 Implementation procedure of the virtual interface method 

 

Figure 8 shows the complete flow chart of the SPH simulation, which is implemented by 

every time step. . 
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Figure 8 Flow chart of the numerical simulation implemented with the virtual interface 

method 

 

4. Results and discussion 

We consider a droplet deposited on the solid surface and initialized as square shape. Various 

contact angles can be simulated by changing the input conditions, i.e., the equilibrium contact 

angles. The simulation domain is a rectangular box of dimensions       discretized by 

different resolutions. At the bottom center, a rectangular region of       is assigned to fluid 

1 (liquid), while the surrounding particles are assigned to fluid 2 (gas). The fluid phases 

include water (liquid) and air (gas). The material properties of liquid and gas are set according 

to water and air,  where the density ratio is 1000.0, the viscosity ratio is 10.0, and the surface 

tension coefficient is set as 0.072 N/m.  

 

4.1 Evolution of liquid lumps towards the equilibrium contact angle 

We first investigate the evolution of the initially square liquid lump. The equilibrium contact 

angle is set as        . As shown in Figure 9, the sharp corners become smoothed under 

the effect of the surface tension. At the same time, the droplet is stretched outwards due to the 

adjusting force of contact angle. During the evolution process, the position of the triple 

contact point continually changes, so the color distribution of the dummy particles also varies 

with time. The droplet experiences a period of oscillation until it evolves to the equilibrium 

contact angle. From the last picture of Figure 9 one can see that the tangential line of the 

liquid-gas interface at the triple contact point is visually coincided with the desired contact 

line, which illustrates that the contact angle method works. 
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Figure 9 Evolution of a liquid lump to the equilibrium contact angle. (Particle spacing: 

      ,        ) 

 

  

(a) Particle spacing:              (b) Particle spacing:       

Figure 10 Simulation using different particle spacing.          

 

Figure 11 Time history of the kinetic energy of the droplet 

Then, we compare the results with different particle spacings, as shown in Figure 10. It 

illustrates that the final droplet morphology is insignificantly influenced by the particle 
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spacing. Figure 11 shows the time history of the kinetic energy of the droplet during the 

simulation. At early stages, the kinetic energy reaches to the peak value because both the 

surface tension and adjusting force have the largest values. At approximately t=0.01s circular 

droplet is formed and the particles are nearly at rest, i.e. the kinetic energy is very low. For 

different particle spacings the curve of kinetic energy generally have the same pattern, but the 

oscillation magnitude increases with the decrease of particle spacing. That is probably 

because the adjusting force of contact angle is dependent on the particle spacing. 

 

 

(a)         

 

(c)         

 

(d)          

 

(e)          

Figure12. Evolution of liquid droplet on a smoothed surface with various contact angles 

Then, various contact angles from     to      are tested. As shown in Figure 12, all 

presented cases are given the same initial conFigureurations except the input contact angles.  

 

4.2 2D Droplet morphology on the smooth surface 

In this section, we first validate the proposed simulation method by considering the 

morphology of a 2D droplet deposited on the smooth surface.  

 

The analytical solution of 2D droplet morphology had been derived by Liu and Xia 
[36]

 based 

on the classical Laplace equation across the liquid-gas interface. As shown in Figure 1, the 

radius of the liquid-solid area is defined as a, the maximum height of the droplet is      . 

The boundary conditions of the semi-droplet are expressed as: 

            
          , 

(22) 

                    , (23) 

 

The volume of the droplet is given as 
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, 

(24) 

 

The analytical solution of the dimensionless morphology for the droplet can be obtained from 

Eqs. (24) and (25) 
[36]

, in which the effects of gravity, surface tension, hydrostatic pressure 

and transversality condition are considered. 

                                         , 
(25) 

      
          , (26) 

where             is the capillary length,  , y are the coordinates of droplet surface, 

        and         are the elliptic integrals of the first and second kinds,    is the 

curvature at the triple contact point,    is the variable which is determined according to the 

boundary condition. In the Eqs. (24) and (25), the droplet morphology is expressed as the 

function of the variable  , while the variable    can be computed from the boundary 

condition. Parameters including    ,   , and     are taken as input parameters.  

 

In this section, a range of simulations are carried out by changing the input conditions of 

droplet volume and contact angle    . The volume of the droplet can be expressed as      . 

When the simulation reaches quasi-static state, i.e., the droplet shape changes slightly with 

time, the droplet morphology is extracted from the particle distribution. As an example, 

Figure 13 shows the particle distributions of the fluid system when the droplet is in 

equilibrium state, and the analytical solution of liquid-gas interface is also plotted in the 

Figure.  

 

              (a)                            (b)         

Figure 13 Particle distribution at the equilibrium contact angle. Solid line represents the 

analytical solution of droplet morphology (          ,      =2.6    mm, 

       ) 

 

If the input contact angle (   
 ) is set equal to the desired contact angle      , as shown in 

Figure 13(a), the simulated contact angle is always smaller that the desired value, so that the 

predicted droplet morphology is not accurately consistent with the analytical result. It 

indicates that the adjusting force is inadequate to accurately calibrate the contact line. 

Therefore, we introduce a correction angle to correct the input value of contact angle as: 

   
        ,       (27) 

where    is the correction angle.    
  is the actual input contact angle substituting    . We 

investigate several cases for various contact angles from 30deg to 150deg, and find that 

accurate results of the simulated contact angles can be obtained by setting the    between 

ICCM2018, 6th-10th August 2018, Rome, Italy

54



 
 

   and   .  

 

As shown in Figure 13(b), the predicted result of droplet shape is match every well with the 

analytical result on the condition that the equilibrium contact angle is accurately implemented.  

Figure 14 shows the comparison of droplet outlines between analytical results and SPH 

results. It can be seen from Figure 14 that there are good agreements of droplet outlines 

between SPH results and analytical solutions.    

     

Figure 14 Comparison of droplet morphology between SPH results and analytical results 

(          ) 

 

   
Figure 15 The shape of the droplets changes as the size gets larger (       ,    

      m) 

 

Figure 15 shows the predicted droplet morphologies for various droplet volumes and constant 

contact angle of    . As shown in the Figure, when the volume of the droplet is small, the 

curvature of the top of the droplet is relatively large, and the radius of curvature is small, so 

that the droplet shape is close to a sphere. As the volume of the droplet gradually increases, its 

shape gets far away from the sphere. 

 

4.3 Droplet morphology on a solid surface with sinusoidal microstructures 
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Figure 16 A droplet on a sinusoidal substrate 

This section aims to test the applicability of the contact angle method on curved surfaces. As 

an example, we analyze a single droplet on a sinusoidal surface, as shown in Figure 16. The 

substrate surface shape is expressed as: 

                  (28) 

where 2b is the roughness amplitude,        the wave number, and   the wavelength.  

 

 

Figure 17 Dummy particles for the rough surface substrate 

For the simulation of solid boundary with curved surface substrate, as shown in Figure 17, a 

set of uniformly distributed surface points are created along the surface first. The surface 

vectors at an arbitrary point k can be calculated by following equations: 

             
         
           

 
         
           

  
(29) 

            
         
           

 
         
           

  (30) 

where k, k-1 ,k +1 represent surface points of the solid surface adjacent to each other,   ,    

are the normal unit vector and tangential unit vector at point k,    is position vector of the 

point k.  

ICCM2018, 6th-10th August 2018, Rome, Italy

56



 
 

 

Figure18. The treatment of solid boundary for a curved surface 

Let us first consider the case where the droplet is deposited in the single groove. The droplet 

is still initialized as a square lump, similar to the way we did for smooth surface. The domain 

is 0.02 × 0.005m in the rectangular region using a fixed particle initial spacing     = 0.0001.  

 

    

Figure 19 Evolution of liquid droplet in the single groove (       ,      , 

        ,        )  

 

As shown in Figure 18, the droplet is initially in non-equilibrium state. It begins to deform 

under the action of gravity, surface tension, and contact angle adjusting force. The surface 

tension causes the sharp corners of the droplet shape to get smoothed. The contact angle 

adjusting force acts on the fluid near the triple line, causing the droplet to evolve toward the 

desired contact angle.  

 

As shown in Figure 19, the steady-state morphology of droplets are obtained using different 

input contact angles in case b, and the color distributions of the dummy particles at steady 

state are also shown. Consider a droplet located on a rough or curved solid whose 

characteristic size of surface roughness is of the same order as the droplet size. Then the 

model can be applied to simulate the droplet morphology. For example, some results of 

droplet shapes on the sinusoidal surface of case b are plotted in Figure 25. The wavelength L 

of the roughness is taken as b = 1mm and the contact angle        . The color distribution 

of the dummy particle is also given at each moment, which shows that and the color 

distribution of dummy particle color changes with the movement of the droplet. 
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   (a)                (b)               (c)                (d)          

Figure 20 Color distributions of dummy particles for various contact angles (   mm, 

      mm ) 

 

 

Figure 21 Comparison of droplet morphology between SPH results and analytical results 

(          ) 

 

For validation, some solutions of droplet shapes on a sinusoidal hydrophilic surface are 

plotted in Figure 21 for the wavelength       mm, the height of the roughness    mm, 

and the contact angle        . The analytical solutions from the reference [35] are also 

plotted in Figure 21. It shows the SPH results are in good agreement with the analytical 

solutions for three comparative cases of       mm, 1.5mm, and 0.9mm. It also can been 

seen from the Figure that the droplet shape is sensitive to the characteristic size of roughness 

and the contact angle. 

   

Figure 22 Evolution of liquid droplet on a non-smoothed surface (     mm, 
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      mm,        ) 

 

As shown in Figure 22, the liquid lump is initially placed offset from the center of the groove. 

Under the effects of several forces, the liquid lump move to the left as a whole until it arrives 

at the center of the groove. During this process, the droplet with smooth surface is gradually 

formed. The adjusting force calibrates the distribution of fluid near the triple line. Finally, the 

droplet is settled down in the single groove with the desired contact angle        .  

 

Above results show that the proposed contact angle method is suitable for the rough surface 

whose characteristic size is of the same order as the droplet size. 

 

5. Summary 

 

In this paper, based on the SPH multiphase flow algorithm and the CSF surface tension model, 

a method of implementing contact angle is proposed to simulate the droplet morphology on 

smooth surface and roughness surface substrates. The results can be summarized as follows: 

1. The virtual interface method is proposed to implement contact angle in SPH 

multiphase simulation. It requires two critical steps: (a) Identifying the triple contact points 

through searching the boundary particles of each fluid phase; (b) Dividing the dummy 

particles into two types by the desired contact line. Then, the virtual liquid-gas interface can 

be created from the triple contact point to the inside of solid wall.  

2. The adjusting force is defined as the function of interface curvature and normal unit 

vector. By means of the virtual liquid-gas interface, the adjusting force which is distributed 

into the fluid particles near the triple line, always tends to calibrate the dynamic line towards 

the equilibrium contact angle.  

3. The proposed contact angle method is validated for simulations of contact angles on a 

smooth surface and a roughness surface with sinusoidal microstructures. A initially square 

liquid lump can evolve towards the equilibrium droplet morphology with the desired contact 

angle. The predicted droplet shapes are in good agreement with the analytical solutions. In 

future work, the contact angle scheme for three dimensional model will be considered.  
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Abstract 
Inferior pressure changes of high-speed train have been disturbing aural feelings of 
passengers and staff when trains are passing through tunnels or meeting in tunnels. However, 
it is problematic to quantify the extent of aural discomfort according to the recorded inferior 
pressure data. The paper presents an original methodology to assess humans’ aural discomfort 
based on the mechanics of a reconstructed tympanic membrane(TM) finite element model. 
Besides, viscoelastic coefficients of a 7-parameter Maxwell model were obtained by inverse 
problem-solving method. By comparison with the results derived from the dynamic 
simulation of TM under varying pressure amplitudes and gradients, aural discomfort was 
ranked into four levels from ideal, good, bad to worse. Meanwhile, displacement, velocity and 
stress of TM umbo were chosen as referential indicators to establish judgement rules for 
discomfort assessment. In addition, the pressure change history which was exerted at the 
lateral side of TM, was collected by field tests when trains are running in tunnels. The results 
reveal that the maximum displacement of umbo for the four discomfort levels are 35.35μm, 
44.22μm, 63.84μm and 99.07μm respectively. Furthermore, a set of methodology was 
established for judgement of aural discomfort. Also, it indicates that aural discomfort begins 
at the pressure inversion point before which human ears feel pleasant whereas exacerbates 
when trains running in the middle of tunnels and alleviates when approaching the tunnel exit. 

1. INTRODUCTION 

Train-tunnel aerodynamic problems have long been bothersome experiences for staff and 
passengers. For instance, the barometric pressure outside the train fluctuates from 1kPa 
positive to 1kPa negative when train is passing through tunnel at 300km/h [1]. The varying 
pressure travels interiorly by path of openings of compartments and may incur different 
extents of aural discomfort which worsens with increasing running speed and long tunnel 
conditions. Countries like French, Germany and Japan has enacted air-tightness standards for 
high-speed trains from either the pressure amplitudes or pressure changing rates. Nonetheless, 
it poses a challenge for researchers to evaluate the discomfort feelings quantitatively from 
perspective of human ear biomechanics. Until recently, adequate investigations on human ears, 
which were mainly focused on mechanic properties, sound transmission and pathology, has 
been done by virtue of reconstructed finite element models [2-4]. However, using ear models 
to interpret barometric discomfort hasn’t yet been available. TM is the first receptor tissue and 
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most sensitive to ambient pressure variations. Besides, it is responsible for absorbing pressure 
waves and converting it into vibration energy. Thus, it is closely linked with aural discomfort 
and chosen as a study objective in this paper. The purpose of this paper was to reveal the 
mechanism between the vibration characteristics of TM and aural discomfort, set judgment 
methodology and make assessment of the interior barometric environment under different 
running speeds in tunnels. 
TM model was reconstructed based on CT scanning data from healthy volunteer with no 
history of ear diseases. Despite lack of uniformity of material properties [5], viscoelastic 
constitutive models were the most frequently explored via experiments on TM samples from 
cadavers [6-9]. Hence, a 7-parameter Maxwell viscoelastic model was utilized and the seven 
variables were derived from inverse problem-solving method and applied to our TM model, 
through which the model was validated. Furthermore, by exerting pressure loads at the lateral 
side of TM, the dynamic responses were simulated under varying pressure amplitudes and 
gradients. It deserves attention that the simulation conditions were conformed to Japan’s air-
tightness tests which uncovers the relationship between pressure changes and tinnitus for train 
cabin design [10]. Meanwhile, displacement, velocity and stress of TM umbo were selected as 
three indicators to represent its dynamics. Also, aural discomfort was divided into four levels 
ranging from easeful to awful by comparisons of the simulation results. In addition, interior 
pressure change history was collected by on-board field tests when train runs at a speed 
interval of 180~250km/h. The interior pressure then was loaded on TM surface and the aural 
discomfort it induced was analyzed eventually. 

2. MATERIAL AND METHOD 
2.1 TM model reconstruction 

Three dimensional TM model was reconstructed in Mimics as shown in Fig.1 according to the 
MRI scanning data derived from healthy adult volunteer (Male, 24 years old) with no history 
of ear diseases. The modelling work was assisted by the collaboration with physician who has 
expert knowledge of the middle ear anatomy and radiation morphology, the reconstructed TM 
model was shown in Fig.2. 

 
Fig.1 TM morphology and reconstruction in Mimics 
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Fig.2 TM finite element model in anterior and medial view 

TM is anatomically composed of three regions which are tympanic annulus (TA), pars 
flaccida (PF) and pars tensa(PT). PT is mostly surrounded by TA at the periphery while 
separated by PF at the superior of TM [11]. As is illustrated in Fig.2, TM model eliminates 
TA and PF on the ground that PF has slight influence on the simulation results and TA is fully 
clamped in simulation [6,9,12]. The thickness of TM is about 0.1mm on average and gauges 
7.91mm and 9.48mm laterally and longitudinally with a cone depth of 1.54mm. Due to the 
non-uniform thickness distribution of TM, quadratic tetrahedral element with 10 nodes was 
applied and the nodes along the edge of TM was fully clamped. 

2.2 Material properties for TM model 

Although TM property is widely discussed [13-14], there hasn’t been an agreement on which 
kind of constitutive model TM should be used. For biological tissue or organ, it is generally 
considered as both elastic and viscous. Various experiments on cadaver TMs were done to 
measure the viscoelastic coefficients as well as simulation methods. We utilized inverse 
problem-solving method to harvest the coefficients in time domain by comparison with the 
experimental data [9]. First, a TM strip, which gauges 1.5mm in width and 4mm in length 
with a uniform thickness of 0.1mm, was modeled as well as an indentation needle with a 
radius of 0.15mm, as shown in Fig.3.  
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Fig.3 Indentation of needle on TM strip model 

The bottom and upper surfaces of TM slice were fully clamped and the needle moves to 
contact TM sinusoidally at 0.2Hz. Meanwhile, a 7-parameter Maxwell model was 
implemented to simulate TM’s viscoelasticity. Besides, genetic algorithm was employed to 
obtain optimal viscoelastic coefficients by controlling cost function as shown in equation 1 
within 4%. 
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2.3 Simulations on TM model 

In accordance with Japan’s airtightness experiments for train [10], a series of pressure loads 
with varying amplitudes and gradients were created and loaded on TM surface. Furthermore, 
the aural discomfort was divided into four levels ranging from ideal, good, bad to worse, 
among which ideal level represents no hostile feelings on human ears, good level acceptable 
aural disturbance, bad level annoying and worse level awfully uncomfortable. Ideal level 
covers three conditions including 0.1-1, 0.4-0.5 and 0.3-0.5, of which the former number is 
pressure gradient(kPa/s) and the latter pressure amplitude(kPa), two for good level (0.2-1, 0.3-
1), three for bad level (0.5-0.5, 0.4-1, 0.1-2) and four for worse level (0.1-3, 0.2-3, 0.3-3, 0.4-
3). All the loads were uniformly distributing at TM surface and increased linearly. Besides, 
displacement, velocity and stress at umbo were selected as indicators on behalf of TM 
vibration with which aural discomfort level was linked.  

2.4 Interior pressure data collection 

Couples of on-board tests were done to record the interior pressure changes covering running 
speed levels of 180 km/h, 200 km/h, 220 km/h,250 km/h and 350km/h together with trains’ 
meeting in tunnels. Fig.4 illustrates the pressure change history at different speeds. 
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Fig.4 Interior pressure change history at different speed levels and meeting in tunnels 

It should be pointed out that experiments were done in various types of tunnels but in the 
same train. Tests under 250km/h were completed in the same tunnel with a length of 1.05km, 
tests at 350km/h were done in a 5.95km-long tunnel and trains meeting tests done in 3.71km-
long tunnel. For single train running in tunnel, it is visible that the interior pressure at initial 
stage after the train enters is positive followed by a long-term negative pressure stage and 
ascends when train approaches tunnel exit. With respect to trains meeting in tunnel, the 
interior pressure keeps negative during the whole journey. Likewise, the recorded pressure 
data were exerted at the lateral side of TM whose displacement, velocity and stress at umbo 
position were output for aural discomfort assessment. 

3. RESULTS 
3.1 Viscoelastic parameters for TM 

Optimization achieved convergence when the cost function arrived at a value of 2.53%.  The 
relaxation curve was displayed in Fig.5 compared with published data [9].  

 
Fig.5 Comparison of relaxation curve derived from simulation with experiments 

From Fig.5, it can be observed that the relaxation curve of TM shows significant viscoelastic 
property. The dashed simulation curve at the loading stage moves continuously within the 
experimental curves while at the unloading stage it goes beyond the experimental curves at 
the last two thirds stage. The discrepancy between simulation and experiments was considered 
reasonable in the light of individualities of human ears. To further justify the validity of our 
TM model, Fig.6 demonstrated the time-dependent relaxation modulus. 
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Fig.6 Reduced relaxation function of a 7-parameter Maxwell model 

From Fig.8, the average relaxation was described by three decays. The initial decay of 4% 
occurs at 0.46s followed by a decay of 18% with a characteristic time 10.3s and ends up with 
a total relaxation of 29% with characteristic time 14.5s. Aernouts et al. has tapped into how 
TM thickness affects Young’s modulus, which revealed that the modulus ranges from 
1.74MPa to 2.87Mpa at a thickness of 0.1mm [9]. It can be seen that our steady modulus falls 
right in this range with a value of 2.26MPa. Hence, the simulation curve is regarded as 
effective despite of the disparity between simulation and experiments. Detailed viscoelastic 
coefficients for the model are tabulated in Table 2 below. 

Table 2 Parameter values for the 7-parameter Maxwell model 

 g1 τ1 g2 τ2 g3 τ3 g∞ 

TM 0.154 0.46 0.103 10.3 0.672 14.5 2.26 

3.2 Judgement methodology for aural discomfort 

Japan’s airtightness tests for train has uncovered a discomfort line which divides aural 
discomfort into agreeable area and disturbing area. Depending on the experimental findings, 
we reinterpreted the discomfort line by dynamics of TM. Fig.7 and Fig.9 illustrated the output 
results of the three indicators under different pressure loads.  

 
a. ideal level                                                            b. good level 
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c. bad level                                                          d. worse level 

Fig.7 Displacement of umbo under pressure loads from different discomfort levels 

 
a. ideal level                                                            b. good level 

 
c. bad level                                                          d. worse level 

Fig.8 Velocity of umbo under pressure loads from different discomfort levels 
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a. ideal level                                                            b. good level 

 
c. bad level                                                          d. worse level 

Fig.9 Stress of umbo under pressure loads from different discomfort levels 

In Fig.7, it is visible that the displacement of umbo almost increases linearly and high 
pressure gradients generate steep ascent. The maximum values for each level are 35.35μm, 
44.22μm, 63.84μm and 99.07μm respectively. In Fig.8, the velocity curves except for worse 
level lift sharply initially and go up moderately, then either fall or incline to stabilize after 
reaching amplitudes. Also, it demonstrates that high pressure gradient will produce large 
velocity value. Likewise, high pressure gradient also generates large stress value if the 
amplitudes are the same. The maximum values for each level are 0.00746MPa, 0.00827 MPa, 
0.00879 MPa and 0.01177 MPa respectively. Besides, the stress of umbo tends to stabilize for 
long-term loading except for worse level. Moreover, the tendency of these curves justify the 
viscoelasticity of TM. However, it is improper to judge aural discomfort merely from 
indicator of velocity because it is found that the maximum velocity in ideal level is very close 
to that in worse level. Thus, we plotted velocity as independent variable on the X axis and 
displacement and stress on the Y axis respectively as shown in Fig.10 and Fig.11. 
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Fig.10 Velocity-Displacement curves for aural discomfort assessment 

 
Fig.11 Velocity-Stress curves for aural discomfort assessment 

As shown in Fig.10 and Fig.11, the bottom curves represent the threshold between comfort 
and discomfort, above which ears generate annoyed feelings. The upper curves were plotted 
by the values derived from bad and worse levels. The bottom curves uncover that the 
threshold values for indicators of displacement and stress lower when velocity increases.  

3.3 Aural discomfort assessment of interior pressure 

 
a. single train in tunnel                                           b. meeting trains in tunnel 
Fig.12 Displacement of umbo under different running conditions in tunnel 
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a. single train in tunnel                                           b. meeting trains in tunnel 

Fig.13 Velocity of umbo under different running conditions in tunnel 

 
a. single train in tunnel                                           b. meeting trains in tunnel 

Fig.14 Stress of umbo under different running conditions in tunnel 

As is illustrated in Fig.12, it presents that the displacement curves have identical consistency 
throughout the whole time history. When train runs under 250km/h in tunnel, the 
displacement of umbo initially keeps at the range of -5~13μm and drops abruptly after 10s 
until arrives at its minimum and goes steady, while the displacement curve bounces to ascend 
after reaching the valley when train runs at 350km/h. With respect to trains meeting 
conditions in tunnel, the displacement curves decrease slightly before 15s and falls sharply 
afterwards till 35s and 50s separately, after which the curves decrease mildly. In Fig.13, the 
velocity curves lie under 4μm/s at the beginning followed by a sudden ascent and descent, 
after which they calm down. In Fig.14, the curves also go with a low value and climb steeply 
to about 0.065MPa. When train runs at 350km/h or trains meet in tunnel, the stress curve 
climbs again and stabilizes until the train departures. In general, the maximum values of the 
three indicators increase with the lift of running speed.  

4. DISCUSSION 
When train enters the tunnel, the air is compressed and propagates in the form of compression 
wave at sonic speed, which forces the pressure in the tunnel increasing. As the wave arrives at 
the tunnel exit, a new type of wave generates and returns to tunnel in the form of expansion 
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wave, which in turn make the pressure fall. Under the alternating effect of the two wave types, 
the pressure inside the tunnel fluctuates up and down. The altering pressure in the tunnel 
travels into the cabins by path of openings of the train. Regarding to single train running 
conditions as is illustrated in Fig.4, the recorded interior pressures stay positive initially 
followed by a negative stage and go up till the train leaves. Whereas the interior pressure 
continues to decline after a short stage of positive pressure for meeting conditions. In addition, 
it indicates that higher running speed brings larger pressure amplitudes either for single train 
running condition or for trains meeting condition. 
Aural discomfort induced by interior pressure fluctuations when train passes through tunnels 
hasn’t been adequately reported until recently. In generally, aural discomfort or ear trauma is 
mainly attributed to time-dependent transient pressure or frequency-dependent noise [15-20]. 
As is reported in explosion about ear injury, blast wave generates a short-lived positive 
overpressure initially and is prolonged by a long-term negative stage [15,21]. Virtually, the 
recorded interior cabin pressure is much analogical to the blast wave in pressure change 
characteristics. Nonetheless, blast wave differs in pressure amplitude and duration from 
interior pressure, whose amplitude is far lower but the time history is much more long-lasting 
than blast wave. Hence, blast injury is commonly manifested in TM rupture, ossicles 
dislocation and tinnitus. What deserves attention is that TM penetration is the most frequently 
diagnosed ear trauma patterns. And it is caused by overpressure in the ear canal, which was 
verified by otoscopic observations that patients have inverted edges of the penetration [15-
16]. On the other hand, barotrauma reported in aviation is also somewhat analogical to train-
tunnel effect. Cabin pressure in aircrafts alters with ascent and descent maneuvers, which is 
accompanied with varied degrees of ear ailments [22-23]. Researches on barotrauma reach a 
consensus that descent poses much higher risks on passengers than ascent, that is, positive 
pressure differential between ear canal and tympanic cavity is more likely to cause ear 
complaints than equal amount of negative pressure differential [24]. Mirza et al uncovered 
that ET opens passively to expel excessive pressure in the tympanic cavity when the pressure 
differential reaches a threshold of 15mmHg (2kPa), but ET may stops working if middle 
pressure is lower than ambient pressure [25]. These findings on ear complaints caused by 
blast and aviation offers important referential values for assessment of tunnel-induced aural 
discomfort. 
As is illustrated in Fig.4, the lowest amplitude of the interior pressure is -1.4kPa which isn’t 
enough to force ET opening. Hence, it is futile to balance the pressure differential between 
sides of TM neither by opening of ET itself nor by any physical maneuvers like swallow or 
yawning. It can be interpreted that human ears have to confront with the hostile barometric 
environment without any conscious actions of relief unless air tightness of train is improved. 
Regarding to single train in tunnel, the amplitudes of the three indicators lift with the 
increasing of running speed, which implies higher travelling speed in tunnel incurs more 
terrible aural feelings. Additionally, the curves of the three indicators display some common 
characteristics. For short tunnel to travel, there is a peaceful stage lasting for 8 seconds right 
after the train enters. After this stage, one abrupt change appears representing by sudden drop 
of displacement and peaks of velocity and stress. During this stage, human ears perceive a 
significant pressure shock at the first half stage and attenuate at the second half until the train 
leaves. Whereas for long tunnel, the peaceful stage for ears is prolonged to about 18 seconds 
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after which also follows with a pressure shock for ears. As the train runs, the aural discomfort 
continues to worsen until it departures. With respect to trains meeting in tunnel, the former 18 
seconds also offers a friendly environment for ears and then ear complaints generate. It is 
noteworthy that meeting speeds of 200km/h versus 250km/h results in more awful aural 
feelings than that of 200km/h versus 200km/h. In general, it is conclusive that the whole 
course of train’s passage can be divided into two stages. One is a pleasant process for human 
ears sustaining for several seconds and the other is dominated by a much unfriendly pressure 
environment for ears. 
Judging from displacement of umbo, it indicates that the TM bulges inward initially and dents 
outward gradually until the train leaves. As a result of the leverage effect of ossicle bones, the 
energy received by inner ear is amplified for times [2]. Hence, discomfort feelings perceived 
by TM can also transfers to inner ear by way of ossicles and the discomfort level lifts as well. 
Furthermore, it is likely to infer that human ears may generate varying levels of otalgia, 
vertigo or tinnitus as the curves of the three indicators display. We enquired all the testers 
after the tests completed. Most of them complained the otalgia when train runs in tunnels, and 
some reported tinnitus symptoms. Nonetheless, it isn’t straightforward that whether tinnitus is 
caused by interior pressure change or by booming noise or unified effect of both. Further 
investigations will be conducted to identify the true causations of tinnitus. 

5. CONCLUSION 
Train’s entering into the tunnels will change the previous air flow field and make interior 
pressure fluctuate as well, which brings varying degrees of aural discomfort. For purpose of 
finding a way to assess aural discomfort quantitatively, a TM FE model was reconstructed 
based on volunteers’ CT scanning data of temporal bone. To solve the problem of non-
uniformity of TM material properties, TM was assumed to be viscoelastic in time domain and 
to satisfy a 7-parameter Maxwell model with a Poisson ratio of 0.499, because this 
assumption was verified to be conducive to reach convergence for cost function. Meanwhile, 
inverse method was employed to obtain the optimal values of the 7 parameters by genetic 
algorithm. Furthermore, dynamics of TM, which is represented by indicators of displacement, 
velocity and stress of umbo, was simulated under different barometric conditions which is in 
accordance with published air tightness tests. Through ranking aural discomfort into four 
levels and comparing the output curves of the three indicators, a set of methodology was 
established to judge aural discomfort. On the other hand, a series of on-board tests were 
conducted to collect the history of interior pressure change when trains pass through tunnels 
or meet in tunnels at different running speed. The recorded pressure data was exerted on the 
lateral surface of TM and the simulation results of the indicators were output. 
The simulation results indicate that the maximum values for the four levels from ideal to 
worse are 35.35μm, 44.22μm, 63.84μm and 99.07μm for displacement and 0.00746MPa, 
0.00817 MPa, 0.00879 MPa and 0.01177 MPa respectively. It also reveals that there exists a 
peaceful stage during which human ears feels pleasant. However, this sustains 15 seconds at 
the best and alters with variations of running speed and tunnel shape. A pressure wave shock 
is experienced for ears right after the peaceful stage terminates and ears begins to perceive 
awfully disturbed accompanied with otalgia, vertigo or tinnitus. This annoyed feeling lasts as 
long as the train departures the tunnel exit. It deserves attention that aural experiences differ 
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significantly with regard to tunnel length, because of differences of interior pressure change 
history. 
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Abstract 

Fiber reinforced polymer (FRP) has been widely employed in retrofitting concrete structures. 

Debonding of FRP from concrete is a typical failure mode in this technique. Cohesive zone 

model(CZM) of fracture energy-based criteria is demonstrated to be a well-founded numerical 

approach to characterize the brittle behavior of interfacial debonding failure. A simple but 

robust finite-element (FE) model of CZM for simulating the debonding procedure induced by 

the intermediate concrete crack(IC) and discontinuous FRP edge is presented in this paper. 

The bilinear bond-slip relationship in the interface is applied in the numerical model. Ten 

FRP strengthened beams of IC debonding and edge debonding failures are simulated by the 

suggested FE model and verified by the experimental results. For FRP strengthened plain 

concrete beams of pre-cracks, the variations of applied loads with concrete crack mouth open 

displacements (CMOD) can be accurately revealed, and when the cohesive strength in the 

interfacial bilinear model is reduced to 40%, the edge debonding failures of reinforced 

concrete beams can be accurately illustrated. The variations of stress and strain in FRP and 

concrete as well as in the interface with the increase of CMODs and deflections are 

expediently and expressly indicated through the proposed FE model.  

Keywords: FRP; Concrete beam; CZM; IC debonding, Edge debonding 

 

Introduction 

External bonding of fiber reinforce polymer (FRP) sheet or plate has been widely accepted as 

an effective and convenient technique for the strengthening of concrete structures. One of the 

key factors that influence the strengthening is the interfacial debonding failure of FRP from 

substrate [1]-[4]. The behavior of FRP-to-concrete interfaces has been deeply investigated, 

and well expressed by bond-slip models [5][6], which make the prediction of interfacial 

debonding possible. Among the debonding failure modes, one is caused by the opening up of 

concrete flexural cracks and the debonding initiates from those places. This kind of debonding 

failure is commonly referred to as the intermediate concrete crack(IC)-induced debonding[7]. 

Another main failure mode is named as the edge debonding because the interfacial debonding 

initiates from the edge of FRP sheet and then propagates towards the middle of the interface.  

 

The sound analytical studies on interfacial debonding have been conducted by many 

researchers, where the self-programming finite element(FE) models are developed to predict 

the load-deflection behavior. Although the proposed models are demonstrated to be valid, 

most of them are lack of accessibility. The primitive versatile numerical models are 

commonly based on the strength of interfacial shear stress represented by the bridging 

elements such as link and spring[8]-[10], which is actually inconsistent with the interfacial 

brittleness of debonding process. Fracture energy approach is recognized to be more 

appropriate to capture the interfacial fracture behavior and account for the possible failure 
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modes [6]. Among the FE models of fracture energy-based criteria, cohesive zone 

modeling(CZM) approach is well known for its simplicity and accurate kinematics 

representation of the quasi-brittle fracture process zone, which arises prior to complete 

fracture in, e.g., concrete materials and macro-molecular based polymer materials[11][12]. 

The bond-slipping of the interface can be governed by a fundamental fracture energy that is 

also the energy required to break apart the interface surfaces in this model. The whole 

debonding process from crack initiation to growth and further slipping can be unified into one 

model and easily formulated and implemented by CZM. According to this idea, Wang(2006) 

has established the closed-form solution of CZM for IC induced debonding[13]. De 

Lorenzis(2009) and Cornetti(2015) put forward an analytical cohesive crack modeling 

approach to the edge debonding failure of FRP-plated beam[14] [15]. Chen(2009) conducted 

debonding analysis of adhesively bonded interface between two balanced adjacent flexural 

cracks by CZM[16]. As stressed in many studies, much further research is needed to develop 

a simple and accurate simulating model that has a rational theoretical basis and a practical 

engineering application.     

 

In the present work, the most common debonding failures of FRP strengthened concrete 

beams are simulated by applying the proposed FE model of CZM based on the FE package 

ABAUSE/standard. Two rational models are developed to easily reveal the processes of IC-

induced debonding and FRP edge debonding. Exponential degradation of concrete cracking 

and bilinear relationship between interfacial shear stresses and slips proposed by Lu(2005) are 

assigned as to the properties of the interfaces[5]. To demonstrate the validity of the numerical 

models, the corresponding experimental data from the literatures are taken as the verification 

of the numerical results. As the governing parameters in CZM, the values of the maximum 

interfacial shear stress and the fracture energy have been discussed. The simple FEM and 

suggested parameters are provided to be useful for predicting the propagation of debonding 

failures between FRP/concrete interfaces.   

 

Material Modeling 

 

Concrete, Steel and FRP Composite 

 

The reduction of the strength and stiffness of concrete is represented by the plastic-damage 

model introduced in ABAQUS. The uniaxial compressive stress-strain curve for concrete is 

determined by the equation of Hognestad[17][18], in which the maximum strain is taken as εcu 

= 0.0038. For the finite-element implementation, the values of the tensile strength, ft, and 

elastic modulus, E0, if not given, are approximated based on the following ACI-318-05[19] 

equations: 

 
'

0 4730 cE f
                                                          (1) 

'0.53t cf f
                                                            (2) 

 

Concrete is assumed to be elastic before cracking. The tensile degradation of concrete is 

expressed by the exponential equation of Reinhardt [18][20] in fracture mechanics as follow: 
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where cohesive stress, ζt , is corresponding to the open distance of crack, ω. Factors, c1=3, 

c2=7 for normal concrete. ω0=0.16 mm as ζt=0.  

Steel is represented by an elastic-plastic constitutive relationship with linear strain hardening, 

and FRP is assumed to be linear elastic constitutive relationship. 

 

FRP/Concrete Interface 

 

In the current study, the bilinear bond-slip model proposed by Lu(2005), as shown in figure 1, 

is adopted for its simplicity and easy incorporation into the FE analysis [5]. The behavior of 

the FRP/concrete interface is modified as a relationship between the local shear stress, η, and 

the relative displacement, s, as follow. 

 
2.25 /

1.25 /

f c

f c

b b

b b







                                   (4) 

max 1.5 tf                                                                       (5) 

0 0.0195 ts f                                                                     (6) 

20.308f tG f
                                                                  (7) 

 

in which bf /bc and ft are the ratio of the width of FRP to concrete and the splitting tension 

strength of concrete, respectively. 

The maximum nominal stress criterion is applied to determine the initiation of interfacial 

cracking, namely shear crack develops at the point τmax. Interfacial performance of bond-slip 

is governed by the cohesive strength ηmax and the fracture energy Gf , which are essentially 

identical in this model.  

 
Figure 1. Bilinear bond-slip model 

 

FE Modeling of IC Debonding 

 

Profile of the Strengthened Beams with IC Debonding 

 

IC debonding failure has been experimentally investigated by many researchers through 

testing FRP strengthened plain concrete beams of various seam-height ratios. Three-point 

bending beams of different heights, lengths, and seam height ratios from the literature[21] are 

simulated by using the FE model of CZM in this paper. FRP is of the same length, but one-

third width of concrete beam. To prevent the conical shear failure around intermediate crack, 

unbonded segment is set up near the crack. 

Parameters such as the splitting tension strength of concrete, the flexural strengths of beams 

with different heights, tensile strength of CFRP, modulus of elasticity and Poisson's ratios of 

concrete and CFRP are taken from the experimental data in the literature[21].  

Based on the experimental data, the maximum shear stress and the fracture energy are 

determined according to the equations (4)-(7), namely ηmax=5.94 MPa, Gf = 0.7 N/mm, and the 

maximum slip sf =2Ff / ηmax = 0.236 mm as the interfacial debonding occurs.  
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Constitutive Properties of Concrete Cracking   

 

Since IC debonding is induced by the propagation of intermediate concrete crack, the 

modeling of concrete cracking with CZM is essentially identified first. It is assumed that 

concrete is a linearly elastic material when the equivalent stress in plain concrete is less than 

0.3fc [22]. Fictitious cracking model is adopted to avoid the singularity of crack tip in FEA. 

According to the exponential concrete virtual crack model proposed by Reinhardt[17][20] , 

equivalent crack opening displacement ω0=0.16mm when cohesive force deceases to zero. 

The maximum nominal stress criterion is applied for modeling the initiation of concrete crack, 

in which fictitious crack develops when tensile stress reaches to the flexural strength of 

concrete. Equations of cohesive force with crack opening distance is expressed by  
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where ft is the flexural strength of concrete; default value is one for zero constitutive thickness 

of cohesive element; δf  represents the open distance of crack when cohesive force equals zero, 

namely δf =ω0. Coefficient, α, is used to govern the curves of exponential degradation of 

concrete, which is determined by the experimental data in literature [21]. When α=10, as 

listed in table 1, the peak loads of five beams determined by numerical solution, PNum, are 

close to the experimental values, PExp. Based on the equations (8), (9) and the parameter α, the 

constitutive relationships between loads and crack mouth open displacements (CMOD) of the 

concrete beams are constructed as shown in figure 2, which are also the curves for governing 

IC propagation.  

 

Table 1. Comparison of numerical and experimental peak loads  

 

Beams PExp /kN PNum /kN Error /% 

C202 9.4 10.07 7.13 

C203 6.93 8.08 16.60 

C204 5.65 6.05 7.08 

C253 8.69 9.42 8.40 

C303 9.92 10.02 1.01 
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Figure 2. Curves of load-CMOD of the concrete beams 
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Numerical and Experimental Results Comparison 

 

In the FE model, the concrete and the FRP are modeled by solid C3D8R and shell S4R in the 

package ABAQUS. The unbonded segment around intermediate crack is treated as frictionless 

contact. Cohesive elements COH3D8 are embedded in the middle of concrete beam and the 

FRP/concrete interface for identifying the IC propagation and FRP debonding. The five plain 

beams bonded with CFRP from literature[21] are simulated by the suggested FE model of 

CZM, and the corresponding load-CMOD curves are constructed, as shown in figure 3. It is 

shown that, close to the experimental results, there are apparently two peak points of loads, 

P1max and P2max. The applied load is linearly proportional to CMOD when it is less than P1max. 

After the first peak point, the load decreases with the IC propagation. Then the load rises 

again until to the second peak point due to the activation of CFRP. Interfacial slip starts at this 

time. The numerical results obtained from the suggested FE model are well agreeable with the 

experimental results, as shown in table 2 and figure 3. 

 

Table 2. Comparison of the peak loads obtained from the FEM and experiments 

 

Beams P1Num /kN P1Exp /kN Error/% P2Num /kN P2Exp /kN Error/% 

P202 11.30 10.97 3.00 11.98 11.95 0.25 

P203 8.71 9.07 3.97 11.97 11.66 2.66 

P204 6.73 7.72 12.82 11.97 12.33 2.92 

P253 9.88 11.18 11.63 11.96 12.80 6.56 

P303 10.34 12.93 20.03 12.02 13.55 11.29 
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Figure 3. Comparison of load-CMOD curves obtained from the FEM and experiments 

 

Identification of IC-induced Debonding 

 

Stress distribution of CFRP of beam 203 under different CMOD is constructed in figure 4. It 

is shown that the stress at the middle of CFRP linearly increases with CMOD before the 

applied load reaches to P2max. When the load equals to P1max, where CMOD equals to 0.046 

mm as shown in figure 4, stress in CFRP remains in a low level, namely 88MPa. While, when 

the applied load equals to P2max, where CMOD equals to 1.183 mm, stress in CFRP reaches to 
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the highest value of 1430 MPa. Then the stresses remain in a high level with the continuous 

increase of CMOD, and gradually transfer from the middle to the edge of CFRP. It illustrates 

that the stress in CFRP is mainly caused by the IC propagation and interfacial slip. When 

CMOD reaches to 2.968 mm, most of the CFRP stays in a high stress level of 1430 MPa, as 

shown in figure 4.   

 

Stresses in concrete indicate that most of the concrete stay in a low stress level because of 

concrete cracking and interfacial slipping. Stress concentrations are obvious at the tips of 

concrete crack and interfacial shear crack, and the maximum stress is close to the flexural 

strength of concrete. Cohesive stress distribution of concrete crack under specific CMOD is 

shown in figure 5. When the applied load reaches to P1max, fictitious crack is of 55 mm length 

and the cohesive tensile stress near the tip of concrete crack is 0.870 MPa. As the load reaches 

to P2max, the fictitious crack extends to 135 mm and the macro-crack to 105 mm at the same 

time. Because of the extension of concrete crack, the loading capacity of FRP-bonded 

concrete beam gradually decreases after the applied load exceeds P1max, and most of the load 

is sustained by CFRP with little contribution of concrete after the applied load exceeds P2max. 

 

0 100 200 300 400

0

300

600

900

1200

1500

 

 


cf
 /

M
P

a

Distance to the free end /mm

 CMOD=0.046mm

 CMOD=0.269mm

 CMOD=0.740mm

 CMOD=1.183mm

 CMOD=1.777mm

 CMOD=2.406mm

 CMOD=2.968mm

                
0 20 40 60 80 100 120 140

0

1

2

3

 

 


/

M
P

a

Distance to the initial crack mouth /mm

 CMOD=0.046mm

 CMOD=0.269mm

 CMOD=0.740mm

 CMOD=1.183mm

 
 

                     Figure 4. Stresses of CFRP           Figure 5. Adhesive stress of concrete crack  

 

Along with the increase of CMOD, the interfacial bonding stress moves from the middle 

toward the edge, as shown in figure 6. When the applied load equals to P1max, where CMOD 

equals 0.046mm, the maximum interfacial shear stress is 0.5MPa. Interface behaves in elastic 

with a low level of shear stress. Interfacial shear stress near the intermediate crack decreases 

to zero when the applied load increases to the second peak load P2max, namely CMOD getting 

to 1.183 mm. Macro shear crack of 20mm length occurs at this time. The interfacial shear 

stress gradually moves from the middle to the edge due to the enlargement of CMOD.  

 

Variation of interfacial slip with CMOD is plotted in figure 7. Analogous to the interfacial 

shear stress, interfacial slip extends from the middle to the edge of the interface following the 

enlargement of CMOD. The inflection points of the curves in figure 7 are corresponding to 

the maximum shear stresses presented in figure 6. 

 

FE Modeling of Edge Debonding 

 
Edge Debonding Failure in FRP Strengthened RC Beams 

 
FRP strengthened RC beams of four-point bending are taken from the experiments in 

literature[23][24]. Five beams with the edge debonding are simulated by the proposed FE 

model of bilinear bond-slip interfacial property. Based on the experimental data, the 

maximum shear stress and the fracture energy are determined according to the equations (4)-

(7), and the maximum slip sf =2Ff / ηmax as the interfacial debonding occurs.  
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Concrete, steel bar and CFRP are modeled with solid C3D8R, truss T3D2 and shell S4R in the 

package ABAQUS, respectively. Interfacial bond-slip is represented by COH3D8. Slipping 

between concrete and steel bars is neglected. The numerical load-displacement curves 

determined by the supposed FE model are compared with the experimental results, as shown 

in table 3. It is shown that the peak loads determined by the numerical model are well 

agreeable with the experimental results.   
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Figure 6. Variation of interfacial stress      Figure 7. Variation of interfacial slip 

 
Table 3. Numerical and experimental peak loads 

 

Literature Beams PNum /kN PExp /kN Error/% 

Obaidat[23] RF1 166.2 166 0.1 

 RF2 146.5 142 3.2 

 RF3 129.9 128 1.5 

Quantrill[24] B2 35.4 34 4.1 

 B3 26.8 24.6 8.9 

 

The numerical curves of load-displacement are compared with the experimental data, and 

plotted in Figure 8. It is shown that beams analyzed by the FE model exhibit greater ductility 

than the specimen. The deflections of the beams are bigger than the real beams when the 

applied loads reach or exceed the peak loads. The reasons that lead the exaggeration of 

ductility in FE analysis lie in that concrete is assumed to be an elastic-plastic property 

excluding the effect of concrete crack.  

 

Parameters in Bond-slip Relationship 

 

If the fracture energy Gf determined by equation (7) remains constant, and the maximum 

cohesive shear stress is assumed to be 0.3ηmax, 0.4ηmax, 0.5ηmax, 0.6ηmax or 1.0ηmax, where ηmax is 

determined by equations (5), the curves of load-displacement from the FE model are 

constructed and compared with the experimental results, as shown in figure 9. Beam RF3 is 

not discussed since there is no obvious strengthening effect for short strengthening length. It 

can be seen that when the maximum shear stress is greater than 0.4ηmax, the values of the 

maximum shear stress have little effect on the peak loads, but greatly increase deflections. If 

the maximum shear stress is smaller than 0.3ηmax, the peak loads are apparently lower than the 

real values. The curves of load-displacement obtained from the FE model are the closest to 

the experimental results when the maximum interfacial shear stress equals to 0.4ηmax. There 

are apparent downward jumps to the loading strength of non-strengthened beams when 
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debonding occurs in the curves. The loading capacities of the strengthened beams are 

obviously controlled by the debonding of FRP, and the region of damage in the interface 

narrows down with the increase of the maximum shear stress. Therefore, the rational 

maximum shear stress in CZM is suggested to be 0.4ηmax in the FE analysis of FRP debonding 

from RC beams.    
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Figure 8. Load-displacement curves from FEM and experiments 
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Figure 9. Load-displacement curves of different cohesive strength 

 

The effect of fracture energy in CZM on numerical results is studied below. If the maximum 

shear stress is identified as 0.4ηmax, and the fracture energy is taken as 0.5Gf, 0.75 Gf, Gf, 1.25 

Gf or 1.5 Gf, where Gf is determined based on the equation (7), the corresponding load-

displacement curves are constructed in figure 10. It can be seen that the ductility is 

exaggerated with the increase of the fracture energy. Large values of fracture energy result the 

failure of concrete crushing rather than FRP debonding as shown in the beams RF1 and RF2 

in the case of fracture energy greater than 1.5 Gf. Small values of fracture energy result lower 

prediction of loading strength as shown in the curves of 0.5 Gf. The loading capacities of 

beams are obviously improved with the increase of fracture energy as it is less than Gf , and is 
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little upgraded when the fracture energy is greater than Gf . The curves of load-displacement 

are the closest to the experimental results when fracture energy equals to Gf . 
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Figure 10. Influence of the fracture energy in CZM on FE analysis 

 

Identification of Edge Debonding 

 

Based on the forgoing discussion, the fracture energy determined by the equation (7) and the 

maximum shear stress modified to 0.4ηmax are applied in the FEA of beam RF1. Stress 

distribution in FRP shows that the tensile stress at the edge of FRP reaches to the maximum, 

35MPa, when the deflection at the middle of the beam reaches to 6.2mm. Later, the stress 

decreases quickly with the increase of deflection until to zero when deflection d equals 7.2mm, 

as shown in figure 11. Stress at the middle of FRP nonlinearly increases to 667MPa as 

d=7.2mm, and then drops rapidly to a very low level due to the edge debonding, as illustrated 

in figure 12. The curves of stress distributions along FRP with respect to the enlargement of 

deflections clearly indicate that the stresses gradually increase with deflection until to the 

peak load, where d=7.1mm, and then rapidly drops to very low level as d=9mm shown in 

figure 13. 
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Figure 11. Stress at the edge  Figure 12. Stress in the middle  Figure 13. Stress along FRP 

 

The behavior of interface between FRP and concrete is illustrated in figure 14-17. The stress 

at the edge of interface increases with deflection until to the maximum 3.5 MPa, where 

d=3.4mm, and then gradually decreases to zero as deflection equals 7.2 mm in figure 14. At 

the middle of the interface in figure 15, the stress stays in a very low level about 1MPa before 
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edge debonding occurs. Then it rapidly increases to the maximum corresponding to the peak 

load at the moment of edge debonding. Afterward, stress stays in a very high level as 

debonding propagates from the edge to the middle of the beam. The distributions of stresses 

and slips along the interface under various deflections are shown in figure 16 and figure 17. 

Before the peak load, the interfacial stresses increase with the deflections, while slips stay in 

low levels. After the peak load, most of the interfacial stresses drop to zero and the slips 

greatly upgrade in the relevant region of the interface.  
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Figure 14. Stress at the edge of interface       Figure 15. Stress at the middle of interface 
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 Figure 16. Interfacial stress distributions        Figure 17. Interfacial slip distributions  

 

The performance of concrete is revealed in figure 18 and figure 19. At the moment of the edge 

debonding, there is a downward jump in the curves of concrete stresses at the middle of the 

beam with respect to deflection. Afterwards, stresses continue to upgrade with the increase of 

deflection. When most of the FRP has debonded at the moment d=11.5mm, the stress and 

strain contours indicate that the biggest equivalent plastic strain occurs at the bottom of 

concrete, which is agreeable with the peeling of concrete surface happened in many 

experiments.  
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Figure 18. Curves of concrete stresses at the middle of beam to deflections 
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Figure 19. Stress and strain contour of concrete  

 

Conclusions  

 

A simple but robust FE model of fracture criteria-based CZM is set up for simulating the 

debonding failures of FRP strengthened concrete beams in this paper. Two types of debonding 

processes are analyzed: IC debonding and edge debonding. In the FEA of IC debonding, 

cohesive elements of concrete fracture properties are embedded in the middle of beam as to 

indicate the effects of flexural cracking on interfacial debonding. Cohesive elements in the 

interface between FRP and concrete are assigned bilinear bond-slip properties. The interfacial 

debonding failure revealed by the FE model is verified to be well consistent with the 

experimental phenomenon. When the suggested FE model is applied to simulate the edge 

debonding of FRP strengthened RC beam, parameters in CZM must be modified because 

concrete is assumed to be of elastic-plastic properties, which leads the exaggeration of the 

ductility when Lu’s bond-slip relation is employed in the CZM. When the fracture energy and 

the maximum interfacial bonding stress are assigned Gf and 0.4ηmax, the edge debonding 

process of FRP strengthened RC beam is reasonably predicted and well captured.  
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Abstract 

Amongst the vehicle parameters influencing road safety, the carried cargo plays a critical role 

in the case of a liquid cargo, posing rollover risk and affecting the available friction forces for 

braking. While the lateral sloshing of the cargo within the vehicle´s compartments, can be 

excited when the vehicle negotiates a turn, the longitudinal motion of the cargo derives from 

changes of speed. The combination of both types of perturbations occurs when the vehicle 

brakes while negotiating a turn. In this paper, a two-pendulum formulation is used to simulate 

the lateral and longitudinal behavior of a vehicle when negotiating a braking in a turn 

maneuver. The suspension forces are thus calculated as the linear superposition of both 

models. Results suggest that the vehicle roll stability is affected by the cargo sloshing, with 

increments on the order of 100% in the lateral load transfer, for a 50% filled tank. On the 

other hand, the dispersion of the travelling speed also affects the lateral stability of such type 

of vehicles, as a function of the dispersion of the vehicle´s travelling speed.  

Keywords: Sloshing cargo, road tankers, pendulum analogy, braking in a turn, lateral 

load transfer ratio 

Introduction 

Causality for a road crash derives from an unfortunate combination of events, that potentially 

involves the vehicle, the driver, the infrastructure and the environment. For a road crash, 

different levels of contributing factors and situations are identified, including a critical event, 

a critical reason and a critical source [1]. While the human factors are recognized as the main 

contributing factors for road crashes, the factors associated to the vehicle represent a major 

road crashes contribution. Within the vehicle, however, different influencing elements can be 

identified, including the failure of the mechanical parts of the vehicle, and the condition of the 

cargo. The cargo contributes to road crashes in different ways, as its configuration and nature 

can affect the performance of the vehicle, in different ways. While the cargo configuration 

refers to the dimensions of the cargo or its container; its nature refers to its physical state 

(liquid, solid) as well its level of hazardousness. While the height of the center of gravity 

position of a solid cargo can affect the lateral stability of a vehicle, the shifting of such center 

of gravity, which is an intrinsic characteristic of a liquid cargo, can pose a major risk to 

vehicle´s lateral stability and longitudinal behavior. The mobility of the cargo within the 

carrying vehicle produces two main effects. On the one hand, the shifting of the center of 

gravity of the cargo, whether laterally or longitudinally, affects the balance of forces on the 

different ends of the vehicle, further affecting the rollover trend and the available braking 

force. The other potential effect of a liquid, sloshing, cargo, derives from the vibration 

frequency the liquid cargo. That is, the mobility of the cargo generates a coupled dynamic 

system with the mass-spring system, represented by the sprung and un-sprung masses of the 

vehicle.  
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The behavior of a partially filled road tanker while performing steering and braking 

maneuvers has been studied under the principles of several mathematical approaches, 

including computer fluid dynamics formulations (CFD), and some mechanical analogous 

formulations. Such models have been dynamic or quasi-static. Kolei et al. [2], consider the 

linear slosh theory for developing a hybrid multimodal and boundary-element model, to 

simulate the natural sloshing modes of the fluid within the tank. It is reported that the natural 

modes of vibration of the liquid inside the tank, can be excited as a function of the 

perturbation input, whether it is roll- or pitch- related. The authors assess the accuracy and 

computer effort to simulate the free response of the liquid inside the tank, when subjected 

simultaneously to longitudinal and lateral accelerations. However, the simulated tank is not 

suspended, that is, the contributing factors associated to the vibration of the tanker chassis, are 

not taken into account. Dasgupta [3], reports that the superposition of longitudinal and lateral 

accelerations strongly affects the longitudinal load shift, but that such superposition reduces 

the lateral load shift because of the cornering of the fluid within the tank. In the case of 

straight braking, the use of mechanical analogous models has been reported in [4] of partially 

filled road tankers, with high levels of validation.   

 

In this paper, several formulations are set together to simulate the suspension forces of a 4-

wheel straight road tanker carrying a liquid cargo at a partial fill level. The different models 

include a simplified analogous model to simulate the sprung tank containing a liquid cargo at 

a partial fill level, for both the roll plane and the pitch plane.  

 

Model description  

A multi-body formulation is proposed for the simulation of the response of a road tanker to 

perturbations derived from simultaneously changing both, direction and speed. Two similar 

un-coupled pendulum models are used to simulate the response of the vehicle in the roll and 

pitch planes. The model considers only the vibration of the sprung mass of the vehicle. That 

is, the effect of the un-sprung dynamics is not consider, and the flexibility provided by the 

tires stiffness, is assumed to be included in the equivalent torsional stiffness of the sprung 

mass [5].  

 

Part (a) of Figure 1 illustrates a schematic representation of the two-axle straight road tanker, 

and parts (b) and (c) of this figure describe the analogous pendulum models representing the 

roll and pitch – plane vibration modes of the road tanker, respectively. As it can be seen in 

this figure, the individual suspension stiffness at the end of each vibration plane, was 

substituted by an equivalent torsional stiffness, producing a two-degree of freedom system, 

involving a simple pendulum and an inverted pendulum. A cylindrical shape for the tank is 

assumed in this paper. According to this model, a simple pendulum represents the sloshing 

cargo, while the chassis vibration is characterized in terms of an inverted pendulum.  

 

In these models, the length of the simple pendulum is calculated in terms of a validated 

methodology to determine the natural sloshing frequency of the liquid inside the tank. Tue 

suspension springs and dampers of the 4-wheel road tanker, are assumed as having a linear 

behavior.  

 

The equations of motion for the resultant mechanical system described in parts (b) and (c) of 

Figure 1, are derived from an Isaac Newton´s approach. 
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Figure 1.  (a) Schematic representation of the vehicle; (b) roll vibration model; (c) pitch 

vibration model.  
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For the simple pendulum, its mass is subjected to lateral accelerations, as a result of the string 

tangential acceleration (
..

pr ), the inverted pendulum centripetal acceleration   







2

.

L  ; 

and the tangential acceleration of the inverted pendulum )cos( 
..

 L . In this regard, the 

oscillation angles are considered small enough, to consider that    sin ; 

and LL )cos(  . The development of the equations of motion for the simple pendulum, is 

presented in Figure 2, and in Figure 3 the derivation of the equation of motion of the inverted 

pendulum, is presented. The tension of the simple pendulum that represents the sloshing 

cargo, is exerted on the inverted pendulum modeling the vehicle chassis. It should be noted 

that the center of rotation for the pendulum, is obtained from the summation of the center of 

gravity position of the sloshing cargo, and the length of the simple pendulum representing 

such cargo, rp, whose length derivation is presented below in this paper. 

 

                                                                      )cos( 
..

2
...

 LLra p 







                   (1) 

                                                                  




















 )cos( 

..
2

...

  LLrmmamg p
 

                                                                  




















 )cos( 

..
2

...

  LLrmmamg p
 

                                                                          )cos(

..
2

.
2

...




 L
rr

L

r

L

r

g

pppp






























  

 

Figure 2. Equations of motion derivation for the simple pendulum representing the 

sloshing cargo (similar models for pitch and roll vibration) 
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Figure 3. Equations of motion derivation for the inverted pendulum representing the 

vehicle chassis cargo (similar models for pitch and roll vibration) 
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The coupled equations of motion (1) and (2) are solved through the Transition Matrix 

Methodology (TMM), which represents a computationally efficient method for obtaining the 

dynamic response of linear mechanical systems in the time dominium. In this regard, some 

variables in Eq. (1) are also the outputs from the model, so that the time response will be 

obtained on the basis of previous outputs from the model. 

 

According to the TMM scheme, the coupled equations of motion (1) and (2) are expressed as 

a first order system, on the basis of State Vector variables, as follows: 
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The solution of Equation (3), proceeds according to the Transition Matrix Approach [6], 

where the discrete time response is expressed as follows: 
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and:                     1

1

1 BIA 


;        2

1

2 BIA 


 

 

On the other hand, when incorporating into a curve that has a constant radio, the vehicle is 

subjected to transient accelerations before it is subject to the acceleration derived from the 

constant radius turn. The transition from an infinite, straight road segment, into a constant 

radius turn, represents different transition radiuses, as it is illustrated in Figure 4, where the 

representation is simplified into a bicycle model. The details of the model are presented in [7]. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Transition from a straight into a constant radius curve. 
 

 

The pendulum length rp in the above equations, is calculated on the basis of a validated 

methodology reported in [8], based upon the sloshing motion in a rectangular tank of length L 

as follows: 

 

2/1

 tanh2 







 H

g
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(5) 

where H is the depth of the rectangular tank, L is the free length of the fluid surface, and  is 

the wave number = 2  / , where  = 2 L This formula has been successfully used for non-

rectangular tank situations, if an equivalent depth He is used, as a function of the cross 

sectional area of the tank, as follows [9]: 

f

e
L

Area
H 

                                                         
(6) 

where Lf is the length of the free surface.  

Results  

The described model is used to simulate the behavior of a half-filled road tanker under two 

circumstances: when making a brake in a turn maneuver, and when travelling along a winding 

road. For the braking in a turn maneuver, two different turn radiuses are considered, for an 

initial vehicle speed (30 km/h). Table 1 lists the values for the different vehicle properties, 

including the lengths of the pendulums for the roll and pitch modes of vibration. For half-

WB 

R 
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filled circular tank, the center of gravity, is located at 0.5 m from the free surface. For the 

calculation of the natural frequency, a tank diameter is considered of 2.4 m, while the length 

is determined as 6.6 m for a 30 cubic meters capacity straight road tanker. The corresponding 

natural sloshing frequencies for the roll and pitch sloshing, according to the formulation 

described above, are 0.52 Hz and 0.24 Hz, respectively, resulting in pendulum lengths of 0.9 

m, and 4.06 m, respectively,  

 

Table 1. Properties of the vehicle  

 

Equivalent torsional stiffness (pitch) 118300000 N-m/rad 

Equivalent torsional stiffness (roll)  7056000 Nm/rad 

Simple pendulum length (pitch) 4.06 m 

Simple pendulum length (roll) 0.9 m 

Chassis mass moment of inertia (pitch) 652 km-m2 

Chassis mass moment of inertia (roll) 1305 km-m2 

Chassis mass 4000 kg 

Liquid mass 15000 kg 

Working fluid Water 

Vehicle wheelbase 6.5 m 

 

Performance measure 

 

The load transfer that affects the vehicle when performing a braking in a turn maneuver, is 

characterized in terms of the lateral load transfer ratio (LLTR), as follows: 

 

LLTR = abs(FL – FR) / (FL + FR)                                          (7) 

 

where FL is the suspension force on the left side, and FR is the right suspension force. 

According to this expression, LLTR can have a value from 0 to 1, where 1 means that one side 

of the vehicle is losing contact with the road. While the standard LLTR is calculated based on 

the tire forces, in this paper such forces are the suspension forces. Furthermore, in the case of 

the three-dimensional situation considered in this paper, two LLTR shall be calculated, on the 

front and rear sides.   

 

Braking in a turn maneuver 

 

Figures 5 and 6 illustrate the simulation results when the vehicle performs an emergency 

braking in a turn maneuver at 3.5 m/s2, for an initial speed of 30 km/h. Parts (a) and (c) of 

these figures describe the time history of the four suspension forces involved: front and rear; 

left and right. While part (a) corresponds to a braking maneuver on a 500-meter radio curve, 

part (c) describes the results for a tighter turning maneuver, corresponding to a 287 m curve. 

Parts (b) and (d) describe the corresponding values of the LLTR, for the front and rear 

suspension positions. According to these results, reducing from 500-meter to 287 meters the 

radius of the turn (42% reduction), causes an increase in the maximum LLTR from 0.4 to 0.7 

(75%). Consequently, the is a non-linear effect of the turning radius on the rollover trend of 

the vehicle. In can also be noted that, regardless of the turning radius involved, the maximum 

value for LLTR occurs after about 5 cycles of chassis – liquid cargo interaction. Additionally, 

it can be observed that the greater rollover trend occurs in the case of the front axle.  

Figure 7 describes a summary of the effect of both cargo condition and curve radius, on the 

maximum values obtained for the LLTR. 
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Figure 5.  Braking in a turn, two different radiuses, from 30 km/h: (a) and (b) 500 m 

radius curve; (c) and (d) 325 m radius curve (Sloshing cargo) 

Rear 

 

 

 

Front 

Rear 

 

 

 

Front 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

 

 
(d) 

ICCM2018, 6th-10th August 2018, Rome, Italy

95



 

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

S
u

s
p
e
n

s
io

n
 f

o
r
c
e
s
, 

k
N

Time, s

Left Right

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18

L
L

T
R

Time, s

 Front  Rear

 

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

S
u

s
p
e
n

s
io

n
 f

o
r
c
e
s
, 

k
N

Time, s

Left Right

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18

L
L

T
R

Time, s

 Front  Rear

 

Figure 6.  Braking in a turn, several radiuses, from 30 km/h: (a) and (b) 500 m radius 

curve; (c) and (d) 325 m radius curve (Non-sloshing cargo) 
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Figure 7.  Load transfers during braking in a turn maneuver, for two curve radiuses 

and cargo condition. 

 

Winding road  

 

The journey of the road tanker along a 4-curve road is now presented. Figure 8 describes the 

road geometry, involving the merging of actual road curves in a 70 second journey involving 

a 583 m length road, where the second and third curves have different directions. The 

formulation described above was used to calculate the instantaneous curving radius for the 

transition from straight to the constant radius curve. A sample of the instantaneous turning 

radius is presented in Figure 9, where the maximum values are assumed as straight segments. 

To assess the effect of the driving style on the lateral stability of the vehicle, two levels of 

dispersion for the driving speed, are presented. Figures 10 to 12 illustrate the input and 

performance results for three levels of speed dispersion: great (dispersed), medium and zero. 

The coefficient of variation (COV) of the rough dispersed speed input, is 12.49%, while the 

corresponding value for the medium dispersed speed, is 5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Road geometry for assessing roll stability of a partially filled straight road 

tanker 
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Figure 9.  Sample transitional radius for the 287-m and 325-m turns.  

 

According to these results, the dispersion in speed has a significant effect on the lateral 

stability of the vehicle, as an increase from the medium to the greater dispersion (150% 

increase) represents an increase in the maximum lateral load transfer from 0.59 to 0.88, that is, 

an increase of 151%.  While this is a linear relationship, it should be noted that the peaks in 

the LLTR, occur in very different positions along the road. On the other hand, eliminating any 

dispersion of the speed, involves a reduction in the maximum LLTR (0.4). Figure 13 

illustrates the effect of speed dispersion (COV) on LLTR` average value. According to these 

results, increasing from zero to a medium speed dispersion, involves only a small effect on the 

average LLTR, while changing from medium to rough speed dispersion, involves a significant 

increase of the average LLTR. 
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Figure 10.  Performance measures for the road tanker on the winding road of Fig. 7, for 

a disperse speed situation  
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Figure 11.  Performance measures for the road tanker on the winding road of Fig. 7, for 

a medium speed dispersion situation 
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Figure 12.  Performance measures for the road tanker on the winding road of Fig. 7, for 

a constant speed situation (30.64 km/h) 
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Figure 13.  Effect of speed dispersion on COV and average LLTR 
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Conclusions 

A simplified model is being proposed to simulate a braking in a turn maneuver of a straight 

road tanker. The model involves two uncoupled sets of inverted and simple pendulum models, 

representing the sprung mass and the sloshing cargo in the vehicle, respectively, for the 

longitudinal and lateral planes. Several formulations are assembled for this purpose, including 

the dimensioning of the simple pendulum on the basis of a validated methodology, and the 

transient radius when the vehicle transits from a straight to a constant radius curve. The 

results illustrate the longitudinal and lateral load transfer due to the braking in a turn 

maneuver, suggesting a nonlinear relationship between the magnitude of the radius and the 

maximum value reached for the selected performance measure (lateral load transfer ratio). On 

the other hand, the dispersion in the travelling speed also represents significant variations in 

the vehicle performance, when it runs along a winding road. While the main simplification of 

the composed model consists of the uncoupling between the longitudinal and the lateral 

response models, the overall response obtained is congruent with what has been reported in 

the literature, about the risk associated to braking while turning. Some validation elements 

should be provided as a continuation this research effort.  

 

References 

[1] NHTSA (2015) Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation 
Survey. National Highway Traffic Safety Administration. DOT HS 812 115.  

[2] Kolei, A., Rakheja, S., and Richard, R. (2015) Three-dimensional dynamic liquid slosh in partially-filled 
horizontal tanks subject to simultaneous longitudinal and lateral excitations.  

[3] Dasgupta, A. (2011) Effect of tank cross section and longitudinal baffles on transient liquid slosh in partly-
filled road tankers. Master of Science Thesis. Concordia University, Montreal. 

[4] Romero, J.A., and Otremba, F. (2016) Experimental and theoretical modeling of cargo sloshing during 
braking. IMECE2016-65698. 

[5] Romero, J.A., Hildebrand, R., Ortiz, W., and Gomez, J.C. (2005) Study of roll motions in high-filled tank 
trucks using minimum instrumentation. SAE paper 2005-01-2264. 

[6] Meirovitch, L. (1986) Elements of vibration analysis. Mc Graw Hill Int. 2nd ed. 345 pp. 
[7] Romero, J.A., Lozano-Guzmán, A.A., and Arroyo-Contreras, G.M. (2015) Proceedings, 2015 IFToMM 

World Congress. Taipei, Taiwan.  
[8] Elmore, C.W. and Heald, M.A. (1989) Physics of waves, Dover Publications Inc. New York. 
[9] Romero, J.A., Hildebrand, R., Ortiz, W., and Gomez, J.C. (2005B) Natural sloshing frequencies of liquid 

cargo road tankers, International Journal of Heavy Vehicle Systems 12(2): 121-138.  

ICCM2018, 6th-10th August 2018, Rome, Italy

102



Fractional Order Derivative Computation with a Small Number of Discrete
Input Values

Dariusz W. Brzeziński
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Abstract

High-accurate computer approximation of fractional derivatives and integrals by applying the
Grünwald-Letnikov formula requires generally a high number of input values. If required
amount can not be supplied, the accuracy of approximation drops drastically. In the paper we
solve a difficult and crucial problem in this scope, i.e. when input data consist only of a small
number of discrete values. Furthermore, some of the values may be unusable for computational
purposes. Our problem solution include appropriate method of input data preprocessing, an in-
terpolation algorithm with extrapolation abilities, central point function discretization schema,
recurrent computational method of coefficients and the application of Horner’s schema for the
core of the Grünwald-Letnikov method: coefficients and function’s values multiplication. Nu-
merical method presented in the paper enables computing fractional derivatives and integrals of
complicated functions with much higher accuracy than it is possible when the default approach
to the Grünwald-Letnikov method computer implementation is applied. This new method usu-
ally takes only 10% of function’s values required by the default approach for the same compu-
tations and it is much less restrictive for their quality. The general novelty of the method is an
efficient configuration of existing numerical methods and an enhancement of their abilities by
applying modern programming language - Python and arbitrary precision for computations.

Keywords: Numerical Methods, Finite Differences, Fractional Order Derivatives and In-
tegrals, Accuracy of Numerical Calculations, Arbitrary Precision.

1 Introduction

Fractional calculus (FC) or more aptly calculus of any order has been successfully applied for
many areas of technical sciences including electrical engineering, electronics and control sys-
tems as well as signals analysis and processing. The application for close-loop control systems
require computations to be conducted with high accuracy and in precisely provided time. Oth-
erwise, the system control fails.

The time factor of the computations requires the application of mathematical formulas en-
abling developing fast and compact computer programs. Despite the existence of numerous for-
mulas for numerical approximation of fractional order derivatives and integrals (FOD/I) [1–6],
only the popular Grünwald-Letnikov formula (GL) [7–11] fulfills this requirement. Therefore
it became the first choice for the purpose of systems control.

The algorithm of this method consists of multiplication of some coefficients (weights) and
function’s values.

Figure 1 presents first few subsequent coefficients values of the two utmost fractional orders
of derivatives/integrals: 0.2 and 0.8.

The remaining orders between 0 and 1 can be deduced from this figure: the first coefficient
has always value 1, the second one has a value of an fractional order (negative for derivatives,
positive for integrals). The rest of the coefficients decrease their sum to 0.
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Figure 1: Ten first coefficients for FOD of order: 0.2 (a), 0.8 (b) and FOI 0.2 (c), 0.8 (d).

The values of subsequent coefficients depend on the fractional order value, i.e. higher or-
ders’ coefficients assume higher values than lower orders do. Their amount applied for compu-
tation have a direct impact on approximation accuracy.

Our previous research on GL method [12] proved that coefficient amount required for cer-
tain level of FOD/I approximation accuracy is determined by “the shape of function”. This
term describes a behavior of a function in terms of values of its derivatives: (1st and 2nd and
higher). If they assume high values, coefficients requirements increase enormously. In this
scope: figure 2 presents an indicative number of coefficients (in thousands) required for FOD/I
computation of monotonically increasing, monotonically decreasing and constant function in
the range (0, 1〉 with accuracy up to 1.0e−04 (measured as relative error) by applying a common
approach to GL method implementation.

(a) (b)

Figure 2: An indicative number of coefficients N required by respective functions and orders ν
for FOI (a) and FOD (b) computation with accuracy up to 1.0e−04.

The selection of functions in figure 2 is on purpose: it shows that computation of lower
order FOD/I of simple monotonically increasing functions with accuracy (expressed as relative
error calculated in respect to the exact value) as high as four significant decimal places requires
application of 600 of coefficients. For higher accuracy of computation and more complicated
functions, there are required many hundreds of thousands of them. In fact, calculation with high
accuracy (i.e. with more than four significant decimal places) of a low fractional order of FOD
for a high frequency periodic function which bounding box is either constant or decreasing,
requires over 2 billion of coefficients. This can become a difficult task even for a state-of-the-
art computer. This is pictured in figure 3 with the coefficient requirements for exponential and
periodical functions and their combination for an arbitrary selected fractional order 0.45.
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Figure 3: An indicative number of coefficients N required by respective functions and orders ν
for FOD and FOI computation with accuracy up to 1.0e−04.

Long computation time associated with processing of high number of coefficients and multi-
plying them by function’s values makes real-time application difficult. Therefore, our research
on GL method was associated from the very beginning with the increase of its efficiency by
generally reducing requirements for a number of coefficients for requested accuracy of FOD/I
computations. In papers [13,14] we presented successful attempts achieved by modifying com-
monly applied form of GL formula with the well known Horner’s schema of polynomial’s
value calculation. Application for real-time computation of an equivalent form of GL formula
(Horner’s form) enabled us removing from computation up to 20% of coefficients required by
application of default approach while still maintaining target accuracy. We refer to it as calcu-
lation tail of variable length technique.

Furthermore, in paper [15] we presented another successful approach to the research on
general accuracy and efficiency increase of GL formula by evaluating some alternative to the
commonly applied formulas for coefficients computation and some other forms of GL formula.
We also assessed application usefulness for efficiency increase of forward and central point
discretization schemas as well as the use of three-point discretization schema.

All the efforts resulted in significant efficiency increase of GL method.
Additional results presented in the same paper showed that the magnitude of errors which

influence negatively computational accuracy of scientific calculations can be mitigated or often
even eliminated by applying a right form of a mathematical formula and by careful selection of a
programing language for its implementation. It usually led to the replacement of the commonly
used double precision computer arithmetic with “arbitrary precision” for computation (this term
is explained in Section 3).

The following paper presents some interesting results of our latest research on GL formula
aimed at solving a practical problem - computation of FOD/I with a small number (often not
sufficient for target accuracy) of discrete input data. The number may decrease if some of the
data are unusable for calculations with computer. This includes infinite and NaN (not a number)
values. In such situation computational accuracy can drop below two digit error expressed in
percent. Therefore, for the following research we aimed at increasing computational accuracy
to at least two decimal places with the same data amount supplied.

The paper is divided into the following sections: At first there are presented several forms
of GL formula which are applied for FOD/I computation. This section also includes a brief de-
scription of Horner’s form of the GL formula and its application algorithm of “calculation tail”
of variable length. Next, there is explained importance of arbitrary precision over standard dou-
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ble precision for computations and its positive impact on their accuracy and reliability. Section
4 contains description of computing tools. Section 5 includes details of conducted numerical
experiment. Last sections 6 and 7 presents concisely results and conclusions.

2 Mathematical Background

The Grünwald-Letnikov FOD/I approximation method can be represented using the following
formula

t0D
(ν)
t f (t) = lim

h→0+

1

hν

N−1∑
i=0

(−1)i
(
ν

i

)
f (t− ih) , (1)

in which ν ∈ R is the order of derivative; fractional integral is defined as derivative evaluated
for negative order −ν < 0, N denotes an amount of steps in summation, t0,t is the interval and
h = t−t0

N
is the subinterval width.

Formula (1) includes ∞ limitation, which thwarts its computer application. The next for-
mula has it removed, which makes it useful for computational purposes. The formula will be
referred as the commonly used form of GL formula for FOD/I computations, in which Γ denotes
Euler’s Gamma function

t0D
(ν)
t f (t) ' h−ν

Γ (−ν)

N−1∑
k=0

Γ (k − ν)

Γ (k + 1)
f (t− kh) . (2)

The formulas (1) and (2) represent backward-difference. GL formula can be applied with
central point discretization schema [16]

t0D
(ν)
t f (t) ' h−ν

Γ (−ν)

N−1∑
k=0

Γ (k − ν)

Γ (k + 1)
f
(
t−
(
k − ν

2

)
h
)

(3)

and with the forward point discretization schema

t0D
(ν)
t f (t) ' h−ν

Γ (−ν)

N−1∑
k=0

Γ (k − ν)

Γ (k + 1)
f (t− (k − ν)h) . (4)

The application of formulas (1)-(4) for computation has some serious restriction: it requires
that t0 = 0.

In paper [17] we can find a formula, which removes these restrictions and it has higher
accuracy order (second instead of first one)

t0D
(ν)
t f (t) ' h−ν

Γ (−ν)

N−1∑
k=0

Γ (k − ν)

Γ (k + 1)
f
(
t−
(
k − ν

2

)
h
)

+
h−ν

Γ (−ν)

(1 + ν)

2
f (t0)N

−1−ν . (5)

Before presenting Horner’s form of the the Grünwald-Letnikov formula we introduce a
discrete version of the formula (2) for h = 1 and t = ih.

For a given discrete-time, real bounded function f (k) = f0, f1, . . . fk−1, fk GL formula of
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Fractional Order Backward Difference (FOBD) is defined as

GL
0 ∆

(ν)
k fk =

k∑
i=0

a
(ν)
i fk−i, (6)

where ν is the FOBD order. Fractional Order Backward Sum (FOBS) is defined as the FOBD
evaluated for negative order, fk is a discrete time function and a

(ν)
i are the coefficients for

i = 0, 1, 2, 3 . . . , k − 1, k.
The coefficients a(ν)i can be calculated by applying several formulas, which include the

formula involving factorial function calculation

a
(ν)
i =


0 for i < 0
1 for i = 0

(−1)i ν(ν−1)···(ν−i+1)
i!

for i > 0.

(7)

This formula presents a serious limitation for computational accuracy due to the use of fac-
torial function. It causes the overflow which limits a number coefficients that can be computed
to 170. Therefore the following recurrent formula should be applied instead. It is derived from
the relation between coefficients a(ν)i

a
(ν)
i = a

(ν)
i−1

(
1− 1 + ν

i

)
for i > 0. (8)

The next formula presents the algorithm (7) expressed in a matrix-vector form

GL
0 ∆

(ν)
k f (k) =

[
a
(ν)
0 a

(ν)
1 · · · a

(ν)
k

]
fk
fk−1

...
f0

 . (9)

The Horner form of GL formula is a formula to which the well known Horner’s schema of
polynomial’s value calculation is applied. Horner’s schema possesses some significant compu-
tational advantages, e.g. lower computational complexity and a natural method of data input for
computation.

By applying the same assumptions as in case of the Grünwald-Letnikov definition, intro-
ducing new coefficients c(ν)i

c
(ν)
i =


0 for i < 0
1 for i = 0

1− 1+ν
i

for i > 0
(10)

we apply Horner’s schema to (6). We obtain [18]

H
0 ∆

(ν)
k f (k) = c

(ν)
0

[
fk + c

(ν)
1

[
fk−1 + c

(ν)
2

[
fk−2 + · · ·+ c

(ν)
k−1

[
f1 + c

(ν)
k

[
f0
]]]]]

. (11)

The formulas (6) and (11) are equivalent, i.e.

GL
0 ∆

(ν)
k fk =H

0 ∆
(ν)
k fk.
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However,
lim
i→∞

a
(ν)
i = 0,

lim
i→∞

c
(ν)
i = 1, (12)

and for some i > k − L
a
(ν)
i ≈ 0,

c
(ν)
i ≈ 1

We can use the property of c(ν)i coefficients to modify the formula (11)

Hs
0 ∆

(ν)
k,L f (k)

=

 c
(ν)
0

[
fk + c

(ν)
1

[
fk−1 + c

(ν)
2

[
fk−2 + · · ·+ c

(ν)
k−1

[
f1 + c

(ν)
k

[
f0
]]]]]

for k ≤ L

c
(ν)
0

[
fk + c

(ν)
1

[
fk−1 + · · ·+ c

(ν)
k−L

[∑L
i=0 fi

]]]
for k > L.

(13)

Application of formula (13) enables reducing up to 20% requirements for an amount of
coefficients during FOD/I computation, i.e. for samples k > L we assume c(ν)i = 1 and replace
multiplication with summation of the remaining function values.

The L value is an arbitrary number and is to be set empirically. However, its value must be
selected carefully, i.e. the removal of L coefficients is not to decrease accuracy of calculations
over a permissible error.

Based on our past experience, we apply L = 20% less coefficients required for FOD/I
computation with target accuracy by the default approach (see as examples numbers of coeffi-
cients presented in Figures 2 and 3), e.g. if a function requires 600 coefficients for the accuracy
1.0e−04, then we calculate 20% of this number (which in the case is 120). From now on,
L = 480 for the use with formula (13). After this operation, there are applied 600− 120 = 480
coefficients.

For full reasoning and procedure description how to set L, please refer to the papers men-
tioned in introduction.

The next table presents computational accuracy decrease over 1.0e−04 after removal of L =
20% of former number of coefficients required for this accuracy (see again Figures 2 and 3) by
applying formula (13).

Table 1: Relative error increase over 1.0e−04 after removal of L = 20% of coefficients number
required for this accuracy for selected fractional orders ν (positive - FOD, negative - FOI).

Function f (t)
t 1− t 1 (t) e−2t sin (8πt) cos (4πt)

0.1 0.28 0.02 2.49 4.39 0.1
0.5 2.15 0.08 2 1.05 0.25
0.9 5.25 0.04 0.53 0.09 0.17
−0.1 0.22 0 2.44 8.84 0.17
−0.5 0.6 0.04 1.74 7.32 1.79
−0.9 0.19 0.01 0.42 3.16 7.96
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3 The Importance of Arbitrary Precision

Limiting factor to the accuracy of computation by applying the formulas (2)-(5) is a precision
which uses the computer to store data that are being supplied to it.

Consider calculating the value of Γ (z) for large values of z. At z = 171 the approximate
value provided by the computer programmed to use standard double precision arithmetic is
7.26e306. At z = 171 the computer begins to refer to the value of Γ (z) as ’Inf’. Hence, for the
formulas (1)-(2) there is no practical use of calculating coefficients beyond the 171st.

The above example of overflow occurrence shows that the selection of uniform C++ equipped
with the standard mathematical library as a main programming tool is not enough nowadays to
take full advantage of available hardware. The application of arbitrary precision computing
for increasing the accuracy and the correctness of numerical calculations and Nvidia CUDA
parallelization technology for their effectiveness, are the best examples in this context [19].

Application of arbitrary precision makes it possible for the user to choose precision for
calculation and for each variable storing a value. It is not machine-depended or IEEE standard
types. With its help we can - among the others - increase general accuracy of mathematical
computations. However, its application purpose is above all to increase accuracy of numerical
calculations, e.g. by eliminating under- and overflows, increasing accuracy of a polynomial
zeros finding and derivative and integral calculating.

The importance of elimination of limited precision in computer calculations was aptly pre-
sented by Toshio Fukushima in The Astronomical Journal in 2001 by giving the following
example: “In the days of powerful computers, the errors of numerical integration are the main
limitation in the research of complex dynamical systems, such as the long-term stability of
our solar system and of some exoplanets [...]” and gives an example where using double pre-
cision leads to an accumulated round-off error of more than 1 radian for angular position of
planets [20].

Double precision computer arithmetic is optimized for speed and has many flaws which
negatively influence the accuracy of computations, e.g. limitations of number values which
double precision variables can hold or no programmer influence on mathematical operations
rounding.

However, it is the lack of clarity in handling of intermediate results which troubles the most,
i.e. the floating-point standard [21] only defines that the results must be rounded correctly to
the destination’s precision and fails to define the precision of destination variable. This choice
is commonly made by a system or a programming language. The user can not influence it in
any way. Therefore, the same program can return significantly different results depending on
the implementation of the IEEE standard.

Arbitrary precision application is applied in conjunction with special libraries which include
their own data structures and mathematical functions.

There are many programming languages, which can be used with arbitrary precision. They
include Python. Python is an object oriented script language, which achieves a higher abstract
level than for example C++, i.e. an individual programmer can achieve the same results in a
much shorter time and with far fewer lines of code. It also has especially clean and straightfor-
ward syntax. It can lead to programs’ shorter executing time.

An important advantage of programming using Python is availability of ready to use li-
braries. They enable solving a scientific problem by focusing rather on selecting the right tools
and by adopting them if necessary instead of designing a new algorithm from ground up. There-
fore, we selected it as the main programming language for our research.
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4 Tools for the Problem Solving

The requirement of an efficient solution to the problem presented in the introduction includes
constructing an interpolation polynomial using supplied values. It is crucial for arbitrary selec-
tion of a discretization point schema, i.e. central (10) or forward (11) one or the one with three
points.

We applied SciPy - an open source Python library for scientific and technical computing.
SciPy provides a module for interpolation based on the FITPACK library of FORTRAN func-
tions, which is assumed as reliable.

Central point discretization formula (3) requires at least one point beyond t to be accessible
for the interpolation. Unfortunately standard routines in SciPy do not allow to include any
points from outside the interpolation range. At first our solution to make scipy.interpolate give
an extrapolated result beyond the input range included modifying an interpolating algorithm
based on spline interpolation by adding:

• Constant extrapolation: extrapolating left and right values as constant beyond the range

• Linear extrapolation: writing a wrapper around an interpolation function, which does
linear extrapolation

• Manually inserted points and values to the initial array

• scipy.interpolate.splrep (with degree 1 and no smoothing)

Due to unsatisfactory accuracy and speed concerns, we have decided to apply Interpolat-
edUnivariateSpline from the same library scipy.interpolate instead. It does interpolation and
extrapolation and can be applied in conjunction with mpmath. mpmath is a free (BSD licensed)
Python library for real and complex floating-point arithmetic with arbitrary precision. It is
based on GNU GMP and GNU MPFR libraries. It enables switching from double to arbitrary
precision computation by applying Python programming language.

The mathematical library mapmath is required not only to increase overall exactness of com-
putations, but also due to accessibility of excellent implementations of gamma and reciprocal
gamma functions required for FOD/I calculations by applying formulas (2)-(5).

5 Details to the Numerical Experiment

In our previous numerical experiments with GL method the number of coefficients (and func-
tion’s values at the same time) was commonly limited to 600, because we applied such an
amount for real-time calculations (in our case the maximum number of coefficients was deter-
mined by amount of available memory in a test DSP-system).

However, to present high efficiency of FOD/I computing method presented in the paper, our
experiment was conducted with only 60 values as an input. Additionally, up to 20% of them
were randomly assigned ∞ and NaN values to mimic unsuitability for computation, which
often occur if experiment data were collected without the knowledge of computing input data
requirements.

Unlike simple, monotonically increasing, decreasing or constant functions, which require
relatively moderate number of coefficients (up to 600) for accuracy up to four significant deci-
mal places, high-frequency, exponential and periodical functions, which have “dramatical shape
changes” require millions or more of them. For this reason, general efficiency and accuracy of
the method was assessed against two sets of functions.

Set one included constant, monotonically increasing and decreasing functions:
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f1 f (t) = 1 (t) ∈ (0, 1)

f2 f (t) = tt− t, t ∈ (0, 1)

f3 f (t) = t0.1, t ∈ (0, 1).

Set two included more complicated functions:

f4 f (t) = te−t, t ∈ (0, 10)

f5 f (t) = e−2t cos 8π, t ∈ (0, 1)

f6 f (t) = e−2t, t ∈ (0, 1)

f7 f (t) = et sin t, t ∈ (0, π)

f8 f (t) = 1.5 cos 2t+ 2.2 cos 4t, t ∈ (0, 2π)

f9 f (t) = sin 2π cos t, t ∈ (0, 5).

The functions were tabulated before supplying them to the program, i.e. the actual input to
a program was in form of a vector with discrete values.

At first we applied interpolation method described in section 4 to construct an interpolation
polynomial using the vector with the supplied values. Next, we interpolated 600 values for
FOD/I calculations using central (3) and forward (4) discretization schemas. Finally FOD/I
were computed.

For comparison purposes, FOD/I were computed by applying the commonly used reference
formula (6) with 60 values as well to present the real-life accuracy.

The FOD/I exact values required for accuracy assessment were computed by applying an-
alytical formulas (if available) or by using high-accuracy integration method [22, 23]. This
method involves Gauss-Jacobi Quadrature application for integration and is reliable for com-
putation of FOD/I using Riemann-Liouville and Caputo formulas [24] with accuracy up to 120
significant decimal places.

6 Results

FOD/I computational accuracy is assessed as the relative error

er (m) =

∣∣∣∣1− vc
ve

∣∣∣∣ , (14)

in which: vc is a calculated value, ve is a value assumed as exact and m denotes a number of
source input values for FOD/I computation.

Figures 4-8 present accuracy of FOD/I computation denoted as relative error (14) for: GL
- a classical Grünwald-Letnikov formula (2) applied with m = 60 function’s values (to present
the accuracy of computations, which can be expected by applying only real supplied functions’
values); Γ denotes computations by applying the formula (5) and Hs - the formula (13) - both
with 600 interpolated values, which are computed by applying the combination of techniques
described in the paper (to present the accuracy which can be obtained despite the only 60 sup-
plied real function’s values).
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Figure 4: Computational accuracy of FD, order ν for: (a) f1 and (b) f2.
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Figure 5: Computational accuracy of FD, order ν for: (a) f3 and (b) f4.
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Figure 6: Computational accuracy of FD, order ν for: (a) f5 and (b) f6.
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Figure 7: Computational accuracy of FD, order ν for: (a) f7 and (b) f8.
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Figure 8: Computational accuracy of FD, order ν for f9.

7 Conclusions

The Grünwald-Letnikov method requires a high number input values for high accuracy FOD/I
computation. If required number of values can not be supplied, the accuracy of computation
drops drastically, particularly for complicated functions.

To solve this deficiency problem we proposed a new numerical method combining existing
numerical techniques, arbitrary precision computation and modern programming language.

The method presented in the paper enables computation of FOD/I with similar or higher ac-
curacy with only 10% of input values required by the traditional approach to FOD/I computation
by applying the Grünwald-Letnikov method.

Application of the simplified Horner’s form of the Grünwald-Letnikov formula for the core
of the method (multiplication of the coefficients and function’s values) decreases again by up
to 20% of those 10% the requirements for input values during computation without noticeable
accuracy drop over the assumed level.

Additionally, the developed method enables ”repairing” input values unusable for computa-
tional purposes.

The computational method described in the paper combines several programming tech-
niques that include application of Python programming language and accompanying mathe-
matical library (mpmath) for arbitrary precision of computations. This combination enables
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elimination of common errors associated with double precision computer mathematics and in-
creases significantly accuracy and reliability of scientific computation.
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Abstract 
The interface cohesive zone model is usually used in the finite element method to describe the 
damage and fracture of interfaces between two layers, two kinds of materials, or two 
segments in one kind of material or a layer. An introducing of interface cohesive elements in 
one layer should not affect the layer’s properties, that how to take the thickness and stiffness 
of the interface cohesive elements is studied firstly and the related criterion is given. A finite 
element model of ceramic coating/alloy substrates under three-point bending loading with the 
interface cohesive elements inserted into coatings is developed, and the transverse crack 
evolution of coatings is studied. The simulation results indicate that the coating cracking is 
later and the crack length decreases with increasing interface toughness, i.e., the damage, 
defined by a total crack length, is slower with increasing fracture toughness. It can explain the 
experimental results that damage rate of nanostructured thin coatings with smaller cohesive 
energy is larger than that of conventional coatings with microscale microstructure, because 
the fracture toughness is proportional to the cohesive energy of coatings. The effect of 
cohesive strength on coating damage changes at a critical strength, when the cohesive strength 
is larger than the critical value, the crack length and damage rate increase with decreasing 
interface strength.  

Keywords: Interface cohesive element, coatings, cohesive strength, fracture toughness. 

 
Introduction 

Ceramic coatings are widely used in mechanical, electronic, chemical engineering fields due 
to its better properties such as wear resistance, erosion resistance, and thermal protection. 
Once ceramic coatings crack, their function will lose. Therefore, the study on cracking 
behavior and mechanism of coating/substrate systems attracts great attention [1-5]. Crack 
density of thin films under tensile stress was predicted based on fracture mechanics model [2] 
or by developing an elastic-plastic shear-lag model [3]. Crack distribution of ceramic coatings 
was observed in the in-situ bending experiments by scanning electron microscope [4]. In 
order to study systematically crack and damage evolution of coating systems, finite element 
method (FEM) is a good choice. Interface cohesive zone model (CZM) is an effective tool to 
characterize cracking and is often introduced in FEM [5]. However, the introduction of CZMs 
should not affect the original mechanical properties of materials before cracking.  

In this paper, the stiffness criterion of CZM with finite thickness is given firstly, then which is 
used to simulate cracking of ceramic coatings bonded on alloy substrates under three-point 
bending loading. Interface cohesive strength and fracture toughness effects on cracking 

a  The work is supported by NSFC of China (Grant Nos. 11672296, 11372318). 
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damage and fracture behavior of coatings are characterized and the related mechanism is 
revealed.  

Selection of cohesive element 

In order to ensure that the insertion of cohesive elements does not affect original mechanical 
properties, the elastic constant Eeq of the equivalent continuous medium should be equal to 
that of the matrix material Em correspondingly. A representative volume element (RVE) can 
be selected for the system is in tension, as shown in Fig. 1(a). Due to the introduction of 
cohesive elements, the length of the RVE increases from L to 0'L L t= + , t0 is thickness of the 
cohesive element and interface stress-displacement relation is showed in Fig. 1(b). The 
elongation of the RVE can be divided into two parts: elongation of the matrix material and 
elongation of cohesive element. The normal strain of the RVE in the x direction and thus the 
equivalent Young’s modulus Eeq can be expressed. Since it is required that Eeq = Em, we 
obtain 

 n 0 mk t E=   (1) 

where kn is the stiffness of interface cohesive model as shown in Fig. 1(b).  
 

             
Figure 1.  (a) Representative volume element of the system composed of matrix material 
and cohesive elements in uniaxial tension; (b) Interface cohesive zone model as cohesive 

elements. 
 

It should be noted that Eq. (1) can be rewritten in the form of the ratio of two lengths: 
0 0

0 n m n/ /t Eδ σ=  with interface cohesive strength σn
0 and the corresponding critical 

displacement δn
0 as shown in Fig. 1(b), Γn is interface fracture toughness with the subscript n 

denoting normal direction and t tangential direction. Since the ratio of strength and Young’s 
modulus is about 0 2 3

m n/ 10 10–E σ ≈ , the thickness of cohesive elements is two or three orders 
of magnitude larger than the critical displacement. When thickness of cohesive elements is 
very small, a large stiffness should be selected based on Eq. (1). 

Finite element model of ceramic coating/alloy substrate systems 

Ceramic coating/substrate systems are assumed to be under the plane strain condition and the 
2D FEM analysis is carried out using the commercial software ABAQUS. Due to symmetry, 
only the left half of the model is considered, as shown in Fig. 2. The model includes two 
layers: substrate with thickness hs of 1.2 mm and ceramic coating with thickness hc of varying 
a range compared with the experimental samples. The span length is 16 mm. The vertical 
loading displacement w is applied on the indenter. Ceramic coating is considered as linear 
elastic material with Young’s modulus of Ec and Poisson’s ratio of νc [4]. Superalloy substrate 
is assumed to be elastic-plastic material with Young’s modulus of Es and Poisson’s ratio of νs, 
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and its constitutive relation can be referred to Ref. [4]. The four-node plane strain reduced 
integration elements (CPE4R) are selected to mesh substrate and coating.  

 
Figure 2.  Coating/substrate model under three-point bending loading.  

 

Only transverse cohesive elements with thickness of (T)
0t  are inserted into the coating, as 

shown in Fig. 2. The four-node cohesive elements (COH2D4) are inserted into the coating. 
The strength and fracture toughness of transverse cohesive elements actually refer to coating 
strength and coating fracture toughness respectively as shown in Fig. 1(b). For simplicity, 
values of strength and fracture toughness of cohesive elements in normal and tangential 
directions are assumed to be the same [6], i.e., 0(T) 0(T)

n tσ σ= , (T) (T)
n tΓ Γ= . The thickness of 

cohesive elements is selected as (T) 4
0 s/ 1 10t h −= × . According to Eq. (1), dimensionless 

stiffness of transverse cohesive elements is selected as follows: 
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5n s c Y
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Y Y

/ 2.34 10
(1 ) /

1 9.38 10
2

K h E
t h

K h K h
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σ n

n
σ σ


= = × −


− = = ×

 (2) 

Dimensionless coating strength and coating fracture toughness are 0(T)
n Y/ 0.03 .34–0σ σ =  and

(T)
n Y s/ ( )hΓ σ 5(1.0 5.1) 0– 1 −= × , respectively, σY = 800 MPa [4]. Each of the interface 

parameters of CZMs varies in the range while others remain unchanged to consider influence 
of corresponding interface parameter. 

Simulation results 

The cracking mode of ceramic coating is showed in Fig. 3. The interface cohesive strength 
and fracture toughness effects on fracture behavior of coatings are obtained as shown in Fig. 4.  
It can be seen that crack length decreases with increasing coating toughness as shown in Fig. 
4(a) and cracking occurs later, too, i.e., damage defined by a total crack length is slower for 
coatings with higher toughness, which is consistent with the previous energy analysis [7]. For 
coating strength effect, when the strength is larger than a critical value, the crack length also 
decreases with increasing strength as shown in Fig. 4(b), i.e., there exists a critical value of 
strength for changing damage rate of coatings. It was found that the damage rate of 
nanostructured thin coatings was higher compared with that of corresponding microscale 
microstructure coatings in the previous experimental measurement [8], which implies the 
lower fracture toughness of nanostructured coatings based on the above simulation. The study 
also shows the cohesive energy decreases for nanostructured materials compared to 
corresponding bulk materials [9], the fracture toughness of materials should be proportional to 
the cohesive energy, therefore, the present simulation results can explain the experimental 
results. 
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Figure 3.  Cracking of coatings. 
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Figure 4.  (a) Fracture toughness effect and (b) Strength effect of coating cracking. 

Conclusions 

In summary, interface effects on failure of ceramic coating/substrate systems are studied by 
using finite element method combining with interface cohesive zone model. The selection 
method of stiffness of interface cohesive elements is firstly proposed. Then cracking of 
coating systems under three-point bending loading is simulated. The results indicate that 
cracking is easier for the coating with lower interface toughness. For interface strength, there 
exists a critical value of changing damage rate of coatings. 
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Abstract 
The residual mechanical properties of Ti/APC-2/Kevlar/epoxy hybrid composite laminates 
after low velocity impact were investigated at room temperature. There were three types of 
samples tested, including three layered [Ti/(0/90)s/Ti], five layered [Ti/(0/90)2/ ]s and nine 
layered [Ti/Kevlar/Ti/(0/90)2/ ]s. The lay-ups of APC-2 were stacked in a way of cross-ply 
sequence, while Ti layer was anodized with chromic acid anodic method. Ti and APC-2 were 
combined together to fabricate the composite laminates via hot press curing process. Kevlar 
layers were added to cover fiver-layer composite laminates to fabricate nine-layered 
composite laminates via vacuum assisted resin transfer molding. 

The drop-weight tests were conducted with a hemispherical nosed projectile in 10 mm 
diameter. The impact loads were 5kg and 10kg according to the simulated results by ANSYS. 
The impact heights were increased until the samples were penetrated or the height reached the 
maximum height, 1.50 m, of our instrument. The static tensile tests were conducted to 
measure the composite laminate residual mechanical properties after the impact testing.  

The results showed that the bottom Ti layer absorbed more internal energy than the top Ti 
layer, so that the cracks were found on the bottom Ti layer more often. The crack shape was 
the opening that resembling petal after the penetration. Also, the ultimate tensile strength 
reduced significantly after the impact, and it raised slightly after the samples fully penetrated. 
The initial longitudinal compliance increased with the impact height increasing and decreased 
after the samples penetrated. Comparing the experimental data with the numerical simulation 
results, we found the latter was more serious than the former. On the conservative side, the 
results of simulation can be adopted for applications in the case of no testing data available.  

Keywords: Titanium, APC-2, Kevlar, low-velocity, impact, tensile test. 

 
Introduction 

Fiber metal laminates (FMLs) are hybrid composite structures constructed from thin sheets of 
metal alloys and plies of fiber-reinforced polymeric materials. The first FMLs, called aramid-
reinforced aluminum laminates (ARALLs), were introduced in 1978 at the Faculty of 
Aerospace Engineering at Delft University of Technology in the Netherlands [1]. In 1990, an 
improved type of ARALL called glass laminate aluminum reinforced epoxy (GLARE), or 
ARALL with glass fibers, was successfully developed[2]. Furthermore, Lin et al. [3] 
developed carbon-reinforced aluminum laminates, which contain carbon fibers (CFs) rather 
than aramid fibers. FMLs have the advantages of metal alloys and fiber-reinforced plastic 
(FRP) composites. Castrodeza et al. [4] demonstrated that GLARE and ARALL possess 
superior fracture toughness and crack tolerance to those of their constituent alloys. Vlot [5, 6] 
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investigated GLARE and ARALL, finding that the impact resistance of FMLs was superior to 
that of the studied FRP. Gunnink [7] showed that ARALL retains excellent durability even 
after very long exposure to highly aggressive environments. Additionally, FMLs containing 
various types of metal alloys and FRPs have been developed by researchers for wider 
application. Khalili et al. [8] studied the mechanical properties of steel–aluminum–FRP 
laminates. Furthermore, Zhou et al. [9] investigated the tensile behavior of Kevlar fiber-
reinforced aluminum laminates. Jen et al. developed magnesium/CF/PEEK nanocomposite 
laminates [10] as well as titanium (Ti)/CF/PEEK nanocomposite laminates [11] and obtained 
their mechanical properties at elevated temperatures. 
 
Owing to the brittleness of thermosetting matrix resulted by cross-linking, the epoxy resins 
and epoxy-based fiber composites are susceptible to impact damage. Thermoplastics, having 
greater toughness, are considered to be potential for alleviating this problem [12]. Although 
damage inflicted by low-velocity impact appears quite complicated, the major failure modes 
include only matrix cracking, delamination, and fiber breakage [13]. The delamination mode 
of failure is induced by matrix cracks which occur prior to other failure modes. Thus, 
suppression of matrix cracking will suppress delamination. It is conceivable that the use of 
tougher matrices will yield composites that are more resistant to impact damage. 
 
Except for the degree of damage, the plate specimens did not differ from beam specimens in 
failure modes or impact tolerance properties [14], i.e., no plate size effect. The postimpact 
load-carrying capability of a composite laminate is of prime concern to the design engineer. 
After a tool-drop type accident where no damage is visible from the surface, the structure is 
still expected to carry the full spectrum of loading. However, it may be wrong of 
overestimation. In all cases the residual strength decreased as the impact velocity increased. 
From the results [15] the tough matrix composites may provide excellent impact resistance 
properties at low-impact velocities. However, beyond a certain threshold velocity, i.e., 
v≥25m/s, the use of tough matrix materials may result in more laminate tensile and flexural 
strength reduction than that of brittle matrix materials. Additionally, the PEEK composites 
have significantly lower contact rigidity, i.e., for a given contact force the resulting 
indentation in the PEEK composites would be larger, yielding a larger contact area, and, 
therefore, a low contact pressure. A larger contact area with lower pressure will reduce the 
transverse shear stress concentration and thus minimize local matrix cracking. 
 
Anodic method is a commonly used surface treatment, however, the bonding capability of 
polymer composites to titanium thin plates is still a problem. In order to improve the 
interfacial bonding capability, Ramani et al. [16] found the chromic acid anodic method was 
excellent. Chromic acid anodic oxidation produced an oxide layer of thickness 40~80 nm for 
the 5V and 10V treatments [17]. In recent years, inorganic nanoparticles filled polymer 
composites have attracted attention because the filler/matrix interface in these composites 
might constitute a great area and influence the properties of composites at rather low filler 
concentration [18]. Based on above-mentioned statements we fabricated Ti/APC-2 FLMs to 
investigate their resistance to impact loads, measure residual mechanical properties and 
compare the data with the results of numerical simulation by using software LS DYNA-3D.     

Specimen Fabrication 

The twelve-inch wide prepregs of Carbon/PEEK (Cytec Industries Inc., USA) unidirectional 
plies were cut and stacked into cross-ply [0/90]s laminates. The grade 1 (H: 0.015%, O:0.18%, 
N:0.03%, Fe:0.2%, C:0.08%) Ti sheets, supplied by Kobe Steel Ltd (Japan), were 0.5mm 
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thick after rolled, heated and flattened with scratch brushing. The ultimate tensile strength of 
Ti is 353MPa, and modulus of elasticity 109GPa. 
 
After a series of tests, the surface treatment by chromic acid anodic method of electro-plating 
was found better as demonstrated by the results of tensile tests. The anodic oxide coating film 
was observed uniform by Scanning Electron Microscope, and the composition of coating 
consisting of TiO2 by Energy-Dispersive X-ray spectroscopy. 
 
The APC-2 prepregs were sandwiched with the Ti alloy sheets to produce Ti/APC-2 hybrid 
[Ti/(0/90)s/Ti] three-layered and [Ti/(0/90)2/ ]s five-layered laminated composites. The hot 
press and modified diaphragm curing process were adopted to fabricate laminates [19]. The 
hybrid composite specimen was a rectangular plate of 240mm(L)×25mm(W) with thickness 
1.55mm and 2.50mm. Additionally, the 4.50mm thick [Ti/Kevlar/Ti/(0/90)2/ ]s nine-layered 
laminates were covered by Kevlar layers via vacuum assisted resin transfer molding. 
 
An MTS-810 servohydraulic computer-controlled dynamic material testing machine was used 
to conduct the tensile tests after the free drop impact. 

Numerical Analysis 

In simulation we adopted the same samples as fabricated in our lab such as [Ti/(0/90)s/Ti], [Ti 
(0/90)2/ ]s and [Ti/Kevlar/Ti/(0/90)2/ ]s three hybrid composite laminates. The finite 
element analysis and ANSYS/LS-DYNA 3D software were used to simulate the impact 
process starting from the penetration of top layer step by step to the full penetration of bottom 
layer with the zero velocity left. Due to symmetry only one quarter of sample was considered. 
The 3D Solid 164 elements with eight nodes and nine degrees of freedom for each node were 
used to construct the model. The bullet was a hemispherical nosed projectile of 10 mm 
diameters. The assumed boundary conditions were that no displacement along the symmetry 
edges, totally constrained for other two free edges and a plastic cushion placed at the bottom 
of laminate to avoid rebounce. The failure criterion was based on the value of principal strain. 
Herein, the failure values of principal strains were 0.0088 for 90° Carbon fibers, 0.189 for Ti 
alloy and 0.08 for Kevlar fibers, respectively. 
 
The received results would provide valuable references for the next step of impact tests. 

Experimental work 

The APC-2 prepregs were sandwiched with the Ti alloy sheets to produce Ti/APC-2 hybrid 
[Ti/(0/90)s/Ti] three-layered and [Ti/(0/90)2/ ]s five-layered laminated composites. The hot 
press and modified diaphragm curing process were adopted to fabricate laminates [19]. The 
hybrid composite specimen was a rectangular plate of 240mm(L)×25mm(W) with thickness 
1.55mm and 2.50mm. Additionally, the 4.50mm thick [Ti/Kevlar/Ti/(0/90)2/ ]s nine-layered 
laminates were covered by Kevlar layers via vacuum assisted resin transfer molding. 
 

Results 

The numerical simulation results of velocity, impact energy, height and failure mechanisms of 
[Ti/(0/90)s/Ti]s three-layered laminates were listed in Table 1. Also, the data of three-layered 
laminates due to 5 kg free drop tests were listed in Table 1 for contrast. The numerical results 
and the data 10 kg free drop tests were listed in Table 2 together. The numerical results and 
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test data of [Ti/(0/90)2/ ]s five layered laminates due to 5 kg free drop were tabulated in 
Table 3 and due to 10 kg free drop were listed in Table 4, respectively. The results and data of 
[Ti/Kev/Ti(0/90)2/ ]s nine layered laminates due to 10 kg free drop were tabulated in Table 
5. 
 
The simulation picture of 5 kg free drop impact onto the five layered laminates at different 
height were shown in Fig.1. The pictures of damage impact for five layered laminates due to 5 
kg free drop of height of 1.5m were shown in Fig. 2. The relationships of load and initial 
compliance vs. the height of free drop were plotted in Fig. 3. 
 

Table 1. The numerical results and impact damage mechanisms of three layered samples 
due to 5kg free drop tests. 

Velocity 
(m/s) 

Energy 
(J) 

Height of 
simulation (m) 

Height of 
impact (m) 

Damage model of 
simulation 

Damage mechanisms of impact 
test 

2.34 13.69 0.28 0.49 APC-2: f  
Ti:1st, f 

Ti:1st, d; 2nd, f; depression: 
5.79mm 

2.43 14.76 0.30 0.53 APC-2: f  
Ti:1st and 2nd, f - 

2.47 15.25 0.31 0.55 APC-2: f  
Ti: 1st and 2nd, f 

Ti:1st, d; 2nd, f; depression: 
6.40mm 

2.51 15.75 0.32 0.57 ballistic limit - 

2.62 17.16 0.35 0.62 p Ti:1st, d; 2nd, f; depression: 
6.71mm 

2.80 19.6 0.40 0.71 p Ti:1st, f; 2nd, f; depression: 
7.02mm 

2.97 22.05 0.45 0.79 p Ti:1st, f; 2nd, f; depression: 
7.72mm 

3.13 24.49 0.50 0.88 p Ti:1st, f; 2nd, f; depression: 
8.04mm 

3.28 26.90 0.55 0.97 p 
Two samples near penetration, 

one penetrated; depression: 
9.30mm 

3.34 27.89 0.57 1.01 p p 
Notes: 1st denotes the first layer; 2nd denotes the second layer; d: depressed; f: fractured; p: penetration; APC-
2: APC-2 laminates; Ti: Ti sheet; -: not available 
 

Table 2. The numerical results and impact damage mechanisms of three layered samples 
due to 10kg free drop tests. 

Velocity 
(m/s) 

Energy 
(J) 

Height of 
simulation (m) 

Height of 
impact (m) 

Damage model of 
simulation 

Damage mechanisms of impact 
test 

1.4 9.80 0.10 0.18 APC-2: f  
Ti: 1st and 2nd, f Ti: d; depression: 5.01 mm 

1.72 14.79 0.15 0.27 APC-2: f  
Ti: 1st and 2nd, f 

Ti: Ti:1st, d; 2nd, f; 
depression:6.13 mm 

1.77 15.66 0.16 0.28 ballistic limit - 

1.98 19.60 0.20 0.35 p Ti: Ti:1st and 2nd, f; 
depression:7.41 mm 

2.21 24.42 0.25 0.44 p p 
2.34 27.38 0.28 0.49 p p 

Notes: 1st denotes the first layer; 2nd denotes the second layer; d: depressed; f: fractured; p: penetration; APC-
2: APC-2 laminates; Ti: Ti sheet; -: not available 
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Table 3. The numerical results and impact damage mechanisms of five layered samples 
due to 5kg free drop tests. 

Velocity 
(m/s) 

Energy 
(J) 

Height of 
simulation (m) 

Height of 
impact (m) 

Damage model of 
simulation 

Damage mechanisms of impact 
test 

2.43 14.76 0.30 0.53 APC-2: f  
Ti: 1st, f Ti: d; depression: 5.11 mm 

2.62 17.16 0.35 0.62 APC-2: f 
Ti: 1st, f - 

2.80 19.60 0.40 0.71 APC-2: f 
Ti: 1st, f Ti: 3rd, f; depression: 5.78 mm 

2.97 22.05 0.45 0.79 APC-2: f 
Ti: 1st and 2nd f - 

3.13 24.49 0.50 0.88 APC-2: f 
Ti: 1st, 2nd and 3rd, f Ti: 3rd, f; depression: 6.22 mm 

3.19 25.44 0.52 0.92 ballistic limit Ti: 3rd, f; depression: 6.52 mm 
3.43 29.41 0.6 1.06 p Ti: 3rd, f; depression: 6.96 mm 

3.57 31.86 0.65 1.15 p Ti: 1st and 3rd, f; depression: 
7.20 mm 

3.71 34.41 0.70 1.24 p Ti: 1st and 3rd, f; depression: 
7.63 mm 

3.84 36.86 0.75 1.33 p Ti: 1st and 3rd, f; depression: 
7.85 mm 

3.96 39.20 0.80 1.41 p Ti: 1st and 3rd, f; depression: 
8.00 mm 

4.08 41.62 0.85 1.50 p Ti: 1st and 3rd, f; depression: 
9.10 mm 

Notes: 1st denotes the first layer; 2nd denotes the second layer; 3rd denotes the third layer; d: depressed; f: 
fractured; p: penetration; APC-2: APC-2 laminates; Ti: Ti sheet; -: not available 
 

Table 4. The numerical results and impact damage mechanisms of five layered samples 
due to 10kg free drop tests. 

Velocity 
(m/s) 

Energy 
(J) 

Height of 
simulation (m) 

Height of 
impact (m) 

Damage model of 
simulation 

Damage mechanisms of 
impact test 

1.40 9.80 0.10 0.18 APC-2: f 
Ti: 1st, f Ti: d; depression: 4.72 mm 

1.98 19.60 0.20 0.35 APC-2: f 
Ti: 1st and 2nd, f 

Ti: 1st, d; 3rd, f; depression: 
6.09 mm 

2.21 24.42 0.25 0.44 APC-2: f 
Ti: 1st, f, - 

2.30 26.45 0.27 0.48 ballistic limit - 
2.34 27.38 0.28 0.49 p - 

2.43 29.52 0.30 0.53 p Ti: 1st, d; 3rd, f; depression: 
7.44 mm 

2.80 39.20 0.40 0.71 p Ti: 1st, d; 2nd and 3rd, f; 
depression: 8.70 mm 

3.13 48.98 0.50 0.88 p Ti: 1st, 2nd and 3rd, f; 
depression: 9.56 mm 

3.28 53.79 0.55 0.97 p Near penetration; depression: 
10.68 mm 

3.43 58.82 0.60 1.06 p p 
Notes: 1st denotes the first layer; 2nd denotes the second layer; 3rd denotes the third layer; d: depressed; f: 
fractured; p: penetration; APC-2: APC-2 laminates; Ti: Ti sheet; -: not available 
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Fig. 1. Damage simulation pictures of five layered laminates due to 5kg free drop impact at 
heights (a) 0.2m (b) 0.25m (c) 0.3m (d) 0.35m (e) 0.4m (f) 0.45m (g) 0.5m (h) scheme of 

 

Table 5. The numerical results and impact damage mechanisms of nine layered samples 
due to 10kg free drop tests. 

Velocity 
(m/s) 

Energy 
(J) 

Height of 
simulation (m) 

Height of 
impact (m) 

Damage model of 
simulation 

Damage mechanisms of impact 
test 

2.43 29.52 0.30 0.53 APC-2: f; Kevlar: f; 
Ti: 1st, f - 

2.62 34.32 0.35 0.62 APC-2: f; Kevlar: f; 
Ti: 1st 5th, f - 

2.80 39.2 0.40 0.71 APC-2: f; Kevlar: f; 
Ti 1st, 2nd and 5th, f 

Ti, APC-2, and Kevlar, d; 
depression: 8.13 mm 

2.87 41.18 0.42 0.74 APC-2: f; Kevlar: f; 
Ti: 1st, 2nd and 5th, f - 

2.97 44.1 0.45 0.79 
APC-2: f; Kevlar: f; 

Ti: 1st, 2nd, 4th and 5th, 
f 

- 

3.13 48.98 0.50 0.88 APC-2: f; Kevlar: f; 
Ti: f 

Ti: 1st-4th, APC-2, and Kevlar, d; 
Ti: 5th, f; depression: 8.13 mm 

3.22 51.84 0.53 0.93 ballistic limit - 
3.28 53.79 0.55 0.97 p - 

3.43 58.82 0.60 1.06 p 
Ti: 2nd-4th, APC-2, and Kevlar, 
d; Ti: 1st and 5th, f; depression: 

9.68 mm 

3.71 68.82 0.70 1.24 p 
Ti: 2nd-4th, APC-2, and Kevlar, 
d; Ti: 1st and 5th, f; depression: 

10.61 mm 

4.08 82.23 0.85 1.50 p 
Ti: 2nd-4th, APC-2, and Kevlar, 
d; Ti: 1st and 5th, f; depression: 

11.61 mm 
Notes: 1st denotes the first layer; 2nd denotes the second layer; 4th denotes the fourth layer; 5th denotes the fifth 
layer; d: depressed; f: fractured; p: penetration; APC-2: APC-2 laminates; Ti: Ti sheet; -: not available 
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Discussion 

The numerical simulation by LS DYNA-3D software and finite element method we adopted 
first was to obtain the results as valuable information and references for the next step impact 
tests. Otherwise, the waste of many samples can not be avoided. Inversely, the test data 
provided an important contrast in comparison with the numerical results. We also found that 
the used software was acceptably feasible without the impact tests because the results were 
more serious damage than that of test data. 
 
Due to the limited space of our lab the free drop impact tests were adopted alternatively. As 
can be seen in Tables 1-5 the real heights of free drop were much higher than those of 
predicted heights by simulation. It was mainly attributed to the friction of the testing system. 
To keep the same impact energy acting on the samples the heights adjusted and elevated were 
necessarily needed. 
 
All the three types of samples after free drop impact tests were subjected to tensile tests as 
illustrated in Fig. 3. The general trend was that the applied loads decreased with the increasing 
height, however, the initial compliances of damage samples increased with the increasing 
height inversely. 
 

Conclusion 

Three types of Ti/APC-2 hybrid composite laminates were fabricated. The numerical 
simulation by using ANSYS LS DYNA-3D software and finite element method were 
completed to provide references for free drop impact tests. The equipments of free drop tests 
were set up. After all the impact tests the damage samples were due to tensile tests to obtain 
their residual capabilities of loads and compliances. The work can be concluded that the 
numerical results were more serious damage than those of test data. Thus, the adopted 
software was well acceptable. In the consideration of friction the height of free drop should be 
elevated to meet the requirement of equal impact energy in both testing and simulation. 
 

 
Fig. 2. The photos of impact damage on five layered laminates due to 5kg free drop at 

1.5m high (a) side view (b) top view (c) bottom view. 
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Abstract 
The need for real-time condition assessment of complex systems relies on implementation of 
holistic Structural Health Monitoring (SHM) strategies that are capable of tracking structural 
behavior in a complete operational spectrum of the structure, distinguishing between true 
system changes and nonthreatening variations.  

The proposed data-driven framework utilizes an autonomous bi-component tool able to link 
monitored structural response with random evolution of Environmental and Operational 
Parameters (EOP) affecting the monitored system. The approach combines the 
implementation of a Smoothness Priors Time Varying Autoregressive Moving Average (SP-
TARMA) method for modeling the temporal variability in structural response, and a 
Polynomial Chaos Expansion (PCE) probabilistic model for modeling the propagation of 
response uncertainty. The computational tool is applied on long-term data, collected from an 
active sensing system installed for four years on a real operating WT structure located in 
Dortmund, Germany. 

The twenty one-month tracking of the proposed PCE-SPTARMA diagnostic index, further 
assessed by means of statistic-based analysis, demonstrates that the proposed symbiotic 
treatment yields a robust model, capable of separating benign EOP fluctuations from potential 
pattern alterations due to actual structural damage. The obtained data-driven model verifies 
the future prospective of the strategy for development of an automated SHM diagnostic tool.  

Keywords: Data-driven diagnostics, Operating wind turbine, Structural variability, 
Uncertainty propagation 
 
Introduction 

Latest technological advancements have fostered extensive application of various sensing 
techniques and acquisition systems on real engineering structures, thus shifting the focus 
towards hybrid analysis approaches (data/model) or purely data-based schemes (machine-
learning black box approaches). Indeed, owing to various existing sources of uncertainty, 
complex behavior and variability characterizing the system and environment of actual in-
service structures, data-aided assessment of operational engineering structures often remains a 
more accurate and computationally inexpensive alternative to approaches relying on physical 
law-based models. 
 
In this context, continuous monitoring strategies facilitate the utilization of more objective 
and flexible tools pertinent to structural diagnostics and prognosis. Particularly for wind 
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turbines, as systems characterized with time-varying dynamics and alternating operating 
nature, the adoption of automated identification tools, capable of unprejudiced diagnosis of 
the structural condition, becomes most valuable.  
 
Semi-data-driven approaches, which rely on fusion of updated Finite Element Model (FEM) 
of the structure and recorded vibration responses, are reported as promising long-term 
strategies for monitoring fatigue accumulation, as well as acceleration and strain predictions 
at unmeasured locations of WT structures [1]-[3]. It is worth mentioning however that 
Operational Modal Analysis (OMA)-based methods are limited to implementation with time 
invariant systems [4]-[5], i.e. parked or idling condition of the structure, mode-by-mode or 
case-by-case investigation [6]. 
 
EOP-born variations in structural responses, known to compromise structural performance 
signatures and mimic real damage states of the structure, have placed data-driven diagnostics 
as a highly potential approach in tackling the challenge. New emerged strategies rely on 
eliminating influences of environmental factors from estimated performance indicators with 
algorithms adopted from the area of statistics, like fitting regression models, or projection 
methods when influencing variables are not attainable [7]-[9]. As systems are often monitored 
in an unknown or healthy baseline condition, robust novelty detection strategies and 
manifestation of detected outliers, related to changing environmental and operational 
conditions, versus structural damages, are recently gaining popularity in monitored full-scale 
engineering structures as well [10]-[12]. Comprehensive overviews of further commonly 
applied statistics based concepts in SHM can be found in [11]-[13]. 
 
Instead of filtering out EOPs, an alternative in the data-driven domain lies in integrating both 
structural response data and influencing agents within probabilistic models [14]-[17]. The 
workings of a PCE-SPTARMA data-driven tool, previously tested by the authoring team on 
two operating WT structures [17], are herein further explored by expanding the validation 
periods of monitored data. Whereas the twenty one-month long implementation on a real 
operating WT structure confirms the robustness of the strategy, fusion of the proposed 
strategy with a novelty detection algorithm and probability distribution divergence measure 
demonstrates the high potential for further automated structural health assessment.  

Conceptual model 

Conceptualized as a holistic approach, the proposed strategy addresses both behavioral 
signatures associated to collected WT response data, i.e., (short-term) non-stationarity and 
long-term temporal variability. This is accomplished through tracking of measured structural 
responses by an algorithm capable of capturing short and long-term variability of the observed 
system, thus providing a link between output-only vibration response data and measured 
EOPs, Fig. 1. 
 
Fluctuations that are typical for the inherent (short-term) system dynamics are modeled by 
means of a parametric SP-TARMA method. Identified structural performance indicators, 
corresponding to short-term modeled responses, are then integrated into a PCE tool. The PCE 
probabilistic modeling approach enables long-term monitoring of structural response 
variability, further associated to the randomness of measured EOPs.  
 
With this “binocular” visualization of the problem a selected PCE-SPTARMA output feature 
can serve as a robust diagnostic indicator for separating benign pattern alterations from actual 
structural damage. 
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Figure 1.  Conceptual model of the SHM strategy as a binocular eye vision metaphor 

Theoretical framework 

The proposed PCE-SPTARMA tool is a multicomponent algorithm comprising several 
computational methods commonly applied in a wide range of areas of research and 
application. The separate methods are herein summarized and presented with a concise 
theoretical overview. The reader is guided to further appropriate references for more detailed 
information on the theoretical background. 

Modeling non-stationarity 

The nonstationary dynamics typical for an operating WT structure can be successfully tracked 
via the compact parametric formulation provided by the SP-TARMA models [18]. A full SP-
TARMA model is completely described by an assemblage of three equations, one 
representing the modeled signal (system response), and two stochastic difference equations 
governing the time evolution of the unknown AR and MA parameters of the model. Thus, an 
adequate modelling of a measured nonstationary signal is ensured by proper selection of three 
user-defined parameters, i.e. the AR/MA order n, the ratio of the residual variances v, and the 
order of the stochastic difference equations κ [19]. Statistical approaches such as 
minimization of the AIC (Akaike information criterion) or the BIC (Bayesian information 
criterion) improve the optimal selection of these values without overfitting the modeled 
signal. Finally, for a selected model M(n, v, κ) the SP-TARMA model parameters are 
obtained via the Kalman Filter scheme combined with an Extended Least Squares-like 
algorithm [18]. 

Modeling uncertainty 

The PCE tool is an uncertainty quantification method, which enables the relationship between 
outputs (structural response performance indicators) and inputs (environmental and 
operational loads) to the system. A PCE model can be described by a mathematical expansion 
of a random system output variable on multivariate polynomial chaos basis functions [17]. 
Spectral representations, such as the PCE method, rely on several regularity requirements, 
namely finite variance of the outputs, orthonormality of the polynomial basis, and statistical 
independence of the input variables [20]. Hence, the polynomial chaos basis functions 
orthonormal with respect to the probability space of the system’s random inputs have to be 
properly selected to ensure the necessary orthogonality relationship. Furthermore, the 
statistical independence of input data needs to be properly verified and possibly addressed via 
computational approaches capable of extracting independent (latent) variables from observed 
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data, such as the Independent Component Analysis (ICA) tool [21]. Then for a selected family 
of polynomial functions and maximum polynomial order P, the solution of the deterministic 
unknown parameters of a truncated PCE model are estimated via the least squares approach 
based on minimization of the sum of the squared residuals between true (observed) and 
modeled (predicted) system outputs [20]. 

Application case study 

The described SHM strategy is implemented and tested for a 0.5MW WT erected in 1997, 
located in the vicinity of Dortmund, Germany, Fig. 2. A continuous measurement of 
acceleration response is recorded by triaxial accelerometers (PCB-3713D1FD3G MEMS 
sensors) mounted at five different height positions on the inner side of the WT shaft. Along 
with the vibration data, SCADA data are recorded with the same sampling frequency of 100 
Hz. Within this paper results are presented for records corresponding to almost two complete 
years of continuously monitored data (January 2012 to September 2013). The last three 
months of year 2013, as well as scattered weeks in the previous period, are disregarded from 
the assessment as a result of missing temperature data from various sensor malfunctions.  
 

 
As a first step, acceleration records from a selected sensor location (marked at Fig. 2) were 
low-pass filtered and down-sampled to 12.5 Hz, with a cut-off frequency at 6 Hz. 
Subsequently, 10-min long preprocessed data sets were implemented within the short-term 
framework. The tuning of an appropriate SP-TARMA model to actual 10-min long signals is 
a crucial point of the short-term modeling phase. Towards this end, plots of the AIC and BIC 
for model order selection are significant indicative tools that facilitate the fitting process of 
the user-defined parameters of the SP-TARMA model (i.e. the model order n, the smoothness 
constraint order κ and the residual variance ratio ν). A detailed inspection of a selection of 
response data sets in conjunction with their estimated statistical criterion plots revealed an 
optimal fitting with the parameter values equal to n=18, κ=1, ν =0.0001. For a graphic 
comparison, Fig. 3 presents a fitted and an over fitted 10-min long data set signal with ν 
=0.0001 and ν =0.001, respectively. Further discussion and graphical outputs on the SP-
TARMA tuning process for the actual WT structure can be found in [17]. 

 

Power 500 kW 

Height of the rotor center  65 m 

Length of blade (3 total) 19.13 m 

Rotor speed  18-36 rpm 

Blade material  GRP 

Tower material  steel 

Construction year  1997 

 

Figure 2. Schematic overview of measured data (left), WT structure 
characteristics (right) 
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Figure 3.  SP-TARMA model tuning, ν =0.0001 (Left), ν =0.001 (Right) 

Measured data corresponding to operational and environmental parameters were organized as 
10-min averages and further processed to be utilized as input variables into the long-term 
framework. More precisely, five SCADA parameters (wind velocity, RPM of the rotor, power 
production, yaw angle, and shaft temperature) were transformed to independent variables via 
the ICA algorithm. In order to preserve all the existing information the number of ICA latent 
variables was kept same as the maximum number of available EOP. For the purpose of 
satisfying the second PCE prerequisite, the ICA estimates are further transformed into 
uniformly distributed variables via use of the non-parametrically estimated cumulative 
distribution functions. Hence, in accordance with the uniform PDFs of the input data, the 
Legendre polynomials are selected as the PC functional basis. The standard deviation (std) of 
the SP-TARMA residuals for the 10 minute intervals, analyzed as part of the short-term 
framework, is selected as the PCE output parameter.  
 
The selection of the second PCE user-defined parameter, the maximum polynomial order, is 
achieved via supervision of a PCE modeled output parameter YPC for a selected validation 
data range that clearly contains new ranges of input data. As presented in Fig. 4, the highest 
sensitivity to new records (marked red) of measured temperature and RPM values is linked to 
the maximum order P=5. This results in an evident discrepancy between the original output 
variable (Y) and the PCE modeled one (YPC). In addition, it was concluded that further 
increasing the maximum order does not significantly improve the accuracy of the expansion. 
More details regarding the PCE model generation, as well as the ICA transformation of the 
SCADA parameters are further elaborated in [17].  
 
The previously described framework is herein utilized for the twenty one – month period of 
monitored data of the operating WT. In order to attain acceptable accuracy and alertness, as 
well as low computational cost, the assessment is performed for one 10-min data set per hour, 
resulting in total of 14064 analyzed data sets for the stated period. The standard deviation 
(std) of the PCE residuals is selected as a reliable Diagnostic Index (DI) able to directly 
demonstrate responsiveness to varying EOP, further verified with outlier analysis of 
validation input data sets. The proposed SHM strategy as a comprehensive three step tool is 
summarized in Fig. 5.  
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Figure 4.  Tuning of PCE maximum order: modeled output (Left), input data (Right) 

A preliminary testing of the sensitivity of the obtained DI is performed by means of outlier 
analysis on the input data time histories with the well-known Mahalanobis Distance (MD) 
discordancy measure. More precisely, for a p-dimensional multivariate sample 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , the 
MD is defined as, [22]: 

𝑀𝑀𝐷𝐷𝑖𝑖 = �(𝑥𝑥𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑡𝑡)𝑇𝑇𝐶𝐶𝑡𝑡𝑡𝑡−1(𝑥𝑥𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑡𝑡)       𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 1, … ,𝑛𝑛     (1) 

where 𝑡𝑡𝑡𝑡𝑡𝑡  is the arithmetic mean and 𝐶𝐶𝑡𝑡𝑡𝑡  is the sample covariance matrix, estimated for a 
certain training period of an input data set. The 𝑥𝑥𝑖𝑖 samples from a testing set which have MD 
beyond a predefined value are interpreted as novelties. Hence, the definition of thresholds is 
vital part of the process. An adaptive method that takes into account the actual empirical chi-
square distribution function of the estimated MD (instead of a fixed quantile) is herein applied 
[22].  
 
The sensitivity of the index values to unfamiliar EOP fluctuations is tested for two, four and 
twelve-month training periods. In Fig. 6, for a two-month training period, the validation sets 
of the estimated DI and statistical outlier analysis (univariate MD plot ) of the input data time 
histories illustrate that index values exceeding the ± 3std thresholds (99.7% confidence 
intervals calculated for the fitted Gaussian distribution of the PCE estimation set errors) can 
be linked to novel data ranges of the measured influencing agents, more precisely temperature 
and RPM values between months March and November year 2012, as well as April and 
September in year 2013. 
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Figure 5.  Schematic overview of the proposed SHM framework  

 
Figure 6.  Two-month training set. Identified novel data (red points) within time history 

of 10-min mean values of measured SCADA and X- chart of the Model residual  

 
With further increase of the training period and redefining the normal condition to include 
more points on fluctuating EOP (Figures 7-8), the MD outlier percentages decrease (SCADA 
variables with zero percent are not included in the plots) and correspondingly the DI becomes 
significantly reduced. In the case of the twelve- month period of training, the MD outlier 
percentages drop below 0.2% and the DI distribution pattern of the testing set is evidently 
improved, with substantially less points above the threshold values. 
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Figure 7.  Four-month training set. Identified novel data (red points) within time history 

of 10-min mean values of measured SCADA and X- chart of the DI 

 
Figure 8.  Twelve-month training set. Identified novel data (red points) within time 

history of 10-min mean values of measured SCADA and X- chart of the DI 
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Future work 

In order to identify connections of specific patterns of structural behavior to relevant 
operating regimes of the WT system, future research will focus on the long-term tracking of 
the estimated PCE-SPTARMA diagnostic index. As preliminary presented in Fig. 9, simple 
statistical measures like the Kullback–Leibler divergence, applied daily on the obtained DI, 
demonstrate sensitivity to new data ranges of measured EOPs and agree well with the MD-
based analysis of SCADA variables (Figs. 6-8).  
 
However, in order to develop a holistic and computationally efficient tool capable of 
separating benign EOP fluctuations from indicator distortions due to actual structural damage 
or system malfunction, proper threshold tuning and pattern analysis is crucial. Towards this 
end, simulated damages will be introduced to the baseline training data of the monitored 
healthy structure. Finally, autonomous routines, based on robust outlier analysis or similar 
statistical measures, and an application- ready monitoring mapping for an appropriate timely 
reaction (model retraining or structural intervention), will be sought as a last step. 

 
Figure 9.  KL-Divergence indicator applied on the DI with cumulative assessment of one 

DI value per day, and tested for 2, 4, 12 months of training  

Conclusions 

The proposed strategy delivers a PCE-SPTARMA robust diagnostic index able to capture the 
non-stationary response and the long-term response variability of an actual operating WT 
structure for a monitoring period of twenty one months. The potential for further 
enhancements of the tool, towards real-time computing platform able to guide operators in the 
management of WT structures, is verified by outlier analysis of recorded SCADA data and 
preliminary utilization of statistical divergence measures on the obtained index.  
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Abstract 
To investigate flexural vibration of structures in a fluid, a numerical algorithm was developed to relate the added 
mass and damping effects of the fluid to each mode of vibration. These are separate from the traditional added 
mass associated with rigid body motion, such as the translational motion along Cartesian axes. In this 
formulation, small-amplitude free surface waves were accounted for by using a non-singular implementation of 
the free-surface Green’s function for a potential flow solver based on Boundary Element Method. The 
formulation was applied to the free and forced vibration of structures, namely a hemispherical shell and a 
simplified ship model, to obtain their dynamic response at various excitation frequencies. The results show the 
influence of added damping at lower frequencies as well as the simplicity of relating the fluid added mass to 
mode shapes of the structures. 

 
Keywords: Free Surface Wave, Non-singular Boundary Element Method, Fluid-
Structure Interaction 
 

Introduction 

For a structure interacting with surrounding fluid, any sudden change in the motion, for 
example onset of motion or change in the acceleration, results in additional resistance form 
the fluid in the form of a pressure load. This fluid loading can be represented by an equivalent 
system of mass and damper, which are called added mass and added damping, respectively 
[1]-[9]. Added-mass depends on the geometry of the fluid-structure interface, density of the 
fluid and the type of motion [1]-[3]. Added damping occurs due to the viscosity and condition 
of the free-surface of the fluid if it exists [4]-[9]. 
 
Added-mass and damping have been studied for different geometries of structures, either 
being fully or partially submerged in a fluid domain, under translational rigid-body motion 
[4]-[10][14][19][20]. A few studies were reported about relation between the flexural 
vibration of structures and added mass [21]-[24]. In most of the theoretical studies of 
applications such as offshore mobile structures (ships or submarines), the fluid or sea water is 
typically modeled as an incompressible fluid with negligible viscosity; thus, added-damping 
only arises from the free-surface condition [1][3][5][9][10][14]. 
 
For such a case of potential flow, the typical numerical method for calculating the fluid 
pressure is Boundary Element Method with proper Green’s function [3][12][13][15]-[20][24]. 
The total pressure at the free-surface of the fluid is set to zero. If the pressure head due to the 
gravity is included in the total pressure, the free-surface elevation, and hence the velocity, is 
related to the unsteady pressure which rises from changes in the motion. For small amplitude 
oscillatory flow, this relationship is modeled by the Airy wave equation [25]. To use the 
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Boundary Element Method, modification of the Green’s function is required to satisfy the 
free-surface wave condition. Several studies reported the surface-wave Green’s function as an 
analytical expression which includes semi-infinite integral of the modified Bessel functions 
[12][13][15]-[18]. Although several analytical derivations for a limited number of simple 
geometries existed, numerical implementation of this Green’s function is challenging due to 
the singularity of the Bessel function as well as the infinite bound of the integral. The surface-
wave Green’s function results in complex-valued pressure and velocity [11][16][17]. 
 
In this paper, the aim is to investigate the flexural vibration of shell structures interacting with 
fluid modelled as potential flow. A non-singular formulation is proposed for implementing 
the surface-wave Green’s function. Then, by using the modal superposition, the fluid loading 
is calculated for each selected mode shape which are derived for the dry-state of structure. 
The added-mass and damping are represented the real and imaginary parts of the fluid 
loading, respectively. By including these fluid effects in the vibration equation, the flexural 
response of the wet-state of the structure can be calculated. The results show that the proposed 
numerical formulation provides an efficient way of vibration design of ship structures in sea 
water. 

Theory and formulation 

Vibration and modal superposition 

Vibration of structures is governed by the following equation, 

 M�̈�𝒙 + C�̇�𝒙 + D𝒙𝒙 = 𝒈𝒈(𝒙𝒙) + 𝐡𝐡, (1) 

where 𝒙𝒙 is structure displacement vector, M , C and D are the structural mass, damping and 
stiffness matrices, respectively; time differentiation is denoted by the dot ( ̇ ) operator. The 
fluid loading on fluid-structure interface, denoted by 𝒈𝒈, is a function of the displacement of 
the fluid-structure interface. Other external forces are denoted by 𝐡𝐡 . For time harmonic 
response, 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, Eq. (1) is written as follow, 

 (−𝜔𝜔2M− 𝑖𝑖𝜔𝜔C + D)𝑿𝑿 = 𝑮𝑮(𝒙𝒙) + 𝐇𝐇. (2) 

where 𝜔𝜔 is the circular frequency; X, G and H are the corresponding complex amplitudes. To 
determine fluid loading 𝑮𝑮 as a function of displacement, the modal superposition technique is 
applied. First, structure displacement is written as  

 𝑿𝑿 = ∑ 𝝍𝝍𝑗𝑗
𝑁𝑁
𝑗𝑗=0 𝑄𝑄𝑗𝑗 = [𝝍𝝍]{𝑸𝑸}, (3) 

where 𝝍𝝍𝑗𝑗  is the 𝑗𝑗th mode shape of the dry structure, which is called 𝑗𝑗th dry mode-shape 
hereinafter, and 𝝍𝝍𝑗𝑗 is associated with the 𝑗𝑗th dry frequency 𝑓𝑓𝑗𝑗

(𝑑𝑑𝑑𝑑𝑑𝑑).The participation factor of 
the 𝑗𝑗th dry mode in the response is denoted by 𝑄𝑄𝑗𝑗 . In the literature, [𝝍𝝍] and {𝑸𝑸} are also 
known as modal matrix and natural coordinates, respectively. Since the dry mode-shapes are 
linearly independent and orthogonal, a partial fluid loading 𝑭𝑭𝒊𝒊 is calculated for each of them 
by using the Boundary Element Method, as described in the next subsection. Again by 
invoking the concept of modal superposition, the total fluid loading is calculated as follows, 

 𝑮𝑮(𝒙𝒙) = ∑ 𝐹𝐹𝑗𝑗𝑁𝑁
𝑗𝑗=0 𝑄𝑄𝑗𝑗 = [𝑭𝑭]{𝑸𝑸}. (4) 

The fluid loading matrix [𝑭𝑭] can be replaced by the equivalent system of mass and stiffness as 
follows, 

 [𝝍𝝍]𝑇𝑇[𝑭𝑭] = 𝜔𝜔2M𝒂𝒂 + 𝑖𝑖𝜔𝜔C𝒂𝒂 (5) 
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where M𝒂𝒂  and C𝒂𝒂  are the modal added mass and damping, respectively, and [𝝍𝝍]𝑇𝑇  is the 
transpose of the modal matrix. The sizes of the added mass and damping matrices are the 
same as the number of selected dry mode-shapes for modal analysis. The advantage of 
calculating modal added mass and damping is that the magnitude of the fluid loading and its 
non-uniform distribution over the interface, for the case of flexural vibration, is reported by a 
single value which appears on the main diagonal of the matrices. The off-diagonal terms 
indicate the interaction between different dry mode-shapes in terms of the fluid loading. 
By pre- and post-multiplying Eq. (2) with [𝝍𝝍] and using Eq. (3), (4) and (5), one can write 

 �−𝜔𝜔2�M�+M𝒂𝒂� − 𝑖𝑖𝜔𝜔�C�+C𝒂𝒂� + D��{𝑸𝑸} = H� (6) 

where M� , C� , D�  and H�  are the modal structural mass, damping, stiffness and loading, 
respectively and M� = [𝝍𝝍]𝑇𝑇M[𝝍𝝍]. For free vibration analysis, damping terms and external load 
are ignored and Eq. (6) becomes  

 �−𝜔𝜔2�M�+M𝒂𝒂� + D��{𝑸𝑸} = 𝟎𝟎. (7) 

Eq. (7) is an eigenvalue problem from which the frequencies and mode shapes of the 
immersed structure, which are called wet frequencies and mode-shapes, can be computed. It is 
noted that the wet mode-shapes are actually calculated by means of the modal superposition 
and the {𝑸𝑸} obtained from Eq. (7). 

Flow simulation with free-surface wave 

For a linear inviscid and incompressible flow, Navier-Stokes equation is reduced to a 
potential flow equation, as follows, 

 ∆𝜑𝜑 = 0 (8) 

 𝑝𝑝 = −𝜌𝜌𝑓𝑓�̇�𝜑 + 𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔 (9) 

 ∇𝜑𝜑 = v = �̇�𝒙 (10) 

where 𝜑𝜑 is the velocity potential, 𝑝𝑝 is the total pressure, 𝜌𝜌𝑓𝑓 is the density of the fluid, 𝑔𝑔 is the 
gravity acceleration and 𝑔𝑔 is the position along the vertical. Eq. (9) is also known as the 
linearized Bernoulli’s equation and indicates the contribution of the unsteady motion (first 
term) and the gravity potential (second term) in the total fluid pressure. On the free surface of 
the fluid (where 𝑝𝑝 = 0) for an oscillatory flow, one can rewrite Eq. (9) by using Eq. (10), as 
follows, 

 −𝑖𝑖𝜔𝜔𝜑𝜑 + 𝑔𝑔
−𝑖𝑖𝑖𝑖

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= 0|@𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑑𝑑𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓, (11) 

or 

 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= 𝑖𝑖2

𝑔𝑔
𝜑𝜑|@𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑑𝑑𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓, (12) 

where 𝑛𝑛 is the unit normal to the free surface which is in the z-direction in this derivation. Eq. 
(12) is known as the Airy wave equation that governs small amplitude wave on the free 
surface of a fluid due to gravity effects on an oscillatory flow. It shows that the velocity 
potential and its normal derivative are related on the free surface. The wavelength of the 
surface wave can be obtained as follows, 

 𝜆𝜆𝑓𝑓 = 2𝜋𝜋
𝛼𝛼

= 2𝜋𝜋
𝑖𝑖2, (13) 
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where 𝛼𝛼 is the wavenumber. Eq. (8) can be represented as a Boundary Integral Equation, as 
follow, 

 𝑐𝑐𝑝𝑝𝜑𝜑�𝐱𝐱𝑝𝑝� + ∫
𝜕𝜕𝜕𝜕��𝐱𝐱𝑝𝑝−𝐱𝐱𝑞𝑞��

𝜕𝜕𝜕𝜕�𝑥𝑥𝑞𝑞�S 𝜑𝜑�𝐱𝐱𝑞𝑞�𝑑𝑑S�𝐱𝐱𝑞𝑞� = ∫ 𝐺𝐺��𝐱𝐱𝑝𝑝 − 𝐱𝐱𝑞𝑞��
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
�𝐱𝐱𝑞𝑞�S 𝑑𝑑S�𝐱𝐱𝑞𝑞� (14) 

where 𝐺𝐺��𝐱𝐱𝑝𝑝 − 𝐱𝐱𝑞𝑞�� is the Green’s function, 𝐱𝐱𝑝𝑝 and 𝐱𝐱𝑞𝑞 are the positon vectors of point 𝑝𝑝 and 
𝑞𝑞 , respectively, 𝑐𝑐𝑝𝑝 is the solid-angle constant, which is 0.5 if point p is on the boundary Γ and 
1 if located in the fluid domain. The area of the surface element at point 𝑞𝑞 is denoted by 
𝑑𝑑S�𝐱𝐱𝑞𝑞�. Eq. (13) can be solved by using boundary elements on the fluid-structure interface as 
long as conditions on other boundaries are satisfied by an appropriate Green’s function. A 
modified Green’s function was derived to impose the wave condition without discretizing the 
infinite free-surface [15]-[17]. The analytical expression for this Green’s function, which is 
called the surface-wave Green’s function and denoted by 𝐺𝐺𝑤𝑤, is 

 𝐺𝐺𝑤𝑤 = 1
4𝜋𝜋𝑑𝑑

+ 1
4𝜋𝜋�̅�𝑑

+ 𝑖𝑖𝛼𝛼
2
𝑒𝑒𝛼𝛼�𝑧𝑧𝑝𝑝+𝑧𝑧𝑞𝑞�H0

(1)(𝛼𝛼𝛼𝛼) + 𝐼𝐼∞, (15) 

where 𝛼𝛼 = ��𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑞𝑞�
2

+ �𝑦𝑦𝑝𝑝 − 𝑦𝑦𝑞𝑞�
2
, 𝑟𝑟 = �𝛼𝛼2 + �𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑞𝑞�

2
, �̅�𝑟 = �𝛼𝛼2 + �𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞�

2
, 

 𝐼𝐼∞ = − 1
𝜋𝜋2 ∫

𝛼𝛼K0(𝜂𝜂𝜂𝜂)
𝛼𝛼2+𝜂𝜂2

�𝛼𝛼 cos 𝜂𝜂�𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞� − 𝜂𝜂 sin 𝜂𝜂�𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞��
∞
0 𝑑𝑑𝜂𝜂. (16) 

Here, H0
(1) and K0 are the zeroth order Hankel function of the first kind and modified Bessel 

function of the second kind, respectively [17]. Since K0 is a fast decaying function, the semi-
infinite integral in Eq. (16) is computed by using Gauss quadrature method with 61 Gauss 
points which gives a relative error of less than 0.01%. Also, by using this numerical 
technique, the singularity at 𝜂𝜂 = 0 is also avoided. Since both H0

(1) and K0 are singular at zero, 
the choices of 𝐱𝐱𝑝𝑝 and 𝐱𝐱𝑞𝑞 that gives 𝛼𝛼 = 0 should be treated separately. For this purpose, a 
non-singular series expansion is proposed based on Newman’s derivation to calculate 𝐺𝐺𝑤𝑤 for 
the case of 𝛼𝛼 = 0 [11]. It is noted that the special case of 𝛼𝛼 = 0 occurs when the two points 
are located along a line parallel to the z axis. 
 
From Newman’s series derivation for small distances between the two points 𝑝𝑝 and 𝑞𝑞 [11], an 
alternative formulation was derived to take care of the 𝛼𝛼 = 0  singularity of the Bessel 
functions, as follows, 

 𝐺𝐺𝑤𝑤 = 1
4𝜋𝜋𝑑𝑑

+ 1
4𝜋𝜋�̅�𝑑

+ 𝑖𝑖𝛼𝛼
2
𝑒𝑒𝛼𝛼�𝑧𝑧𝑝𝑝+𝑧𝑧𝑞𝑞�J0(𝛼𝛼𝛼𝛼) + 𝒯𝒯∞         for 𝛼𝛼 < 10−3, (17) 

 𝒯𝒯∞ = − 𝛼𝛼
2𝜋𝜋

J0(𝛼𝛼𝛼𝛼)𝑒𝑒�𝑧𝑧𝑝𝑝+𝑧𝑧𝑞𝑞�Ei �−�𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞�� + 𝒮𝒮∞ (18) 

 𝒮𝒮∞ = ∑ (−1)𝑛𝑛

Γ(𝜕𝜕)2 �
𝜂𝜂

2�𝑧𝑧𝑝𝑝+𝑧𝑧𝑞𝑞�
�
2𝜕𝜕
∑ Γ(2𝑛𝑛 −𝑚𝑚 − 1)(−1)𝑚𝑚�𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞�

𝑚𝑚2𝜕𝜕−1
𝑚𝑚=0

∞
𝜕𝜕=1 , (19) 

where J0  is the order zero regular Bessel function, Γ(𝑛𝑛) is the Factorial function, Ei is the 
standard Exponential Integral function, written as follows, 

 Ei(𝑔𝑔) = −𝑃𝑃𝑃𝑃 �∫ 𝑓𝑓−𝑡𝑡

𝑖𝑖
𝑑𝑑𝑑𝑑∞

−𝑧𝑧 � (20) 

with the principal value being denoted by 𝑃𝑃𝑃𝑃 . Eq. (17) to (20) provides a non-singular 
Green’s function for 𝛼𝛼 < 10−3  and are easy to implement since the Bessel, Factorial and 
Exponential Integral functions have standard implementation based on reference [26], and are 
accessible from any standard math library such as GSL for C/C++ programs. It is noted that 
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there is an infinite sum in Eq. (19); however, using more than 5 terms for 𝛼𝛼 < 10−3 changes 
the final value of the sum by less than 0.1%. Hence, the infinite sum is truncated to only five 
terms for our computer implementation of the non-singular surface-wave Green’s function. 
 
Since this Green’s function is a complex-valued function, the calculated pressure amplitudes 
on the fluid-structure interface are also complex values. The real and imaginary parts of the 
fluid pressure correspond to the added mass and damping, respectively. By multiplying the 
pressure with surface area, the fluid loading is obtained at the centroid of each element. The 
force is distributed to the nodes equally due to the linear shape function. Partial fluid loading 
for the dry mode shapes are assembled in the same order as the mode shapes to obtain the 
fluid loading matrix [𝑭𝑭].  

Proposed numerical formulation 

To summarize, the steps in the proposed numerical formulation are listed here, as follows. 
• Step 1: Extract N dry mode-shapes by using Finite Element analysis of the structure 
• Step 2: For each dry mode-shape, calculate the fluid pressure loading by using 

Boundary Element Method (Eq. (9), (14), (15) and (17)) 
• Step 3: Extract the equivalent added mass and damping by using Eq. (5) 
• Step 4: Solve the free (or forced) vibration by using Eq. (7) (or (6)) 
• Step 5: Calculate the structure response by using modal superposition, Eq. (3) 

 
The size of the matrices for in Equations (7) and (6) is the same as the number of selected 
mode shapes which is much smaller than the size of the discretized model. By using the 
modified Green’s functions to include the free-surface wave, the size of the fluid problem 
which is solved by Boundary Element Method is also kept to a minimal size. In term of 
computation time, the fluid solver is the most expensive part of this formulation and it is 
performed for all selected dry mode-shapes. 

Simulation Results 

Two case studies, a hemispherical shell and a simplified ship model with internal partitions, 
were considered; numerical results of structural vibration of these two cases based the 
proposed numerical algorithm are presented. The normalized frequency, which is reported in 
this section, is defined as 

 𝑓𝑓𝑗𝑗∗ = 𝑓𝑓𝑗𝑗𝑎𝑎�𝐸𝐸 𝜌𝜌⁄  (2) 

where 𝑓𝑓𝑗𝑗  is the natural frequency of the jth mode, 𝑎𝑎 is a characteristic length of the given 
geometry, and 𝐸𝐸  and 𝜌𝜌  are the mass density and Young modulus of the solid material, 
respectively. Variables with the unit of length are also normalized by the characteristic length 
𝑎𝑎. 

  
(a) (b) 

Figure 1: (a) illustration of a hemispherical shell of radius 𝑎𝑎, immersed partially by 𝑙𝑙 and 
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(b) the location of external forces acting on the rim for forced vibration study 

Fig. 1 shows the hemispherical shell (case 1) which is immersed by l/a = 0.9, where the 
immersion depth is denoted by 𝑙𝑙 . The external forces applied to the structure for forced 
vibration study are shown in Fig. 1b as F. The forces are acting on two opposite points on the 
rim in the x direction. 

 
Figure 2: Normalized amplitude of surface elevation along a line segment on the free 

surface of the fluid domain for two cases, with and without free surface wave. Half of the 
shell is illustrated at the left side to demonstrate the relative location of the line segment. 

For each dry mode-shape of the hemispherical shell, the fluid flow was solved for two 
scenarios: with and without accounting for the free-surface wave. To verify the 
implementation of the special Green’s function 𝐺𝐺𝑤𝑤, the normalized amplitude of the surface 
elevation was plotted for a line segment on the free surface, as shown in Fig. 2, for the first 
dry mode shape with two nodal lines associated with 𝑓𝑓1∗ = 2.20 × 10−4 . The free-surface 
wave length was obtained from Eq. (13) to be 1.2𝑎𝑎. The same wavelength can be observed for 
the surface undulations shown in Fig. 2 This implies that the surface condition is satisfied 
automatically by using the special Green’s function. When the surface wave is neglected, the 
surface elevation becomes zero, which is presented in Fig. 2 by a red solid line. 

After calculating the fluid pressure acting on the hemispherical shell, the added mass and 
damping were calculated and subsequently incorporated into the vibration equation to obtain 
the wet frequencies and their associated participation factors from Eq. (7). The wet mode-
shapes were then calculated from Eq. (3), by multiplying the participation factors with the 
modal matrix of the dry structure. Fig. 3 shows the first four dry and wet mode shapes of the 
shell in ascending sequence of their frequencies. It is noted that the axisymmetric shape of the 
shell gives the repeated frequencies, for which the corresponding mode shapes have the same 
number of nodal lines. The same feature was observed for the wet state of the shell, as shown 
in Fig. 3b and 3d for the first repeated frequencies, and Fig. 3f and 3h for the next pair. Dry 
mode-shapes were normalized by the unitary normalization technique. The displacement 
profiles of the wet mode-shapes were derived from the dry mode-shapes and the participation 
factors. It is noted that the wet mode-shapes are similar to the dry ones, implying that the 
chosen dry mode-shapes give an appropriate set of basis function to construct the arbitrary 
response of the shell to any excitation. 
 
As explained in the formulation section, the additional fluid resistance is presented by the 
modal added mass and damping. For free vibration analysis, only the added mass is accounted 
for to obtain the wet natural frequencies. The modal added mass matrix is reported in Table 1. 
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For each mode, the values are normalized by the modal structural mass of that mode. The 
reported values are rounded up to two decimal places hereinafter. 

 

  
(a) 1st dry mode shape with 2 nodal lines (b) 1st wet mode shape with 2 nodal lines 

  
(c) 2nd dry mode shape with 2 nodal lines (d) 2nd wet mode shape with 2 nodal lines 

  
(e) 3rd dry mode shape with 3 nodal lines (f) 3rd dry mode shape with 3 nodal lines 

  
(g) 4th dry mode shape with 3 nodal lines (h) 4th wet mode shape with 3 nodal lines 

Figure 3: Panels (a), (c), (e) and (g) are the first four dry mode shapes of a hemispherical 
shell and panels (b), (d), (f) and (h) are their wet counterparts, respectively, for the 

immersion depth of 𝑙𝑙 = 0.9 
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It is noted that all the diagonal elements are larger than one, indicating that the modal fluid 
added-mass is larger than structural modal mass. The added mass matrix is not symmetric, 
due to the formulation of Boundary Element Method used for estimating the fluid loading. 
Despite the structural added-mass matrix being symmetric, the total mass matrix is non-
symmetric which results in non-orthogonal eigenvectors. It was also observed that the off-
diagonal elements are smaller than the diagonal ones by at least two orders of magnitude. By 
solving Eq. (7), wet frequencies and participation factors were computed by using an in-house 
Eigenvalue solver. The participation factors for the four mode shapes are reported in Table 2 
to demonstrate the contribution of each dry mode shape in constructing the wet modes of 
vibration.  

Table 1: Normalized modal added mass matrix for the first four mode shapes of the 
hemispherical shell 
[𝑚𝑚𝑠𝑠]𝑗𝑗𝑗𝑗 [𝑚𝑚]𝑗𝑗𝑗𝑗⁄  𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4 

𝑗𝑗 = 1 7.95 -0.04 0.00 -0.01 
𝑗𝑗 = 2 0.03 7.95 -0.02 0.00 
𝑗𝑗 = 3 0.00 -0.02 6.26 -0.01 
𝑗𝑗 = 4 -0.02 0.00 0.01 6.25 

Table 2: Eigen vector of participation factors with their associated wet frequency 
 {𝑸𝑸}1 {𝑸𝑸}2 {𝑸𝑸}3 {𝑸𝑸}4 

�

dry mode 1
dry mode 2
dry mode 3
dry mode 4

� �

-0.73
0.68
0.00
0.00

� �

−0.69
-0.72
0.00
0.00

� �

0.00
0.00
0.61
0.79

� �

0.00
0.00
0.78
−0.62

� 

The vectors of participation factor in Table 2 are linearly independent. The first two dry mode 
shapes which are associated to the first repeated frequency have dominant contributions in the 
first two wet mode shapes. This relationship can be observed in Fig. 3a, 3c and 3b, 3d, 
respectively. Similarly, wet modes 3 and 4 are constructed mainly from the third and fourth 
dry modes. 

Table 3: Ratio between the wet and dry frequencies of the hemispherical shell 
 𝑓𝑓𝑗𝑗∗

(𝑤𝑤𝑓𝑓𝑖𝑖) 𝑓𝑓𝑗𝑗∗
(𝑑𝑑𝑑𝑑𝑑𝑑)�  𝜖𝜖𝑗𝑗 = 100 × �𝑓𝑓𝑗𝑗∗

(𝑑𝑑𝑑𝑑𝑑𝑑) − 𝑓𝑓𝑗𝑗∗
(𝑤𝑤𝑓𝑓𝑖𝑖)� 𝑓𝑓𝑗𝑗∗

(𝑑𝑑𝑑𝑑𝑑𝑑)�  
𝑗𝑗 = 1 0.33 66.65% 
𝑗𝑗 = 2 0.33 66.50% 
𝑗𝑗 = 3 0.37 62.83% 
𝑗𝑗 = 4 0.37 62.92% 

 
The ratio of dry and wet frequencies and the relative downshift 𝜖𝜖𝑗𝑗 in natural frequency due to 
fluid added-mass effect are reported in Table 3. For all the modes, the wet frequencies are 
lower than their dry counterparts, demonstrating the additional resistance from fluid motion 
induced by the deflection of the interface. The considerable reduction in the frequencies 
implies the significant impact of fluid loading on the vibration response of such shell 
structures. 

Table 4: Normalized modal added damping matrix for the first four mode shapes of the 
hemispherical shell 
[𝐶𝐶𝑠𝑠]𝑗𝑗𝑗𝑗 �[𝑚𝑚]𝑗𝑗𝑗𝑗 × 𝑓𝑓𝑗𝑗

(𝑤𝑤𝑓𝑓𝑖𝑖)�⁄  𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4 
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𝑗𝑗 = 1 171.93 1.90 -0.03 0.01 
𝑗𝑗 = 2 -2.19 171.12 -0.12 -0.02 
𝑗𝑗 = 3 -0.02 0.10 4.01 0.08 
𝑗𝑗 = 4 0.11 0.03 -0.07 4.04 

 
To study the forced vibration of the shell for the given external loads shown in Fig. 1b, the 
modal added damping, which represents the dissipative effects of the free-surface wave, were 
included. Table 4 shows the modal added damping which are normalized by the critical 
damping [𝐶𝐶𝑠𝑠𝑑𝑑]𝑗𝑗𝑗𝑗 =  [𝑚𝑚]𝑗𝑗𝑗𝑗 × 𝑓𝑓𝑗𝑗

(𝑤𝑤𝑓𝑓𝑖𝑖) with 𝑓𝑓𝑗𝑗
(𝑤𝑤𝑓𝑓𝑖𝑖) being the wet frequency of the 𝑗𝑗th mode. It 

can be seen that for all the four modes, the diagonal elements of the matrix which represent 
the added-damping factors are all greater than one. This implies that the shell is overdamped 
due to the dissipative effect of the free-surface waves. The off-diagonal elements are smaller 
than the diagonal damping factors by at least two orders of magnitude. It is noted that the 
modal damping tends to be larger at lower frequencies, and the added damping is the same for 
mode shapes associated with repeated frequencies. 

 
Figure 4: Forced vibration response of the hemispherical shell subjected to force F at point P, 

as shown in Fig. 1b, with and without including the added damping form the free-surface 
wave effect. 

The displacement response at an observation point P due to the given load over a frequency 
range that contains the two natural frequencies is plotted in Fig. 4. The results are shown for 
two cases, with and without free-surface wave effect, to investigate the added-damping. When 
the surface wave was neglected, strong resonance can be observed when the excitation 
frequency approaches the calculated natural wet frequencies. By including the free-surface 
wave and hence its added-damping effect, the vibration response shows that the system is in 
the overdamped state as the free-surface wave carried energy away from the shell. This 
implies that resonance will not occur in this frequency range as long as the shell is partially 
submerged in a fluid. 

For the next case study, a simplified ship model was developed for analysis, as shown in Fig. 
5. The model dimensions are 200m (length) × 30m (width)  × 15m (height). Three plate 
partitions with 10 m height were placed inside hull at 40, 100 and 160 m. The ship draft is 
considered to be 10 m, which is illustrated by a horizontal line on the ship hull. Two equal 
and opposite forces shown in Fig. 5b are exerted on the sides of ship hull for forced vibration 
analysis. 
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(a) (b) 
Figure 5: (a) schematic illustration of a simplified ship model, immersed partially by 𝑙𝑙 and 

(b) the location of external forces acting on the side walls for forced vibration study 

The first four dry frequencies and mode-shapes of the ship model were obtained using finite 
element analysis. Similar to the previous case, the fluid loading was calculated for each dry 
mode-shape by using the Boundary Element Method, with and without including the free-
surface wave effects. After deriving the added mass matrix, the free vibration of the wet ship 
model was solved to obtain the wet mode-shapes and natural frequencies. It is noted the 
internal plates in the model were not considered in fluid flow simulation, since only the fluid-
solid interface is required. However, the stiffeners affect the dry mode shapes and 
consequently the fluid pressure experienced by the ship structure. 

Fig. 6 shows the first four dry and wet mode-shapes of the ship model. The first four wet 
modes were closely related to the corresponding first four dry modes, indicated by the 
dominant contributing factor. Direct correspondence between the dry and wet mode-shapes 
shows that the choice of modes for modal superposition is appropriate and no further iteration 
is required in this numerical algorithm. The normalized frequencies are also reported for each 
mode. As expected, the wet frequencies are lower than the dry ones by one order of 
magnitude. This implies that the impact of the fluid added-mass is considerable for this type 
of structure. 

 
Fig. 7 shows the response of the ship at an observation point P due to the given excitation 
force over a range of frequencies. In the first scenario, the free-surface wave is neglected to 
detect the resonance occurrence by performing a frequency sweep, as shown by the blue solid 
line and markers. The second scenario with the damping from the free-surface wave was then 
conducted with the forced vibration analysis. The displacement results show slightly lower 
displacement amplitudes compared to the undamped case, indicating that the structure is 
underdamped. It can be inferred that the free-surface wave only dissipates a small fraction of 
the vibration energy from the ship within this range of excitation frequencies. This is in 
contrast with the overdamped case of the hemisphere discussed previously. Thus, it is 
concluded that including the free-surface wave may result in either underdamped, critically 
damped, or overdamped vibration, depending on the displacement profile of the mode-shapes. 
From Table 5, it can be verified that the forced vibration response of the ship is indeed 
underdamped since all the added damping factors are smaller than one. 
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(a) 1st dry mode shape, 𝑓𝑓𝑗𝑗∗ = 8.56 × 10−5 (b) 1st wet mode shape, 𝑓𝑓𝑗𝑗∗ = 7.28 × 10−6 

  
(c) 2nd dry mode shape, 𝑓𝑓𝑗𝑗∗ = 9.37 × 10−5 (d) 2nd wet mode shape, 𝑓𝑓𝑗𝑗∗ = 8.39 × 10−6 

  
(e) 3rd dry mode shape, 𝑓𝑓𝑗𝑗∗ = 11.1 × 10−5 (f) 3rd dry mode shape, 𝑓𝑓𝑗𝑗∗ = 13.54 × 10−6 

  
(g) 4th dry mode shape, 𝑓𝑓𝑗𝑗∗ = 12.5 × 10−5 (h) 4th wet mode shape, 𝑓𝑓𝑗𝑗∗ = 16.90 × 10−6 

Figure 6: Panels (a), (c), (e) and (g) are the first four dry mode shapes of a simplified ship 
model with internal plate partitions and panels (b), (d), (f) and (h) are their wet 

counterparts, respectively, for the immersion depth of 𝑙𝑙 = 2 3⁄  
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Figure 7: Forced vibration response of the simplified ship model subjected to force F at point 
P, as shown in Fig. 5b, with and without including the added damping form the free-surface 

wave effect. 
Table 5: Normalized modal added damping matrix for the first four mode shapes of the 
simplified ship model 
[𝐶𝐶𝑠𝑠]𝑗𝑗𝑗𝑗 �[𝑚𝑚]𝑗𝑗𝑗𝑗 × 𝑓𝑓𝑗𝑗

(𝑤𝑤𝑓𝑓𝑖𝑖)�⁄  𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4 
𝑗𝑗 = 1 5.3×10-3 -0.03 0.00 0.01 
𝑗𝑗 = 2 -0.02 0.20 0.02 -0.06 
𝑗𝑗 = 3 0.00 0.01 1.5×10-3 0.00 
𝑗𝑗 = 4 0.00 -0.05 0.00 0.02 

 

Discussion 

The added damping due to the free-surface wave represents a part of vibrational energy that is 
carried away from the structure. The added-damping may be neglected for free vibration 
analysis since the purpose is to determine only the natural frequencies. The natural 
frequencies are functions of mass and stiffness only. However, for steady-state forced 
vibration analysis, it is necessary to include the added-damping effect.  

Conclusions 

The proposed numerical algorithm for structural vibration interacting with a fluid combines 
the use of finite element method, boundary element method and modal superposition. Finite 
element solver is used to derive the mode-shapes of structure in the absence of fluid (dry 
modes). Modal superposition is applied to reduce the problem size and calculate the partial 
fluid loading. The boundary element method is used to calculate the fluid loading, for two 
scenarios of with and without free-surface waves. A numerical implementation of the 
modified Green’s function was proposed to impose the free-surface wave condition 
automatically. This ensures that only the fluid-structure interface needs to be discretized for 
the Boundary Element simulation, leading to a much smaller problem-size. 
 
The proposed numerical scheme was used to study the vibration response of a partially 
submerged hemispherical shell and simplified ship structure. The results showed the impact 
of modal added mass on lowering the natural frequencies of vibration. It was also shown that 
added-damping is large for the hemisphere at low frequencies. The simplified model of a ship 
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structure was used to study the effects of fluid added-mass and damping for more practical 
applications. It was demonstrated that the fluid added-mass is significantly larger than the 
structural modal mass, especially for the lower modes. The proposed formulation provides an 
efficient algorithm for solving forced vibration problems of fluid-structure interaction since 
the problem size is reduced to the number of selected mode shapes. 
 
Acknowledgement: This study is supported by the Singapore Maritime Institute (Project ID: 
SMI-2015-MA-08). 
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The flow velocity and solid concentration distributions of solid–liquid (slurry) flows 
transported by pipeline are investigated using a steady three-dimensional (3D) hydrodynamic 
model based on the kinetic theory of granular flow. Slurries of varying solid particle 
concentration, grain diameter, and flow conditions are studied, and the effects of particle–
particle and particle–wall collisions and near-wall lift force on the concentration distribution 
are modelled. The simulation agrees well with various experimental results in the literature. 
The simulation shows that the solid concentration distribution is asymmetric in the vertical 
plane, and its degree of asymmetry increases as the solid concentration decreases, the mixture 
velocity decreases, the particle size increases, or the pipe diameter increases. The solid 
concentration decreases rapidly near the pipe wall due to collisions with the wall. Fine particles 
smaller than the thickness of the viscous sublayer are most concentrated near the pipe bottom 
(maximum concentration at the relative location ymax/D ≈ 0.02D, where D is the pipe diameter) 
in the viscous sublayer, while the greatest concentration of coarser particles is away from the 
pipe bottom (ymax/D ≈ 0.1D), outside of the viscous sublayer. The solid velocity distribution is 
also asymmetric: maximum-velocity points deviate from the pipe centre, and increasing the 
solid concentration gradually shifts the point of maximum velocity downward. These results 
lay a solid foundation for further study of the resistance mechanism and pipe wear, and can be 
used as a reference for analysing the mesoscopic processes of slurry transport by pipeline. 
 

Keywords: Eulerian multiphase model; Concentration distribution; Particle kinetic; Slurry 
transport; Pipeline; Dredging; Deep-sea mining 

 

 

1. Introduction 

In recent decades, pipelines have been promoted for the transport of various solids (as slurry 
mixtures) owing to their insulation from the environment and ability to run uninterrupted, thus 
reducing the required investment and operating costs. Pipelines can achieve high efficiency, 
low energy use, environmental protection, and ease of implementation and control. They have 
been widely applied in many fields such as coal, metallurgy, and mining. Pipelines used for 
dredging alone have contributed hundreds of billions of US dollars to the global economy in 
recent years. Pipelines have also been considered as potentially useful in emerging technologies 
such as ocean mining. 
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Most research about slurry pipeline transport has focused on predicting friction loss and 
critical velocity (i.e., no stable particle bed, the lowest pressure loss point), but recently more 
attention has been paid to the operational costs arising from pipeline wear and maintenance. 
Industrially transported slurry is generally heterogeneous within the pipeline because the lower 
half has a greater solid concentration than the upper half (due to gravity), and will thus suffer 
worse wear. The safety and lifetime of a pipeline can be improved by rotating according to the 
degree of abrasion around the circumference. This requires accurate prediction of pipeline wear 
around the circumference, and a proper model for predicting the slurry concentration and 
velocity distributions is the precondition.  

Existing models of slurry pipeline transport can predict with varying degrees of accuracy 
parameters such as pressure drop, particle settling velocity, and solid concentration distribution 
under different working conditions, given data regarding the pipe diameter, particle size, slurry 
concentration, etc. However, most are empirical formulae, based on dimensionless parameters 
such as excess pressure, Froude number, and solid concentration derived from experimental 
data, or are semi-empirical formulae based on the theories of gravity, energy, etc. It is 
impossible theoretically to characterize, for example, the turbulence intensity or particle 
momentum exchange in a pipeline, but these microscopic characteristics often greatly affect the 
pipeline characteristics in practice with varying in-situ gradations and operating conditions. 
Understanding the variability of these parameters in different positions within a pipeline is 
critical to the proper modelling of factors such as pipe wear, energy loss, and slurry flow regime 
in practice.  

Existing models cannot accurately predict the particle concentration distribution near the 
bottom of the pipe, especially when the maximum concentration of coarse particles is located 
away from the bottom (Kaushal and Tomita, 2007). However, the solid concentration 
distribution near the wall determines the local solid pressure, wall shear stress, and friction 
resistance, and thus has a critical effect on pipeline wear. Therefore, accurate prediction of the 
solid concentration distribution, especially near the pipeline wall, is the key not only to 
predicting wear but also to calculating friction resistance. The solid concentration and velocity 
distribution (and their variation in a pipe under different conditions) are important to 
understanding the mechanism of pressure drop and predicting the degree of wear in a pipeline. 
They can also help improve economic efficiency. 

Developments of computer technology and calculation methods have allowed 
computational fluid dynamics (CFD) to be widely applied in engineering. While CFD has yet 
to develop full models of solid–liquid two-phase flow (most models refer to gas–liquid two-
phase flow theory), simulations of velocity distribution and solid concentration distribution are 
relatively mature. Current CFD technology includes 3D horizontal pipeline CFD models based 
on granular kinetic theory, which have been established for comparison with published 
experimental results and to study the effects on velocity distribution and concentration 
distribution of the particle concentration, particle size, slurry velocity, and pipe diameter. 
Before discussing the calculation method and results, a brief view of current work in this field 
is presented. 

2. Previous Work 

While the study of slurry pipeline transport has shown continual progress, research has tended 
to focus on pressure drop and critical velocity. For example, the established Durand (1952) 
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formula, based on experimental data, is favoured by much of the European dredging industry. 
The Wilson and Addie (1997) formula is widely used by American dredgers. Wasp et al.’s 
(1977) two-phase flow model considers particle concentration distribution during transport. 
Turian and Yuan (1977) developed a formula that can fit different dimensionless parameters to 
experiment data. Doron and Barnea’s (1993) formula for a three-layer model is based on 
mechanical balance, and Lahiri and Ghanta’s (2008) formula fits existing experimental data by 
means of genetic algorithm. The Delft head loss and limit deposit velocity framework 
(DHLLDV) reported by Miedema and Ramsdell (2015a) probes the mechanism of pressure 
drop, and developed an applicable and convenient system by using parameters that are easily 
obtained. Theoretical analysis has improved from the earliest empirical formulae based on 
purely dimensionless analysis to lift force theory, energy theory, and two-phase flow theory; 
however, microscopic parameters such as turbulent dissipation force, particle collision force, 
and particle momentum exchange are not yet properly modelled. 

Many scholars have made significant contributions to the study of concentration 
distributions, including Karabelas (1977), Roco and Shook (1983), Kaushal and Tomita (2002, 
2007), Kaushal et al. (2005), and Gillies et al. (2004). Their various experimental studies have 
considered variables such as pipe diameter, particle size, and flow conditions. Miedema (2017) 
and others have published methods to calculate vertical solid-concentration profiles in pipelines 
given previous experimental data for flow parameters such as eddy diffusivity and particle 
settling velocity. Each formula can represent the concentration distribution with varying 
degrees of accuracy, but they rely less on flow parameters than empirical coefficients, thus 
limiting their applicability and accuracy to the quality of the experimental data and the 
experience of the user. Experiments by Kaushal and Tomita (2007) for specific particle sizes 
(diameters of 0.125 and 0.44 mm) found maximum concentrations of coarse particles in the 
zone away from the wall at about 0.2 D rather than at the bottom of the pipe. This result 
supported the speculation of Wilson and Sellgren (2003) about the effect of near-wall lift on 
the particle concentration near the bottom of the pipe, but no mathematical model has yet 
predicted and interpreted this finding (Kaushal et al., 2012). 

Numerical simulations include Ling et al.’s (2003) simulation of low-density slurry flows 
in a fully developed turbulent model using the algebraic slip mixture (ASM) in ANSYS Fluent; 
the results agree well with experimental data. Kaushal et al. (2012) carried out numerical 
simulations of mono-dispersed fine particles at high concentration using the Eulerian model 
and mixture model in ANSYS Fluent (0.125 mm diameter glass beads in a 54.9 mm pipe); 
comparison with experimental results showed the Eulerian model to give more accurate 
predictions for both the pressure drop and concentration profile than the mixture model. 
However, the model results differed slightly from Kaushal and Tomita’s (2007) experimental 
data, especially near the bottom of the pipeline. Ekambara et al. (2009) predicted horizontal 
solid–liquid pipeline flows under a wide range of conditions using the two-fluid model in 
ANSYS-CFX, and simulated results close to observed data. Messa et al. (2014, 2015) 
developed a two-fluid model and used it in PHOENICS software to simulate fully suspended 
liquid–solid slurry flows in horizontal pipes. The model considered turbulent dissipation, 
momentum exchange, and the influence of wall shear stress on grains, and it provided a method 
of wall function calculation with improved computing speed and accuracy. No previous models 
can accurately calculate the particle concentration distribution near the wall, especially for 
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coarse particles, or calculate the effect of the wall lift force. 
In addition, the existing formula for horizontal pipes, although it can predict slurry 

characteristics under various operating conditions such as friction resistance and solid 
concentration, cannot be applied to complex geometric spaces such as loop lines and gate valves 
owing to its empirical nature not taking into account factors such as slurry turbulence, particles 
collisions, and energy exchange. This limits its applicability in practice, because the pipeline 
systems for dredging, mining, and coal inevitably include pumps, angular pipes, pipe branches, 
and other complex spaces. The model will thus fail to understand the properties of the entire 
system. Therefore, to develop a universal model is an important research goal. 

To overcome the above limitations, an integrated model is developed using ANSYS Fluent, 
based on granular kinetic theory. This model can accurately describe the dynamic 
characteristics of slurry transport by pipeline. 

3. Mathematical Modelling 

The Eulerian multiphase model is used here. It mathematically treats the different phases as 
interpenetrating continua. Granular kinetic theory is used to describe interactions between the 
particles. A single pressure is shared by all phases. The conservation equations of mass, 
momentum, and energy are solved individually for each of the phases. Coupling of all phases 
is then achieved by pressure and interphase exchange coefficients. The model considers energy 
dissipation and energy exchange caused by particles. Interfacial forces such as the drag force 
caused by speed differences between phases, the virtual mass force by particle acceleration, the 
lift force by phase velocity gradient, and other forces are also considered. The Eulerian 
multiphase model is suitable for simulating slurry transport in pipelines over a wide range of 
operating conditions. 

3.1 Conservation of Mass 

Multiphase flow is modelled as a primary phase and n secondary phases. The primary phase 
is designed as water, and each secondary phase presents particles of different size ranges, which 
may or may not be of equal volume fraction. These volume fractions, including that for water, 
are assumed to be continuous in space and time, and their sum is equal to one. 

1
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                                                                (1) 

For multiphase flows, each phase volume fraction is less than its maximum allowed value. 
Therefore, each phase in the model is considered a compressible fluid satisfying the Eulerian 
continuity equation. 
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where ρrq is the qth phase reference density, or the volume averaged density of the qth phase in 
the solution domain, αq is the volume fraction of phase q, qv

  is the velocity of phase q, and pqm  
characterizes the mass transfer from the pth to qth phase. All these mechanisms can be specified 
separately. 

3.2 Conservation of Momentum 

Each phase q in the Eulerian multiphase model must conserve momentum via the following 
equation: 
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where p is the pressure, which is equal for each phase at any given point; pq is the qth phase 
solid pressure, which is equal 0 for any liquid phase; g is acceleration due to gravity; pqR


 is the 

interphase force; pqv
  is the interphase velocity; n is the total number of phases; and qF


 is the 

sum of the external forces (such as lift force, virtual mass force, wall lubrication force and 
turbulent dispersion force); q  is the qth phase stress–stain tensor. 

3.3 Conservation of Energy 

The first law of thermodynamics is applied in ANSYS Fluent to solve the conservation of 
energy: 
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where hq is the specific enthalpy of the qth phase, qq
  is the heat flux, Sq is a source term that 

includes sources of enthalpy, Qqp is the intensity of heat exchange between the qth and pth phases, 
and hqp is the interphase enthalpy. The heat exchange between phases must comply with the 
local balance conditions qp pqQ Q   and 0pp qqQ Q  . 

3.4 Solids Pressure 

For granular flows, the solids pressure is determined by the intensity of the particle 
collisions and velocity fluctuations. This work calculates the solids pressure using the model of 
Lun et al. (1984): 
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The particle pressure consists of a kinetic term corresponding to the momentum transport 
caused by particle velocity fluctuations and a second term related to particle collisions. 

Granular temperature, Θq, is solved by the transport equation derived from kinetic theory. 

3.5 Transport Equation 

The Eulerian multiphase flow model uses a multi-fluid granular model to describe the flow 
behaviour of a fluid–solid mixture. Solid-phase stresses are key elements derived by making an 
analogy between the random particle motion arising from particles’ inelastic collisions with 
each other and the walls. The stresses are defined as a function of granular temperature 
representing the particle velocity fluctuations proportional to the mean square of the random 
motion of particles. The granular temperature is solved by the transport equation in the model, 
as follows: 

 3
( ) ) )

2 t q q q q q q q q q q q q q pqv p I v k       
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The left-hand side of the equation represents the net change in fluctuating energy. The first term, 

 q q qp I v  


： , on the right-hand side represents the generation of energy by the solid stress 
tensor. The second term, )q qk  （   is the diffusion of energy in the solid phase. The third term, 
γΘq, is the collisional dissipation of energy, and φpq is the exchange of fluctuating energy 
between the liquid and the solid phase. 

The term kΘq is the diffusion coefficient given by Gidaspow et al. (1992) as an optional 
model in ANSYS Fluent: 
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where γΘq is the rate of energy dissipation within the qth solid phase due to collisions between 
particles. Lun et al. (1984) give γΘq  as an optional model: 
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Although equation (6) can be solved for the granular temperature, the procedure is complex 
and convergence is difficult. ANSYS Fluent by default uses a simpler and computationally 
more efficient model called “algebraic formulation” that neglects convection and diffusion in 
the transport equation. 

3.6 Turbulence Equations 

The per-phase turbulence model is used here. It includes a set of k-ε transport equations for 
each phase: 
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where C1ε is the C1-epsilon number, C2ε is the C2-epsilon number, C3ε is the C3-epsilon number, 
σk is the TKE Prandtl number, and σε is the TKR Prandtl number. Their default values are 1.44, 
1.92, 1.3, 1.0, and 1.3, respectively. 

4. Simulation Method 

4.1 Physical Model 

To ensure the model’s adaptability and universal applicability, a large range of pipe 
diameters, particle sizes, and solid concentrations are considered here. To allow comparison 
with experimental data, the horizontal pipes are modelled with inner diameters, D, of 51.5, 54.9, 
103, 206, and 495 mm; in each case the length, L ≈ 60D. To ensure the computations are of 
good quality and able to converge, 30 boundary layers are established along the surface with a 
growth factor of 1.2 (i.e., each row of the boundary layer mesh is 20% thicker than the previous 
one), and the outermost layer has a height of about 0.08 mm. The first layer height from the 
wall of these models, expressed as a dimensionless parameter y+, is y+ < 30, and reaches y+ < 
15. These 3D models include around 10 million meshes, as shown in figure 1. 

The following physical properties are employed: for the liquid phase, density 
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ρl = 998.2 kg/m3 and dynamic viscosity μl = 1.003 × 10−3 Pa·s, and for the solid phase, particle 
density ρs = 2470–2650 kg/m3, particle diameter dp = 0.09, 0.125, 0.165, 0.27, and 0.44 mm, 
the limiting volume concentration is 0.6–0.7, and the default value of the internal friction angle 
is 30°. 

 
Figure 1: Grid structure for pipeline model. 

4.2 Boundary Conditions 

At the inlet, a velocity-inlet condition is selected. The velocities and concentrations of both 
phases are given specified values, with the particle phase having a slightly lower velocity than 
the liquid phases and the coarse particles being about 5% slower than fine particles. Turbulent 
intensity, turbulent viscosity ratio, and temperature are all set to their default values of 5%, 10, 
and 20 °C, respectively. 

At the outlet, the pressure-outlet is selected, and the pressure is atmospheric. At the wall, 
the velocity of the liquid phase is set to zero (i.e., no-slip condition). The wall roughness is set 
to 0.02 mm, and the specularity coefficient (taken as 0.451) is selected for the shear condition 
of the solid phase. The particle condition follows the Johnson–Jackson model, and the 
restitution coefficient is set to 0.2. 

4.3 Solving Process and Convergence Scheme 

Commercial CFD software ANSYS Fluent 17.0 is used to solve the above continuum 
equations and boundary conditions. Convergence of the root-mean square residual is set to 10−5. 
The solving method follows the phase-coupled SIMPLE function to ensure convergent, steady, 
and accurate results. The second-order upwind method is adopted to solve momentum equations, 
with the pressure relaxation factor set to 0.2, the momentum relaxation factor set to 0.3, and the 
volume fraction set to 0.4; other factors retain their default values. 

5. Results and Discussion 

To analyse a broad range of simulation results and experimental data in a limited space, some 
typical experimental conditions (Roco and Shook, 1983; Kaushal and Tomita, 2005; and Gillies 
et al., 2004) are simulated with ANSYS Fluent. They cover a wide range of particle diameters 
(0.09–0.44 mm), particle volume concentrations (9%–50%), slurry flow rates (2–5 m/s), and 
pipe diameters (51.5–495 mm). The simulation results are validated through comparison with 
the corresponding measured data for the steady-state particle concentration distribution and the 
particle and liquid velocity distributions in the pipes. 
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Three works by Kaushal and Tomita (2002, 2007) and Kaushal et al. (2005) give similar 
concentration profiles, but there are differences among a few cases for coarse (0.44 mm) 
particles at low flow velocities (Kaushal and Tomita, 2007). The values tabulated in Kaushal et 
al. (2005) are clearer and more convenient than the data given as figures in the other papers, 
and are thus selected here for comparison with the simulation results.  

 
Figure 2: Contour plots for particle velocity taken at regularly spaced axial positions along 
the pipeline for the following conditions: D = 495 mm, dp = 0.165 mm, Cvf = 27.3%, and 

v = 3.16 m/s 
Figure 2 shows contour plots of liquid velocity distribution along the pipe cross-section at 

axial positions separated by 0.05L, where L is the length of the pipe simulation model. The 
simulation conditions are pipe diameter 495 mm, particle diameter dp = 0.165 mm, solid volume 
concentration 27.3%, and slurry rate v = 3.16 m/s. The distributions differ significantly among 
the first six sections, but all the subsequent distributions appear nearly identical in each case. 
This shows that the model pipeline has sufficient length (60 times its diameter) and that the 
numerical slurry simulations provide fully developed results. The following simulation results 
are obtained near the outlet of the pipe model. 

5.1 Solid Concentration Distribution 

figure 3 shows a set of solid volume concentration contours on the left, and the curve on 
its centreline compared with experimental data on the right for 0.44 mm glass ball slurries 
flowing at a constant mixture velocity (4 m/s) in a 54.9 mm pipeline. The slurries differ in their 
solid volume concentrations: 20%, 30%, 40%, and 50%. The experimental data were initially 
reported by Kaushal et al. (2005). The simulation reasonably coincides with the experimental 
results, indicating that the model is suitable for simulating the particle concentration distribution 
for a wide range of solid concentrations. 

As figure 3 shows, the solid volume concentration is asymmetric in the perpendicular 
direction. The asymmetry is reduced as the solid volume concentration increases at a given 
velocity, pipe diameter, and particle size because of increased particle–particle collisions. In 
figure 3A–C, the distances of the points of greatest particle concentration from the bottom of 
the pipe (about 0.1D) are simulated here for the first time: the results fit the experimental data 
well, indicating that the model can simulate the effect of wall lift force on the particle 
concentration distribution. 

The point of greatest solid concentration in figure 3D is nearer to the pipe bottom than in 
the other images, because increasing the particle concentration leads to more particle–particle 
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and particle–wall collisions, which have a uniform effect far beyond the effect of the near-wall 
lift force. Increased interactions between particles increases the particle virtual mass force, and 
thus increases the ability of particles to remain suspended, leading to a more symmetric 
distribution in the pipe. 

     

      

     

      
Figure 3: Particle volume concentration distribution for D = 54.9 mm, dp = 0.44 mm, 

v = 4 m/s, and (A) Cvf = 20%, (B) Cvf = 30%, (C) Cvf = 40%, and (D) Cvf = 50%. 
The ordinate axis, y′ = y/D, is the dimensionless position along the pipe’s vertical axis, 

where y is the distance from the pipe bottom, and the abscissa, Cv/Cvf, represents the relative 
solid volume concentration ratio on the vertical centreline of the pipe, where Cv is the local 
solid volume concentration and Cvf is the efflux solid volume concentration. 

Figure 4 gives simulated solid concentration distributions for 0.125 mm glass balls in a 

（AⅠ） （AⅡ） 

（BⅠ） （BⅡ） 

（CⅠ） （CⅡ） 

（DⅠ） （DⅡ） 
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54.9 mm pipe with 30% solid concentration at different slurry velocities (2, 3, 4, and 5 m/s), 
and compares them with the experimental data of Kaushal et al. (2005). The results are nearly 
the same as the experimental data, demonstrating that the model can accurately simulate the 
concentration distribution of slurry pipeline transportation at a wide range of velocities. 

        

        

    

     
Figure 4: Particle volume concentration distributions for D = 54.9 mm, dp = 0.125 mm, 

Cvf = 30%, and (A) v = 2 m/s, (B) v = 3 m/s, (C) v = 4 m/s, and (D) v = 5m/s. 
The asymmetry of the slurry concentration curves is significantly reduced as the slurry 

velocity increases for the given conditions of constant concentration, pipe diameter, and particle 
size. This result arises because the particles are more easily suspended at increased velocity, 
which increases turbulence intensity and turbulent dissipation forces. 

The maximum solid concentration is situated closer to the pipe bottom than in figure 3A–

（AⅠ） （AⅡ） 

（BⅠ） （BⅡ） 

（CⅠ） （CⅡ） 
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C, and appears in the viscous sublayer. It remains close to the wall, and the particle 
concentrations then decrease rapidly because the particle size is less than the thickness of the 
viscous sublayer; thus, particles are not influenced by the near-wall lift force, and instead suffer 
from collisions with the wall. 

The simulation results in figure 5 for four different particle sizes (0.09, 0.125, 0.27, and 
0.44 mm) all agree well with experimental values by Kaushal et al. (2005) and Gillies et al. 
(2004). 

    

    

    

    
Figure 5: Particle volume concentration distributions for (A) dp = 0.09 mm, D = 103 mm, 
Cvf = 19%, and v = 3 m/s; (B) dp = 0.125 mm, D = 54.9 mm, Cvf = 20%, and v = 2 m/s; (C) 

dp = 0.27 mm, D = 103 mm, Cvf = 30%, and v = 5.4 m/s; and (D) dp = 0.44 mm, D = 54.9 mm, 
Cvf = 20%, and v = 2 m/s. 
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For similar flow conditions, the figure shows that as the particles become larger, their 
concentration distributions become more asymmetric in the pipe cross-section. The method of 
classifying slurry flow regimes given by Wasp et al. (1977) describes figure 5A (0.09 mm) as 
homogeneous, figure 5B and C (0.125 and 0.27 mm, respectively) as heterogeneous, and figure 
5D (0.44 mm) as a sliding bed. Three different flow regimes and their changing trends with 
respect to particle size are thus simulated successfully. 

Figure 5C and D appear similar to figure 3A–C, in terms of the location of the point of 
maximum solid volume concentration relative to the pipe bottom. Figure 5A and B are similar 
to figure 3D, with the reversal situated in the viscous sublayer. 

     

     

    

     
Figure 6: Particle volume concentration distribution for (A) D = 51.5 mm, dp = 0.165 mm, 
Cvf = 9.18%, and v = 3.78 m/s; (B) D = 103 mm, dp = 0.27 mm, Cvf = 40%, and v = 5.4 m/s; 
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(C) D = 263 mm, dp = 0.165 mm, Cvf = 27%, and v = 2.9 m/s; and (D) D = 495 mm, 
dp = 0.165 mm, Cvf = 27.3%, and v = 3.16 m/s. 

The effects of pipe diameter on particle concentration distribution are modelled and 
compared with experimental data. The pipe models have diameters of 51.5, 103, 263, and 
495 mm, corresponding to the experiments conducted by Roco & Shook (1983) and Gillies et 
al. (2004). The simulated results are consistent with the experimental results. Within a certain 
range, increasing the pipe diameter increases the asymmetry of the slurry concentration 
distribution on the vertical axis in the pipeline.  

The clear difference between the simulation (which shows the greatest particle 
concentration situated at 0.1D above the pipe bottom) and the experiment (which shows it at 
0.2D above the pipe bottom) in figures 4CII, 6DII, and 7BII may arise owing to the sparse 
concentration-measuring points near the pipe wall in the experiment.  

5.2 Velocity Distribution 

The solid velocity distribution is inextricably linked to its concentration distribution within 
the pipeline. A symmetric solid concentration distribution will have a symmetric velocity 
distribution. Figure 7 shows solid velocity distribution contours on the left and curves for the 
centreline compared with corresponding experimental data on the right. Figure 7A shows the 
simulated solid velocity distribution for 0.09 mm particles at 19% concentration in a 103 mm 
pipe with 3 m/s flow speed and the comparison with experimental data by Gillies et al. (2004). 
The distribution is relatively symmetric, and the point of maximum speed is slightly over the 
pipe centre. 

      

      

Figure 7: Solid velocity distribution for (A) D = 103 mm, dp = 0.09 mm, Cvf = 19%, and 
v = 3m/s; and (B) D = 51.5 mm, dp = 0.165 mm, Cvf = 9.18%, and v = 3.78 m/s. 

Figure 7 also shows that particle velocity and liquid velocity are similar; thus, particle slip 
velocity of the slurry is very small. Figure 7B is the simulated solid velocity distribution for 
0.165 mm particles at 9.18% concentration in a 51.5 mm pipe with 3.78 m/s mixture speed and 
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a comparison with experimental data by Roco & Shook (1983). The simulation agrees well with 
the experimental results, and its distribution is symmetric in the horizontal direction. 

Figure 8 shows the simulated solid velocity distribution for 0.44 mm particles at different 
concentrations (20%, 30%, 40%, and 50%) in a 54.9 mm pipe at 4 m/s velocity (the solid 
volume concentration distribution is shown in figure 3). As the solid concentration increases, 
the point of maximum velocity gradually moves downward. 

 

    

    

    

    
Figure 8: Solid velocity distribution for D = 54.9 mm, dp = 0.44 mm, v = 4 m/s, and (A) 

Cvf = 20%, (B) Cvf = 30%, (C) Cvf = 40%, and (D) Cvf  = 50%. 
Figure 9 exhibits the simulated solid velocity distribution for 0.125 mm particles at 30% 

concentration in a 54.9 mm pipe with different velocities (2, 3, 4, and 5 m/s) (the solid volume 
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concentration distribution is shown in figure 4). The points of maximum velocity are close to 
the pipe centre. 

    

    

    

    
Figure 9: Solid velocity distribution for D = 54.9 mm, Cvf = 30%, dp = 0.125 mm, and (A) 

v = 2 m/s, (B) v = 3 m/s, (C) v = 4 m/s, and (D) v = 5 m/s. 
Comparing figures 9B and 10C (particle diameter 0.44 vs. 0.125 mm) shows that larger 

particles at the same velocity and concentration condition will be more asymmetrically 
distributed with a larger deviation of the point of maximum velocity from the pipe centre. This 
demonstrates that larger particles experience a greater influence of gravity, and the 
concentration increases at the bottom of the pipe, leading to a lower concentration and higher 
velocity at the top of the pipe. 

6. Conclusions 
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A steady three-dimensional hydrodynamic model of slurry transport by pipeline is developed 
here based on the kinetic theory of granular flow. Parameters including solid volume 
concentration and velocity distributions are simulated for a wide range of typical working 
conditions, and compared with experimental data by Roco and Shook (1983), Kaushal and 
Tomita (2005), and Gillies et al. (2004). Over a wide range of situations, such as different 
particle sizes, particle volume concentrations, mixture velocities, and pipe diameters, the 
model’s predictions agree well with the experimental data. The difference between the 
simulation results (which show maximum particle concentration situated at 0.1D above the pipe 
bottom) and the results of Kaushal and Tomita (2007) (who found the maximum particle 
concentration significantly above the pipe bottom) is well depicted in concentration profiles 
such as figures 4CII, 6DII and 7BII. Overall, the Eulerian multiphase model based on the kinetic 
theory of granular flow appears capable of predicting the solid concentration and velocity of 
slurry flows in pipelines. It also handles well the regime of slurry flow under a range of 
conditions, the effect of the near-wall lift force on the coarse particle concentration distribution, 
and the effect of particle–wall collisions on the solid concentration distribution near the wall. 

The simulation shows that the solid volume concentration and velocity distributions in a 
pipe depend on factors such as the mixture velocity, pipe diameter, particle size, slurry 
concentration, and solid density. On the vertical centreline of the pipe, particle concentration 
and velocity distribution are asymmetric, with the degree of asymmetry depending on the pipe 
diameter, particle size, mixture velocity, and solid volume concentration. The asymmetry of the 
particle concentration distribution increases with increasing particles size, pipe diameter, and 
mixture velocity, and with decreasing solid concentration. Increasing the solid concentration 
gradually shifts the point of maximum velocity downward. 

Most of the boundary conditions of the model are default values for the ANSYS Fluent 
program, thus simplifying the input data. The calculations are fast and easily convergence, 
making the present scheme a widely applicable and useful model. 
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Abstract 

Traditional urban texture shaped by nature, was forgotten by the industrial revolution and the 

advancement of technology in the field of architecture. Traditional urban design processes 

lack of the flexibility to deal with the complexity of the community. The complexity and 

uncertainty of urban environments by using traditional design methods have made it difficult 

to make definite plans for urban design in many cases. Since the structure of environment is 

having ability to convert to design parameters; therefore by using method of the 

parametricism, it will be possible to easily change the environment information. And the 

result of the change and adaptation of the design at each stage will be with new data. Because 

of this system dynamically updated, the design is updated with each change of input by the 

designer. The aim of this study is to identify features and benefits of using parametricism and 

computing for rebuilding a newly designed urban fabric after destroying and recovering the 

ancient special identity of a city. Unfortunately in the city of Tehran, the capital of Iran, the 

traditional face of the city is destroyed by builders and most of buildings which are our 

monuments convert to shopping mall and towers. In this article we first talk about the 

traditional urban texture of Tehran then we discuss about patterns obtained from urban texture 

of ancient Tehran. Finally by inputting these patterns as design parameters in grasshopper 

plugin, that is the most widespread plugin for parametric design, we rebuild a newly designed 

urban fabric of Tehran. 

 

 Keywords: Traditional Texture, Parametricism, Rebuilding, Recovering, Grasshopper  

 

Introduction 

Traditionally, urban plans are developed following methodologies aimed at the production of 

a single layout representing a rigid, definite solution. In addition, plans are centered on the 

definition of tight and interdependent urban parameters that tend to reduce design to a direct 

formalization of such parameters. However, legislation constrains neither design nor its 

representation to such an extent that they forbid design flexibility. In fact, it does not impose 

specific representational devices, nor does it imply any specific way of designing [1]. The 

context of a project, as a starting point of urban design, is changing constantly in non-linear 

way [2]. Therefore basic inputs of a design process, may change from time to time. However, 

the interrelations between elements of urban form can be fixed and predefined by designers. 

Current urban design practices ignore urban „processes‟ and „time‟ [3]. Planning processes 

have to become more flexible to reflect the opinions and actions of a wider range of 

stakeholders. [4] Therefore, objective of urban design need to move from static design of a 

specific layout toward complex and dynamic design of generic solutions [3]. The design of 

plans for cities can only be improved if designers are able to address measurements of some 
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of the relationships between the components of cities during the design process. These 

measurements are called urban indicators. By calculating such measurements, designers can 

grasp the meaning of the changes being proposed [5].  In this research, a urban design system 

is designed based on parametricism in order to achieve the above objectives. The purpose of 

the present research, besides introduce the features of this method of designing, is using the 

parametric urban design process capability to recover the old historical urban texture of 

Tehran. Since this method is possible and harmony with any cultural and linguistic context,   

parameters and patterns obtained from the traditional texture of the old city of Tehran, They 

are algorithmically linked with each other in " Reno + Grasshopper" ,one of the commonly 

used software in the field of parametric designing. The design results in this process show 

that, in addition to creating a process that makes any changes and updates the output of the 

design quickly, the resulting form is also largely aligned with the surrounding texture and the 

special needs and requirements of the design. 

Parametric urban design process 

An urban design system should be able to: 

• be applicable in every design context for any district size and be able to apply different 

kinds of design programs; 

• be interactive and responsive providing good visualization output both in terms of design 

layout and associated analytical data (indicators, attributes, indexes, etc);  

• be able to implement and design the main features that compose a neighborhood.  

Considering these aspects we implemented. A parametric urban design system using a 

NURBSCAD, environment using a parametric programming interface. The CAD 

environment used in this work was Rhinoceros and the programming interface was 

Grasshopper. The system aims at designing urban plans at the neighborhood level. Parametric 

design as a system of parameters, that are linked each other based on algorithm relationships. 

The relationship between the indices allows the general model, by changing the value of each 

parameter, final form is changed. The dependence of algorithmic relationships and 

mathematical formulas makes it possible to update the project in the design process. Urban 

design begins with a series of inputs. These elements are placed by the designer within the site 

and may be changed by the designer during the design process, and by changing the key 

points of the output, the design will also be displaced. Some inputs allow the designer to 

select the type of network [3].  

There are two types of inputs – geometrical inputs and data inputs. Geometrical inputs, which 

is divided into 4 basic types: the site (defined by polygons); the composition elements, which 

are subdivided into main streets (defined by lines and curves) and focal points representing 

the location of the neighborhood center, local squares, public buildings and city objects in 

general; a vertical parameter to define the maximum number of floors; a set of grid types 

(rectangular, radial and recursive). Each of these inputs has a set of associated parameter 

inputs. A main street, for instance, has the attribute street width. [6].   

To understand which design has more benefits ( evaluate and analyze the design at each stage 

of the design), a geometric model can be connected to computing the metrics of density 

measurement or measurement of user levels. Whenever there is a change in the indexes, the 

calculations will be updated, so at any moment we will be able to get information about the 

changes in the design. By using this process, practitioners will be able to better understand 

their decision outcomes. In this process, any concept that can be expressed mathematically 
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can be related to a geometric model. [5]. The main steps of the proposed process will be as 

follows.  

 

 

 

 
Figure 1: Parametric urban design process  

Geometric features cut from the main geometry for having specific predefined conditions. The 

process can be replicated to create sets of geometry to which different generation rules can 

apply. The building height is managed by setting the maximum allowed number of floors. The 

number of floors is defined as a target number which is distributed through the grid as a 

simulation of land value.  To simulate the effect of land value we defined the number of floors 

in a block as a function of the distance to a set of positive attractors – main square / main 

streets / the city center – and a set of negative attractors (repulsion effect) – site boundary. 

This function changes the number of floors depending on the resulting calculations [3]. And 

finally, the design process will be similar to figure 2-13 

 

                        
 2: site limit or boundary               3: The main streets are designed     4: introducing focal points for  

                                                                  manually by the designer                     radial grid option 
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5: definition of working areas          6 : main grids with main street        7: areas to exclude  pre-existences                                 

                                                                  subtraction.                                       park areas and areas not 

                                                                                                                              suitable for construction        

                         
8: grids obtained from the                9: Subtraction of additional  10: location of public buildings or 

     previous operation                               public spaces                                   facilities                          

                                                                                                                                                      

                           
11: introduction of main squares   12: location of landmark buildings   13: possible design 

      (circle or polygon)                          on top of axes                                                                                                           

Tehran in Nasser al-Din Shah (Qajar period) 

The city of Tehran has provided the legacy of earth's history as a capital of Iran more than two 

centuries. The historic center of Tehran (Nasser's fence) with an area of 2,250 hectares of 

approved historical texture, located in regions 11 and 12, has reached the official register of 

the Cultural Heritage Organization as the historical context. Tehran's historic texture, 

regardless of material values and physical values, is a messenger of spiritual values based on 

customs, habits and traditions. Therefore, preserving and reviving of this heritage should be 

an integral part of the plan to preserve and restore the historical heritage and texture of 

Tehran. 

                 
    Figure 14: Today's map 11th and 12     Figure 15: Nasseri Fence   Figure 16: Tehran Map of Qajar  

           regions of Tehran                        The gates of Tehran destroyed                   Time 

                                                                              

The 11th and 12th regions of the Nasseri Fence, which forms the traditional texture of Tehran 

and recorded in the cultural heritage, relate to the period of Nasser al-Din Shah. During this 

period, Tehran was expanding rapidly due to population growth. During this period, Nasser 
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al-Din Shah, considered Western patterns. He imitated the modernization of the Paris in the 

second half of the 19th century, and was equally used in Tehran [7]. 

These measures and reforms included: The construction of new neighborhoods in the suburbs 

and the creation of new streets in the old neighborhoods, making a network of wide and direct 

passages on the old city's texture, rebuilding of surrounding buildings with observance of the 

principles of mirroring, Fit the height of the walls of the streets along the street and the 

construction of a new urban network [8].Also, the streets were paved, the old roads were 

made by using the style of the neoclassical streets of Europe, new streets were constructed in 

Tehran. The most important feature of them being wider, As a result, roads become straight. 

[9]. These wide and direct streets where were places for commuting, business and Circulation. 

The first streets built European style by Nasser al-Din Shah were "Bob Homayoun", 

"Maryazkhane",  "Naseriyeh", " Laleh Zar", "Cheragh Gaz" and "Baharestan"figure 17-22. 

Also square was made a central courtyard like many traditional squares of Iran[10].. 

 

   
            Figure 17: Baharestan           Figure 18: Cheragh Gaz                      Figure 19: Bob Homayoun 

 

   
             Figure 20: Laleh Zar                     Figure 21: Naseriyeh                        Figure 22: Maryazkhane 

Due to changes in the texture of Tehran in the period of Nasser-al-Din Shah, two types of 

residential construction can be made available to Tehran.  

Houses that were located in the Midwest texture and were often on the sidelines of the main 

roads (broad alleys). These houses were made up of one floor and often two floors with tall 

and decorated walls and on the top of most entrance doors was small window. 

Houses that were located in the western context of Tehran, in most cases were located on the 

main streets, broad alleys of streets and squares. In this housing style, the non-geometric form 

of land which were influenced by passage forms became regular and It affected illumination 

of houses and huge number of windows was opened to the streets. Walls, brickwork and 

houses were built in two floors, which was adapted from the neoclassical buildings. [7]. 

 
Figure 23: Houses of Qajar period 

The destruction of Tehran's monuments  

Over the past decade, Tehran's houses Instead of being listed on the country's historical 

monuments and protected by trustees and historic property owners, monuments have been 

destroyed by traders and disregarding of authorities [11]. Samples of destroyed buildings are 

in regions 11 and 12:  
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Figure 24: Delgosha house Figure 25: Qajari Sangolaj Figure 26: Sedaghat house Figure 27:jalalal Aldin 

                                                                                                                                                   

    
Figure 28: Dayijan Napelon  Figure 29: Ameriha               Figure 30: Tekye Dolat     Figure 31: Parcham 

Parameters for designing in this research 

The design process in this research includes the following sections: 

1.  Providing design background 

2.  Put geometric inputs and information in the program and blend them with specific 

design patterns  

3.  Changing the design and manipulate the value assigned to the parameters 

4. View program outputs and reset parameters 

Since in this research, recovering urban texture of Tehran is done by patterns obtained 

from the traditional texture of ancient Tehran (the time of Nasser al-Din Shah). 

Therefore, it is necessary to study the traditional texture of Tehran to obtain the required 

parameters. 

In this study, the parameters are classified into three categories: 

1. Parameters related to Network 

2. Parameters related to the elements of the configuration  

3. Parameters related to the overall height of the texture and the skyline 

Parameters related to Network 

One of the key characteristics of recent studies on urban morphology is the use of networks to 

describe the built environment. In this perspective, the city is not seen as a collection of 

building blocks that may have geometrical regularities, ultimately architectural styles, but a 

network of interconnected open spaces created by those blocks – the urban grid [12]. The 

organic grid pattern should be regarded as an emergent pattern and therefore we did not use it 

as a designing pattern [3]. Therefore, we can use two key strategies: continuation (and not 

interruption) of the old grid; and following the organic lines of natural elements and 

environment. In contrasts are the modern master plans of the city[13]. 

Parameters related to the elements of the configuration 

 Main streets: The width of the paths and their enclosures are the most important 

parameters associated with the main streets 

 Focal points: The intersection of the main and secondary routes determines the 

position of the public spaces and sign elements and specific uses in the traditional 
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context. These elements include the entrance of an indoor house. We can also see a 

specific user in these areas like religious elements and etc. [14]. 

Parameters related to the overall height of the texture and the skyline 

As stated above, the overall height of buildings was high, in order to imitate the neoclassical 

buildings and was built in one or two floors. 

Design area and reason for choosing it                 

The suggested neighborhood  for designing with the aim of recovering the old texture by 

using the parameters obtained from the Tehran (Nasser al-Din Shah) period is “Helel Ahmar” 

neighborhood where placed in the southwest of the 11th area(Nasseri fence). The area of the 

helel ahmar is 80 km2, formerly called Shiro Khorshid Street, which was renamed after the 

revolution. This neighborhood has been formed by historical monument existed in the past, 

such as the Qazvin Gate (Photo No.), Shahre No and Gomrok. Unfortunately all of these 

monuments are destroyed today. this neighborhood because of being in worn texture, is 

chosen for designing in this project [15]. 

 

     
Figure 32: Design area (left picture is this area in Neser-aldin shah period, was garden, the middle and 

right pictures are todays (helal ahmar neighborhood) 

     

The following, features of the traditional context of old Tehran In the form of parametric 

design parameters have been introduced. 

Findings from comparative studies of parametric design criteria and old texture of 

Tehran for designing Helal ahmar neighborhood 

 Check the elements related to the range of the site 

 Check the type of network 

 Check elements of the configuration 

 Checking the total height of the texture and the skyline 

        

Check the elements related to the range of the site  

 Investigating the elements determining the general neighborhood  
In old Tehran , The neighborhood area must be clear and the neighborhood had at least one 

element of identity. Like Helal ahmar neighborhood; identity element: Qazvin gate in Nasser 

al-Din Shah Period and todays:  Razi cultural center    
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                                        Figure 33: Qazvin gate                   Figure 34: Razi cultural center    

 

Check the type of network  

 The general pattern of the  communication network  
The general pattern of network in that period was organic; the orientation of the units was 

affected by the form of passages and streets which came back to previous period of Naseer 

Alddin shah.  

 

               
   Figure 35 Tehran Map of Nasser alin shah Time              Figure 36 pattern of Paths of Tehran in Qajar 

Time 

 

  

 The position of the main and secondary communication paths and the effect of 

the main pathways in the overall context of the region 
In that period the main tracks connected the index points to one another, such as the 

connection of the Tehran old bazar to Qazvin gate in Nasser Aldin shah period  

 

 
Figure 37: connection of the Tehran old bazar to Qazvin gate      

 

 

 Overall network orientation  
 

Overall network orientation was north- south 

Check elements of the configuration  

 Geometry and location of houses 
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The geometry of houses that asymmetrical quadrangle with the inner yard, was squeezed 

together. Houses were located on the main streets of the main streets - the broad alleys of 

streets and squares. 

 

                
                   Figure 38 Compact texture of ancient Tehran            Figure 39 samples of geometry of houses 

 

 
Figure 40 sample of houses with yard belongs Nasser Aldin shah time 

 

 Use parametric geometry in different parts of building 

 

Geometry is the basic knowledge of studying, measuring, and searching for the relation 

between forms, masses and spaces, and one of the most basic infrastructures of Islamic 

architecture. Material is valuable with helping of geometry and calculus it Creates a sacred 

space that the presence of God is felt in every corner of it. Geometric indices in Iranian 

Islamic architecture include semantic and structure. In other words, geometric patterns in 

Islamic art are used in the elements of the instruments and decorative forms. These patterns 

are derived from nature[16]. Figure 41 show parametric geometry in Sepahsalar mosque , one 

of the largest mosque in Tehran from Nasser aldin shah period.   

 

  
 

Figure41 Parametric geometry used in the interior and face of Sepahsalar mosque  

 

 The location of public spaces in local areas 
The intersection of the main and secondary passages was in the form of larger-scale spaces 

with landscaping and Courtyard (squares). Along the square, the (main core) buildings with 

higher altitudes and with the distance from the field, the buildings will be lowered. 

 

ICCM2018, 6th-10th August 2018, Rome, Italy

176



  
Figure 42: Courtyard (squares) 

 

 Investigating the effect of signs on public spaces and main routes: neighborhood 

structure and height of adjacent buildings 

 

 Overall height of buildings was high and number of floors in the whole texture was one or 

two. 

Checking the total height of the texture and the skyline  

 Investigating the density in relation to public spaces   
 

Significant and important elements were located around the public spaces and were visible in 

the skyline of the city. Such as Qazvin gate in Naeser al-Din Shah Period and todays:  Razi 

cultural center  

Designing Helal Ahmar neighborhood process 

 First step of designing (routes and type of network) 

 

To start designing, two factors are important: the main routes and type of network. In order to 

match with texture of Tehran in that period, the main lines must be follow the pattern of paths 

in Nassir al-Din Shah Period (Figure 36). This step is designed manually. The sub-routes are 

designed in such a way that the area has a combination of short and long paths and a large 

number of T-shaped an X shaped intersections and impasse. In the next step, it is possible to 

add paths or change the location and shape of the paths because with each change, the system 

will update the output data. In addition, as mentioned the intersection of the main and 

secondary lines creates cores. These cores can be larger-scale spaces with landscaping and 

Courtyard (squares).  

 

  
   Figure43 :site limit or boundary in Rhino                 Figure44 : The main streets and cores are designed 

                                                               Manually by following pattern of Paths of Tehran 

                                                                                            in Qajar Time 

After this process, completing the main and secondary routes, impacts and squares, are started 

by designer. Designer by using grasshopper plugin can add new routes in order to match with 

contemporary routes of Tehran.  
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Figure 45 complete the main and secondary routes, impacts    Figure 46 sample of algorithm for adding                  

 And squares  new routes in order to match with   

                                                                                                             Contemporary routes of Tehran in  

                                                                                                                                 grasshopper                                                                                                                          

  Second step of designing (creating designing area (large block) by grasshopper) 

 

In this design we have 39 large blocks (39 items) for designing which each of them are 

divided to small block in terms of geometry of houses in (Nasser Aldin shah period), for 

designing residential and commercial place and etc.  

  .   
Figure 47 division of blocks diagram 

 

 
Figure 48 Creating large blocks by grasshopper (39 blocks) 

 

 
Figure 49 (39 blocks=39 items) each block is divided to small block in terms of the geometry (shape of 

residential houses in Nasser Aldin shah period  

 

 Third step of designing  

 

In this research, a parametric design has been used to generate three-dimensional patterns that 

can be changed during the process. One of the most important parameters is the height of 

buildings and density. In the parametric system, the height factor is considered as a 
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changeable parameter, which varies in the direction of the distances or proximity of the main 

nodes.  

Due to the fluidity of the density in the design system, several types can be considered for the 

system. In this system, according to population density, the number of core and density 

changes simultaneously .As the population increases; we need to increase the height and the 

public spaces and service core in the system. Thus, by changing these two different things, 

you can create different types of system that can be modified in any of the following ways. 

 Number of blocks 

 Block sizes according to the surrounding paths 

 Width and enclosure of paths 

 The shape and size of the core 

 Spacious public spaces 

In all these species, with increasing distance from the core of the neighborhood, the density 

decreases with respect to the designated area. For example, for a population density of 90-120 

per hectare, one of the proposed species can be single-core. In this project, a main core is 

considered as the square, which is considered as the old squares of Tehran during the time of 

Nasser al-Din Shah with the pattern of the central courtyard. 

 

 
Figure50 single core type, population density of  90-120 per hectare, Determine the range of   altitude 

changes according to the distance from the core: with increasing distance from the core of the 

neighborhood, the density decreases 

 

 Forth step of designing  

 

After the third step and determined altitude of building in terms distance of core the position 

of the elements of the public and specific spaces and important uses is determined.  Because 

of dividing blocks in small one we can choose each of them for different places. Some of 

blocks are chosen for residential place some of them for commercial, bank, mosque and 

landscaping.  From the findings of the old urban texture of Tehran during Nasser al-Din 

Shah's time, it follows that residential blocks are located on the edge of the secondary or main 

passageways and the broad alleys, and main core as a square is built as a central courtyard. 

And round the square where placed public and commercial fields such as the bank and etc. 

 

 
Figure 51: designing Alley, choosing one large block near Paths and some of small blocks (29 items) on it 

and designing them as houses by algorithms in grasshopper  
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In this figure(51) we can observe that each block can be designed for different Uses . The size 

of blocks the number of floors (one or two floor), the altitude of house, the number of 

windows, doors can be controlled and rehanged in every stage of designing by algorithms 

which designed by designer.     

 
Figure 52: designing commercial fields such as the bank mosque and .., around core, choosing small 

blocks (items) from large block around core (square )  

 

As I mentioned in that time round the square where placed public and commercial fields such 

as the bank, mosque and etc. 

 Fifth step of designing (geometric patterns of buildings) 

 

At this stage of the design, materials and patterns used at the time of Nasser al-Din Shah, is 

designed. The dominant material on the buildings was brick and the geometric patterns used 

in the face of typical buildings such as mosques. 

 

 
Figure 53 creating geometric pattern (brick and triangle pattern) on face of mosque by using lunch box 

panel in grasshopper  

 Final step of designing  

 

After design each block all of them are beaked (convert to mesh object in Rhinoceros).  

 

 
Figure 54 converting blocks designed by grasshopper to mesh in Rhino for rendering 
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Figure 55: Final design in Rhinoceros and Grasshopper plugin 

 

 
Figure 56 perspective of one part of Helal Ahmar neighborhood 

 
 

Figure 57 skyline in terms of distance of main core (square) 

 

Using this design system makes the overall image and coordination of the limits of height and 

density in range. In the final design, a series of factors such as the distance from the core, the 

encirclement of routes and commercial buildings around the square affect the density. 

Therefore, it can be said that the mind of the designer in the traditional design method is not 

capable of creating such an image of the design scope. However, in the above method, a 

number of factors are affected, and in addition, by increasing the density of the future, the 

design can be updated. In addition to this, the system's ability to make data changes and 

update the layout in the following cases creates a flexible design. Change the value of the 

parameters associated with each of the components of the design such as: 

 Change the number and dimensions of blocks in each range 

 Redirect the main and the secondary paths 

 Change the size and shape of public spaces and specific uses 

 Ability to redefine the maximum allowable height in the range of change 

 Enclosure of paths and height of adjacent buildings 

 Change the location and shape of the particular user 

 The resulting design review  from the parametric design process 
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The form created in the process is largely In accordance with the geometry of the time frame 

of Nasser al-Din Shah, because main routes have been created along the paths of that time and 

as wide as them. Houses are located on one or two floors alongside the main roads. it is 

possible to create new blocks at each stage. Commercial spaces are located near the main 

core, such as those of that time and it is possible to control the distance between the core and 

the surrounding blocks. The factor of the height of the surrounding buildings, the distance to 

the public spaces, as well as the confinement of the routes, has been effective in determining 

the height of the buildings, and the effect of each of the above parameters is determined by 

the designer so According to the elevations of Nasser al-Din Shah's buildings, Along the 

square, the (main core) buildings with higher altitudes, and with the distance from the field, 

the buildings will be lowered. The overall height is in line with the texture of that time.   The   

changeability of this process helps the designer to be able to temporarily move the main 

routes and important buildings as well as the elevation of buildings. Therefore, the advantage 

of the process used can be the variability of this amount to match the texture of that time. 

Conclusions 

From studies obtained by using parametric design, is deduced that the parametric design 

system is very dynamic and interactive. From changing design parameters and with the value 

assigned to the parameters, create different outputs for the design. Due to the obtaining of 

parameters from Tehran's traditional texture, the final form is largely in accord with the 

geometry of the organic texture and the texture of the old Tehran (Nasereddin Shah's time). 

Since the factor of the height of the buildings, the factors of distance to the public spaces and 

the enclosure of the paths were effective in determining the height of the buildings, the 

altitude change in the sky line was slowly taken. Finally, the capability of this process helps 

the designer to be able to relocate the position of the main routes and their important altitude 

elevations. As a result , in the traditional design system it is not possible to consider the 

impact of several factors simultaneously such that the system has the ability to change the 

design with regard to altitude changes. Thus, using this method and taking into account the 

urban elements in the traditional context (such as the distances of the neighborhood node, the 

texture of the paths and the placement of nodes and specific uses), the new texture will have 

an coordinate identity with the old Tehran texture and will have the same characteristics of  

ancient Tehran. 
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Abstract 
The principle aim of this paper is determination of the basic probabilistic characteristics of 
homogenized stiffness tensor in particulate composites with ellipsoidal reinforcement and 
uncertain aspect ratio. A second objective is determination of susceptibility of this stiffness 
tensor to changes in this aspect ratio and type of reinforcing ellipsoid with spheroidal 
geometry, which include prolate and oblate; this is done for a wide range of ratio of main axes 
from 50:1 till 1:7. The homogenization problem is solved via the FEM with use of a cubic 
unitary single-particle Representative Volume Element (RVE) of the polymer and its 3D 
homogenization scheme is based on numerical determination of strain energy in the RVE 
under uniaxial and biaxial unitary stretch. Type and number of Finite Elements is optimized 
via the relative FEM error study so that its impact on probabilistic calculus is minimized and 
two different Finite Element types are used, i.e. 20-noded brick and 10-noded tetrahedral 
elements; strain energies are further used for determination of a homogenized orthotropic 
stiffness tensor. Probabilistic calculus is made with three independent approaches, the 
Iterative Stochastic Finite Element Method (ISFEM), the crude Monte-Carlo simulation and 
the semi-analytical method. A set of FEM solutions is available in probabilistic context upon 
application of the Response Function Method (RFM), where optimized polynomial 
approximations of the homogenized tensor components are recovered in the system MAPLE 
thanks to the Least Squares Method (LSM). RFM polynomial order is optimized via 
simultaneous maximization of correlation and minimization of LSM error and variance. 
A random aspect ratio is considered Gaussian, with mean value of 2 and coefficient of 
variation of aspect ratio smaller or equal to 0.15. We investigate numerically (1) if the 
resulting homogenized characteristics are also Gaussian, (2) how a change in aspect ratio 
affects the stiffness tensor in context of the probabilistic analysis and (3) if the 
homogenization increases the input uncertainty. We determine expected values, coefficients 
of variation, skewness and kurtosis for all available components of the effective elasticity 
tensor in 3D homogenization problems – all as functions of the coefficient of random 
dispersion for the input random parameter (aspect ratio of reinforcement). 

Keywords: Stochastic Finite Element Method, probabilistic homogenization, particulate 
composites, ellipsoidal reinforcement. 
 

Introduction 

Homogenization technique serves for determination of the effective properties of all materials 
whose internal composition is characterized by some repeatable pattern. It is predominantly 
used in composites or advanced textiles. Properties considered by this method include 
mechanical [1], electrical [2], thermal [3] or coupled characteristics determined for linear or 
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non-linear [4][5] regime of such materials. Most of studies concern purely deterministic 
homogenization, but some of them also include randomness in their geometry, composition, 
reinforcement [6] or interphases [7]. They differ from the others at least by inclusion of a 
statistical scattering in the output that defines the bounds of properties for the considered 
materials together with some probability information. Then, they may possibly serve for 
determination of the material safety factors or the Probability Density Function of its 
properties and provide necessary safety margins into the design process. Some studies are also 
focused purely on determination of the Representative Volume Element (RVE) size [8] or 
discuss its effective generation techniques [9] so that the level of computational accuracy may 
be weighted by the available computational power. Homogenization of contemporary 
materials is only occasionally analytical as in [10]. This is because the RVEs are usually 
composed of several random phases with complex shapes or with multiple, randomly 
distributed inclusions or pores for which analytical calculus is simply unavailable. Instead, the 
RVE is modelled numerically, preferably with the Finite Element Method (FEM), and 
computed for the predefined load steps with specific boundary conditions. Only then these 
results are analytically converted and effective properties calculated. The FEM is leading for 
this application because of the ease of modelling and availability of commercial and non-
commercial systems. Particulate composites are commonly homogenized on the basis of 
multi-particle RVEs [11] with particles of spherical as well as ellipsoidal shapes and different 
aspect ratios or orientation [12]. Such an approach ensures a more realistic representation of 
the composite then for the single-particle RVE but also includes an input randomness. This is 
because there is no certainty that, even most carefully chosen RVE, will exactly define the 
internal structure of each specimen. This is usually disregarded in current studies, where only 
one or at most several internal compositions are considered in the final computations and such 
an approach reduces their applicability to the mean characteristics with no information of 
dispersion at all. Lack of such works is evident and this is why randomness is introduced in 
this study in the form of an uncertain aspect ratio of the reinforcing particle. Additionally, 
properties of the matrix are also parametric with three mean values of its Young modulus and 
Poisson ratio. This is done on the basis of single particle RVE because of the computational 
intensity required for retrieval of the random characteristics, where each realization must be 
repeated multiple times with a variable input random parameter in the fashion very similar to 
the parametric design. These computations serve to check the probabilistic response of the 
homogenized (effective) stiffness tensor for the composite with the High Density 
Polyurethane (HDPU) matrix that is periodically reinforced with Carbon Black (CB) particles 
of ellipsoidal shape. Probabilistic calculations are made with three concurrent methods, which 
enables validation of each for the first four probabilistic moments and coefficients of the 
effective elasticity tensor. 

Problem formulation and modeling details 

Let us consider a periodic material composed of two phases, the matrix Ω𝑚  and the 
reinforcement Ω𝑝 in the form of ellipsoidal particles that remain both in their linear regime. 
Such a composite is approximated with a single particle Representative Volume Element 
(RVE) that permits retrieval of its mechanical properties, namely the effective stiffness tensor 
𝐶𝑖𝑗
𝑒𝑓𝑓. Once such a particle is placed centrally in this RVE, this stiffness tensor is orthotropic 

with 9 independent components, which are further reduced to 6 when two minor axes of the 
reinforcing particle have the same length (constitute a spheroid). They can be represented in 
the Voigt notation as 𝐶11

𝑒𝑓𝑓 , 𝐶22
𝑒𝑓𝑓 , 𝐶12

𝑒𝑓𝑓 , 𝐶13
𝑒𝑓𝑓 , 𝐶23

𝑒𝑓𝑓 , 𝐶44
𝑒𝑓𝑓  and 𝐶55

𝑒𝑓𝑓, where the first pair of 
coefficients correspond to the uniaxial tensional stretches, second pair – to uniaxial shearing 
stretches and the last pair – to the biaxial tensional stretches. All the other components of the 
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effective stiffness tensor of such a material are null. Magnitude of this stiffness tensor for a 
strictly defined volume fractions of phases is lead by the aspect ratio 𝐴𝑟 and orientation of the 
reinforcing particles. This study focuses on the first of these – the aspect ratio, which is 
considered here uncertain according to the Gaussian Probability Density Function (PDF) 
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 This is done because the dispersion of geometry of reinforcement is considerable in the 
contemporary composites. Its basic probabilistic moments and coefficients could be computed 
successively from the below formulas. First, the expected value of this aspect ratio could be 
retrieved as [13] 

[ ] ( ) ( ) ( )

1

1E p x dx .
M

i
r r w r r

i
A A A A

M
µ

+∞

=−∞

= = ≡ ∑∫   (2)  

It could be then used to compute variation of 𝐴𝑟 
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and then converted to the coefficient of variation in a following way 
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With their use, the higher order coefficients of skewness 𝛽 and kurtosis 𝜅 could be computed 
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Uncertainty of the aspect ratio 𝐴𝑟 invokes uncertainty in the homogenized stiffness tensor, 
which is no more deterministic. Instead it could be defined by the first four probabilistic 
moments and coefficients, i.e. 𝐸�𝐶𝑖𝑗

𝑒𝑓𝑓�, 𝛼�𝐶𝑖𝑗
𝑒𝑓𝑓�, 𝛽�𝐶𝑖𝑗

𝑒𝑓𝑓� and 𝜅�𝐶𝑖𝑗
𝑒𝑓𝑓�, where the expected 

value 𝐸�𝐶𝑖𝑗
𝑒𝑓𝑓� serves as the indicator of the most probable magnitude of 𝐶𝑖𝑗

𝑒𝑓𝑓. They are all 
recovered in this study by triple computations consisting of the Iterative Stochastic Finite 
Element Method (ISFEM) with use of the statistically optimized 6th order [14], the crude 
Monte-Carlo simulation with 350 000 trials and the semi-analytical method with a direct 
differentiation of the characteristics from the response polynomial. An entire probabilistic 
calculus is based on the same response functions for each stiffness tensor coefficient, but 
calculations of the alternative methods are kept independent. This enables verification of the 
results of each of them and definition of a practical range of probabilistic moments. 
Discontinuous form of 𝐸(𝐴𝑟) and 𝑉𝑎𝑟(𝐴𝑟) proposed on the right of eqn (1) and eqn (2) 
proves useful for the MCS, while the continuous one – in the ISFEM and the AM. 
Mechanical properties of this linear composite include Young modulus and Poisson ratio. 
Reinforcing particle is defined by one set of parameters, 𝐸𝑝 = 10 𝐺𝑃𝑎 and 𝜐𝑝 = 0.3, while 
the matrix by three sets [𝐸𝑚, 𝜐𝑚] ∈ {[4.4 𝑀𝑃𝑎, 0.374], [4.0 𝑀𝑃𝑎, 0.34], [3.6 𝑀𝑃𝑎, 0.306]}. 
Volume fraction of the matrix is set to 0.99 and of the particle - as 0.01 of the entire 
composite. Mesh of this composite (see Figure 1) is made of over 40 000 20-noded brick 
finite elements C3D20 with a second-order (full) stress approximation for all the 13 RVEs 
with modified aspect ratio of reinforcing particle. It was optimized via a FEM error study with 
1st and 2nd order tetrahedral as well as hexahedral mesh of the RVE. This was done for three 
aspect ratios, the expected value of 𝐴𝑟 = 𝟐

𝟏
, for the highly prolate particle with 𝐴𝑟 = 𝟕

𝟏
 and 

also for the highly oblate particle with 𝐴𝑟 = 𝟏
𝟓𝟎

 to ensure applicability of this mesh for an 
entire range of aspect ratios considered here. Figure 1 shows the three sections of RVEs for 
these three aspect ratios indicating the applied mesh and shapes of particles. Horizontal axis 
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𝑥2 on this graph corresponds to 𝐶22
𝑒𝑓𝑓 and the vertical one 𝑥1 – to 𝐶11

𝑒𝑓𝑓. Reinforcing particle is 
placed centrally to ensure an orthotropic form of the homogenized stiffness tensor 𝐶𝑖𝑗

𝑒𝑓𝑓. 

 
Figure 1. Discretization and range of reinforcing particle aspect ratio 𝑨𝒔. 

Computational experiments are arranged in the following way. Firstly the FEM results are 
obtained for a set of 13 reinforcing particle aspect ratios 
𝐴𝑠 ∈ �
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𝟏
� and the same volume fraction of the reinforcing 

particle for the relevant unitary stretches. Secondly, strain elastic energies are retrieved from 
the RVE and they are used in homogenization to retrieve the effective orthotropic stiffness 
tensor 𝐶𝑖𝑗

𝑒𝑓𝑓 composed of 6 independent coefficients. A set of discrete results of 𝐶𝑖𝑗
𝑒𝑓𝑓 is then 

approximated with use of Response Function Method (RFM), where optimized polynomial 
approximations of the homogenized tensor components are recovered with the Weighted 
Least Squares Method (WLSM). At the end, triple probabilistic computations are performed 
in the symbolic computer algebra program MAPLE 2017 returning the first four 
probabilistic moments and coefficients of the homogenized stiffness tensor 𝐶𝑖𝑗

𝑒𝑓𝑓.  This 
procedure is repeated for three sets of mechanical properties of the matrix and probabilistic 
characteristics are plotted on the graphs with relation to the uncertain aspect ratio of the 
particle. Weighting type of WLSM is similar to Dirac function with weights 𝒘 ∈
{𝟏,𝟏,𝟏,𝟏,𝟏,𝟏,𝟏𝟐,𝟏,𝟏,𝟏,𝟏,𝟏,𝟏} so that the expected value placed in the middle has the 
same weight as the remaining results. Volume fraction of the reinforcement is kept exactly the 
same for all the aspect ratios to exclude its influence on the results. A separate polynomial is 
chosen for all of the 18 sets of results composed of three groups, each with two stiffness 
coefficients 𝐶𝑖𝑗

𝑒𝑓𝑓  (6 in total). These groups are formed because their stiffness tensor 
coefficients correspond to stretches coming from the same morphology, i.e. 1. uniaxial 
tensional stretches �𝐶11

𝑒𝑓𝑓 and 𝐶22
𝑒𝑓𝑓� , 2. biaxial tensional stretches �𝐶12

𝑒𝑓𝑓 and 𝐶13
𝑒𝑓𝑓�  and 3. 

uniaxial shearing stretches �𝐶44
𝑒𝑓𝑓 and 𝐶55

𝑒𝑓𝑓�. A sample response functions for 𝐶12
𝑒𝑓𝑓 and 𝐶13

𝑒𝑓𝑓 
with Young modulus of the matrix 𝐸𝑚 = 4.0 𝑀𝑃𝑎 and 𝜐𝑚 = 0.34 is given below 

𝐹
𝐶12
𝑒𝑓𝑓
𝑊𝐿𝑆𝑀 = 3.213713088792 ∙ 106 − 1638.14409991523 ∙ 𝐴𝑟 + 169.16048601791 ∙ 𝐴𝑟2 −

7.18211669828524 ∙ 𝐴𝑟3 + 0.133618128634940 ∙ 𝐴𝑟4 − 0.000907865453443940 ∙ 𝐴𝑟5. 
(6)  

𝐹
𝐶13
𝑒𝑓𝑓
𝑊𝐿𝑆𝑀 = 3.20891922978851 ∙ 106 + 2970.83491907751 ∙ 𝐴𝑟 + 38.3393705910314 ∙ 𝐴𝑟2 −

3.25681924655126 ∙ 𝐴𝑟3 + 0.0437294660806783 ∙ 𝐴𝑟4 − 0.0000899175594518506 ∙ 𝐴𝑟5. 
(7)  

An order of the approximating polynomial is optimized with simultaneous maximization of 
correlation and minimization of WLSM variance and error, where the precedence order is 
following: first correlation, second WLSM variance and third WLSM error. Polynomial 
approximations utilized for optimization ranged from full 1st order till full 12th order ones and 
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the unquestionably best fitting is ensured the 5th order polynomial. In most cases it ensured an 
exceptionally high correlation of at least 0.99, which proves smaller only for 𝐶12

𝑒𝑓𝑓 and 𝐶44
𝑒𝑓𝑓 

but never lower than 0.89. There exists only one special case, i.e. 𝐶11
𝑒𝑓𝑓, where the 7th order 

full polynomial is a little better than the 5th – correlation is higher on the 5th decimal number 
and its total error of WLSM is also smaller by 36%. 

Results 

A numerical example is targeted principally for a High Density Polyurethane (HDPU) 
reinforced with the Carbon Black and is chosen because of its relevance and applicability 
especially in the tire industry. Final results of the effective stiffness tensor 𝐶𝑖𝑗

𝑒𝑓𝑓 are 
summarized on the below graphs and include its first four probabilistic moments and 
coefficients, which are the expected value 𝐸�𝐶𝑖𝑗

𝑒𝑓𝑓� , coefficient of variation 𝛼�𝐶𝑖𝑗
𝑒𝑓𝑓� , 

skewness 𝛽�𝐶𝑖𝑗
𝑒𝑓𝑓�and kurtosis 𝜅�𝐶𝑖𝑗

𝑒𝑓𝑓� . They are all shown as a function of the input 
coefficient of variation of particle aspect ratio 𝛼(𝐴𝑟) for three different sets of mechanical 
properties of the linear matrix, i.e. for Young modulus of the matrix 𝐸𝑚 ∈ {3.6, 4.0, 4.4} MPa 
and Poisson ratio of 𝜈𝑚 ∈ {0.374, 0.34, 0.306}, whose middle value represents properties of 
the High Density Polyurethane (HDPU). They are presented separately for 6 relevant stiffness 
tensor components placed in pairs on adjacent Figures (see for example Figure 2 and Figure 
3). The graphs are ordered for an increasing probabilistic order and each characteristic is 
presented for three probabilistic methods. The first is the Iterative Stochastic Finite Element 
Method (ISFEM) with a caption of SPT, the second - Monte-Carlo simulation captioned by 
MCS and the third - semi-analytical approach with a caption of AM. These methodologies are 
differentiated by symbols on the below graphs and the sets of mechanical properties of the 
matrix are distinguished by colors. 
The expected values 𝐸�𝐶𝑖𝑗

𝑒𝑓𝑓�  are depicted on Figure 2 till Figure 7. They are generally 
unaffected by the increase of the input uncertainty with only a slight decrease below 1%. All 
three probabilistic methods return here perfectly coinciding results irrespectively to the input 
uncertainty and mechanical properties of the matrix. Obviously, together with an increase of 
these mechanical characteristics increase also all the expected values 𝐸�𝐶𝑖𝑗

𝑒𝑓𝑓�. The rate of 
increase is much higher for the expectation (total increase of 155% – 212%) than for the 
stiffness tensor coefficients (total increase of 122%). This is, however, weighted by the 
volume fraction of the matrix in the entire composite equal to 0.99. Quite unexpectedly, the 
differences in relation of the homogenized stiffness tensor with the aspect ratio for the same 
groups of coefficients result only in marginal changes of the corresponding expectations (see 
for example Figure 6 and Figure 7). The highest expectations of over 8.1 kPa is reported for 
uniaxial tension coefficients 𝐶11

𝑒𝑓𝑓  and 𝐶22
𝑒𝑓𝑓 . The ones corresponding to biaxial stretches 

�𝐶12
𝑒𝑓𝑓 and 𝐶13

𝑒𝑓𝑓� are almost twice smaller and the shearing ones – 3.5 times smaller. 
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Figure 2. Expected value 𝑬�𝑪𝟏𝟏

𝒆𝒇𝒇� for 
an increasing matrix Young modulus 
𝑬𝒎 w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 

Figure 3. Expected value 𝑬�𝑪𝟐𝟐
𝒆𝒇𝒇�for 

an increasing matrix Young modulus 
𝑬𝒎 w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 

  
Figure 4. Expected value 𝑬�𝑪𝟏𝟐

𝒆𝒇𝒇�for 
an increasing matrix Young modulus 
𝑬𝒎 w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 

Figure 5. Expected value 𝑬�𝑪𝟏𝟑
𝒆𝒇𝒇�for 

an increasing matrix Young modulus 
𝑬𝒎 w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 
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Figure 6. Expected value 𝑬�𝑪𝟏𝟏

𝒆𝒇𝒇�for 
an increasing matrix Young modulus 
𝑬 w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 

Figure 7. Expected value 𝑬�𝑪𝟏𝟏
𝒆𝒇𝒇�for 

an increasing matrix Young modulus 
𝑬 w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 

Coefficients of variation 𝛼�𝐶𝑖𝑗
𝑒𝑓𝑓� are depicted on Figure 8 till Figure 13 and are at least 20 

times smaller than the input ones. This means that homogenization considerably decreases the 
uncertainty. They almost linearly increase together with 𝛼(𝐴𝑟), perfectly agree for all the 
three probabilistic methods and decrease together with an increase of mechanical properties of 
the matrix. Unlike the 𝐸�𝐶𝑖𝑗

𝑒𝑓𝑓�, 𝛼�𝐶𝑖𝑗
𝑒𝑓𝑓� differ significantly for the groups of components up 

to 60 times, which is reported for 𝛼�𝐶44
𝑒𝑓𝑓� vs. 𝛼�𝐶55

𝑒𝑓𝑓�. The highest coefficient of variation is 
reported for 𝐶13

𝑒𝑓𝑓 and the lowest – for 𝐶12
𝑒𝑓𝑓. 
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Figure 8. Coefficient of variation 

𝜶�𝑪𝟏𝟏
𝒆𝒇𝒇�for an increasing matrix 

Young modulus 𝑬𝒎 w.r.t. coefficient 
of variation of particle aspect ratio 

𝜶(𝑨𝒓). 

Figure 9. Coefficient of variation 
𝜶�𝑪𝟐𝟐

𝒆𝒇𝒇� for an increasing matrix 
Young modulus 𝑬𝒎 w.r.t. coefficient 
of variation of particle aspect ratio 

𝜶(𝑨𝒓). 

  
Figure 10. Coefficient of variation 

𝜶�𝑪𝟏𝟐
𝒆𝒇𝒇�for an increasing matrix 

Young modulus 𝑬𝒎 w.r.t. coefficient 
of variation of particle aspect ratio 

𝜶(𝑨𝒓). 

Figure 11. Coefficient of variation 
𝜶�𝑪𝟏𝟑

𝒆𝒇𝒇�for an increasing matrix 
Young modulus 𝑬𝒎 w.r.t. coefficient of 

variation of particle aspect ratio 
𝜶(𝑨𝒓). 
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Figure 12. Coefficient of variation 

𝜶�𝑪𝟒𝟒
𝒆𝒇𝒇�for an increasing matrix 

Young modulus 𝑬𝒎 w.r.t. coefficient 
of variation of particle aspect ratio 

𝜶(𝑨𝒓). 

Figure 13. Coefficient of variation 
𝜶�𝑪𝟓𝟓

𝒆𝒇𝒇�for an increasing matrix 
Young modulus 𝑬𝒎 w.r.t. coefficient 
of variation of particle aspect ratio 

𝜶(𝑨𝒓). 

Skewness of the homogenized stiffness tensor 𝛽�𝐶𝑖𝑗
𝑒𝑓𝑓� are presented on Figure 14 till Figure 

19. It starts from 0 for a null uncertainty, almost linearly increases with an increase of 𝛼(𝐴𝑟) 
and reach maximum magnitude between 0.02 and 0.3 for 𝛼(𝐴𝑟) = 0. All skewnesses are 
positive and in majority of them, a small concavity is visible. They differ for particular 
components by an order of magnitude so that in each stretch group one skewnesses is at least 
10 times higher than the other (see Figure 14 and Figure 15). The SPT and AM return here 
perfectly the same result, while the MCS shows quite a significant scatter for all stiffness 
tensor components having small magnitude, i.e. 𝐶11

𝑒𝑓𝑓 , 𝐶13
𝑒𝑓𝑓  and 𝐶44

𝑒𝑓𝑓 . Quite importantly, 
a change in mechanical properties of the matrix does not have an impact on the skewness – 
the differences are marginal and much below a single percent. 
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Figure 14. Skewness 𝜷�𝑪𝟏𝟏

𝒆𝒇𝒇� for an 
increasing matrix Young modulus 𝑬𝒎 

w.r.t. coefficient of variation of 
particle aspect ratio 𝜶(𝑨𝒓). 

Figure 15. Skewness 𝜷�𝑪𝟐𝟐
𝒆𝒇𝒇�for an 

increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 

  
Figure 16. Skewness 𝜷�𝑪𝟏𝟐

𝒆𝒇𝒇� for an 
increasing matrix Young modulus 𝑬𝒎 

w.r.t. coefficient of variation of 
particle aspect ratio 𝜶(𝑨𝒓). 

Figure 17. Skewness 𝜷�𝑪𝟏𝟑
𝒆𝒇𝒇�for an 

increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 
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Figure 18. Skewness 𝜷�𝑪𝟒𝟒

𝒆𝒇𝒇�for an 
increasing matrix Young modulus 𝑬𝒎 

w.r.t. coefficient of variation of 
particle aspect ratio 𝜶(𝑨𝒓). 

Figure 19. Skewness 𝜷�𝑪𝟓𝟓
𝒆𝒇𝒇�for an 

increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of 

particle aspect ratio 𝜶(𝑨𝒓). 

Graphs of kurtosis 𝜅 �𝑪𝒊𝒋
𝒆𝒇𝒇�  are assembled in Figure 20 till Figure 25 and presented in 

relation to 𝜶(𝑨𝒓) . They are all positive and increasing with an increase of the input 
uncertainty in a convex manner. The only exception for this rule is 𝜅�𝐶13

𝑒𝑓𝑓�, where the AM 
returns a small convexity. Similarly to the skewness, kurtoses of coefficients from the same 
groups of stretches differ in magnitude several times and the MCS shows a large scatter for 
coefficients having small kurtoses. The three probabilistic methods lose perfect convergence 
for kurtosis and, by this, it is not uniquely defined with 𝜶(𝑨𝒓). The SPT serves for the lower 
limit of approximation, the MCS – for the higher limit (when no MCS scatter occurs) and the 
AM usually stays in the middle. This discrepancy increases together with an increase of 
𝜶(𝑨𝒓) and reaches maximally 75% for 𝐶22

𝑒𝑓𝑓. Difference is generally smaller between AM and 
SPT especially for kurtoses with small magnitude, i.e. 𝜅�𝐶1𝟏

𝑒𝑓𝑓�, 𝜅�𝐶13
𝑒𝑓𝑓� and 𝜅�𝐶44

𝑒𝑓𝑓� and for 
𝜅�𝐶11

𝑒𝑓𝑓� it does not exist. Tuning of mechanical properties of the matrix does not have an 
influence on kurtosis of the stiffness tensor. Differences are only visible for the MCS, but this 
method proves to be unreliable for determination of 𝜅�𝐶𝑖𝑗

𝑒𝑓𝑓�  because of a large scatter 
reported for half of coefficients. 
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Figure 20. Kurtosis 𝜿�𝑪𝟏𝟏

𝒆𝒇𝒇� for an 
increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of 
particle aspect ratio 𝜶(𝑨𝒓). 

Figure 21. Kurtosis 𝜿�𝑪𝟐𝟐
𝒆𝒇𝒇� for an 

increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of particle 
aspect ratio 𝜶(𝑨𝒓). 

  
Figure 22. Kurtosis 𝜿�𝑪𝟏𝟐

𝒆𝒇𝒇� for an 
increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of 
particle aspect ratio 𝜶(𝑨𝒓). 

Figure 23. Kurtosis 𝜿�𝑪𝟏𝟑
𝒆𝒇𝒇� for an 

increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of particle 
aspect ratio 𝜶(𝑨𝒓). 
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Figure 24. Kurtosis 𝜿�𝑪𝟒𝟒

𝒆𝒇𝒇� for an 
increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of 
particle aspect ratio 𝜶(𝑨𝒓). 

Figure 25. Kurtosis 𝜿�𝑪𝟓𝟓
𝒆𝒇𝒇� for an 

increasing matrix Young modulus 𝑬𝒎 
w.r.t. coefficient of variation of 
particle aspect ratio 𝜶(𝑨𝒓). 

Conclusions 

This work presents a successful study of probabilistic characteristics of the homogenized 
random orthotropic effective stiffness tensor 𝐶𝑖𝑗

𝑒𝑓𝑓  coming from a single-particle RVE. 
Randomness in this study comes from an uncertain aspect ratio 𝐴𝑟 of ellipsoidal reinforcing 
particle and it is based on a high range of 𝐴𝑟 ∈ �

1
7

, 50
1
�. This is done for increasing mechanical 

characteristics of the matrix, i.e. Young modulus 𝐸𝑚 and Poisson ratio 𝜈𝑚 in the ranges of 
𝐸𝑚 ∈ {3.6, 4.0, 4.4} 𝑀𝑃𝑎  and 𝜈𝑚 ∈ {0.374, 0.34, 0.306}. Middle values of these 
characteristics aim to represent properties of the HDPU in its linear regime. Methodology 
applied for retrieval of these random characteristics is triple. Firstly, a framework of the 
Iterative Stochastic Finite Element Method is applied, secondly a crude Monte Carlo 
simulation is utilized and finally the semi-analytical method is used. All these methods are 
based on polynomial approximations of the discrete results of stiffness tensor components 
coming from homogenization of RVE modelled and computed in the FEM. 
This study proves that for a Gaussian aspect ratio the resulting stiffness tensor 𝐶𝑖𝑗

𝑒𝑓𝑓 is not 
exactly Gaussian and has a non-zero skewness and kurtosis. It also shows that the 
homogenization dampens the initial uncertainty so that the resulting stiffness tensor has lower 
variation than the input one and that the increase in initial uncertainty only marginally 
decreases the expected values of stiffness tensor. An increase of mechanical properties of the 
matrix has a visible effect only on the coefficients of variation of the homogenized stiffness 
tensor 𝛼�𝐶𝑖𝑗

𝑒𝑓𝑓�. Other probabilistic characteristics are not affected by this variable, at least 
within the considered limits. The coefficient of variation, skewness and kurtosis of 𝐶𝑖𝑗

𝑒𝑓𝑓 all 
have a major difference in magnitude for the corresponding stretches coming from the same 
type of boundary conditions, i.e. for uniaxial and biaxial tension as well as uniaxial shear. 
This is because of the different course of relation of these coefficients relative to the particle 
aspect ratio 𝐴𝑟. The randomness for uniaxial tension coefficients is higher in the axis where 
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prolate particle had its main axis and biaxial tension as well as uniaxial shear is much more 
random for axes where oblate particle had its main axes. It is worth to mention that 𝛼�𝐶𝑖𝑗

𝑒𝑓𝑓�, 
𝛽�𝐶𝑖𝑗

𝑒𝑓𝑓� and 𝜅�𝐶𝑖𝑗
𝑒𝑓𝑓� are all increasing with an increase of an input uncertainty so that the 

homogenized stiffness tensor is less Gaussian with an increase of this input uncertainty. 
Agreement of the three probabilistic methods is perfect for  𝐸�𝐶𝑖𝑗

𝑒𝑓𝑓� and 𝛼�𝐶𝑖𝑗
𝑒𝑓𝑓� and the 

Monte-Carlo simulation diverges from other methods for 𝛽�𝐶𝑖𝑗
𝑒𝑓𝑓�  and 𝜅�𝐶𝑖𝑗

𝑒𝑓𝑓� . This is 
especially visible for stiffness tensor coefficients which have a small magnitude of 
probabilistic characteristics, where this method has a major scatter. The ISFEM and semi-
analytical approach lose convergence solely for 𝜅�𝐶𝑖𝑗

𝑒𝑓𝑓�, but for majority of 𝐶𝑖𝑗
𝑒𝑓𝑓 they still 

return a similar result, which is always smooth and without any local effects. 
Further ISFEM computational studies will concern numerical simulation of the RVE with 
matrix and an interphase in its hyper-elastic regime for particulate composites with spherical 
reinforcement. An additional interesting extension of this work would be inclusion of the 
random interphase in-between the two current composite constituents and verification of its 
influence on the behavior of this composite. 
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Abstract 

The presence of the microdefects (microcracks, voids, inclusions) in the vicinity of the 

macrocrack tip have a significant effect on the crack propagation. Understanding the influence 

of crack shielding and amplification of microdefects on the SIFs (stress intensity factors) of the 

macrocrack is critical to accurately simulate crack propagation and predict structural life. The 

modeling of macrocrack growth involving multiple microdefects is inconvenient due to the 

different scales and the extension of cracks. In this paper, a multi-level, adaptively refined mesh 

near the macrocrack tip where the microdefects exist is formulated by the combination of virtual 

node polygonal element shape function and quadtree meshes. In the framework of XFEM 

(extended finite element method), the crack growth problem of different scales is unified and 

solved in one set of meshes. Based on the above approach, we numerically investigated the 

influence of different kinds of microdefects on the macrocrack propagation. The effectiveness 

and accuracy of the proposed method are verified by static cracking examples containing 

microdefects. Then, the influences of parameters such as microdefect position and size on the 

macrocrack SIFs and the propagating path are studied. The numerical results can provide a basis 

for component safety assessment. 

Keywords: Adaptively mesh refinement, XFEM, Crack propagation, microdefects, virtual 

node polygonal element 

Introduction 

Many engineering structures have a large number of microdefects, such as microcracks, voids, 

inclusions and dislocations. Experimental studies have shown [1-5] that the presence of 

microdefects has a significant effect on the propagation of macrocrack. Due to the difference in 

the position and shape of microdefects, it may cause an amplification or shielding effect to the 

main crack. Accurate analysis of the influence of microdefects on the macrocrack is critical to 

assessing the service life of the structures. In the last century, analytical methods were used to 
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study the influence of microdefects on the macrocrack under certain conditions [6-10]. However, 

analytical methods have some limitations and it is difficult to deal with complex forms of 

microdefects. 

In recent decades, numerical simulation methods have been widely used to deal with the 

interaction of the macrocrack and microdefects. There are two main methods commonly used, 

namely the continuum mechanics approaches and the discrete approaches [11, 12]. In the former 

method, the regions containing microdefects were represented as inclusions with effective 

mechanical constants. However, this method may lead to a decrease in computational accuracy, 

and in particular, the local stress concentration caused by microdefects can not be accurately 

modelled. While in discrete methods, microdefects are explicitly modelled, which can better 

analyze the interaction of the macrocrack and microdefects. Based on the widely used FEM, a 

lot of researches have been done on the interaction of the macrocrack and different types of 

microdefects [13-16]. For crack propagation problems with complex structures involving multiple 

microdefects, the conventional FEM is not effective since the remeshing process can not be 

avoided. To overcome the difficulties of remeshing, several methods have been developed, such 

as the boundary element method [17], meshless method [18], extended finite element 

method(XFEM) [19]. Among them, the XFEM has gained the most attention due to the feature 

that the discontinuities can be independent of the mesh. 

In our previous work [20], a dynamic multi-level adaptive mesh refinement method and the 

corresponding VP-XFEM for crack propagation problems were proposed. Compared with the 

traditional XFEM and meshless methods, this method can obtain better accuracy, convergence, 

and computational efficiency. Based on the proposed mesh refinement method, the minimum 

mesh size can reach 1/100 of the original size when the refinement level reaches 7. With this 

method, multi-level mesh refinement is only performed on the local region where microdefects 

exist, and the problems at different scales can be unified into a set of mesh without additional 

processing. Therefore, this paper will extend this algorithm to study the influence of 

microdefects on macrocrack propagation. 

The current research mainly focuses on the effect of microcracks on static macrocrack, little 

attention is paid to the interaction of growing macrocrack and microdefects [21].Researches that 

comprehensively consider the effects of microcracks, voids and inclusions on macrocrack 

propagation are quite limited. Therefore, the VP-XFEM algorithm is used in this paper to 

consider the effects of microcracks, microvoids and inclusions on macrocrack propagation. 

Numerical formulation 

In this section, we briefly describe the composition of VPM shape functions and their continuity 

at hanging nodes. According to the properties of the VPM shape function, a multi-level adaptive 

mesh refinement method for microdefects and growing macrocrack is proposed. On this basis, 

the specific form of VP-XFEM is derived. 

VPM shape function and its properties 

Polygon elements have gained wide applications in the field of computational methods due to 
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their strong flexibility. The VPM uses polynomials as the approximation function based on the 

partition of unity (PU), which permits the direct usage of the Hammer integral and the Gauss 

integral as employed in standard FEM. This feature makes VPM easy to be applied to XFEM.  

Assuming that a polygon domain Ω whose boundary is enclosed by n nodes {P1, P2,…,Pn} in 

sequence. By introducing the centroid of the polygon Pk (virtual node), the domain can be 

divided into n non-overlapping virtual sub-triangles {T1, T2,…,Tn}. By considering a point Pl 

with the coordinate (x,y), which is located in the virtual sub-triangle Ti, the VPM shape function 

has the following form 

where WI,i and WII,i are the weight functions of the constant strain triangular element (CST) and 

the least-squares method (LSM) in the i-th virtual sub-triangle; φVP(x) and ϕVP(x) are shape 

functions based on the area coordinates of CST and LSM, respectively. The specific 

formulations can be found in Ref. [22]. It is worth mentioning that the virtual node Pk is only 

used for the calculation of the shape function and will not introduce additional degrees of 

freedom. 

VPM shape function continuity test at hanging nodes 

Taking the quadrilateral elements as an example(see Fig. 1), one of the initial four large 

elements is divided into four small elements ①, ⑤, ⑥, and ⑦. Thus the elements ② and 

③ have the hanging nodes of d and e. For the VPM, all elements are considered as polygonal 

elements with n nodes, while n is changeable. In this manner, there are no hanging nodes any 

more. Fig. 1 (b) shows the segmentation of polygonal elements when using the VPM shape 

functions. The handling of the elements of ②  and ③  is just in the same way as other 

elements, except that one more virtual sub-triangle is generated. Fig. 1 (b) and (c) show the 

VPM shape functions at nodes d and e, respectively. It is clearly implied that the VPM shape 

functions possess a good continuity even near the hanging nodes. 

 

Fig. 1 Mesh refinement of quadrilateral element and the continuity test of VPM shape functions: 

(a) mesh refinement and the nodes distribution; (b) element division for the calculation of VPM 

shape functions; (c) the VPM shape function of node d; (d) the VPM shape function of node e. 

                , , , , ,l i il jl VP l VI P k l II i VP lΦ W W         
 

x x x x x x x
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Based on the properties of VPM shape functions, an adaptive mesh refinement method for the 

discontinuities and the corresponding VP-XFEM are proposed by the combination of VPM and 

XFEM. Since VP-XFEM uses the polynomial shape functions of polygonal elements, it is 

distinctly different from other methods. The resultant conforming shape functions as well as 

special integration for sub-elements are not required. 

Adaptively mesh refinement 

In order to accurately simulate the effects of microdefects on the macrocrack, it is necessary to 

set fine meshes at the regions containing microdefects or near the crack tip of the macrocrack. 

Since the size of the microdefects is much smaller than the size of the macrocrack (only 1/100 

or even 1/1000), when the quadtree structure is adopted, the refinement levels will reach 8 to 

10. Due to the difference in the refinement levels, a lot of hanging nodes are generated in the 

transition zone between the coarse mesh and the fine mesh. On the other hand, the area to be 

refined will constantly change because of the crack growth. Therefore, it is also necessary to 

consider dynamic mesh refinement and coarsening. The previous section shows that VPM is 

well suited for dealing with non-uniform meshes with hanging nodes. All of the meshes are 

treated as polygon elements and handled in the same way. 

Based on the properties of the VPM shape function, a dynamic adaptive multi-level mesh 

refinement and coarsening method is proposed in this section. Two sets of meshes are 

introduced to deal with the refinement process. The initial background mesh with coarse 

elements (called the base mesh here) is stored by the first meshing set and keeps the same 

throughout crack growth steps. The second meshing set is created dynamically with growing 

crack tips. In our previous work [20], the mesh refinement method for the crack propagation 

problem has been described in detail, but the microvoids and inclusions were not considered. 

Therefore, the mesh refinement method is further improved for the circular discontinuities 

(inclusion or hole interface). 

Fig. 2 shows a single-step mesh refinement with three circular discontinuities and one main 

crack. In order to clearly show the refined mesh, only the level 3 refinement is shown in this 

example, but the process of refining level 8 and above is exactly the same. For crack 

propagation problem, multiple sub-steps need to be calculated, and each sub-step needs to 

perform a single-step mesh refinement. Fig. 3 presents the flowchart of the multi-step dynamic 

mesh refinement around the discontinuities with VP-XFEM. In each sub-step, meshes around 

the discontinuities are refined based on the initial input mesh. Then in the next sub-step, the 

crack information is updated, and the mesh refinement is performed again based on the new 

positions of the crack tips as well as the initial input mesh. At this time, the elements refined in 

the previous sub-step around the crack tips do not need to be refined due to the moving of the 

crack tips, so these elements can be maintained as the initial coarse elements. In this way, the 

dynamic changing of the refined area around the crack tips can be realized, which fulfills the 

mesh coarsening naturally. Here, a schematic diagram of the refined meshes for the calculation 

of crack growth containing multiple discontinuities is shown in Fig. 4. 
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Fig. 2 The mesh refinement around the discontinuities: (a) initial mesh and the location of the 

discontinuities; (b) one-level refined mesh; (c) two-level refined mesh; (d) three-level refined 

mesh. 

 

Fig. 3 The flowchart for the multi-step dynamic mesh refinement during a typical crack growth 

simulation in heterogeneous material. 
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Fig. 4 The refined meshes during a typical crack growth simulation in heterogeneous material with 

VP-XFEM. 

VP-XFEM approximation 

By introducing the VPM shape functions into the XFEM displacement approximation with 

cracks, holes and inclusions [23-26], the VP-XFEM approximation for discontinuities in 2-D can 

be written as  

The nodes associated with elements completely cut by the crack are enriched by the Heaviside 

function H(x). H(x) takes the value +1 on one side of the crack and -1 on the other side of the 

crack. βα(x) is the crack tip enrichment function, which is used to enrich the nodes associated 

with elements partially cut by the crack. In the polar coordinate system r and θ of the crack tip, 

βα(x) is defined as below 

The nodes of elements cut by the inclusions and material interfaces are enriched by φ(x) which 

is defined as [25] 

where ϕi is the level set function, Ni(x) is the standard FEM shape function. The nodes of 

elements cut by the holes are enriched by Ψ(x) which takes the value of 1 outside the hole and 

0 inside the hole. 

Numerical results and discussion 

In this section, several numerical examples are given to study the effects of microdefects on the 

propagation of macrocrack. All the examples are solved by VP-XFEM. The material properties 

of the plate in all examples is set as E =50 kPa, ν =0.3. The steady crack propagation of linear 

elastic material under plane strain condition is considered. In order to ensure the accuracy of 

the calculated SIFs at the crack tip, the radius of the integration region is four times the size of 
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the mesh near the crack tip when using the interaction integral. 

Influence of a microcrack on the macrocrack propagation 

In this section, the influence of the position and shape of microcracks on the macrocrack 

propagation is studied. The computational model in Fig. 5 is considered. The length of the 

microcrack is l=1 mm, the distance between the macrocrack tip and the center of the microcrack 

is s=1.25 mm. The upper and lower boundaries of the plate were subjected to a load of σ=1 kPa. 

Studies have shown that [11], the inclination angle φ of the microcrack and its angle θ with the 

macrocrack tip have a great influence on the SIFs at the macrocrack tip. With the change of θ 

and φ, the microcrack can either cause crack shielding or crack amplification. Therefore, the 

angle θ=60°, 90°, 120° are considered, and for each case, the inclination angle φ is increased 

with increment of 30°, φ=0°, 30°, 60°, 90°, 120°, 150°. For the VP-XFEM, an initial mesh of 

19×19 is used. The refinement level is 8 and the refinement radius αr is 0.15. The growth of 

microcrack is not considered in this example. The growth increment of the macrocrack is set to 

Δa0=0.1 mm, and the total number of sub-steps is 20.  

The variation of SIFs at the macrocrack tip during the crack growth process is shown in Fig. 6. 

When θ is 60°, φ has a great influence on the value of K1 at the macrocrack tip. When θ is 90°, 

φ has some influence on the K1 in the early stage of crack propagation, but the influence 

becomes very small in the later stage. When θ is 150°, we can see that the influence of φ on K1 

is really small as the curves are basically overlapping. It can be concluded that only at the front 

region of the macrocrack tip, the inclination angle φ of the microcrack has a great influence on 

the SIFs. 

 

Fig. 5 Sketch of macrocrack growth problem in presence of a microcrack (Unit: mm). 
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(a) K1 of θ=60° (b) K1 of θ=90° 

  

(c) K1 of θ=120° (d) K2 of θ=60° 

Fig. 6 The variation of SIFs at the macrocrack tip during the crack growth process in presence of a 

microcrack.  

Influence of a microvoid on the macrocrack propagation 

In order to investigate the effect of the microvoid on the macrocrack propagation, the numerical 

example in Fig. 8 is considered. The boundary conditions and material properties are consistent 

with the first example. The diameter d of the microvoid is kept constant at 2 mm. Different a 

values (1.86mm, 2.33mm, 3.00mm) are chosen and θ gradually increases from 0° to 90° in 

increments of 30°. The parameters of the VP-XFEM are set as follows: the initial mesh is 19×19, 

the refinement level is 8, and the refinement radius is 0.15. The increment of crack propagation 

is Δa0 = 0.15 mm, and the total number of sub-steps is 20. When the crack intersects the 

microvoid, the calculation is stopped. 

Fig. 8 shows the variation of K1 at the macrocrack tip during the crack growth process at 

different values of a. It can be seen that the value of a does not change the tendency of the 

microvoid to affect the macrocrack during its propagation process. While microvoid have 

different effects on macrocrack at different values of θ. When the values of θ are 30 and 60 

degrees, the microvoid always enhances the K1 value at the macrocrack tip. But for θ=90°, the 

microvoid causes a shielding effect. When θ=60°, the microvoid causes a amplification effect 

in the early stage of crack propagation, after reaching a certain length, the amplification effect 
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changes to a shielding effect.  

 

Fig. 7 Sketch of macrocrack growth problem in presence of a microvoid (Unit: mm). 

  

(a) a=1.86 mm                     (b) a=2.33 mm 

 

(c) a=3.00 mm 

Fig. 8 The variation of K1 at the macrocrack tip during the crack growth process in presence of a 

microvoid. 
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Influence of a microinclusion on the macrocrack propagation 

In order to study the influence of microinclusion on macrocrack propagation, consider the 

example shown in Fig. 9. The size and material of the plate, the location of the macrocrack, and 

the boundary conditions remain the same as in the first numerical example. A circular 

microinclusion of diameter d is placed near the macrocrack tip. The distance between the center 

of the microinclusion and the macrocrack tip is s, and the angle of the line connecting the crack 

tip and the center of microinclusion is θ. In order to investigate the influence of different 

materials and different inclusion sizes on the macrocrack propagation, the center of the 

microinclusion is fixed as s=3.0 mm, θ=30°. Inclusion in two sizes and two materials are 

considered, d1=2.0 mm, d2=1.6 mm, and E1=25 kPa, E2=100 kPa. The parameters of the VP-

XFEM are set as follows: the initial mesh is 19×19, the refinement level is 8, and the refinement 

radius is 0.15. The increment of crack propagation is Δa0=0.2 mm, and the total number of sub-

steps is 20. 

Fig. 10 shows the variation of SIFs at the macrocrack tip during the crack growth process. It 

can be seen that the larger the inclusion size, the greater the effect on the macrocrack when the 

elastic modulus of the inclusion is the same. For inclusions of the same size, soft microinclusion 

causes an amplification effect to the K1 of macrocrack in the early stage of crack propagation. 

When the macrocrack expands to a certain length, softe microinclusion causes an shielding 

effect. While the case of hard microinclusion is just the opposite. For the variation of K2, it 

shows a similar pattern. Soft microinclusion will attract the macrocrack to growth in its 

direction. While for hard microinclusion, the crack extends away from its direction. 

 

Fig. 9 Sketch of macrocrack growth problem in presence of a microinclusion (Unit: mm). 
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(a) K1 (b) K2  

Fig. 10 The variation of SIFs at the macrocrack tip during the crack growth process in presence of 

a microinclusion. 

Conclusions 

In this paper, a multi-level, adaptively refined mesh near the macrocrack tip where the 

microdefects exist is formulated by the combination of virtual node polygonal element shape 

function and quadtree meshes. The influence of the nearby microdefects on the macrocrack 

propagation have been numerically investigated by using VP-XFEM. The results show that, the 

location and geometric parameters of the nearby microdefects have great influence on the 

propagation of the macrocrack. Both of the amplification and shielding effect can be seen in 

different kinds of microdefects with different parameters. 

References 

[1] Song SH, Bae JS. Fatigue crack initaition and propagation from hole defects. Experimental 

Mechanics, 1998, 38(3): 161-166. 

[2] Tsay LW, Shan YP, Chao YH, Shu WY. The influence of porosity on the fatigue crack growth 

behavior of Ti–6Al–4V laser welds. Journal of Materials Science, 2006, 41(22): 7498-7505. 

[3] Seo KJ, Choi BH, Lee JM, Shin SM. Investigation of the mixed-mode fatigue crack growth of 

a hot-rolled steel plate with a circular microdefect. International Journal of Fatigue, 2010, 32(7): 

1190-1199. 

[4] Wu SC, Yu C, Yu PS, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by 

synchrotron X-ray computed microtomography. Materials Science and Engineering: A, 2016, 

651: 604-614. 

[5] Yang RS, Xu P, Yue ZW, et al. Dynamic fracture analysis of crack–defect interaction for mode 

I running crack using digital dynamic caustics method. Engineering Fracture Mechanics, 2016, 

161: 63-75. 

[6] Rose LRF. Microcrack interaction with a main crack. International Journal of Fracture, 1986, 

31(3): 233-242. 

ICCM2018, 6th-10th August 2018, Rome, Italy

208



[7] Gong SX. An exact formulation for the microcrack-finite main crack interaction. International 

Journal of Fracture, 1994, 66: R51-R56. 

[8] Meguid SA, Wang XD. On the dynamic interaction between a microdefect and a main crack. 

Proc. R. Soc. Lond. A, 1995, 448(1934): 449-464. 

[9] Tamuzs VP, Petrova VE. Modified model of macro–microcrack interaction. Theoretical and 

applied fracture mechanics, 1999, 32(2): 111-117. 

[10] Tamuzs VP, Petrova VE. On macrocrack–microdefect interaction. International applied 

mechanics, 2002, 38(10): 1157-1177. 

[11] Petrova V, Tamuzs V, Romalis N. A survey of macro-microcrack interaction problems. Applied 

Mechanics Reviews, 2000, 53(5): 117-146. 

[12] Liu G, Zhou D, Bao Y, et al. Multiscale analysis of interaction between macro crack and 

microdefects by using multiscale projection method. Theoretical and Applied Fracture 

Mechanics, 2017, 90: 65-74. 

[13] Meguid S A, Gaultier P E, Gong S X. A comparison between analytical and finite element 

analysis of main crack-microcrack interaction. Engineering fracture mechanics, 1991, 38(6): 

451-465. 

[14] Biner S B. A FEM analysis of crack growth in microcracking brittle solids. Engineering fracture 

mechanics, 1995, 51(4): 555-573. 

[15] Soh A K, Yang C H. Numerical modeling of interactions between a macro-crack and a cluster 

of micro-defects. Engineering fracture mechanics, 2004, 71(2): 193-217. 

[16] Li X, Li X, Jiang X. Influence of a micro-crack on the finite macro-crack. Engineering Fracture 

Mechanics, 2017, 177: 95-103. 

[17] Portela A, Aliabadi M, Rooke D. The dual boundary element method: effective implementation 

for crack problem. Int. J. Numer. Meth. Eng., 1991, 33: 1269-1287. 

[18] Belytschko T, Lu YY, Gu L. Crack propagation by element-free Galerkin methods. Eng. Fract. 

Mech., 1995, 51: 295-315. 

[19] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. 

Int. J. Numer. Meth. Eng., 1999, 46: 131-150. 

[20] Teng Z H, Sun F, Wu S C, et al. An adaptively refined XFEM with virtual node polygonal 

elements for dynamic crack problems. Computational Mechanics, 2018(1–3):1-20. 

[21] Liu G, Zhou D, Guo J, et al. Numerical simulation of fatigue crack propagation interacting with 

micro-defects using multiscale XFEM. International Journal of Fatigue, 2018, 109:70-82. 

[22] Tang XH, Wu SC, Zheng C, Zhang JH. A novel virtual node method for polygonal elements. 

Applied Mathematics and Mechanics-English Edition, 2009, 30(10): 1233-1246. 

[23] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. 

Int J Numer Meth Eng, 1999, 46: 131-150. 

ICCM2018, 6th-10th August 2018, Rome, Italy

209



[24] Sukumar N, Chopp DL, Moes N, Belytschko T. Modeling holes and inclusions by level sets in 

the extended finite element method. Comput Methods Appl Mech Eng, 2001, 190: 6183–200. 

[25] Moës N, Cloirec M, Cartraud P, et al. A computational approach to handle complex 

microstructure geometries. Computer methods in applied mechanics and engineering, 2003, 

192(28-30): 3163-3177. 

[26] Jiang S, Du C, Gu C, Chen X. XFEM analysis of the effects of voids, inclusions and other 

cracks on the dynamic stress intensity factor of a major crack. Fatigue & Fracture of 

Engineering Materials & Structure, 2014, 37: 866-882. 

ICCM2018, 6th-10th August 2018, Rome, Italy

210



A Semi-Lagrangian Method Based on MAC and Its Application in Fluid 

Simulation of Casting Filling Process 

*Y.L. Tang, † D.M. Liao, T. Chen, S.Y. Fan 

State Key Lab. of Material Processing and Die & Mould Technology, Huazhong University of Science & 

Technology, China 

*Presenting author: tangyulong@hust.edu.cn 

†Corresponding author: liaodunming@hust.edu.cn  

Abstract 

In this paper, a marker-and-cell based semi-Lagrangian method, which combines the 

advantages of Lagrangian and Eulerian perspective, is introduced to simulate the metal flow 

during casting filling process. This method treats fluid in terms of a vast collection of particles 

with some physical properties that move around, naturally bypass the unique complex free 

interface tracking problem in Eulerian perspective. For the interior of the fluid, the efficient 

Projection method is used to solve the incompressible Navier-Stokes equations. On the other 

hand, the diffusion equation is solved on the background grid by mapping the information 

carried by the particles to the grid, thus avoiding the inconvenience of field description in 

Lagrangian perspective. And the level set method is introduced to describe boundary. In order 

to study the application of this method in the casting field, two examples are given with this 

method and the widely used VOF method. The results show that this method can produce sharp 

and discontinuous fluid interfaces, which is closer to the casting process with high filling speed. 

Keywords: marker-and-cell, semi-Lagrangian method, casting filling process, fluid simulation 

Introduction 

In the field of casting, computational fluid dynamics is mainly used to simulate the metal filling 

process and analyze defects that may occur during the filling process, such as cold shut[1] and 

oxide inclusion[2]. The flow front of the molten metal plays a very important role in analyzing 

the filling defects. The mainstream free surface tracking methods in casting simulations use a 

fixed grid. Methods like VOF (Volume-of-Fluid) [3], Level set[4], and CLSVOF (Coupled Level 

Set and Volume-of-Fluid)[5] are widely used. This kind of methods uses continuous functions 

to indicate the free surface, in a pure Eulerian perspective. Traditionally, the main difficulty in 

using these methods has been the maintenance of a sharp boundary[6]. Methods that use separate, 

boundary-fitted grids for each phase[7-9] may offer potentially the highest accuracy, are rarely 

used in casting simulations because of their complexity.  

Another class of methods is the particle-based “meshfree” methods, such as MPS (Moving 

Particles Semi-implicit)[10], SPH (Smoothed Particle Hydrodynamics)[11], DPD (Dissipative 

Particle Dynamics)[12,13]. The absence of a mesh allows Lagrangian simulations, in which the 

particles can move according to their own state. However, when calculating the force of 

particles, we have to find the location of neighboring particles. To avoid being n-body problems, 

some complex data structures such as the multi-grid technique should be applied. Besides, a 

casting is usually very complex in geometry that requires many particles. The relatively low 

computing efficiency makes them very difficult to be applied to casting simulation. 
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The MAC (marker-and-cell) method[14] is a semi-lagrangian method that between the fixed grid 

and mesh-free methods. It uses a fixed grid to describe the interior of the fluid, and marker 

particles to indicate fluid configuration. With a structured grid used, it not only has the 

advantage of fixed grids in solving NS equations but also has the advantage of mesh-free 

methods in advancing fluid front. However, it is rarely used in casting simulations although it 

is very popular in the field of computational fluid dynamics. In this paper, the MAC method, 

coupled with the level set approach to describe the complex boundary, is introduced to simulate 

the casting filling process. Through the actual calculation case, the potential applications and 

limitations of this method in the casting filling simulation process are discussed. 

Description of the Method 

Outline of procedure 

The governing equations for viscous incompressible flows are the continuity and the Navier-

Stokes equations as follows[15]:  
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and the triangular symbol   represents the Laplacian. Using the efficient Proeection 

procedure[16], a Poisson equation for pressure can be obtained: 
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The superscript “n” and “n+1” denotes the cycle number, for example, 1n is the pressure value 

of cycle n+1. Solving Eq.(3) and substitute the pressure back to Eq. (2), then the velocity field 

of cycle n+1 is obtained: 
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 (5) 

The overall procedure is based on the classical Marker-and-Cell method developed by Harlow 

and Welch [14]. For a calculation cycle, there are six steps as follow: 

(1) Compute pressure. Solve the Poisson equation of pressure based on the velocity and liquid 

level set field. 

(2) Update velocity. Update the velocity field by substituting back the new pressure field to the 

Navier-Stokes equation. 

(3) Convection. The marker particles are moved according to the velocity components in their 

vicinities, with temperature interpolated from background cells. Adeustments are made when 

particles across cell boundaries. 

(4) Tracking the free surface. Update the liquid level set value according to the positions of the 

marker particles. 

(5) Compute temperature. Mapping the particle temperature into cells, and exchange the cell 
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temperature according to the thermal diffusion. 

(6) Re-distribute particles. Check the particle distribution and re-distribute particles when 

necessary, or put new particles into the inlet region according to the inlet boundary conditions.  

The marker particles introduced into this calculation are only for the purpose of indicating fluid 

configuration, more specifically, helping to compute the liquid level-set value. With the liquid 

level-set value computed, the free surface of the liquid could be described more precisely.  

Lagrangian Interpolation for Free Surface 

When a free surface does not pass through the center of the cell, the second derivative of 

pressure   in Eq. (3) should be taken carefully, the traditional differential process for the 

uniform grid will not be accurate enough. As a brief description, see Fig. 1. Let denotes the 

level set value, the free surface with 0  passes between point 
1kx  and point

kx  , and the 

applied pressure is 
a . As

1kx lies out the liquid, it cannot be applied to decide the grad of at 

point k because of discontinuity. Instead, we use 
ax , 

kx and
1kx to construct a second order 

Lagrangian interpolation for  : 
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and take its second derivative with respect to x gives 
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On the right side of Eq. (7), only
ax is to be decided, which can be estimated by level set value 

of its adeacent cell centers: 
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The Lagrangian interpolation as shown by Eq. (7) and Eq. (8) can be easily extended to two-

dimensional or three-dimensional cases.  

 

 

Fig. 1. One-dimensional schematic for 

free surface passes between cell centers 

 

Fig. 2. Using level set to define oblique wall. 

The value inside the wall is negative while 

positive outside the wall. 
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Level set for the wall 

The geometry of the casting is usually very complicated, involving many bevels and complex 

surfaces, which cannot be properly expressed using a simple uniform grid. For example, as Fig. 

2 shows, an oblique wall blocks a dropping particle and deflects it to the right. If a simple 

uniform grid is used, because no oblique wall is defined, the particle will be reflected back up, 

not to the right. To handle this problem, one can preserve a level set field
s for the solid wall, 

which is defined at the cell corner rather than the cell center. 
s is usually a signed distance 

field to the wall surface that computed when meshing the geometry. At the convection step [step 

(3)], whenever a particle runs to a new position
*x


, compute its solid level set value )( *xs


 . If 

this value is negative (
*x


inside the solid ), a reflection operation should be taken: 

     
 *

*
**1 1

x

x
xxx

s

s
s

n









   (9) 

In Eq. (9), the collision coefficient should between 0 and 1. When 1 a completely elastic 

collision strategy is applied, and 1 applies an inelastic collision at the normal direction of 

the wall surface.  

Examples and Applications 

Collapse of a water column 

The collapse of a water column was calculated with the parameters listed in table 1, and the 

geometry is depicted in Fig. 3. This geometry refers to the article of Koshizuka and Oka[10], 

because they had carried out an experiment[17]. In the experiment, a removable board supports 

the initial water column, and then it is pulled up within 0.05s and collapse starts. In our 

calculation, the pulling process of the board is neglected. In addition, we have also calculated 

this case with a VOF (Volume of Fluid) method using the same discrete procedure, and the same 

grid resolution. The results are shown in Fig. 4, cells with fluid are visualized rather than 

particles, in order to make a better comparison to the VOF method. 

As shown in Fig. 4, at the beginning of the collapse, both methods have similar results. At 

t=0.24s, the results of the two calculations are slightly different. The fluid calculated by the 

MAC based method flows a bit faster than the VOF based method. It seems that the fluid 

calculated by VOF based method exhibits a greater viscosity. And by t=0.50s, the fluid interface 

calculated by the two methods is very different. From the MAC based method, we can see that 

the water hits the wall and breaks into pieces, forms very sharp and discontinuous interfaces. 

From the VOF based method, the water has smooth and continuous interfaces, which is not so 

real when referred to the experiment results. 

Table. 1. Calculation parameters 

Parameters Value 

Horizontal grid resolution 292 

Vertical grid resolution 146 

Particles per cell 4 

Particle radius 1.732 x  

Particle collision coefficient 0  

Courant condition 5.0/max xtu   

Maximum time step st 310  
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Fig. 3. Geometry of collapse of a water column 

 

Fig. 4. Collapse of a water column calculated with MAC based method and VOF based 

method 

Filling of a complex casting 

The filling process of a practical iron casting scheme was calculated to study the application of 

this method. The simulation results were compared to results that calculated by a VOF program. 

Fig. 5(a) shows the geometric model of the investment casting system. The overall dimensions 

of the system are 200mm×100mm×500mm. There are four main sprues, each with 8 castings 

evenly distributed. The grid resolutions are 100×50×250, and there are a total of 1.25 million 

cells on the solution domain. In each cell, only 6 particles are placed for the sake of efficiency. 

Table. 2 shows the calculation parameters. 
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Table. 2. Parameters needed for the iron casting 

Parameters Value 

Liquid iron density (kg/m3) 6800 

Liquid iron dynamic viscosity (Pa·s) 4.98e-3 

Liquid iron specific heat (kJ/(kg·K)) 0.82 

Liquidus temperature (℃) 1500 

Solidus temperature (℃) 1429 

Latent heat (kJ/kg) 250 

Acceleration of gravity (m/s2) (0, 0, -9.8)
 

Inlet temperature (℃) 1700 

Inlet velocity (m/s) 0.15 

 

 

Fig. 5. Simulation of a complex casting filling process 

Fig. 5(b) shows the results given by a MAC based method and Fig. 5(c) shows the results given 

by a VOF based method. After flowing into the casting system from the top of the pouring cup, 

the molten metal accelerates down until it hits the wall, and then diverts into two streams and 

continues to accelerate downward along the two inner sprues. Note that the molten metal will 

not fill the sprues at this moment, because the sum of the section areas of the inner sprues is 

larger. When these two streams reach the bottom of the system, they spread out symmetrically 

along the runner, and then enter the two outside sprues under the effect of pressure. At last, the 

castings start to be filled from bottom to top.  
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Both methods give the correct results, but the VOF based method gives a coarser stream in the 

early stage of the filling process as if the molten metal suffers a large surface tension, which is 

not so real. The MAC based method gives a better-looking stream. For the temperature filed, 

VOF based method gives a smoother distribution, and the MAC based method gives a mushy 

local temperature distribution, seems that the flow is more turbulent. This phenomenon may be 

caused by the re-distributing process. The particles have a tendency to gather together after a 

long run, and the re-distributing process must be carried out even though extra errors are 

introduced.  

It takes 125 minutes to complete this simulation by the MAC based method using an Intel Core 

i7-6700HQ CPU, with an 8.0GB RAM. While the VOF based method takes only 98 minutes. 

That is to say, keeping track of the particles, takes not only more space, but also more time. 

This is a shortcoming of the MAC based method. However, with the particles tracked, 

something more complicated could be described, such as the oxide inclusions, the rising of 

slags in the mushy phase, which requires further research. 

Conclusion 

In this paper, the marker-and-cell method is introduced to simulate the casting filling process. 

The level set technique is used to enable the description of the complicated free surface and 

wall boundary, in a simple uniform grid. This MAC based method tracks the fluid surface 

directly by the marker particles, requires not only more storage space but also more calculation 

time than the VOF based method. However, it produces very sharp and discontinuous interfaces 

easily, which is a really pleasing property that suits the casting process with high flowing speed. 

Besides, with the particles tracked, some difficult problems like the oxide inclusions and the 

sand washing problems could become easier to be described. 
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Abstract 

 
In this work we extend a total Lagrangian formulation applied to the dynamical analysis of 
plane frames containing sliding connections (prismatic and cylindrical joints) to include 
frictional dissipation. An improvement in the friction force model is proposed to smooth the 
force transition from rest to motion states, allowing the proper modelling of residual 
displacements at the joints. Friction dissipation is added to the total mechanical energy for the 
achievement of the equations of motion by the Principle of Stationary Total Energy. The 
resulting nonlinear equations are solved by the Newton-Raphson method. Some examples are 
presented to show the formulation effectiveness. 
 
Keywords: Friction model; Sliding connection; Nonlinear dynamics; Lagrange multiplier. 
 
Introduction 

 
In the dynamical analysis of structures and mechanisms conservative systems simplifications 
are frequently assumed. However, real bodies present dissipation due to several sources. The 
frictional dissipation effect, in particular, is important to be considered when relative motion 
from parts of the body exists. This is the case of sliding connections, such as prismatic and 
cylindrical joints, that by introducing translational movement among body members allows 
friction forces to develop along their surfaces contact. 
 
The friction phenomena itself has a very complex nature that mathematical models try to 
describe, with more or less accuracy, depending on which aspects of the friction force the 
proposed expressions intent to consider. The models become more detailed and representative 
at the cost of more parameters. A comprehensive surveys on friction models can be found in 
[1–3]. In the literature, friction models can be classified generally in dynamic or static [3], 
whether the force is, respectively, time dependent or not. Thus, static models, as opposed to 
dynamical models, dismiss the introduction of state variables to the problem, rendering a 
straightforward description of the force expression. Still, static models have difficulties in 
describing the discontinuity of the friction force at null speed, which results in instabilities in 
the numerical solution. Several models try to circumvent this problem [4–9] commonly 
assuming null friction at null speed, which is not a good approximation when relative motion 
is intermittent, or require additional parameters for the transition between motion and rest 
states.  
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In this work, we propose a modification on a classic static friction model to be employed in 
sliding connections of plane frame finite elements by positional formulation. The improved 
model is based on the Coulomb friction considering the Stribeck curve and viscous effect. To 
reduce the abrupt transition between rest and motion states, an interpolation of the static 
friction value to the resultant force is employed in a quasi-null relative speed interval. Thus, 
the proposed model intents to represent the force transition in a smooth way, allowing the 
description of residual displacements when the final stop stage is achieved, which is important 
to ensure high precision movements reproduction in structures and mechanisms. 
 
The framework used to model the dynamical system [10,11] is a fully nonlinear finite element 
approach for large deformations based on a total Lagrangian description of the solids which 
uses positions as the main degrees of freedom. The Saint-Venant-Kirchhoff constitutive 
model is adopted to define the plane frame elastic strain energy using the Green-Lagrange 
strain and the second Piola-Kirchhoff stress tensor. Since in this technique velocity and 
acceleration are referred to a Lagrangian inertial reference frame, the Newmark 
approximation is applied to integrate time. The sliding connections, as prismatic and 
cylindrical joints, are introduced in the total energy of the system by means of Lagrange 
multipliers [11]. Moreover, friction dissipation is added to the energy expression to allow 
finding the equations of motion (comprising the frictional effect) by the Principle of 
Stationary Total Energy. The resulting nonlinear system is solved by the Newton-Raphson 
method. 
 
This work is organized as follows. First brief aspects of the nonlinear plane frame element 
need to be presented followed by the kinematical constraints that the sliding connections 
impose. Then, the dynamical equilibrium is obtained. Known the system parameters, the 
friction force can be introduced in its variational form and the improved model is presented. 
Time integration and system solution follows this explanation. Lastly, examples are shown to 
demonstrate the developed formulation. Dyadic notation is preferred throughout this text due 
its brevity; however, index notation is also used to clarify particular aspects when necessary. 
 
Nonlinear finite element kinematics 

 
The plane frame finite element employed is presented thoroughly elsewhere [10,11], however, 
to develop the present work some aspects need to be briefly stated. As the finite element 
behaviour is represented by a total Lagrangian description, its strain field needs to be obtained 
as a function of the initial and current configurations of the solid, restricted to a finite number 
of degrees of freedom.  
 
In the positional approach of the FEM, instead of nodal displacements, the parameters of the 
discretized plane frame are its positions (coordinates) and the cross section angle (Fig. 1). The 

deformation function, f


, depicted in Fig. 2, can be written indirectly as function of the non-
dimensional space and nodal parameters by mappings from the non-dimensional space to the 

initial configuration, 0f


, as: 

 

0 00
1 1 1

0 00
2 2 2

( ) cos ( )
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 and to the current configuration, 1f


, as: 
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where x


 and y


 represents any point on the domain of a finite element in the initial and 
current configuration, respectively. The coordinates for both directions 1, 2i   of each node   

along the reference line in the initial and current configurations are iX   and iY  , respectively. 

The initial nodal value of the cross section angle is 0   and after deformation is denoted as  . 

In addition, the cross section height is 0h ,   is the non-dimensional space variable in the 

direction of the reference line and   follows the height direction. The shape functions ( )   

are obtained by Lagrange polynomials of any order. 
 

 
Fig. 1. Current configuration mapping for a cubic approximation 

 
The deformation function can be written as a composition of the previous mappings, eq. (1) 
and (2), as presented by [12,13], as: 
 1 0 1( )f f f 

  
   (3) 

 
Since only the gradient A  of the deformation function, but not the function itself, is necessary 
to obtain the strain field [14], we can write: 
 1 0 1( ) . ( )Grad f  A A A


  (4) 

where, 

 
0 1

0 1andi i
ij ij

j j

f f
A A

 
 

 
 

  (5) 

 
During the iterative solution strategy both 0A  and 1A  are numerical values calculated at the 
integration points resulting in a purely numerical procedure.  
 
Since the Saint-Venant-Kirchhoff constitutive law is employed, the Green-Lagrange strain 
tensor E  have to be calculated. This objective measure is given, for instance, by [14]: 

 
1 1

( ) ( )
2 2

t    E C I A A I   (6) 

where I  is the second order identity tensor and t C A A  is the right Cauchy-Green stretch 
tensor. 
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Fig. 2. Deformation mapping 

 
As there is no relation between the cross section angle and the slope of the reference line, the 
frame kinematic can be regarded as Reissner’s. It should be mentioned that the cross section 
dimensions are maintained the same during motion, thus, to avoid volumetric locking, the 
constitutive equation is relaxed in order to exclude transverse expansions. 
 
Kinematical constraints due to sliding connections 

 
To develop the friction force it is required first to describe how the constraint equations for 
the sliding connections are defined, particularly concerning the curvilinear position, which is 
a new variable introduced in the equations of motion, and at which this force will act. Here 
we summarize the description of the connections as a prismatic or a cylindrical joint. More 
details can be obtained in [11]. 
 
Sliding connections are the ones that constrain relative translations between parts of the body. 
Fig. 3 illustrates both joints and their plane representation. In either case, a sliding node, at 
which the joint exists, is constrained to move over a trajectory comprised of path elements. 
The difference between the prismatic and the cylindrical joint is the relative rotation, which is 
allowed only by the last one. 
 

 
Fig. 3. Sliding connections and its plane representation: a) prismatic and b) cylindrical joints 

 

Fig. 4 depicts the case of a prismatic joint, belonging to node P̂ , and its path contact point P . 
The connection is free to move along the path (s    defined by path finite elements, which, 
although not used in this work, may have an arbitrary roughness profile ( )r s


. The notation 

( )  is used to identify variables related to path elements and ˆ( )  is used for sliding 

elements. The new variable ( )P Ps s   that defines the curvilinear position and the cross 

section orientation of the path point is also illustrated.  
 
The constraint equations, c


, can be written for both types of joints as a single expression: 

1( )f f f


0f f f


1 1,x y

2 2,x y
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 0
3 ( )3

ˆ ( ) ( )(1 ) 0P
i i P i P i i P i ic Y Y r s         

   (7) 

where: i  is the direction ( 1,2,3i   for prismatic joints and 1, 2i   for cylindrical joints); ij  

is the Kronecker delta; 0 0 0ˆ
P P P      is the difference of cross sections orientations at the 

initial configuration, which must be constant during the sliding process of a prismatic joint to 
maintain a fixed relative angle; and the components of the roughness profile, obtained by its 
height function || ( ) ||r s


, are given by: 

 
1

2

( ) ( ) cos ( )

( ) ( ) sin ( )

P P P

P P P

r s r s

r s r s

  

  

   
   

 

 



   (8) 

 

 
Fig. 4. Sliding connection over an arbitrary path (depicted for a prismatic joint) 

 
It is noteworthy that the curvilinear variable ( )s   represents an arch-length function defined 
by the non-dimensional coordinate   and the path element coordinates. 
 
Unconstrained equations of motion 

 
Using the Law of Conservation of Energy, the dynamical equilibrium of a conservative 
system is obtained by its total energy 0  as: 

 0    (9) 

where   represents the dissipation of a ‘larger’ system of total energy  . Eq. (9) can be 
rewritten as: 
 0     (10) 

or, making explicit the energy parcels of the new larger conservative system: 
          (11) 
where   is the stored elastic strain energy,   is the potential of conservative external forces 
and   is the kinetic energy of the body.  
 
Following Lanczos and others [15–17], it is not always possible to write down closed 
expressions for dissipative parcels but only its infinitesimal change. Thus, the equations of 
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motion are stated from the variation of the energies present in eq. (11), which is understood as 
the Principle of Stationary Total Energy: 
 0               (12) 
in which the symbol   means variation.  
 
The total energy can be stated by writing the known expressions of the energies in eq. (11) as 
function of the current configuration nodal parameters of the discretized body, grouped in the 
vector 


, as: 

 
0 0 0

0 0 0 0

1
( ) ( ( )) ( )

2V s V
u dV F q y ds y y dV              E

            (13) 

where the specific strain energy u  depends on the strain state E  of the body, eq. (6), which is 

function of the nodal parameters 


, as defined by the gradient of the deformation function in 
eq. (4).  
 
As mentioned before, the Saint-Venant-Kirchhoff constitutive relation is employed due to its 
simplicity and good representation of large displacements on solids that remain in the small to 
moderate strain regimen, which comprehends the majority of the usual applications in 
engineering. For the plane frame utilized, its specific energy is given as: 

    2 2 2 2
11 22 12 212

u E E E E   
    (14) 

where   is the longitudinal elastic parameter that approaches the Young modulus for small 
strains. The shear elastic modulus is [2(1 )]   , being   a constant that reproduces the 
Poisson ratio for small strains. The second Piola-Kirchhoff stress tensor is easily obtained by 
the energy conjugacy property as: 

 
u




S
E

  (15) 

 
Still in eq. (13), F


 and q


 are the concentrated and distributed conservative external loading, 

respectively. The initial length of the frame reference line is 0s . The material mass density in 

the initial configuration, of volume 0V , is 0 . The material points’ velocity is denoted using 

the over-dot as y
 . External damping dissipation, proportional to the velocity in its differential 

form (Rayleigh damping), is introduced as: 

 
0

0 0V
c y dV

y
y y  



 


 

  (16) 

in which c  is a proportionality constant. 

 
The equations of motion (geometric nonlinear dynamical equilibrium) are obtained by the 
development of the variations in eq. (13). In a compact form, the equilibrium can be written 
as: 

 int 0F F       M D
       (17) 

where: int ( )F Grad


  is the internal force vector; F


 collects all the external loads; M  is a 

constant mass matrix; cD M  is the external damping matrix; and 
  and 

  are the 

velocity and acceleration vectors of the nodal parameters. More details about the development 
of the variations of eq. (13) can be obtained in [10,11]. 
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Constrained equations of motion 

 
The dynamical equilibrium stated by eq. (17) is called unconstrained since no restraints, such 
as the ones from the sliding connections, are considered. The literature presents several 
consolidated methodologies to impose constraints such as in [15,18] on mechanical and 
structural applications or in [19–21] which deal with general optimization problems. Here, we 
employ the well-known Lagrange multiplier method along with the Principle of Stationary 
Total Energy to impose the sliding restrictions. In what regards the later introduction of 
friction dissipation, the multipliers are of great value since in Mechanics they might be 
understood as the contact forces between bodies, an essential information for the friction 
model. 
 
The Principle of Stationary Total Energy is extended for the case of holonomic constraints by 
modifying the total energy through the introduction of a new potential  , referred as the 
constraint potential, as: 
            (18) 
 
When using Lagrange multipliers the expression of the new potential is simply given by: 
 c 

 
   (19) 

where 


 represents the vector of multipliers, which are new variables of the system. Eq. (19) 
indicates the presence of a multiplier for each constraint equation in c


. It is worth mentioning 

that the constraint potential is null at the solution, therefore, the total energy is not altered. 
 
Knowing the expression of  , the first variation of the constrained energy, eq. (18), is: 
 0                 (20) 
which, neglecting friction, can be developed in a similar fashion as the unconstrained case 
leading to the constrained equations of motion (constrained geometric nonlinear dynamical 
equilibrium), expressed in a compact form as: 

 int c 0F F F       M D
        (21) 

in which cF


 represents the restriction forces arriving from the constraint potential. As the 
multipliers are new variables, the variation of   is organized in the following force vector, 

which separates the parameters 


 (including Ps ) and the multipliers: 

     cc
c c F

c


       

  
         

 

       
   (22) 

where the tensor c


 represents the Jacobian matrix of the constraint vector. In order to 
shorten this presentation, the derivatives of the constraint equation for the sliding connections, 
eq. (7),  can be found in reference [11]. 
 
Friction force on the sliding connection 

 
The friction force is included in the system directly in the Principle of Stationary Total 
Energy as a dissipative potential. As mentioned previously, dissipative potentials are 
introduced in their differential form since closed expressions might be unknown, as is the case 
for the dissipated friction energy f . However, the variation of this potential can be written as 

the work done by the friction force fF


 on its displacement trajectory d


 as: 

 f
f F d  


   (23) 
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To develop eq. (23), parameters that describes the force displacement must be chosen. For 
that, the coordinates of the sliding node and its path contact point could be picked. However, 
since in the previous formulation the curvilinear position Ps  is already used as an intrinsic 

variable, the displacement along the trajectory is simply the scalar expression 0
p Pd s s  , 

being 0
Ps  an arbitrary initial value, and its variation is pd s  . As the friction force acts 

tangentially to the trajectory, with its value given by fF , the dissipative parcel is introduced 

directly in the curvilinear position as: 
 f f PF s    (24) 

 

To organize the equations of motion system, we make  f
fF 


, the previous equation is 

rewritten as: 

   f
f Ps  


   (25) 

 
Considering the correspondence of the friction force vector f


 to the system variables, the 

equations of motion are restated to include frictional dissipation as: 

 int c f 0F F F         M D
         (26) 

 
Improved friction model 

 
From the manner that the friction force was introduced in the formulation any expression can 
be readily applied without changing the equilibrium equation. In this work, we employ the 
Coulomb model considering the Stribeck effect and viscous friction. Fig. 5 shows the overall 
behaviour of the friction force with the relative velocity among bodies. This model considers 
the stick-slip effect, which is the difference between the friction force at rest (static friction) 
and at motion (kinetic friction), by the Stribeck curve, using the most usual expression 
proposed by Bo e Pavelescu [22]. A linear model represents the viscous friction, which occurs 
if lubricant layers are present on the surfaces. 
 

 
Fig. 5. Friction model representation 

 
The mathematical expression for the friction force due this model is written as: 
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  (27) 

with the static and kinetic friction forces, respectively, given by: 
 S N C Nands kF F F F     (28) 

where, s  and k  are, respectively, the static and kinetic friction coefficients and NF  the 

absolute value of the contact force normal to the trajectory at the joint contact point. In 
addition,   is the viscous friction coefficient and Pv s   is the joint relative velocity 

tangential to the path (directly obtained from the curvilinear position). The Stribeck 
parameters are its decay velocity v  and power  . The sign function is represented by 

sgn( ) . 
 
For null relative velocity, second condition in eq. (27), the tangential resultant force RF  acting 

on the connection is required for comparison with the static friction value. This evaluation 
verifies if there is tendency of motion in case the resultant force is greater than the static 
friction force, or not, otherwise. However, in the transition from motion to rest, the shift from 
one force to another is done abruptly using their smallest value, which, as concern numerical 
simulations, may create instabilities in the system solution and the need to use very small time 
steps. 
 
For this reason, a linear interpolation between the values of the static friction force and the 
resultant force is proposed for the stabilization of the friction force response when there is a 
range 0 0[ , ]v v  of quasi-null velocities, as depicted in Fig. 6. 

 

 
Fig. 6. Improved friction model 

 
The improved friction model is written as: 
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where 0v  is the quasi-null speed limit. One should note that CF  and SF  are always positive 

since they are obtained from the absolute value of the normal force, eq. (28), thus, the sign of 
the friction force in eq. (29) depends on the values and signs of the relative velocity and 
resultant force. 
 
In the proposed approach, RF  is not a constant value, but depends upon the system own force 

state at a given time instant, which can even be null, if applicable. Therefore, the system 
response can be stabilized by means of a smooth transition from the motion state to rest state 
and vice versa. In addition, by taking into account the resulting force, the proposed improved 
friction model is capable to represent residual displacements of the sliding connection. 
 
It should be noted that the quasi-null speed limit value 0v  depends on the adopted time step, 

or, inversely, the chosen time step has to be able to represent the movement when in the 
quasi-null velocity interval. For better convergence of the iterative solution method, the 
recommended value of the limit velocity should be close to the relative stop speed of the 
bodies but not too small to allow the smooth transition among forces at rest. 
 
Known the coefficients of the model, which depends on the materials that make the sliding 
connection and its path, the forces required to calculate the friction force have to be related to 
the variables that describe the joint. The normal force vector NF


 is found from the 

component of the Lagrange multipliers vector due to the translational constraints,  1 2,  


, at the normal direction of the path at the contact point, defined by the normal vector PN


, as: 

 
P P

N

P P

N N
F

N N

 


 
    (30) 

and its absolute value, actually used in the calculation, is: 

 N

P
N

P

NF F
N

  



   (31) 

 
In the plane case, the components of the normal vector are obtained from the tangent vector of 
the path finite element at the contact point, , ( )P

i P iT Y  
  ( 1, 2i  ), as 1 2

P PN T   and 

2 1
P PN T . 

 
The resultant force, equal to the inertial force at the sliding node, is obtained directly from the 
equilibrium equation (26), considering only the sliding node degrees of freedom (positions 
and curvilinear variable), as: 

 int cRF F F F  
   

  (32) 
or, as to identify the terms referred to the degrees of freedom: 

 
1 1 11

2 2 22

cint

cint

c0

P P PP

P P PP

P P P

R

Y Y YY

R

Y Y YY

R
s s s

F F FF

F F FF

F F F

      
                      
       

            

  (33) 

where F


 represents all the external loads, intF


 the internal force of the sliding element and 
cF


 the connection constraint force. Subscripts 1
PY , 2

PY  and Ps  refer to the sliding node 

position degrees of freedom and the curvilinear position, respectively. In the definition of eq. 
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(32), being a quasi-null velocity case, the velocity-proportional external damping was 
neglected. The friction force is also not present since its value is already considered indirectly 
through the constraint force at the curvilinear position direction. As the tangential value of the 
resultant force RF  is required, the tangent vector is used to decompose the Cartesian terms as: 

 
   

1 1 1 2 2 2

int c int c
1 2 c

P P P P P P

P P

P P
Y Y Y Y Y Y

R s s
P

F F F F F FT T
F F F

T

   
     (34) 

 
As expected from the physical significance of the multipliers as contact forces, we have 

1

c
1PY

F   and 
2

c
2PY

F  . This result can be obtained by developing the constraint force given in 

eq. (22) for the constraint equation in (7). 
 
Time integration and nonlinear system solution procedure 

 
For the time discretization and nonlinear system solution, the equations of motion (26) are 
written for a specific time instant as: 

   int c f
1 1 1 1 1 11 1

0, t t t t t tt t
g F F F                   M D

          (35) 

where g


 is the residual of the Newton method (or mechanical unbalanced vector), null when 

1t 


 and 1t 


 are a solution of the system of equations. One can note that 1t 


 only appear in 

the terms c
1tF 


 and f

1t


. 

 
Since the description of the solid is made by a total Lagrangian approach, the inertial force is 
obtained using a constant mass matrix which allows the adoption of the Newmark 
approximations for the material velocity and acceleration vectors, see, for instance, the 
discussion in [23–25]. Those approximations for a time step t , with its usual parameters   
and  , are given by: 

 2
1 1

1

2t t t t tt t      

           

         (36) 

  1 11t t t tt t           
         (37) 

 
Substituting both previous expressions in eq. (35) we arrive at: 

 
  int c

1 1 1 121 1

f
1

,

0

t t t tt t

t t t t

g F F F
t t

T R t T


 

 



    



        
         

M D

M D D

   

   
  (38) 

in which tT


 and tR


 represents the dynamical contribution of the previous time step as: 

  2

1
1 and 1

2
t t

t t t t tT R t
t t

    
 

           

          (39) 

 
For the friction force calculation, eq. (29), the Newmark expressions are employed to 
approximate the tangential velocity Pv s  . Consequently, this force is entirely defined in a 

time step 1t   by the Lagrange multipliers, curvilinear position and current path finite 
element nodal positions. 
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Eq. (38) is clearly nonlinear for the variables  1 1,t t  


, thus, a usual first order Taylor 

expansion can be employed to obtain the Newton method as: 

    11 0 0
1 1 1

1

,
t

t t t

t

g


 



  



      
  

H



   (40) 

in which, the correction  1 1,t t   


 is obtained from the trial solution  0 0
1 1,t t  


 and the 

Hessian matrix given by: 
 1 1 1 1t t t tg      e cH H H

  (41) 

 
The Hessian related to the energy potentials due to individual finite elements is called eH  and 
its expressions can be found in [10,11]. The Hessian matrix due the constraint potential of the 
sliding connections is written as: 

 
 

 

 

c

, t

c cF

c


 

   
     

cH
0

  
    (42) 

where,  c 


 is a third order tensor that can be understood as the set of Hessian matrices 
due to each constraint equation ic , and 0  is the null matrix. 

 
It must be stressed that, however achieved a value for Ps  in the solution process, it is not 

sufficient to update cF


 and the Hessian matrix as the function ( )P Ps   is not explicitly 

written. The solution of this stage is done by adopting a least square method to find the non-
dimensional coordinate from the converged values of the path element and the sliding node as 
described in detail by [11]. Given the numerical value of the non-dimensional variable in the 
dimensionless space, the transitions among path elements is straightforward when its value 
exceeds the space domain. 
 
Examples 

 
Some examples are presented to show the capabilities of the proposed formulation regarding 
the correct description of the friction force and its structural effects. In all simulations, the 
Newmark parameters for the average acceleration in the time step were adopted, .     
and .    , which do not introduce numerical damping in the solution. 
 
Axial vibration with friction dissipation 

 
To validate the improved friction model we employ the structure depicted in Fig. 7 a) which 
consists of a bar with length 1.0mL   submitted to an initial displacement 1.0mmd   at its 
left extremity (proportionally distributed over its extension). A cylindrical joint exists at the 
same end, which is free to move over a finite element with locked degrees of freedom to 
simulate a rigid support. A vertical force 2000 NP   is applied to manifest frictional effects 
on the connection. 
 
Discretizing the bar with one two-noded (linear) frame element results the equivalent mass-
spring system shown in Fig. 7 b). Adopting a squared cross-section with 0 0 0.1mb h   and 

Young modulus 82 10 Pa  , the axial spring stiffness is 0 0 /k b h L  62 10 N/m . The 
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shear modulus is half the value of the Young modulus. The equivalent system mass 
5.066 kgm   is lumped at the joint node. Knowing all the system parameters, the mass-spring 

natural frequency is given by / 628.38rad/sn k m   , and its oscillation period is 

2 0.01sn nT     . For this reason, the adopted time increment is 410 st   . 

 

a)   b)   
 Fig. 7. Geometries of the systems: a) continuous and b) mass-spring 

 
The sliding connection displacement for the frictionless case is shown in Fig. 8 where the 
harmonic oscillation with expected period and amplitude values are reached. Also in Fig. 8, 
two cases of friction are simulated: one with dry friction only and the other that adds the 
viscous friction term. Adopted dry friction parameters are 0.05s  , 0.03k  , 0.1m/sv   

and 2  , for the viscous case 100 Ns/m  . The quasi-null speed limit was chosen as 

0v  32 10 m/s . This mass-spring system subjected only to Coulomb kinetic friction has 

analytical solution presented in [26]. In spite of the reference solution have been proposed for 
a simpler case, one can verify in a similar manner that the friction dissipation did not altered 
the system oscillation period. Moreover, the decay envelope for the dry case is liner whereas 
when adding the viscous term the envelope changed to an exponential tendency, as is 
expected from its similarity to a one degree of freedom mass-spring-damper system.  
 

 
Fig. 8. Displacement of the equivalent mass-spring system 

 
With the proposed improved friction model, the residual displacement is correctly captured as 
illustrated in Fig. 9. This displacement occurs when the spring restitution force, i.e., its 
internal force, and the friction force become balanced outside the bar undeformed 
configuration. This effect can only be properly represented since the resultant force is 
calculated in the friction model. 
 
Given the existence of residual displacements, the friction force also has a residual value as 
shown in Fig. 10. For the case with viscous friction the force value at rest is 30.93 N . For 
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this small displacement analysis, from the spring stiffness one can obtain the residual 
displacement as f /F k  21.5465 10 mm  , which is exactly the simulation value in Fig. 9. 

 

 
Fig. 9. Residual displacement for the equivalent mass-spring system 

 

 
Fig. 10. Friction force for the equivalent mass-spring system 

 
The evolution of the strain energy (S.E.) and the kinetic energy (K.E.) are also interesting 
parameters to be observed (Fig. 11). For the frictionless case the sum of those energies is 
constant throughout the analysis. We highlight that, although there is an external load applied, 
no energy is associated to it since there is no displacement in its direction. When friction is 
introduced in the system the energies sum decay with time, faster for the viscous friction case 
than to the dry one as is expected from the higher friction values obtained (Fig. 10). Due the 
existence of residual displacements, there is also a residual energy as presented in the detail of 
Fig. 11 in log scale. The rest energies sum of the viscous friction case is obtained in the 
simulation equal to 0.2392mJ . The same value can be found from the spring strain energy 

2 / 2kd , being d  the residual displacement, revealing that its residual energy value is due 
only to the bar deformation. 
 

 
Fig. 11. Energy time history of the equivalent mass-spring system  
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Increasing the spatial discretization to 10 cubic finite elements, and adopting a mass density 
of 3

0 1250 kg/m  , one achieves the same oscillation period for the mass-spring system. To 

analyse this discretized continuous system, all previous parameters were kept but the quasi-
null speed limit 2

0 3 10 m/sv    and the time step 51.25 10 st    . The time increment was 

chosen to allow a good representation of the passage of the axial displacement wave in the 

domain of each finite element. This wave has velocity 0 0 0/c b h   4000m/s . Fig. 12 

shows the displacement results for both friction cases and the frictionless one. As expected, 
the oscillation period, amplitude and decay type is similar to the equivalent system. 
 

 
Fig. 12. Sliding connection displacement for the discretized continuous system 

 
The improved friction model was able to represent the residual displacement of the sliding 
connection for this continuous system as well (Fig. 13). However, due to the continuity of the 
bar and the only source of dissipation to be due to the joint friction, the remainder of the bar 
keeps vibrating as shown for the bar mid-point displacement history in Fig. 14. The last result 
shows the existence of a stationary wave of axial displacement between the extremity nodes, 
which are at rest, one due the boundary condition and the other due the friction force. 
 

 
Fig. 13. Sliding connection residual displacement for the discretized continuous system 

 

 
Fig. 14. Bar mid-point displacement for the discretized continuous system 
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Fig. 15 depicts the friction force time history for both cases. Oscillations on the value of the 
force during the perceptible displacements agree to the expected response of the discretized 
continuous system and occur due to higher vibrations modes that appear from the temporal 
and spatial resolutions adopted to represent properly the problem. We note that the employed 
model was able to capture the friction force reduction when the sliding connection is at rest 
and, due to the residual wave, its value shows a steady-state response that balances out the 
resultant force arriving from the rest of the body. Lastly, we present the energy time history 
for the continuous case for all the cases studied (Fig. 16). The energies sum decays in the 
presence of friction similarly to the mass-spring system. 
 

a)  

b)  
Fig. 15. Friction force for the discretized continuous system: a) dry friction and b) dry and viscous friction 
 

 
Fig. 16. Energy time history for the discretized continuous system 

 
Driven mechanism with friction 

 
For a more involved application, we propose the mechanism depicted in Fig. 17 subjected to a 
bending moment pulse in its crank. The moment M  increases linearly from zero to 5 N.mk  in 
1s  and decreases to zero in another 1s  interval. To simulate a rigid crank its cross section is 
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squared cross section of 0.1m  side and Young modulus equal 108 10 Pa . For all bars, the 

mass density is 38000kg/m  and the shear modulus is half the value of the Young modulus. 
The adopted time step is 0.01s . Six cubic finite elements were used for the discretization. 

Friction parameters are: 0.5s  , 0.3k  , 0.001m/sv  , 1   and 2
0 1 10 m/sv   . No 

viscous friction in considered in the joint. 
 

 
Fig. 17. Mechanism initial configuration 

 
A prismatic joint is employed to connect the arm to a support bar. The sliding connection 
displacements are shown in Fig. 18 for cases with and without friction. The friction effect is 
perceived in the joint motion witch tends towards rest after the second rotation cycle of the 
mechanism, while the frictionless case presents free vibrations after the loading phase. 
 

 
Fig. 18. Sliding connection displacements 

 
The evolution of the curvilinear position (Fig. 19) displays similar results from the joint 
displacements. In Fig. 19 the position resting value is about 1.5 m from its arbitrary initial 
value, adopted as zero. Although expected, the curvilinear results are interesting since they 
can also be noted in the mechanism resting position as illustrated in Fig. 20 (the joint stops 
about ¼ of the arm length). The arm tip displacements (Fig. 21) also display the same 
behaviour. 
 

 
Fig. 19. Curvilinear position evolution 
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Fig. 20. Rest position (in red) of the mechanism when friction is present 

 

 
Fig. 21. Arm tip displacements 

 
Conclusions 

 
Friction dissipation was successfully introduced in sliding connections present in structures 
and mechanisms analysed by a total Lagrangian FEM formulation based on the positional 
description of the plane frame kinematic. Also, an improvement on the classic Coulomb 
friction model with Stribeck effect and viscous friction was proposed for a smoother 
description of the transition between motion and rest states of the joints. The proposed model 
was able to capture residual displacements of the body since the resultant force could be 
calculated properly and no instabilities were present in the friction force at null speed. Future 
studies intent to expand this formulation to 3D applications. 
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Abstract 
The soil dynamic properties are the main factors affecting soils’  and structural seismic 
responses. The present paper conducts a numerical analysis to study the effect of uncertainty 
of elastic modulus at layered soil site using statistic method. A layered soil model is used. The 
elastic modulus of the concerned soil layer obeys normal distribution with a variant 
coefficient of 0.2. Eight input ground motions are used to avoid the calculation contingency. 
The analysis results show that the changing of soil elastic modulus has various influences on 
structural internal forces with different input ground motions. Whereas the story drift obeys 
quite similar normal distribution to that of the elastic modulus of the concerned soil layer. 
And the performance-based seismic design of underground structure should be paid well 
attention in engineering practice. 
Keywords: Soil dynamic properties; Seismic response; Underground station; Statistic 
method. 

1. Introduction  

Currently, the soil properties, used for conduct research on geotechnical earthquake 
engineering, are usually determined through dynamic triaxial or resonant column tests [1-3]. 
However, the test results are of large-discreteness due to the complex influence factors on 
dynamic shear modulus and damping ratio. Based on earthquake damage investigation and 
site seismic response analyses, it is well known that the soil dynamic properties, including 
dynamic shear modulus and damping ratio, are the main factors affecting soils’  seismic 
responses. Thus, whether the soil dynamic properties are consistent with the actual situation 
or not has distinct influences on the reliability of analysis results [4-5]. 
 
Wen et al. [6] studied on seismic soil-structure interaction and found that the high frequency 
seismic response spectra is abundant in the hard rock layers in the Middle East of the United 
States. Dashti et al. [7] conducted centrifuge tests on underground reservoir structures to 
study the influence of backfill soil type. The test results showed that soft and hard soils have 
distinct influences on structural dynamic behavior and dynamic earth pressure. Zlatanoviä et 
al. [8] revealed that the soft clay soil, compared with the sand of medium-compactness, is of 
smaller shear stiffness and larger damping. And more earthquake energy is dissipated in soft 
soil, which leads to a weaker amplification effect of soils on seismic wave, and then results in 
smaller seismic shear force and larger seismic shear strain. Thus, the structure buried in soft 
soils suffers smaller axial force and larger shear force and bending moment than that in 
medium-compactness sands. However, the above-mentioned studies, based on the one-layer 
isotropic soil model, mainly focused on the effect of changing soil types, and the uncertainty 
of soil dynamic properties have not been considered. 
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To study the uncertainty of soil dynamic properties, some researchers [9-11] used the 
one-dimensional equivalent linearization method by adopting a specific variable coefficient to 
simplify the soil models. Obviously, this method has certain limitations, such as the virtual 
resonance effect [12], which is an inherent error. At layered sites, considering the uncertainty 
of soil properties, the calculations are complicated because different kinds of soil properties 
increase or decrease in different soil layers [13]. An alternative method based on the random 
vibration theory has been used to simulate dynamic soil properties [14-15]. However, this 
method is complex and unsuitable for widespread engineering applications in evaluating the 
seismic performances of underground structures. 
 
The present paper assumes that the elastic modulus of the concerned soil layer obeys the 
normal distribution with the variation coefficient of 0.2, and this hypothesis is well adopted in 
previous studies [16-19]. Taking a typical underground station in Shanghai as an engineering 
reference, the influences of uncertainty of elastic modulus at layered soil site on structural 
seismic responses are studied by using the statistic method. To avoid the calculation 
contingency of using only one input ground motion, eight input ground motions are used in 
the present paper. 

2. Finite element modeling 

2.1 Numerical model 

The finite element code ABAQUS [20] is used to perform the full-time history analyses of 
underground structure with surrounding soils. Fig. 1 shows the cross-section dimension of the 
station and its central column. The numerical analyses are performed under plane strain 
condition. Fig. 2 depicts the analytical model with the area of 500 m × 60.55 m. When 
considering the boundary effect, as recommended by the Code for Seismic Design of 
Buildings [21], the width of each side of soil around the structure should be at least triple of 
the width of the structure. In the present model, the width of each side of soil is 250 m. 
Further, the infinite element boundary is used as the side boundary. The infinite element 
(CINPE4) provided by ABAQUS is based on the static analysis [22] and the dynamic 
response analysis [23], and it can simulate no reflection by setting damping on the boundary. 
The bottom boundary is placed 45.28 m from the bottom plate of the structure, on which the 
X and Y displacements are fixed before the ground motion is input. 
 

2.2 Constitutive models and material properties 

Quadratic plane strain elements (CPE4R) and beam elements (B21) are used to simulate the 
soil and the station structure, respectively (Fig. 2). Soil behavior is modelled by 
Mohr-Coulomb elasto-plastic model, and the specific properties are shown in Table 1. There 
are three soil layers, which are artificial fill, silty clay and gray clay from top to bottom. And 
the station structure is cased in the silty clay. 
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Fig. 1. Cross-section dimension of the station and central column 

 

Fig. 2. Numerical analytical model 

 
Table 1. Soil properties of station site 

Layer 
num. 

Soil type Depth 
(m) 

Unit 
weight 
(kN/m3) 

Elastic 
modulus 
(MPa) 

Poisson’s 
ratio υ 

Internal 
friction 
angle 
(°) 

Cohesion 
(kPa) 

1 
Artificial 
fill 

0-1.32 19.00 20.34 0.32 15.0 20.0 

2 Silty clay 1.32-19.8 17.72 13.32 0.34 27.7 13.0 

3 
Gray 
clay 

19.8-60.55 18.10 24.13 0.32 30.3 7.0 

 
The concrete of Grade C45 and Grade C35 [24] are used to build the central columns and the 
other parts. For concrete C45, its elastic modulus, Poisson’s ratio, tensile, and compression 
strength are 33.5 GPa, 0.2, 2.51 MPa, and 29.6 MPa, respectively. And for concrete C35, its 
parameters are 31.5 GPa, 0.2, 2.20 MPa, and 23.4 MPa, respectively. To better simulate the 
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dynamic response of the elastic-plastic stage, the concrete damaged plasticity model is used. 
And the detailed information of this model and its calculation of damage parameters have 
been stated in the previous studies [25-26]. Since the longitudinal spacing between columns is 
8 m in practical engineering, the reduced stiffness is adopted to consider the spacing [27]. 
 
Bilinear isotropic model (idealized elastic-plastic model), following the kinematic hardening 
rule, is selected to simulate the rebar. Fig. 1(b) shows the reinforcement details of the central 
column. Rebar HRB400 [24] is used in the present structure with the elastic modulus and 
yield strength of 200 GPa and 400GPa, respectively. 
 
To simplify the analyses, no-slip condition is assumed for the soil-structure interaction. 
Although the interface behavior is quite crucial for the dynamic response of underground 
structures [28-29], this assumption is quite common in engineering practice, as it can be 
treated as the upper limit for the developed shear stresses around the tunnel [30]. 

3. Calculation cases and input ground motions 

3.1 Calculation cases 

Layered homogeneous soil model is adopted in the present paper. The soil properties of 
Layers 1 and 3 are set as listed in Table 1. There are five calculation cases classified by the 
elastic modulus of Layer 2, in which the station structure is cased. Table 2 depicts these five 
calculation cases with details of the elastic modulus of Layer 2. Based on the practical 
experience and some previous studies [16-19], the elastic modulus of Layer 2 obeys the 
normal distribution, and the variation coefficient of the mean elastic modulus is set as 0.2. 
The standard deviation is the product of the mean elastic modulus and the variation 
coefficient. 
 

Table 2. Calculation cases and corresponding elastic modulus of Layer 2 

Case number Standard deviation (MPa) * Elastic modulus (MPa) 

Case1 

2.67 (σ) 

7.99 (μ-2σ) 
Case2 10.66 (μ-σ) 
Case3 13.32 (μ) 
Case4 15.98 (μ+σ) 
Case5 18.65 (μ+2σ) 

*Standard deviation (σ) = Variation coefficient × Mean elastic modulus (μ) 
 

3.2 Input ground motions 

There are eight ground motions used as base excitation. The time history data of the input 
ground motions are from the Pacific Earthquake Engineering Research Center (PEER) in the 
United States. The detailed information of input ground motions is shown in Table 3. The 
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predominant frequency of the input ground motions can be classified into three categories as 
low-, medium-, and high-frequency. Due to space limitation, only two acceleration time 
histories of Landers and Hector Mine are depicted as in Fig. 3. The peak ground acceleration 
of the input ground motions is set as 0.1 g. According to the Code for Seismic Design of 
Buildings [21], a PGA of 0.1 g would correspond to a probability of exceedance of 10% in 50 
years for the underground station. 
 

Table 3. Information of input ground motions 

Ground 
motion 

Earthquake Date Recording 
stations 

Direction Predominant 
period (s) 

Duration 
(s) 

EQ-1 Landers 28 Jun 92 NO. 11628 90 0.18 134.96 
EQ-2 Chichi 20 Sep 99 CHY042 NS 0.22 89.995 
EQ-3 Chichi 22 Sep 99 CHY035 EW 0.32 89.995 
EQ-4 SMART1 14 Nov 86 SMART1012 EW 0.34 40 
EQ-5 Chichi 25 Sep 99 CHY027 EW 0.36 89.995 
EQ-6 Northridge 17 Jan 94 NO.14560 90 0.42 60 
EQ-7 Hector 

Mine 
16 Oct 99 NO.11628 90 0.42 100 

EQ-8 Chichi 20 Sep 99 CHY042 EW 0.8 89.995 
 

Fig. 3. Time histories of input ground motions, such as (a) Landers; (b) Hector Mine 

4. Results and discussion 

In engineering practice, the primary indexes, used to conduct seismic performance evaluation 
on underground stations, include the peak shear force and bending moment of columns and 
story drift [27, 31]. Tables 4, 5 and 6 show the peak shear force and bending moment of 
columns and story drift, respectively. And the corresponding numerical characteristics, such 
as mean value and variation coefficient are also calculated as shown in Tables 4-6. Due to 
space limitation, only the seismic responses of upper floor are shown herein since the 
maximum values basically occurs in this floor. And it should be noted that the findings of 
dynamic behavior of the lower floor are the same as the upper one. 
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Seen from Tables 4 and 5, it can be easy to find that the changing of soil elastic modulus has 
various influences on structural internal forces with different input ground motions. For 
example, in condition EQ-3, the maximum differentials of peak shear force and bending 
moment of upper column can reach 56% and 57%, respectively. In conditions EQ-4 – EQ-8, 
the variation coefficient of internal force ranges within 0.01-0.06, which implies the changing 
of soil elastic modulus barely influences the internal force. And the detailed explanations will 
be illustrated in the following. 
 

Table 4. Peak shear force of upper column 

Ground 
motion 

Peak shear force of upper column 
(kN) 

Case1 Case2 Case3 Caes4 Case5 
Mean 
value 

Variation 
coefficient* 

EQ-1 567.8 546.6 491.9 651.6 517.8 555.1 0.11 
EQ-2 862.9 1060.0 1044.0 848.8 836.2 930.4 0.12 
EQ-3 305.2 344.2 374.2 428.8 475.5 385.6 0.17 
EQ-4 1136.5 1121.2 1148.2 1146.8 1146.8 1139.9 0.01 
EQ-5 1143.0 1128.2 1128.2 1159.0 1103.4 1132.4 0.02 
EQ-6 1058.9 1050.2 1078.7 1102.4 1060.3 1070.1 0.02 
EQ-7 924.14 1095.3 1025.6 1053.6 1068.9 1033.5 0.06 
EQ-8 1085.6 1059.0 1055.9 1078.1 1052.4 1066.9 0.01 

*The variation coefficient is a dimensionless value (the same below). 
 

Table 5. Peak bending moment of upper column 

Ground 
motion 

Peak bending moment of upper column 
(kN•m) 

Case1 Case2 Case3 Caes4 Case5 
Mean 
value 

Variation 
coefficient 

EQ-1 1082.7 1046.2 941.5 1226.6 989.9 1057.4 0.10 
EQ-2 1648.3 2047.1 1981.8 1629.8 1620.0 1785.4 0.12 
EQ-3 577.8 656.6 711.8 821.6 908.6 735.3 0.18 
EQ-4 2044.4 2014.5 2086.5 2089.9 2110.2 2069.1 0.02 
EQ-5 2141.1 2160.3 2153.3 2106.4 2140.6 2140.4 0.01 
EQ-6 2039.4 2026.4 2055.7 2120.2 2047.5 2057.8 0.02 
EQ-7 1759.2 2022.4 1954.3 2023.8 2031.2 1958.2 0.06 
EQ-8 2021.7 2029.8 2011.8 2062.5 2004.0 2026.0 0.01 

 
Table 6 shows the peak upper story drift and the corresponding numerical characteristics. 
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Seen from Table 6, it can be concluded that changing the elastic modulus has obvious 
influence on story drift. And the variation coefficient is basically about 0.2 under all kinds of 
input excitations, which is the variation coefficient of the elastic modulus of the concerned 
soil layer. This phenomenon can be explained through Fig. 4. As illustrated in Fig. 4, the 
deformation of the surrounding soil, rather than the vibration characteristics of the structure, 
dominates the seismic response of an underground structure embedded in soft soils. Thus, the 
story drift obeys quite similar normal distribution to that of the elastic modulus of the 
concerned soil layer, which the structure is cased in. 
 

Table 6. Peak upper story drift 

Ground 
motion 

Peak upper story drift 
(‰) 

Case1 Case2 Case3 Caes4 Case5 
Mean 
value 

Variation 
coefficient 

EQ-1 2.14 1.92 1.42 2.06 1.25 1.76 0.23 
EQ-2 2.54 3.94 3.47 2.72 2.53 3.04 0.21 
EQ-3 1.09 1.31 1.61 1.50 1.20 1.34 0.16 
EQ-4 8.66 7.29 6.24 5.66 4.74 6.52 0.23 
EQ-5 18.47 19.16 14.09 9.05 7.40 13.64 0.39 
EQ-6 5.29 3.52 5.19 3.53 3.16 4.14 0.25 
EQ-7 3.48 4.94 4.40 4.57 2.94 4.07 0.20 
EQ-8 6.34 6.59 5.04 2.89 3.29 4.83 0.35 

Note: The upper limit value recommended by Code is 4‰ [21]. 
 

Fig. 4. Racking deformation mode of underground structure 

According to the Code [21], the upper limit value recommended is 4‰. As shown in Table 6, 
the drift story could exceed the upper limit under several cases, when using input ground 
motions like EQ-4 – EQ-8. And under these excitations, the values of story drift vary 
significantly (see Table 6), whereas the values of internal forces are very close (see Tables 4 
and 5). It implies that the structure is in the plastic state. And this could explain that the 
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internal forces under these conditions barely change with the changing of soil elastic modulus, 
whose variation coefficient of internal force ranges within 0.01-0.06. From the 
above-discussion, it also can be concluded that the index, like internal forces, cannot 
comprehensively reflect the dynamic behavior state and seismic performance of underground 
structures when entering severe plastic stage. Thus, the performance-based seismic design of 
underground structure should be paid well attention in engineering practice. 

5. Conclusion 

In this paper, a numerical study is conducted to explore the influences of uncertainty of elastic 
modulus at layered soil site on structural seismic responses through the statistic method. And 
there are eight input ground motions for avoiding the calculation contingency. Some 
conclusions can be drawn as follows: 
1. The changing of soil elastic modulus has various influences on structural internal forces 

with different input ground motions. Under EQ-4 – EQ-8 conditions, the changing of soil 
elastic modulus has little influences on the internal force since the structure enters plastic 
stage.  

2. The story drift obeys quite similar normal distribution to that of the elastic modulus of the 
concerned soil layer, which the structure is cased in. Because The deformation of the 
surrounding soil dominates the seismic response of an underground structure embedded 
in soft soils. 

3. Internal forces cannot comprehensively reflect the dynamic behavior state and seismic 
performance of underground structures when entering severe plastic stage. The 
performance-based seismic design of underground structure should be paid well attention 
in engineering practice. 
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1. Introduction 

Void slab has an advantage of reducing weight and increasing stiffness. In 1970s, "structural 
design of void slab"[1] was published by prof. Gengo Matsui, also well known as a famous 
structural engineer. In the published book, void slab that has long circular steel pipes etc. is 
treated as one way structure and is recommended to design like typical beams. For that reason, 
circular voids were arranged in orthogonal direction against slab boundaries and no stresses are 
thought to occur at supported beams whose directions are parallel to the void. So the author 
indicated that the stiffness of slab in orthogonal direction of voids [2] and clarified elastic 
characteristics occurred in such structures [3]. In these papers, such structures which have 
cylindrical steel pipes or other materials in one direction can be estimated as an orthotropic 
plate, and the bending stiffness and the stress concentration, which is clarified to be related to 
the ratio of the diameter to the thickness of the slab, are presented. 
 

  
 (a) configuration 

   
 (b) bending in void direction (c) bending in the orthogonal direction 

Figure 1.  Applicable void slab and stress distribution in each direction 
 
But the distribution of stress in the paper was calculated on the assumption of the linearly elastic 
isotropic material. As shown in fig. 1 (b), distribution of normal stress in void direction can be 
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formulated based on Navier's hypothesis, but that in the orthogonal direction is not straight as 
shown in fig. 1 (c). Figure 2 shows the distribution of normal stress in the orthogonal direction 
on upper and lower section of circular void calculated by BEM in previous paper. And the 
author had shown the scaling factor  and  to find the stresses on the surface of slab and the 
upper edge of the void.  
As these results are obtained under the assumption that the slab has no steel bar and concrete 
has tensile strength, there exists stress distribution in tensile side of the concrete. Consequently, 
when finding amount of reinforcing bar from these results, resultant stress in the tensile side 
would be used. 
On the other hand, amount of reinforcing bar in typical RC beam is formulated on the 
assumption that concrete has no tensile strength and Navier's hypothesis [4]. But the hypothesis 
cannot be established in void slab as shown in fig. 3, so the formulation to find the amount of 
reinforcing bar in the same method is difficult. 
Accordingly, in this paper, amount of reinforcing bar for void slab is numerically calculated by 
FE analysis. 
 

 
Figure 2. Normal stress distribution on upper and lower section of circular void 

    
Figure 3. Scaling factor a and b to find the stresses on edge of void and on surface of slab 
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2. Void Slab configuration and Distribution of normal stress 

Circular void slab treated in this paper is shown in fig. 1 (a). Cylindrical steel pipes or other 
materials are embedded in the center part of cross section in one direction. The distance between 
steel pipes is same as the thickness of the slab and the diameter of the pipes is equal to the 
thickness minus 120 mm, which comes from cover depth of reinforcing bars and the pipes. 
Figure 4 shows the distribution of normal stress in concrete and tension force in reinforcing 
bars in typical RC beam. asc and ast are area of compression reinforcement and that of tension 
reinforcement, and dc is distance between extreme compression fiber and center of compression 
reinforcement. By using these variables in this figure, allowable bending moment for RC beams 
is formulated in AIJ standard for Structural Calculation of Reinforced Concrete Structures in 
Japan. Assumption of the neutral axis position xn gives the maximum stresses c of compressive 
concrete and st of tensile steel bar. And the equations of allowable bending moment are 
obtained by the maximum stress reaching the allowable strength. 
 

    
 Section  Stress Distribution Action point of resultant force 

Figure 4.  RC beam [4] 
 

   
 Stress Distribution Action point of resultant force 

Figure 5.  Void slab 
 
By considering in the same manner, the stress distribution and resultant forces around the 
circular hole would be illustrated as in fig. 5. The maximum compressive stress in the concrete 
occurs at the surface of the slab or at the top of circular void (c1 or c2). 
Similarly in formulation for RC beam, finding resultant force Cc and its acting position from 
distribution of compressive concrete stress, and the distance j between acting position of 
composite stress of compressive concrete stress Cc and compressive steel stress Cs and the 
center of tensile reinforcing bar gives the following two bending moment equations. 
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Considering cover depth of concrete, we assume that d = t - 30 [mm] and dc = 30[mm]. Bending 
moments in which stress reaches its allowable value can be written in 

 c
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where fc and ft are allowable compressive stress of concrete and tensile stress of steel bar. 
Dividing them by bd 2 gives the coefficients C1~ C3 which can be similarly seen in AIJ standard 
for RC beam. 
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As the distribution of stress is dependent on the ratio of the diameter to the thickness of the slab, 
we need to calculate amount of reinforcing bar for each thickness individually. The thickness 
of slab is to be set from 200 to 500 mm at 50 mm intervals. Tension reinforcement ratio pt (= 
section area of tension reinforcement / that of slab) is to be set from 0.2 to 2.0 % at 0.2 % 
intervals and double reinforcement ratio  (= section area of compressive reinforcements / that 
of tension reinforcements) is to be set from 0.0 to 1.0 at 0.2 intervals. 
 

3. FE models 

Figure 6 shows analytical model to calculate distribution of normal stress of concrete and 
tension and compression stresses in reinforcing bars. Simply supported beam which has seven 
circular holes is loaded with constant load. Firstly, to confirm that the same distributions of 
normal stress indicated in fig. 2 in a section can be obtained, finely divided 2D model consists 
only of concrete is used. Numerical models are built by using plane elements. After that, by 
appending beam elements for reinforcing bars, RC models are formed. 
 

 
Figure 6. Analytical model and section of estimating stress 

 
In the beginning, analytical models as shown in fig. 7 whose concrete elements around the 
estimated section are deleted were calculated to confirm the stress distribution. But the 
distributions are totally different by changing the nodal positions that connect the tension 
reinforcing elements and the concrete elements, and the models turn to be insufficient. 
Therefore, analytical models as shown in fig. 8 whose all concrete elements in lower part of 

Estimated section of stresses
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beam are deleted and stiff elements are appended to let tension reinforcing bars be able to be 
tensioned in adequate distance. 
 

 
Figure 7. 1st FE model 

 
Figure 8. Analytical FE model 

4. Results and conclusions 

Normal stress distribution and nomograph to find allowable bending moment are illustrated in 
figures 9 ~ 11 in each thickness of slab. Left side of figs. is normal stress distribution and right 
one is the nomograph. Plus value of normal stresses means tension stresses and tension stresses 
are occur near the void in the lower tension reinforcement ratio pt. Allowable bending moment 
can be calculated as multiplication of minimum value of C1~C3 and bd2. C1s illustrated in solid 
line show the values at which the stress c1 in fig. 3 reaches the allowable strength and C2s in 
dashed line show those at which the stress c2 reaches the allowable strength. And C3 in chain 
line shows the value at which the stress st of reinforcing bar reaches it. As the thickness of slab 
becomes thicker, stress c2 at top of circular hole becomes bigger than c1 at on the surface of 
slab. And this phenomenon notably appears in higher pt value. 
The problem is that tension stresses occur in concrete in some cases. To avoid this fact, we need 
to use FEM model in which material nonlinearity can be applied, or to use some technics to 
delete concrete elements that show tension stress. 
 

      
t = 200 

Figure 9.  Allowable bending moment for long period load(Fc＝24[N/mm2], n=9.04) 
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t = 250 

      
t = 300 

      
t = 350 

      
t = 400 

Figure 10.  Allowable bending moment for long period load(Fc＝24[N/mm2], n=9.04) 

-150

-100

-50

0

50

100

S
tr

e
s
s
e

s
[k

N
/m

2
]

6050403020100

Position from upper surface [mm]

t = 250mm

             pt[%]                 
0.2  1.2     0.0
0.4  1.4     0.2
0.6  1.6     0.4
0.8  1.8     0.6
1.0  2.0     0.8

                                1.0

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

C
[N

/m
m

2
]

2.01.51.00.5

pt[%]

t = 250mm

 = 0.0

0.2
0.4
0.6
0.8
1.0

C1

C3

      
0.0 0.6
0.2 0.8
0.4 1.0

-100

-50

0

50

S
tr

e
s
s
e

s
[k

N
/m

2
]

6050403020100

Position from upper surface [mm]

t = 300mm

             pt[%]                 
0.2  1.2     0.0
0.4  1.4     0.2
0.6  1.6     0.4
0.8  1.8     0.6
1.0  2.0     0.8

                                1.0

2.5

2.0

1.5

1.0

0.5

C
[N

/m
m

2
]

2.01.51.00.5

pt[%]

t = 300mm

0.0
0.2
0.4
0.6
0.8

1.0

 = 0.0

0.2

0.4

0.6

0.81.0

C1

C2

C3

      
0.0 0.6
0.2 0.8
0.4 1.0

-100

-50

0

50

S
tr

e
s
s
e

s
[k

N
/m

2
]

6050403020100

Position from upper surface [mm]

t = 350mm

             pt[%]                 
0.2  1.2     0.0
0.4  1.4     0.2
0.6  1.6     0.4
0.8  1.8     0.6
1.0  2.0     0.8

                                1.0

2.5

2.0

1.5

1.0

0.5

C
[N

/m
m

2
]

2.01.51.00.5

pt[%]

t = 350mm

0.0

0.2
0.4

0.6
0.8

1.0

 = 0.0

0.2

0.4

0.6

0.8

1.0

C1

C2C3

-100

-80

-60

-40

-20

0

20

S
tr

e
s
s
e

s
[k

N
/m

2
]

6050403020100

Position from upper surface [mm]

t = 400mm

             pt[%]                 
0.2  1.2     0.0
0.4  1.4     0.2
0.6  1.6     0.4
0.8  1.8     0.6
1.0  2.0     0.8

                                1.0

2.5

2.0

1.5

1.0

0.5

C
[N

/m
m

2
]

2.01.51.00.5

pt[%]

t = 400mm

0.0

0.2

0.4
0.6

0.81.0

 = 0.0

0.2

0.4

0.6

0.8

1.0

C1

C2

C3

ICCM2018, 6th-10th August 2018, Rome, Italy

253



      
t = 450 

      
t = 500 

Figure 11.  Allowable bending moment for long period load(Fc＝24[N/mm2], n=9.04) 
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Abstract 

In the past decades, tunnel fire safety has been highly concerned since tunnels were widely 

installed and utilized as transportation links for people and cargos worldwide. In order to 

achieve a fire safety purpose, smoke extraction system should be well designed and built to 

extract or control the smoke effectively. The objective of this paper is to investigate the heat 

and smoke flow behavior based on CFD simulation in a longitudinal ventilated tunnel, Tunel 

do Monte da Guia (TMG tunnel) in Macau SAR, China. The dimension and the inclination 

angle of the existing roadway tunnel are of 285m (L) x 10.5m (W) x 7m (H) and 2.45˚, 

representatively. In this study, a single fire source caused by a vehicle is considered. The smoke 

flow in the tunnel model is simulated with the CFD program, FDS. In results, the critical 

velocities are obtained with the tunnel models arranged in the horizontal and inclined positions. 

Moreover, the smoke temperature is also analyzed in this study.  

Keywords: Smoke Flow, Simulation, Longitudinal Ventilation, Tunnel 

 

Introduction 

Tunnel ventilation is an important part in a modern tunnel. In the normal traffic condition, the 

ventilation can keep an acceptable level of contaminants produced by the vehicles. During a 

fire scenario, the emergency ventilation can remove or control the smoke in order to ensure the 

life and fire safety in tunnel. Regarding tunnel ventilation, natural ventilation or mechanical 

ventilation can be selected to use. Natural ventilation is mainly effective for a short and low 

traffic volume tunnel. For a long and high traffic volume tunnel, mechanical ventilation system 

is required. Mechanical ventilation is basically classified into three types: full transverse 

ventilation, semi-transverse ventilation and longitudinal ventilation. Longitudinal ventilation 

system is the most effective in cost in comparison with the full transverse and semi-transverse 

systems as the longitudinal system does not require additional space for ducts and requires 

lower maintenance cost [1]. However, longitudinal ventilation is suitable for a tunnel with 

unidirectional traffic. 

  

In a longitudinal ventilated tunnel, jet fans are usually directly installed along the longitudinal 

direction. When the jet fans are activated in the emergency mode, the ventilated air forced the 

smoke flow from upstream to downstream direction to make a safe route for road passengers to 

evacuate and fireman to fight the fire. However, if the supply capacity of the ventilation system 

is not enough or the system is wrongly designed, the smoke will spread to the upstream direction. 

In such case, people inside tunnel is difficult to escape due to the blockage of evacuation route 
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and inhalation of excess smoke and toxic gases. The upstream movement of hot smoke and 

gases is so called the “Back-layering” phenomenon. To prevent the back-layering phenomenon, 

the minimum ventilation velocity, so-called the critical velocity, provided by the ventilation 

system is required. 

 

Experiments for the smoke flow in tunnels can be found in the open literature [2-5]. Based on 

the experimental studies, the critical velocity can be calculated by the empirical equations in 

terms of the heat release rate and tunnel geometry. Wu and Bakar [2] developed the equations, 

Eqs. (1-4), which utilized the hydraulic tunnel height �̅� to replace the tunnel height as the 

experimental results showed that the tunnel temperature decreases when the tunnel width 

increases:  

 

V" =
𝑉

√𝑔�̅�
         (1)  

Q" =
𝑄

𝜌0𝐶𝑃𝑇0√𝑔�̅�
5
        (2) 

V" = 0.4[0.20]−
1

3[𝑄"]
1

3, for Q” ≤ 0.20      (3) 

 

V" = 0.4, for Q” > 0.20        (4) 

 

where V is the ventilation velocity, ms-1; Q is the fire convective heat release rate, kW; V" is the 

dimensionless critical velocity based on hydraulic tunnel height; Q"  is dimensionless heat 

release rate based on hydraulic tunnel height; g is gravitational force, ms-2;  𝜌0 is ambient air 

density, kgm-3; 𝐶𝑃 is specific heat capacity of air, kJ kg-1 K-1; 𝑇0 is ambient temperature, °C; 

 

Lee and Ryou [3] introduced the effect of aspect ratio and tunnel, As, into the correlations 

proposed by Wu and Baker [2]. The new equations are shown as Eqs. (5-7): 

 

V" =
𝑉

𝐴𝑆
0.2√𝑔�̅�

         (5) 

Q" =
𝑄

𝜌0𝐶𝑃𝑇0√𝐴𝑆𝑔�̅�5
        (6) 

V" = 0.73[𝑄"]
1

3, for Q” ≤ 0.20      (7) 

 

where As is the aspect ratio; 

 

Kennedy and his coworkers [6] proposed the equations, Eqs. (8) and (9) to calculate the critical 

velocity and average temperature of fire gases, which assumes Froude Number of 4.5. These 

equations were also quoted in NFPA 502 [7]. 

𝑉𝐶 = 𝐾1𝐾𝑔 (
𝑔∙𝐻∙𝑄

𝜌∙𝐶𝑃∙𝐴∙𝑇𝑓
)
1/3

       (8) 

𝑇𝑓 =
𝑄

𝜌∙𝐶𝑃∙𝐴∙𝑉𝐶
+ 𝑇         (9) 

 

where 𝑉𝐶 is the critical velocity, m/s;  𝐾1 is 0.606 which is the Froude number factor (𝐹𝑟−1/3); 

𝐾𝑔 is the grade factor; g is gravitational force, ms-2; H is height of tunnel, m; Q is heat release 

rate, kW; 𝜌 is average density of approach (upstream air), kgm-3; 𝐶𝑃 is specific heat capacity of 

air, kJ kg-1 K-1; 𝐴 is area perpendicular to the flow, m2; 𝑇𝑓 is average temperature of the fire site 

gases, K; 𝑇 is temperature of the approach air, K; 
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Nowadays, with the help of the powerful computer and the CFD simulation [2, 8- 9], the smoke 

flow and heat transfer characteristics in a tunnel fire can be clearly observed and analyzed. 

Regarding the simulation tool, Fire Dynamic Simulator (FDS) is commonly used for various 
types of fire engineering problems. Fire Dynamics Simulation (FDS), which is developed by 

National Institute of Standards and Technology (NIST), has been verified as a reliable tool by 

a number of tests and experiments in the references [8, 10]. Result of FDS can be displayed in 

the Smokeview program for analysis of the smoke and heat behavior of tunnel fire.  

 

In this study, FDS is applied to simulate the smoke flow in the tunnel located in Macau. The 

main objectives of this paper are listed below: 

 

 Build an accurate tunnel model based on the existing tunnel in Macau - Tunel do Monte 

da Guia, hereafter called TMG tunnel, with the FDS; 

 Analysis of smoke flow and determine the critical velocity with the tunnel arranged in a 

horizontal position; 

 Compare the critical velocity obtained from the tunnel models in the horizontal position 

and in an inclination position; 

 

Description of Tunnel Model 

In Macau peninsula, see Figure 1, Tunel do Monte da Guia (TMG tunnel) has been built under 

the Guia Hill since 1990 and the longitudinal ventilation system has operated for than 28 years. 

TMG tunnel is built to connect the areas of central residential and outer harbour. Usually, the 

passenger cars and the medium-sized vans pass through the tunnel. The traffic volume is high 

daily, especially, during the rush hours. Table 1 lists the geometry of the tunnel.  

 

 
 

Figure 1. Tunel do Monte da Guia (TMG Tunnel) 

 

Table 1. Parameters of TMG Tunnel 

Parameters Description 

No. of lane and direction Two lanes, bi-directional 

Dimension 285m (L) x 10.5m (W) x 7.2m (H) 

Height-to-width aspect ratio 0.69 

Tilt angle 2.45 ˚ 

 

Figure 2 shows the TMG Tunnel model developed for the FDS simulation. Total length of the 

TMG Tunnel model is 285 m. In the model, a cubic fire source is arranged at 60 meters after 

the tunnel inlet and the constant heat release rate (HRR) is set as 14.8MW which is equal to a 
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van fire [11]. Only the top surface of the cube is set as a ‘fire’ surface. As seen in the figure, 

seven horizontal thermocouples are set 0.4 m under the ceiling along the downstream direction 

with a 20 m spacing. To measure the vertical temperature from the ground to the ceiling, eleven 

vertical thermocouples, with 0.5m spacing vertically, are set at 60 meters downstream from 

center of fire source (see Figure 3). All the locations of the horizontal and vertical temperature 

sensors and the fire source of the full scale model is referred to [3]. 

 

 
Figure 2. TMG Tunnel Simulation Model 

 

 
Figure 3. Vertical temperature sensors arranged in the model (Section A-A’)  

 

In this study, the electromechanical facilities such as the jet fans are neglected. The ventilation 

flow is directed obtained from the tunnel inlet. In Table 2, it shows the initial and boundary 

conditions of the model used in FDS. After a sensitivity analysis of mesh size, the mesh size of 

0.4 meters is determined. The total number of meshes of the model is 411,800 and the total 

simulation time is set as 200 seconds.   

 

 

Table 2. Initial and Boundary Conditions of FDS Model 

Initial Conditions 

Ambient Temperature (T0) 20 ˚C 

Pressure (P0) 101.325 kPa (1atm) 

Tunnel Wall Inert wall, 0.1m in thickness 
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Fire Source 

Heat Release Rate 14.8 MW 

Dimension 2.8m (L) x 2.8m (W) x 2.8m (H) 

HRRPUA 1888 kW/m2 

Location Refer to Figure 2 

Burning material Polyurethane 

Burning Time Fire happens at t = 0s;  

Burning time = Total Simulation time  

Boundary Condition 

Inlet Tinlet = T0;  

Pinlet is varied due to ventilation velocity; 

Outlet  Toutlet = T0;  

Poutlet = P0; 

Wall and Floor TW = TF = T0 

Ventilation Velocity u = ucritical; v = 0; w = 0; 

 

Results and Discussion 

In order to verify the setting of FDS simulation, a reduced scale tunnel model (1040cm (L) x 

50cm (W) x 33.3cm (H)) with a height-to-width aspect ratio of 0.67, which is similar to the 

ratio of 0.69 of the current TMG tunnel simulation is established with the reference of Lee and 

Ryou [3]. For the reduced scale model, the fire source is reduced from 14.8 MW (for TMG full 

scale model) to 8.27 kW with the reference to the scaling law [12]. The location of the horizontal 

and vertical temperature sensors and the fire source of the reduced model is also referred to [3]. 

After the simulation, as shown in Figure 4, the simulated critical velocity is of 0.59 m/s is almost 

matched with the experimental critical velocity of 0.58 m/s. Therefore, the same FDS settings 

for the reduced scale model is applied to the full scale TMG tunnel.  

 

 
Figure 4. Simulation of the reduced scale tunnel 

 

For the full scale TMG tunnel, a horizontal case is executed first because it is used as a base 

case to analyze the effect of slope on the smoke flow and critical velocity in the tunnel. Figure 

5 shows the temperature contour plot for the TMG tunnel arranged in horizontal position. From 

the figure (a) – (d), it can be observed that the hot gases or smoke rise from the fire source to 

the ceiling. After that, the smoke layer becomes thicker and spread to the both ends of the tunnel. 

To avoid the back-layering phenomena, as shown in the figure (e), the critical ventilation 

velocity of 3 m/s can force all the gases to the downstream direction and solve the back-layering 

problem.  

 

(a) Without ventilation velocity 

(b) Critical ventilation velocity (0.59m/s) 
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Figure 5. Temperature contour plot for the horizontal TMG Tunnel 

 

Figure 6 shows the temperature contour plot for the TMG tunnel with a upward tilt angle of 

2.45°. From the figure (a) – (d), it can be observed that the hot gases or smoke rise from the fire 

source to the ceiling. After that, the smoke spread to the both ends of the tunnel. However, it 

seems smoke is faster to spread to the downstream due to a buoyant effect. To avoid the back-

layering phenomena, as shown in the figure (e), the critical ventilation velocity of 2.9 m/s can 

force all the gases to the downstream direction. When compared with a horizontal tunnel, less 

critical ventilation velocity for inclined tunnel is sufficient to solve the back-layering problem.  

 

 
 

Figure 6. Temperature Contour Plot of the TMG Tunnel (with a tilt angle of 2.45 °) 

 

(b) Without ventilation, 30s after fire 

(d) Without ventilation (200s after, Zoom-in view) 

(e) With ventilation (200s after, Vcritical = 3m/s) 

(b) Without ventilation, 30s after fire 

 

(a) Without ventilation, 10s after fire 

(c) Without ventilation, 50s after fire 

(d) Without ventilation (200s after, Zoom-in view) 

(e) With ventilation (200s after, Vcritical = 2.9m/s) 

(a) Without ventilation, 10s after fire 

(c) Without ventilation, 50s after fire 
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For both of the horizontal and inclined TMG tunnel models, the critical velocities calculated by 

the FDS simulation are also compared with those predicted by the correlations, Eqs. (1-9) in 

Table 3. From the table, it is observed that the critical velocities calculated by Wu and Bakar 

[2] and Lee and Ryou [3] are equal to or larger than 2.5 m/s. Those values are more comparable 

to the values obtained from the current simulation. As the curved ceiling is used in the current 

simulation, it is reasonable that there is a discrepancy between the simulation critical velocity 

values and the values predicted by those correlations. However, the critical velocity is likely 

under estimated by NFPA 502 [7]. That is only 2 m/s required for the TMG tunnel. As a safety 

concern, the higher ventilation velocities calculated by the simulation or the correlations [2-3] 

are recommended for the practical smoke management design.  

Table 3: Comparison of Critical Velocity of the Simulation and Calculated by Correlations  

Model 

FDS Critical 

Velocity 

(m/s) 

Critical Velocity Calculated by the Correlations (m/s) 

Wu and Bakar [2] Lee and Ryou [3] NFPA 502 [7]  

Horizontal 

TMG 
3 2.5 (19% deviation) 2.7 (13% deviation) 2.0 (50% deviation)  

Inclined 

TMG 
2.9 2.5 (15% deviation) 2.7 (9% deviation) 2.0 (45% deviation)  

 

Figure  compares the temperature measured from the eleven vertical thermocouples placed at 

60 meters downstream from center of fire source for the horizontal tunnel and the inclined 

tunnel without ventilation velocity. From the figure, the hot gas layer is maintained to the height 

of around 3 meters away from the ground regardless of the horizontal or inclined tunnel is 

observed. It is also observed for both cases that the temperature trends are basically the same 

until the height over 6 meters. Higher temperature is observed in the inclined tunnel. Perhaps, 

more hot gases or smoke moves to the downstream due to the buoyant effect caused by the 

tunnel inclination to the fire source.  

 
 

Figure 7. Vertical Temperature profiles of horizontal and inclined TMG Tunnel  

(without ventilation velocity) 

 

Horizontal TMG Tunnel 

Inclined TMG Tunnel 
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Figure  compares the temperature measured from the seven horizontal thermocouples placed 

under the ceiling for the horizontal tunnel and the inclined tunnel. From the figure, it is observed 

for both cases that the first thermocouple is much higher because the thermocouple is closer to 

the fire source. Regardless of the horizontal or sloped tunnel, the temperature curve trend goes 

downward because the smoke temperature gradually decreases when the smoke moves 

downstream along the tunnel. For the inclined tunnel, the temperature is higher than that of the 

horizontal tunnel. It can be explained that more hot smoke is accumulated at the ceiling of the 

inclined tunnel than the horizontal one.  

 

 
 

Figure 8. Horizontal Temperature profiles of horizontal and inclined TMG Tunnel 

Models 

 

Conclusions 

In this study, the horizontal and inclined TMG tunnel models simulated by FDS software. From 

the results, the critical velocity of 2.9 m/s is obtained for the practical TMG tunnel with a tilt 

angle of 2.45o. That critical velocity is basically matched with the published correlations. From 

the temperature results, the the hot gas layer temperature in the inclined tunnel is higher that of 

the horizontal tunnel.  

 

The critical velocity obtained from this study can be used as a reference to verified whether the 

existing ventilation system has sufficient velocity to ensure the life and fire safety in the 

practical TMG tunnel in Macau. 
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Abstract 
In strain gage based determination of stress intensity factor (SIF), the degree of accuracy of 
strain readings is affected by the radial position of the gage ahead of the crack tip. In this 
paper, a theoretical frame work based on two parameter strain series has been developed for 
accurate determination of mode I SIF (KI). Based on the two parameter strain series a finite 
element analysis (FEA) based methodology is presented by which the limit of the radial 
location ( maxr ) up to which the two parameter strain series is valid could be determined. 
Therefore knowing the maxr for a specimen and placing the strain gages within maxr  will ensure 
accurate determination of KI. Even though two parameter strain series for determination of KI 
in orthotropic laminates was used by earlier researchers, radial location of the strain gage was 
decided by trial and error and hence accuracy could not be ensured. Using the proposed 
methodology, optimal radial location for the strain gage has been determined for [02/90]2s 
glass-epoxy edge-cracked laminates and numerical simulations were performed for 
determination of KI. Results from numerical simulations show that the present technique 
using two parameter strain series not only allows the strain gage to be placed at a radial 
distance sufficiently away from the crack tip compared to that reported by earlier researchers, 
but also ensures accurate determination of KI in orthotropic composites.  

Keywords: Stress intensity factor, Orthotropic composites, Strain gage, Finite element 

 
Introduction 

The use of strain gages for the determination of SIF was first 
proposed by Irwin many years back [1]. However, complications 
related to a strain gage based application like high strain 
gradients, 3D effects etc. restricted the usage of strain gages to 
its full potential. Dally and Sanford [2] then proposed a single 
strain gage technique for the determination of KI in isotropic 
materials. They employed a truncated three parameter strain 
series representation for the strain field around the crack tip and 
after careful mathematical simplification they devised that a 
single strain gage placed sufficiently away from the crack tip 
with certain orientations and location (decided by  θ  and  φ ) 
(Fig. 1) can be used to measure KI for isotropic materials. In the 
case of orthotropic composites, the development of similar 
technique was little more involved due direction dependent 
properties. Shukla and co-workers [3] were the first to make a 
similar attempt for a single strain gage technique for the 

 
Figure 1.  Strain gage 
location ahead of the 
crack tip  
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determination of KI of orthotropic materials. However, instead of a three parameter series as 
originally proposed by Dally and Sanford [2], they used a two parameter series representation 
of the strain field around the crack tip to make the analysis simpler. They selected the radial 
distance for mounting the strain gage as 5 mm and 9 mm based on previous experience and 
compared the results and did not present any further explanation for the selection of gage 
locations. It is important that for accurate determination of SIF, the gage needs to be placed at 
an optimum location which is neither very near to (where strain gradients and 3D effects are 
prevalent) nor far away from the crack tip (where other terms in addition to the selected two 
terms of the infinite series become significant).The lower limit of the gage location was 
established experimentally [3-4]. However, the upper limit of the strain gage though so 
important was purely based on intuition and was not addressed. Only recently Sarangi et al. 
[5-6] came up with an approach to determine the upper limit of the radial distance ( maxr ) of 
placing the strain gage in the Dally and Sanford technique for determination of KI for 
isotropic materials. Even though, recently, Chakraborty et al [7-8] extended Dally and 
Sanford technique to orthotropic composites, no such attempts have been made to determine 

maxr  corresponding to the relatively simpler single strain gage method proposed by Shukla et 
al. [3] for determination of KI for orthotropic materials. The present work attempts at 
establishing a theoretical basis for developing a procedure for determination of maxr  using 
FEA corresponding to the two parameter method. Numerical simulations are also presented 
supporting the present theoretical formulation.  
 

Theoretical Development and Numerical Simulation 

The two parameter strain field representation of the normal strain component  aaε  at an angle 
φ   with the crack axis (CCW direction with crack axis is positive) at a point P located by r 
and θ   (Fig. 1) obtained using strain transformation laws as [3] 
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Inspection of Eq. (1) suggests that the coefficient of B0  term can be eliminated by selecting 
an angle φ   such that 

    2
11 12 12tan 1a aφ n= − =      (2) 
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Thus, with   φ  determined from Eq. (2), the strain aaε  can be written in terms of r  , θ   and 
unknown term  0A  as  
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Therefore, by placing a single strain gage as shown in Fig. 1 at a radial distance  r  from the 
crack tip along the line at angle θ   and oriented at an angle φ  , the measured strain aaε   can 
be equated to Eq. (3) to obtain the value of unknown coefficient A0  . The mode I SIF can 
then be determined using 02IK Aπ= . For a given cracked configuration, applied load and 
material properties and after a careful selection of the angle θ , Eq. (3) can be written as  

    aa
C
r

ε =      (4) 

where C is a constant. Taking logarithm on both sides of Eq. (4) results as  

    ( ) ( )ln 0.5ln ln( )aa r Cε = − +      (5) 

A plot of Eq. (5) on log-log axes depicts a straight line of slope equals to – 0.5, with an 
intercept of  ( )ln C . If   maxr is the extent of valid two parameter zone theoretically, the straight 
line property will break beyond  maxr r>  as more than two parameters would be needed in Eq. 
(3) to estimate the aaε  . Thus, Eq. (5) is valid along the gage line determined by the angle, θ  
for maxr r≤ . 

Numerical Simulation, Results and DIscussions 

In the present study, a [02/90]2s glass-epoxy edge-cracked configuration with  / 0.4a b =  as 
used by Shukla et al. [3] for their experimentations has been considered. Table 1 lists the 
material properties, loading and geometric parameters of the cracked orthotropic panel 
considered in this section. The parameters α = 0.9684, β = 1.4496 and orientation ϕ = 68.01° 
are determined from the material properties. The exact model used by Shukla and co- 
workers [3] has been duplicated so that the results can be easily compared and the value of  θ  
as suggested after taking care of various factors like strain gradients, averaging error due to 
finite gage size and the like is found to be 38θ = o . 
 
Table 1. Geometry and material parameters for edge-cracked [02/90]2s glass-epoxy  

b  
( )mm  /h b  LTn  LE  

( )GPa  
TE  

( )GPa  
LTG  

( )GPa  
σ  

( )MPa  

50 3 0.163 33.3 24.6 5.2 100 
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Finite element analysis for the present example has been carried out in ANSYS employing 
eight noded isoparametric quadrilateral elements. A typical finite element mesh used in the 
present analysis considered after proper convergence study is shown in Fig. 2(a). Following 
Eq. (5), the plots of   ( )ln aaε versus   ( )ln r obtained from the FEA is shown in Fig. 2(b). It may 
be observed from Fig. 2(b) that plot consists of well demarcated zones defining the linear and 
non-linear portions as predicted by the theory. The extent of the linear portion which gives 
the value of  maxr  for that configuration is found to be 16.74 mm. The numerically determined 
SIF values computed at different locations are compared with the analytical results. The 
analytical expression for mode I SIF of this configuration is given by [3] 

    ( )/I IK Y a b aσ=      (6) 

where σ  is the applied stress, a  is the crack length and YI  is the specimen geometric factor 
given by [3] 

    ( ) ( ) ( ) ( )2 3 41.99 0.41 18.7 38.48 53.85IY a b a b a b a b= − + − +      (7) 

The computed strains   at all the nodes on the gage line are considered as the measured strains 
using a single strain gage oriented at angle of   068.01φ = with the crack axis at the 
corresponding radial distances. Following the procedure explained, the  maxr  value of this 
configuration is found to be 16.74 mm and the thickness of the plate is set to 1 mm. 
Therefore, according to the present approach, any radial distance of the strain gage from the 
crack tip that satisfies 

    1mm 16.74mmr≤ ≤      (8) 

 
is an optimal or valid gage location for accurate determination of mode I SIF for the problem 
considered. The gage locations for which  maxr r≥  are invalid or non-optimal locations. 
Accordingly, the strain  aaε  is sampled at two optimal gage locations (for 
which, 16.74mmr < ) and two non-optimal gage locations (for which,  16.74mmr ≥ )  as 
shown in Table 2. For this configuration at  100MPaσ =  the reference value of mode I SIF 
determined using Eq. (7) is =52.80 MPa mIK  .The measured mode I SIF using a single 
strain gage located at those optimal and non-optimal radii are determined using the simulated 
finite element strain values aaε   at those radii (Table 2). The percent relative error in 
measured   is computed as 

    Analytical measuredorsimulated

Analytical

% Rel.error 100
K K

K
−

= ×      (9) 

 
Table 2 shows the comparison of numerically simulated SIFs with the analytical value and 
the corresponding percent error at different radial locations. It may be observed form the 
results of numerical simulations that for the strain readings at radial locations within maxr , the 
values of SIF are highly accurate and those estimated at non-optimal radial locations (beyond 

maxr ) are erroneous. This also shows that the radial location (r = 9 mm) used by Shukla et al. 
[3] was very well within the estimated  maxr  of 16.74 mm and hence resulted in accurate KI. 
However, using the proposed method, it was observed that highly accurate value of KI could 
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actually be obtained even by placing the strain gage well beyond 9 mm thereby substantiating 
the importance and usefulness of the method in fracture mechanics in accurate determination 
of SIFs.  
 

 
 

Table 2. Simulated KI at the optimal and non-optimal locations for edge cracked 
[02/90]2s glass-epoxy laminate   

r  
( )mm  

aaε  Analytical KI 

( )MPa m  
Measured KI 
( )MPa m  

% Relative Error 

10.98 9.57E-03  
52.80 

 

51.96 1.59 
14.29 8.26E-03 51.16 3.11 
18.56 6.92E-03 48.85 8.1 
22.01 5.92E-03 45.5 13.83 

  

Conclusions 

In the present work, a theoretical frame work has been developed for determination of 
maximum radial location ( maxr ) up to which the two parameter strain series is valid ahead of 
the crack tip in an orthotropic laminate. Based on the theoretical formulation, a finite element 
based methodology has been proposed by which the maxr for a particular configuration of edge 
cracked orthotropic composites could be determined. Numerical simulations have been 
performed and the results show that it is possible to accurately determine mode I SIF in 
orthotropic composites using a single strain gage considering two parameter strain series only 
when the gage is placed within maxr . In the absence of prior knowledge of maxr , and placing 
gages arbitrarily might lead to erroneous values of SIF. Therefore the development of this FE 
based procedure will be immensely useful for experimentalists using the procedure put 
forward by Shukla et al [3] for determination of KI  in edge cracked orthotropic composites.  

          
        (a)                                                                        (b) 

Figure 2.  (a) FE mesh (b) Variation of  ln(εaa)  vs.  ln(r) 
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Abstract 

Aerodynamic heating of hypersonic flights originates from the action of strong shock and 

viscous boundary layer. Accurate prediction of the heating flux is a classic problem in 

aerodynamics. Great efforts including theoretical analysis, numerical simulation and wind-

tunnel/flight test, have been devoted to it since the middle of last century, and many empirical 

formulas for some typical shapes have been obtained, which have supported the development 

of current aerospace engineering. However, formulas of quantitative relationships with more 

universal meaning are still lacking, and conventional analytical method is difficult to solve 

this problem. In this work, an intelligent optimization method, knowledge based learning 

(KBL), is proposed to detect the underlying laws of aerodynamic heating that could unify the 

data distribution of different models from different wind tunnels. In KBL, the wind-tunnel 

data to be learned are preconditioned and enriched with expert knowledge and numerical 

simulation of high fidelity, and then a special genetic programming algorithm is developed to 

detect the underlying universal laws of aerodynamic heating. The proposed method has been 

applied to two groups of aerodynamic heating data collected from different wind tunnels. One 

is of sphere heat transfer, and the other is of a double ellipsoid configuration. The study 

indicates that the KBL can discovered concise formulas and is promising for detecting more 

universal laws of aerodynamic heating. 

Keywords: Artificial intelligence, Data correlation, Aerodynamic heating, Wind tunnel, 

Computational fluid dynamics 

 

Introduction 

Aerodynamic heating of hypersonic flights originates from the action of strong shock and 

viscous boundary layer. It is a critical issue to consider when developing a new hypersonic 

vehicle [1]. Accurate prediction of the heating flux is a classic problem in aerodynamics. 

Great efforts including theoretical analysis, numerical simulation and wind-tunnel/flight test 

[5,6,9-11,18-22], have been devoted to it since the middle of last century, and many empirical 

formulas for some typical shapes have been obtained.  

Early research was mainly based on boundary layer analysis and experimental data fitting. 

Empirical formulas are available for many typical configurations. The classical Fay-Riddle 

formula can be used in the stagnation area. The surface friction formula of Blasius and the 

modified Reynolds analogy can be used in the large-area of laminar flow, and the reference 

enthalpy method can be used to consider the effect of high-speed laminar compressibility. 

 

* This work has been supported by the National Natural Science Foundation of China (Grant 

No. 11532014). 
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For the turbulent area, the surface friction formula of Schultz-Grunow, reference enthalpy 

methods and Reynolds analogy, or the surface friction formula of Spalding-chi and Reynolds 

analogy could be applied. To distinguish the laminar and turbulent flow, Van Driest criterion, 

Batt criterion, Dirling criterion, and Bishop criterion could be used to estimate the position of 

transition. 

With the development of computer and CFD, numerical simulation plays an increasingly 

important role in the prediction of aerodynamic heating. However, direct CFD method is 

Computationally intensive. Therefore, researchers began to combine theoretical empirical 

formulas with simplified CFD (e.g., inviscid CFD) simulations to sketch surface streamlines 

and predict the aerodynamic heating. The hybrid method needs less calculation time, and does 

work for more complex shapes. For example, the NASA Langley Research Center developed 

AEROHEAT into the AA3DBL program based on the theory of three-dimensional 

axisymmetric boundary layer. This program can not only predict the heat flow distribution of 

the centerline, but also predict the lateral heat flow distribution off the centerline, which can 

be used for calculations such as space shuttles, etc. It can be used to calculate the heat flux 

distribution of three-dimensional aircrafts like the Space Shuttle. Later, a generalized body-

fitted coordinate system was used to allow boundary layer calculations to be used in 

conjunction with inviscid flow field solution methods. Thus, it can be used to solve the heat 

flux distribution of any shape of aircrafts. 

It is worth noting that people’s pursuit of universal laws of aerodynamic heating will never 

stop even if the CFD and computational capabilities become so advanced that heat flux 

distribution can be accurately predicted. In fact, CFD is a gray box process. The inputs are 

flow parameters (i.e., P, T, V, etc.), mesh grids, turbulence models, boundary conditions, etc. 

The output is the heat flux at each point of the grid-nodes or grid-cells, and it cannot directly 

depict the intrinsic quantification relationship of heat flux and flow parameters (law of 

aerodynamic heating). 

Comparing classical mechanics with aerodynamic heating, universal laws that can 

quantitatively describe the relationship of different parameters such as Newton's second law 

(F=ma) and the law of universal gravitation (F=GMm/r^2) are still lacking.  

Of course, it is not easy to obtain such universal laws. For example, Kepler's three laws of 

planetary motion (the Law of Ellipses, the Law of Equal Areas, the Law of Harmonies) have 

cost Kepler more than 8 years of hard work, based on the set of astronomical observation data 

collected by Danish astronomer Tycho Brahe. The discovery of Kepler's three laws has 

undergone two phases, knowledge accumulation (relevant theories, observation/experiment 

data) and formula extracting.  

Comparing the present and the past, the phase of knowledge accumulation has matured. In 

fact, many countries have been made great efforts to develop new types of hypersonic 

vehicles, and have conducted a large number of wind tunnel experiments and flight tests, and 

accumulated a large number of aerothermal data with high-precision [16]. So it is time for the 

stage of formula extracting. 

Note that extracting universal formulas of aerodynamic heating would be much more difficult. 

In fact, the aerodynamic heat flux is a gradient quantity influenced by global parameters, and 

it has is strong nonlinearity. Compared to Kepler's law, the formula that can depict the 

intrinsic quantification relationship of heat flux and flow parameters must have higher 
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complexity. For example: the heat flux formula of Fay-Riddell [6], at the stagnation point is 

relatively complex: 

 
where  is the velocity gradient at the edge of boundary layer, and equals to 

 

 
As above shown, conventional analytical method of manual deduction is difficult to extracting 

laws of aerodynamic heating. Fortunately, artificial intelligence (AI), including genetic 

programming [8], big data algorithm, deep learning, has made considerable progress in recent 

years, and has been widely concerned and applied [2,3,4,7,13,14,19]. In near future, AI as an 

extension of human brain will be an inevitable trend. However, general AI are not suitable for 

learning the wind tunnel / flight test data. In fact, compared with the big data obtained through 

the Internet (large amount, timeliness and weak correlation), the data of wind tunnel / flight 

test can be regarded as a small data with strong correlation characteristics [17]. On the one 

hand, it is difficult to carry out a large number of experiments to obtain massive data for each 

model. On the other hand, the effects of the parameters on the heat flow are almost 

deterministic. Furthermore, even if a general AI method (e.g., deep learning) could give an 

accurate model, the neural network is still a gray box, which involves a large number of 

coefficients. It cannot give a concise, intuitive, easy to understand law of aerodynamic heating. 

In this work, a special AI method, knowledge based learning (KBL), is proposed. In KBL, the 

wind-tunnel data to be learned are preconditioned and enriched with expert knowledge and 

numerical simulation of high fidelity, and then a special genetic programming algorithm is 

developed to detect the underlying universal laws of aerodynamic heating. The proposed 

method has been applied to two sets of aerodynamic heating data collected from different 

wind tunnels. One is of sphere heat transfer, and the other is of a double ellipsoid 

configuration. Study shows that the KBL can discovered concise formulas and is promising 

for detecting more universal laws of aerodynamic heating. 

Knowledge based learning 

In order to detect universal laws of aerodynamic heating using the wind tunnel/flight test data, 

both aspects, regarding to data and algorithm, respectively, must be customized. On one hand, 

the wind tunnel/flight test data are parameterized, localized, and standardized by CFD, and 

enriched and transformed using expert knowledge. On the other hand, general AI algorithm is 

specialized to enhance the ability of nonlinear function evolution, dimension analysis, and 

interval analysis.  Then, the specialized AI algorithm will be used to detect universal laws of 

aerodynamic heating using the wind tunnel/flight test data as its training, test, and validation 

sets. The sketch could be illustrated as Figure 1. 

Data preconditioning 

Usually, the information of the heat flux data from wind tunnel tests at different measurement 

points is very brief. The test condition parameters involve only the total temperature, the total 

pressure and the Mach number. In this way, not only the heat flux data of different models 

cannot be compared, but also the data of the same model under different wind tunnels cannot 
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be directly compared and correlated. For example, it is usual that although the Mach number 

of test flows in two wind tunnels is the same, the unit Reynolds number may be quite different. 

In this work, CFD simulation is applied to identify the local parameter near the measurement 

points (i.e., the parameters on the edge of boundary layer). And then the raw data is extended 

with the knowledge of high temperature gas dynamics. For example, the original data (qw, P0, 

T0, M󠆡, , ...) could be extend to (qw, Cq, St, Ste; P, T, v, Cp, Entropy, gamma, h, k, Levis, 

mu, nu, pr, rou, Schmidt, c, thermalDiff, M, Re, Rex). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sketch of knowledge based learning (KBL) 

 

Note that the aim of CFD simulation here is to obtain the macroscopic structure of flow field 

and the local parameters of boundary layer outer edge, where the CFD model could be 

laminar, or turbulent, the real gas effect might be considered or ignored, according to different 

cases. Small errors are supposed to be “commonplace”, since the AI algorithm to be applied is 

expect to be capable of handling noise data within some tolerance error. The purpose is 

different from both direct CFD simulation of aerodynamic heating and the CFD simulation in 

engineering methods. In fact, the CFD simulation in engineering methods should be laminar 

to save the computational cost, and the direct CFD simulation of aerodynamic heating is not 

only computationally intensive but also has high requirements for Y+ and orthogonality on 

mesh grid. Determining the macroscopic structure of flow field and the local parameters of 

boundary layer outer edge needs much less CPU time and requires much less on mesh grid. In 

fact, during the CFD iteration process, after the macroscopic structure of flow field become 

steady, the flow field inside the boundary layer still needs a lot of computation time to get the 

right heat flux. 

Algorithm customization 

According to the data characteristics of aerodynamic heating, it is necessary to improve the 

existing artificial intelligence (AI) algorithms in order to carry out intelligent learning. In this 

Basis 

 

 Parameterized, localized, and 

standardized by CFD 

 Enriched and transformed using 

expert knowledge 

 Preconditioned, comparable data of 

different test models under different   

wind tunnel/flight conditions 
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Enhanced data 
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 Hybridize interval mathematics 
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AI algorithms 

Specialized AI algorithms 

Objective: Explicit, concise and quantitative formulas that can depict the intrinsic 

quantification relationship of heat flux and flow parameters 

Law of aerodynamic heating 

Test data 
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work, general AI algorithm is specialized to enhance the ability of nonlinear function 

evolution, dimension analysis, and interval analysis. In fact, the aerodynamic heat flux is a 

gradient quality and has strong nonlinearity, which requires the AI algorithm used to have a 

good nonlinear function evolution ability. Meanwhile, the aerodynamic heating data are 

strongly correlated. The expression of the quantitative relation that reflects the aerodynamic 

heating law should be dimensional compatible, so the algorithm needs a certain ability of 

dimensional analysis. Finally, the interval analysis ability of the algorithm is also obligatory. 

This can not only help the stability of the algorithm, but also give the confidence interval of 

the result. The intelligent learning algorithm, which has the capability of nonlinear function 

evolution, dimension analysis and interval analysis, is called specialized AI algorithm. 

Preliminary applications 

Two sets of aerodynamic heating data collected from different wind tunnels are selected to 

demonstrate the usage of KBL method. One is of sphere heat transfer, and the other is of a 

double ellipsoid configuration.  

Formulas learned for sphere heat transfer 

The data set consists 530 measurement points distributed on the windward side of a sphere of 

radius 0.1 meters. The data are collected under the test conditions of two wind tunnels of 

different freestream flows, JF-10 for real-gas flow and JF-12 for ideal-gas flow. The original 

data set  
530

(i) (i) (i) (i)

w 0 0 1
(q ;T ,P ,M )

i
 is parameterized, localized, and standardized using inviscid 

CFD simulations, and extended using expert knowledge of high temperature gas dynamics. 

The enhanced data set is as follows.  
530

(i)

1

( ,  ,  ,  ;  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  

,  ,  , ,  ) 

e

x i

qw Cq St St P T v Cp Entropy gamma h k Levis mu nu pr rou Schmidt

c thermalDiff M Re Re


  
 
  

The specialized AI algorithm is then applied to automatically search the best formula to fit the 

data, and balance the fitting error, formula complexity and stability. Mean Absolute Error 

(MAE), Pearson's correlation coefficient r   and the coefficient 21 R   are applied to measure 

the goodness of a fitting formula, where 21
SSE

R
SST

  . SSE is the Error Sum of Squares of 

observed and predicted values ( 2(q )o p

i i

i

q ), and SST is the Total Sum of Squares of 

observed and average values ( 2( )o

i

i

q q ). 

Table 1. Aerodynamic Heating Formulas of sphere with boundary layer parameters 

Complexity formula MAE r 1-R2 

3 w eq k P    1.4E5 0.99 0.04 

9 w e eq k T P    5.3E4 0.997 0.006 

17  
5
4

w e eq k T P    3.9E4 0.997 0.006 

From Table 1, we can see that the pressure at the edge of boundary layer eP  is a key 

parameters for aerodynamic heating, and the heat flux is almost linear to the square root of the 

pressure, i.e.,  w eq P: . The results indicate that the thickness of boundary layer is also 

linear to the square root of the pressure, i.e.,  eP : . This result might be helpful to study 

the development of boundary layer. 
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Figure 2. Comparison of observed and predicted heat flux of the sphere under the 

conditions of two wind tunnels (with  
5
4

w e eq k T P   ), JF-10 and JF-12. The left figure 

shows the overall results, and the right figure is the local zoom of the left, results of JF-12 

with smaller heat flux 

Preliminary results of a double ellipsoid configuration 

The data set consists 1044 measurement points distributed on both windward and leeward 

side of a double ellipsoid model of length 0.215 meters (see Fig. 3(a)). The data are collected 

from two wind tunnels, FD-14A and FD-20, of several tests [12]. For model and experimental 

parameter details, please refer to reference [12]. Similarly, the original data set is 

parameterized, localized, and standardized using CFD simulations (Fig. 3(a)), and extended 

using expert knowledge of high temperature gas dynamics. An enhanced data set is obtained. 

Then the specialized AI algorithm is applied to search the best formula automatically to fit the 

data, and balance the fitting error, formula complexity and stability. The study shows that the 

heat flux could be quantitatively determined by the air’s temperature, pressure, speed at the 

outer edge of boundary layers, i.e., 
e e e(T ,P , )wq f v . The learning results are shown in Fig. 

3(b). The Pearson's correlation coefficient r  is 0.98 and the coefficient 21 R =0.03. The 

explicit expression is omitted here since it is very complicated at this stage due to the 

limitations of current AI algorithm. The improvement of AI algorithm and the simplification 

of the expression are left for future research.  

 

        
(a) Mesh grid of the test model               (b) Comparison of observed and predicted heat flux 

Figure 3. KBL of a double ellipsoid configuration 
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Conclusions 

An intelligent optimization method, knowledge based learning (KBL), has been presented to 

extract formulas of aerodynamic heating. In KBL, the wind-tunnel data to be learned are 

regarded as a small data with strong correlation characteristics. They are preconditioned and 

enriched with expert knowledge and numerical simulations. Then the enhanced data are used 

to train and validate the candidate formulas in the guide of a special artificial intelligence (AI) 

algorithm, which is adapted from general AI algorithm to fit the characteristics of 

aerodynamic heating data. The proposed KBL method has been applied to two data sets of 

aerodynamic heating from different wind tunnels of different models. The study indicate that 

the KBL method is promising for detecting more universal laws of aerodynamic heating.  

The basic idea of KBL is using specialized AI algorithm to replace conventional analytical 

method of manual deduction. This does make sense, and will be an inevitable trend in the near 

future. However, current AI algorithm still needs improving, and the data sets are not merged 

together. Furthermore, to get a formula that really matters, the training data set needs more 

data from more wind tunnels of more test models. These tasks are left for future studies. 
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Abstract 

A new strategy to define source points for the Method of Fundamental Solutions is presented 

based on a quadtree-generated cell system controlled by the boundary of the domain in which 

the partial differential equation is defined. The quadtree (in 3D, octtree) algorithm results in a 

cell system, the spatial density of which decreases rapidly when moving away from the 

boundary. The sources are defined to be the cell centers of the external cells of the quadtree 

subdivision. This makes it possible to build up a multi-level method, where the ‘coarse’ 

sources generate the ‘coarse’ approximation, while the ‘fine’ (i.e. the near-boundary) sources 

provide the ‘fine’ approximation. On each level, the problem is discretized by using the 

sources belonging to the actual level only. Thus, the computational cost can be kept under an 

acceptable limit. Moreover, the problem of severely ill-conditioned linear systems is 

completely avoided. 

Keywords: Method of Fundamental Solutions, multi-level method, quadtrees 

 

Introduction 

The Method of Fundamental Solutions (MFS, see e.g. [8]) is now a popular computational 

method for solving elliptic partial differential equations due to its simplicity and meshfree 

character and also to the fact that it is a boundary-only technique i.e. no discretization is 

needed inside the domain.  

 

In its original form, the approximate solution is defined as a linear combination of the 

fundamental solution shifted to some external points (source points). Thus, the approximate 

solution exactly satisfies the partial differential equation to be solved. The a priori unknown 

coefficients of the linear combination are calculated by enforcing the boundary conditions at 

some boundary collocation points.  

 

For instance, consider the example of the simplest 2D Laplace equation: 

    ∆𝑢 = 0     (1) 

defined in a bounded 2D domain . Suppose that Equation (1) is equipped with pure Dirichlet 

boundary condition: 

    𝑢|  = 𝑢0 ,     (2) 

where   ≔ 𝜕 , the boundary of the domain . The approximate solution defined by the 

MFS has the form: 
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    𝑢(𝑥) ~ ∑ 𝛼𝑗

𝑁

𝑗=1
(𝑥 − �̃�𝑗) ,     (3) 

where  denotes the fundamental solution of the Laplacian (apart from a multiplicative 

constant): 

    (𝑥)  = log ||𝑥||     (4) 

and �̃�1, �̃�2, …, �̃�𝑁 are predefined external source points. Here ||. || denotes the 2D Euclidean 

norm. The coefficients 𝛼1, 𝛼2, …, 𝛼𝑁 can be calculated by requiring the boundary conditions. 

In case of Dirichlet boundary condition, this results in the following linear system of 

equations: 

    ∑ 𝛼𝑗

𝑁

𝑗=1
(𝑥𝑘 − �̃�𝑗) = 𝑢𝑘 ≔ 𝑢0(𝑥𝑘)                       (𝑘 = 1,2, … , 𝑀),     (5) 

where 𝑥1, 𝑥2, … , 𝑥𝑀 are predefined boundary collocation points.  

 

The numbers of sources and the boundary collocation points need not be equal. If 𝑁 ≠ 𝑀, 

Equation (5) should be solved in a generalized sense using e. g. the least squares approach. 

For the sake of simplicity, however, in a lot of practical cases, the numbers 𝑁 and 𝑀 are 

defined to be equal, that is, Equation (5) has a square matrix. Unfortunately, though the MFS 

has excellent accuracy in general (see [10]), in a number of cases, the discretized linear 

system is severely ill-conditioned, especially when the sources are located far from the 

boundary. On the other hand, if they are too close to the boundary, numerical singularities 

appear in the approximate solution. 

 

Another problem of the Method of Fundamental Solutions is the proper definition of the 

locations of sources (preferably in an automated way). In [1], [4], the sources are located 

along a sufficiently large circle; however, this leads to extremely ill-conditioned linear 

systems. In [12], the initial set of points is thinned by several strategies. See also [3], where 

the original boundary is transformed to the boundary of a somewhat larger domain along 

which the source points are located. 

 

A popular technique is to allow the source and boundary collocation points to coincide. Thus, 

the problem of the proper definition of sources is automatically circumvented. However, in 

this approach, some singular terms generally appear, and the main problem is how to evaluate 

these singular terms properly or how to avoid the singularity. To treat this difficulty, a lot of 

special methods have been developed. The boundary knot method [2] utilizes general 

nonsingular solutions instead of the traditional fundamental solutions: thus, the problem of 

singularity is avoided, but the problem of severely ill-conditioned character of the discretized 

system remains the case. The situation is similar, when fundamental solutions concentrated to 

straight lines instead of points are used, see [6]. Using the traditional fundamental solutions, 

the evaluation of singular terms can be performed by special tools (regularization and 

desingularization techniques, see e.g. [7], [9], [11], [13]). 

 

In this paper, we return to the traditional form of the MFS. However, the sources are 

generated in a completely automatic way using the well-known quadtree/octtree subdivision 

technique (see e.g. [5]). This algorithm produces a cell system; the individual cells belong to 

different levels of subdivision. The cell system exhibits automatic local refinements in the 

vicinity of the boundary. Taking the centers of the outer cells as source points, we obtain a 

point set, the spatial density of which decreases rapidly when moving away from the 
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boundary. This makes it possible to build up a multi-level discretization in a natural way. The 

method avoids also the problem of solving severely ill-conditioned systems of equations and 

has a relative low computational complexity as well. 

 

A two-level technique 

As a model problem, consider the 2D Dirichlet problem (1) - (2). Suppose that the boundary 

collocation points 𝑥1, 𝑥2, … , 𝑥𝑀  are given. Let �̃�1
𝐹 , �̃�2

𝐹 , … , �̃�𝑁
𝐹  be external source points at a 

distance  from the boundary (more or less equally spaced), they will be considered ‘fine 

level’ sources. Moreover, let �̃�1
𝐶 , �̃�2

𝐶 , … , �̃�𝑁/2
𝐶  be additional (‘coarse level’) sources at a 

distance 2 from the boundary (𝑁 is supposed to be an even number). Define the approximate 

solution of (1) - (2) as follows: 

    𝑢(𝑥) ~ ∑ 𝛼𝑗
𝐹

𝑁

𝑗=1
(𝑥 − �̃�𝑗

𝐹)  +  ∑ 𝛼𝑗
𝐶

𝑁

𝑗=1
(𝑥 − �̃�𝑗

𝐶)     (6) 

Enforcing the boundary condition in the boundary collocation points, we have: 

    ∑ 𝛼𝑗
𝐹

𝑁

𝑗=1
(𝑥𝑘 − �̃�𝑗

𝐹)  +  ∑ 𝛼𝑗
𝐶

𝑁

𝑗=1
(𝑥𝑘 − �̃�𝑗

𝐶) = 𝑢𝑘           (𝑘 = 1,2, … , 𝑀)     (7) 

In a more compact form: 

    𝐴𝐹𝜶𝐹 + 𝐴𝐶𝜶𝐶 = 𝒖     (8) 

where 𝐴𝐹 is an M-by-N and 𝐴𝐶  is an M-by-N/2  matrix with entries: 

    𝐴𝑘𝑗
𝐹 = (𝑥𝑘 − �̃�𝑗

𝐹),      𝐴𝑘𝑗
𝐶 = (𝑥𝑘 − �̃�𝑗

𝐶)      (9) 

The direct solution of Equation (8) is not recommended, since Equation (8) is even more ill-

conditioned than the single-level equation 

    𝐴𝐹𝜶𝐹 = 𝒖      

Instead, it can (and should) be solved in an iterative way (in the sense of least squares) by 

splitting it into a coarse-level and a fine-level subproblem: 

    𝐴𝐶𝜶𝐶 = 𝒖 − 𝐴𝐹𝜶𝐹     (10) 

    𝐴𝐹𝜶𝐹 = 𝒖 − 𝐴𝐶𝜶𝐶     (11) 

The above equations are to be solved in the sense of least squares, i.e. by solving the 

corresponding Gaussian normal equations: 

    (𝐴𝐶)∗𝐴𝐶𝜶𝐶 = (𝐴𝐶)∗(𝒖 − 𝐴𝐹𝜶𝐹)     (12) 

    (𝐴𝐹)∗𝐴𝐹𝜶𝐹 = (𝐴𝐹)∗(𝒖 − 𝐴𝐶𝜶𝐶)     (13) 

The main idea of the method is that if the coarse subproblem is already solved, then, in order 

to solve the fine level subproblem, it is sufficient to apply some steps of the familiar 

(conjugate) gradient method, which significantly reduces the computational complexity. 

 

Remark: Without going into deep details, the idea behind the method is as follows. The 

solution of the coarse level subproblem (nearly) eliminates the low-frequency error 

components from the approximate solution. Thus, the fine level operator maps the subspace of 

the high-frequency components into itself. It can be shown that the fine level operator 
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restricted to the high-frequency subspace is uniformly well-conditioned (independently of the 

fineness of the discretization). Thus, though the (conjugate) gradient method converges 

slowly, if the corresponding operator is not well-conditioned, the high-frequency error 

components are damped much more efficiently. 

 

By introducing additional sources on even coarser levels, the method can be extended to a 

multi-level technique in a straightforward way. At the coarsest level, the corresponding 

subproblem should be solved exactly. In practice, it is often sufficient to apply several 

(conjugate) gradient iterations at the coarsest level as well. 

 

Automatic generation of source locations using quadtrees 

To build up a multi-level method outlined above, several groups of sources are needed. The 

greater the distance from the boundary, the lower the spatial density of the sources is. The 

quadtree algorithm produces point sets with exactly the same property. Recall that the 

quadtree subdivision is a systematic, recursively defined subdivision of an initial square 

controlled by a finite set of points (controlling points). A subsquare is divided into four 

congruent subsquares (cells), if the number of controlling points contained in the actual 

subsquare exceeds a predefined minimal value, provided that the level of subdivision remains 

under a predefined maximal level. This results in automatic local refinements in the vicinity 

of the controlling points. By additional subdivisions, it can be assured that the ratio of the 

neighboring cell sizes is at most 2, i.e. no abrupt changes in cell sizes occur. Note that in 3D, 

the procedure is similar: here an initial cube is divided recursively into eight congruent 

subcubes (octtree algorithm). Note also that the obtained cell system is suitable for defining 

simple finite volume schemes as well (see e.g. [5]), however, here it is used to define source 

point locations only. 

In the presented multi-level technique, the quadtree subdivision is controlled by the boundary 

of the domain of the original partial differential equation, more precisely, by the predefined 

boundary collocation points. Having created the quadtree cell system, the source points are 

defined to be the centers of the external cells. The cell centers belonging to low levels of 

subdivision are considered ‘coarse level’ sources, while the (near-boundary) cell centers 

belonging to high levels of subdivision are regarded as “fine level’ sources. 

 

Numerical examples 

The above outline method is demonstrated through two simple examples. 

Example 1. Let  be a circle centered at the midpoint of the unit square with radius 0.3. 

Consider the test solution of the Laplace equation 

   𝑢(𝑥, 𝑦) = 𝑒4𝜋𝑥 ∙ sin 4𝜋𝑦,     (14) 

where the more familiar notations x, y are used for the space variables. The Laplace equation 

(1) is supplied with Dirichlet boundary condition consistent with the above test solution. 

Figure 1 shows the quadtree cell system controlled by the boundary  of the domain and the 

source point locations as well. The maximal subdivision level was 8, i.e. the smallest cell size 

was 1/256. Table 1 shows the relative 𝐿2-errors of the above outlined two-level method for 

different numbers of sources calculated on the boundary of the domain. Here 𝐿𝑐𝑜𝑎𝑟𝑠𝑒  and 

𝐿𝑓𝑖𝑛𝑒 are the quadtree subdivision levels of the coarse and fine sources, respectively, while 
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𝑁𝑐𝑜𝑎𝑟𝑠𝑒 and 𝑁𝑓𝑖𝑛𝑒 denote the numbers of sources at the coarse (resp. fine) level. The number 

of boundary collocation points was always = 476 . 

 

The results demonstrate that the accuracy is acceptable. Note, however, that the numerical 

complexity is much less than that of the traditional direct method. 

 

 

Table 1. Two-level MFS, relative boundary 𝑳𝟐-errors. Domain: circle 

  𝐿𝑐𝑜𝑎𝑟𝑠𝑒/𝐿𝑓𝑖𝑛𝑒     3/4    4/5      5/6      6/7 

  𝑁𝑐𝑜𝑎𝑟𝑠𝑒/𝑁𝑓𝑖𝑛𝑒   12/88  88/104  104/216 216/376 

 

 Relative 𝐿2-error (%)  0.16591 0.04687 0.01604 0.02571 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.  A quadtree cell system generated by a circle and the external source points  

 

 

Example 2. Let  be an amoeba-shaped domain contained in the unit square. Figure 2 shows 

the quadtree cell system controlled by the boundary  of the domain and the source point 

locations as well. The maximal subdivision level was again 8. The test solution (14) was the 

same as in Example 1. The number of boundary collocation points was always 𝑀 = 236. 

Table 2 shows the relative 𝐿2-errors of the above outlined two-level method calculated on the 

boundary of the domain. 𝐿𝑐𝑜𝑎𝑟𝑠𝑒 and 𝐿𝑓𝑖𝑛𝑒 are the quadtree subdivision levels of the coarse 

and fine sources, respectively. 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 and 𝑁𝑓𝑖𝑛𝑒 denote the numbers of sources at the coarse 

(resp. fine) level.  Due to the more complicated geometry, the accuracy is now somewhat less 

than in Example 1, but it is still acceptable. 
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Table 2. Two-level MFS, relative boundary 𝑳𝟐-errors. Amoeba-shaped domain 

  𝐿𝑐𝑜𝑎𝑟𝑠𝑒/𝐿𝑓𝑖𝑛𝑒     3/4    4/5      5/6      6/7 

  𝑁𝑐𝑜𝑎𝑟𝑠𝑒/𝑁𝑓𝑖𝑛𝑒   19/70  70/122  122/227 227/480 

 

 Relative 𝐿2-error (%)  1.3801  0.12707 0.10469 0.06078 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.  A quadtree cell system generated by an amoeba-like curve and the external 

source points 

 

 

Summary and conclusions 

The traditional Method of Fundamental Solutions has been revisited. The sources are defined 

in a completely automatic way using the quadtree/octtree subdivision algorithm. This 

algorithm generates sources, the spatial density of which is greater in the vicinity of the 

boundary and becomes low far away from the boundary. These groups of sources result is 

multi-level MFS-based approximations. As a smoothing procedure the classical (conjugate) 

gradient method was used. The number of boundary collocation points was always greater 

than that of the sources at any level, so that the MFS-equations were solved in the sense of 

least squares, i.e. the Gaussian normal equations were taken into account. The accuracy of the 

method has been proved acceptable. At the same time, the computational complexity of the 

method is much less than that of a traditional direct solver. Moreover, the problem of the 

severely ill-conditioned algebraic system is also avoided. 
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Abstract 

Cob is an earthen construction technique used to build monolithic load-bearing walls. Mainly 

of vernacular nature, remaining cob buildings can be found throughout Europe as well as in 

other specific locations around the world.  

 

The aim of this paper is to evaluate the available material models’ suitability for the modelling 

of cob’s structural behavior in one of the most commonly used FEM software in the market. 

Previous stress-strain graphs obtained and failure mechanisms observed after a simple 

compression and diagonal compression experimental campaign in cob wallettes were replicated 

using three different material constitutive models, namely, MISO, CONCR, and DMGE/DMGI. 

Furthermore, a mesh size sensitivity analysis was performed following a mesh refinement 

approach. 

 

MISO could reproduce the pre-peak behavior of cob and principal stresses could be used as an 

indication of the opening of cracks. On the other hand, it did not capture the softening post-

peak behavior of the material. CONCR provided quite accurate pre-peak behavior results and 

peak strength values. Moreover, it was possible to plot the opening of cracks and those plots 

agreed with the experimental results. Nevertheless, as CONCR is suitable to reproduce brittle 

failures, it did not capture the long deformations characteristic of cob. Finally, the 

DMGE/DMGI proved to be inaccurate to reproduce both pre-peak and post-peak behavior. 

Although parameters could be calibrated to obtain the appropriate peak strength, neither stresses 

nor did strains corresponded to what was observed in the experimental campaign.   

  

Keywords: Non-linear, FEM, Cob, ANSYS 

 

Introduction 

Cob is an earthen construction technique used to build monolithic load-bearing walls. The loam, 

mixture of soil, water and straw, is placed wet in a horizontal layer which after being left to dry 

for some time is shaped with sharp instruments into its final form. New layer is placed in top 

of the previous one and the process is repeated until the desired wall height is reached.   

 

Monolithic techniques have the advantage of not presenting weakness planes such as it is in the 

case of modular constructions (namely adobe or rammed earth). Cob´s cohesion is provided 

mainly by the clay cementing properties and the added organic fibers such as straw or heather 

[1]. Despite the low compressive strength of cob, this material presents a relatively good 

performance regarding the shear strength. Moreover, cob appears to be more flexible in 

comparison with the other earthen construction techniques, since it presents a relatively ductile 

post-peak behavior due to the fibers added to the mixture [1].  
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Cob remaining buildings are of vernacular nature and can be found in eighteen European 

countries [2]. According to Hamard et al. only within Germany, France and the UK there are at 

least 200 000 cob buildings [3]. Furthermore, the bulk of remaining earthen buildings, cob 

included, is located within the dry climate regions of the world [4] and in total earthen buildings 

house at least 30 % of the world’s population [5].  

 

Despite its importance, cob has not received as much attention by researches as other earthen 

techniques such as adobe, rammed earth or compressed earth blocks (CEB). Therefore, cob’s 

structural behavior is not yet fully understood, nor material constitutive models have been 

specifically developed to simulate cob’s structural response. Moreover, neither standards are 

available for the design of new cob buildings nor for the conservation of existent ones. After an 

extensive research that involved 55 documents related with the normalization and 

standardization of earthen construction techniques around the world, Cid et al. [6] identified 

that none of them was specialized on providing guidance for cob.  

 

The purpose of a non-linear model is to identify the peak strength of a structure and reproduce 

more accurately it’s pre-peak and post-peak behavior. By doing so, a better safety evaluation 

of existent buildings can be performed thus avoiding the implementation of over conservative 

intervention measures that may cause the loss of their authenticity. This paper aims at assessing 

the suitability of the material constitutive models available in ANSYS [7], to replicate the non-

linear response of cob wallettes. The simulations are based on the experimental campaign and 

the numerical simulations performed previously by Miccoli et al. [1] which represent one of the 

most complete and detailed studies of cob at the moment.  

Methodology 

Miccoli et al. [8] determined experimentally the stress-strain curves of cob (as well as for adobe 

and rammed earth) both under simple compression and under diagonal compression. They also 

reported the failure mechanisms and the crack patterns of the tested wallettes (see Figure 1). 

Pull-off test were also carried out to determine cob’s tensile strength. All cob’s mechanical 

properties determined by Miccoli et al. are summarized and presented in Table 1. 

 

Their numerical simulations to describe cob’s structural behavior consisted in 2D plane stress 

models. They implemented a macro-modelling approach with a TSRCM (Total Strain Rotating 

Crack Model) constitutive model and a multilinear definition of the stress-strain relationship 

for the compressive behavior with an initial linear segment of 0.3 fc and a post peak segment 

with negative slope. An exponential relationship was employed for the tensile behavior [8]. The 

software used was Diana [9].  

 

Miccoli’s et al. tests were simulated in this paper using ANSYS [7]. The values for the geometry 

and material properties were adopted as those reported by them [8] to replicate as accurately as 

possible the non-linear response of cob observed during their experimental campaign. Three 

different material constitutive models were employed, MISO, CONCR, and DMGE/DMGI.  

 

MISO, which stands for multilinear isotropic hardening, is a rate-independent plasticity model 

characterized by a Von Mises yield criterion [10], an associative flow rule, and an isotropic 

hardening in which the yield surface remains centered about its initial centerline and expands 

in size as the plastic strains develop [11]. It is supported by plane and solid finite elements. The 

stress strain multilinear behavior and the initial and subsequent yield surfaces for isotropic 

hardening plasticity are shown in Figure 2. MISO does not support the definition of negative 
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slopes for the stress-strain relationship. A post-peak horizontal curve was defined with constant 

stress equivalent to the compressive strength of cob reported in Table 1.   

 

  
(a) 

  
(b) 

Figure 1. Stress-strain curves and crack patterns of cob wallettes under: (a) simple 

compression & (b) diagonal compression [8].  

Table 1. Cob's mechanical properties [8]. 

Property Value 

Compressive strength fc (MPa) 1.59 

Tensile strength ft (MPa) (0.10-0.16) fc 

Tensile fracture energy (N/mm) (0.3-0.8) ft 

Shear strength (MPa) 0.5 [1] 

Shear modulus (MPa) 420 [1] 

Modulus of elasticity (MPa) 1021 

Poisson´s ratio (-) 0.14 

Density (kg/m3) 1475 

 

CONCR is a material constitutive model that can only be applied in combination with the legacy 

element called SOLID65 [10]. SOLID65 is an eight-node 3D element capable of cracking in 

tension and crushing in compression. It is suitable to model geological materials and reinforced 

composites [12]. The CONCR material model predicts the failure of brittle materials. The 

criterion for failure due to a multiaxial stress state can be expressed as follows: 

𝐹

𝑓𝑐
− 𝑆 ≥ 0 

( 1 ) 
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(a) (b) 

Figure 2. (a) Stress-strain multilinear isotropic behavior. (b) Initial and subsequent yield 

surfaces for isotropic hardening plasticity [11]. 

Where: 

 𝐹 = Function of principal stress state (𝜎𝑥𝑝, 𝜎𝑦𝑝, 𝜎𝑧𝑝). 

 𝑆 = Failure surface expressed in terms of principal stresses and five input parameters: 

o 𝑓𝑐 = Ultimate uniaxial compressive strength (taken from Table 1). 

o 𝑓𝑡 = Ultimate uniaxial compressive strength (taken from Table 1). 

o 𝑓𝑐𝑏 = Ultimate biaxial compressive strength (𝑓𝑐𝑏 = 1.2𝑓𝑐). 
o 𝑓1 = Ultimate compressive strength for a state of biaxial compression 

superimposed on hydrostatic stress state (𝑓1 = 1.45𝑓𝑐). 
o 𝑓2 = Ultimate compressive strength for a state of uniaxial compression 

superimposed on hydrostatic stress state (𝑓2 = 1.725𝑓𝑐). 
 

The presence of a crack at an integration point is represented through modification of the stress-

strain relations by introducing a plane of weakness in a direction normal to the crack face. Also, 

a shear transfer coefficient 𝛽𝑡 is introduced which represents a shear strength reduction factor 

for those subsequent loads which induce sliding (shear) across the crack face. If the crack 

closes, then all compressive stresses normal to the crack plane are transmitted across the crack 

and only a shear transfer coefficient 𝛽𝑐 for a closed crack is introduced [11]. This condition can 

be seen in Figure 3. 𝛽𝑡, 𝛽𝑐 and 𝑇𝑐, multiplier for amount of tensile stress relaxation, were 

calibrated to obtain a response from the wallettes as similar as possible to the one reported in 

the referenced experimental campaign (the values adopted were 0.25, 0.9 and 0.8 respectively).  

 

If the material at an integration point fails in uniaxial, biaxial, or triaxial compression, the 

material is assumed to crush at that point. In SOLID65, crushing is defined as the complete 

deterioration of the structural integrity of the material [11]. To obtain a more detailed 

description of CONCR see [13]. 

 

DMGI, which stands for damage initiation, determines the onset of material damage under 

loading. It needs to be used in combination with DMGE, damage evolution, which defines the 

way in which the material degrades once the damage has started [10]. A Hashin criteria was 

adopted to determine the DMGI material model with a continuum damage mechanics method 

(not supported by any 3D finite element). This physical failure criteria accounts for four damage 

modes, namely, fiber tension (rupture), fiber compression (kinking), matrix tension (cracking), 

and matrix compression (crushing) [11]. 
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Figure 3. CONCR model for cracked condition [11]. 

_For the continuum damage mechanics method damage variables increase gradually based on 

the energy amounts dissipated for the various damage modes. To achieve an objective response, 

the dissipated energy for each damage mode is regularized as follows [11]: 

𝑔𝑣 =
𝐺𝑐
𝐿𝑒

 
( 2 ) 

Where: 

 𝑔𝑣 = Energy dissipated per unit volume. 

 𝐿𝑒 = Characteristic length of the element calculated from the element area, A, as equal 

to: 

𝐿𝑒 = {
1.12√𝐴, 𝑓𝑜𝑟 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

1.52√𝐴, 𝑓𝑜𝑟 𝑎 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
 

( 3 ) 

 𝐺𝑐 = Energy dissipated per unit area which for an specific damage mode is given by: 

𝐺𝑐 = ∫ 𝜎𝑒𝑑𝑈𝑒

𝑈𝑒
𝑓

0

 

( 4 ) 

Where: 

o 𝜎𝑒 = Equivalent stress. 

o 𝑈𝑒 = Equivalent displacement. 

o 𝑈𝑒
𝑓
 = Ultimate equivalent displacement, where total material stiffness is lost for 

the specific mode. 

 

Viscous damping coefficients η are also specified respectively for all four damage modes. For 

a specific damage mode, the damage evolution is regularized as follows [11]: 

𝑑′𝑡+𝛥𝑡 =
𝜂

𝜂 + Δ𝑡
𝑑′𝑡 +

Δ𝑡

𝜂 + Δ𝑡
𝑑𝑡+𝛥𝑡 

( 5 ) 

Where: 

 𝑑′𝑡+𝛥𝑡 = Regularized damage variable at current time. 

 𝑑′𝑡 = Regularized damage variable at the end of the last sub step. 

 𝑑𝑡+𝛥𝑡 = Unregularized current damage variable. 

 

Hashin’s fiber and matrix failure criterion are described according to EQ. ( 6 ) and to EQ. ( 7 ) 

respectively.  
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𝜉4 =

{
 
 

 
 (

𝜎𝑥

𝜎𝑥𝑡
𝑓
)

2

+
𝜎𝑥𝑦
2 + 𝜎𝑥𝑧

2

(𝜎𝑥𝑦
𝑓
)
2 , 𝑖𝑓 𝜎𝑥 > 0

(
𝜎𝑥

𝜎𝑥𝑐
𝑓
)

2

, 𝑖𝑓 𝜎𝑥 ≤ 0

 

( 6 ) 

𝜉5 =

{
 
 
 
 

 
 
 
 

(
𝜎𝑦 + 𝜎𝑧

𝜎𝑦𝑡
𝑓

)

2

+
𝜎𝑦𝑧
2 − 𝜎𝑦𝜎𝑧

(𝜎𝑦𝑧
𝑓
)
2 +

𝜎𝑥𝑦
2 + 𝜎𝑥𝑧

2

(𝜎𝑥𝑦
𝑓
)
2

𝑖𝑓 𝜎𝑦 + 𝜎𝑧 > 0

1

𝜎𝑦𝑐
𝑓
((

𝜎𝑦𝑐
𝑓

2𝜎𝑦𝑧
𝑓
)

2

− 1) (𝜎𝑦 + 𝜎𝑧) + (
𝜎𝑦 + 𝜎𝑧

2𝜎𝑦𝑧
𝑓
)

2

+
𝜎𝑦𝑧
2 − 𝜎𝑦𝜎𝑧

(𝜎𝑦𝑧
𝑓
)
2 +

𝜎𝑥𝑦
2 + 𝜎𝑥𝑧

2

(𝜎𝑥𝑦
𝑓
)
2

𝑖𝑓 𝜎𝑦 + 𝜎𝑧 ≤ 0

  

( 7 ) 

Orthotropic elasticity parameters, Young’s modulus, Poisson’s ratio and Shear modulus, were 

defined according to the values presented in Table 1 assuming same value for all directions (x, 

y and z). Similarly, orthotropic stress limits, tensile, compressive and shear, were assumed to 

have same value in all directions. Finally, the dissipated energy and viscous damping 

coefficients values used for the simulations are those presented in Table 2.  

Table 2. Dissipated energy and viscous coefficient values for the DMGE/DMGI models. 

Material 

constant 

Meaning Value 

C1 Energy dissipated per unit area from tensile fiber damage 

(N/m). 

1.0x1010 

C2 Viscous damping coefficient for tensile fiber damage. 0.001 

C3 Energy dissipated per unit area from compressive fiber 

damage (N/m). 

1.0x1010 

C4 Viscous damping coefficient for compressive fiber damage. 0.001 

C5 Energy dissipated per unit area from tensile matrix damage 

(N/m). 

1.035x105 

C6 Viscous damping coefficient for tensile matrix damage. 0.37 

C7 Energy dissipated per unit area from compressive matrix 

damage (N/m). 

7.950x105 

C8 Viscous damping coefficient for compressive matrix damage. 0.37 

 

The values of the non-participating modes (C1 and C3) were set at a relatively high value to 

avoid their interference in the study of the cob typical damage modes, namely, cracking and 

crushing (C5 and C7), as advised in [14]. The values of the correspondent viscous damping 

coefficient for tensile and compressive fiber damage (C2 and C4) were randomly assigned as 

they are negligible. Whereas that those for tensile and compressive matrix damage (C6 and C8) 

were calibrated to obtain the reported peak strength in the simple compressive test.  

 

The dimensions of the FEM models are shown in Figure 4. To simulate the compressive tests a 

displacement control approach was used. The steel plates in the bottom were fixed whereas that 

vertical displacements were applied to the plates on top of the wallettes. Self-weight was 

neglected. For the MISO model, large simulations were taken into account. On the other hand, 
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no large deformations were used for CONCR as advised in [12] as they would cause 

convergence problems. A summary of FEM simulations is presented in Table 3.    

 

  
(a) (b) 

Figure 4. Dimensions used for: (a) diagonal compression and (b) simple compression 

simulations. 

For the mesh sensitivity analysis, a mesh refinement method was selected. The maximum 

element sizes studied were 50, 30 and 10 mm. The element shape was verified with the mesh 

quality metrics provided by the software. Thanks to the relatively simple geometry of the 

models, the values for the average mesh quality were located between 0.86 and 0.99 for all 

simulations. Finally, the element type for each one of the simulations performed is indicated in 

Table 3.   

Table 3. Finite element analyses set-ups. 

Material Geometry Finite element (# of nodes) Large deformations 

MISO 
2D PLANE183 (8) On 

3D SOLID186 (20) On 

CONCR 3D SOLID65 (8) Off 

DMGE/DMGI 2D PLANE183 (8) Off 

Results and discussion  

The results obtained from the simulations performed using ANSYS are presented in the form 

of stress-strain graphs and maximum principal stress plots. The upper and lower limits of the 

stress-strain graphs represent the experimental envelope reported by Miccoli et al. [8]. Besides, 

crack and crushing plots are shown for the CONCR models. Finally, a table is presented to 

show the mesh sensitivity using as reference the values obtained for the peak strengths of each 

simulation.  

 

Plane stress and 3D simple compression stress-strain curves using MISO are shown in Figure 

5 and Figure 6 respectively. The plane stress model reproduced quite accurately the pre-peak 

behavior of cob. Unfortunately, as this plasticity model is not capable to reproduce post-peak 

softening, it was not able to follow the loss of strength of the material after the maximum stress 

was attained. Regarding the mesh sensitivity, same behavior path was reproduced for the three 

element sizes. However, the finer the mesh the larger were the values obtained for the strains. 

The discrepancy values computed between the peak strengths obtained and the reference value 

are smaller than 10 % for the three mesh sizes implemented as can be seen in Table 4. 
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Figure 5. Plane stress simple compression stress-strain curves using MISO. 

The 3D MISO model results were not as accurate as the ones obtained from the plane stress 

one. It presented a stiffer behavior and the plastic strains started to develop at a higher stress. 

The plots produced do not fit with the experimental ones. As 3D models include the Poisson´s 

ratio effect in the orthogonal directions to the plane of the wall, the stress-strain multilinear 

curve used, which was calibrated with a plane stress simulation that neglects such effect, turns 

out to be inadequate. Table 4 presents discrepancy values for the peak strengths obtained for 

the 3D MISO model above 20 and 30 % with respect to the reference value for the different 

mesh sizes implemented.    

 

 

Figure 6. 3D simple compression stress-strain curves using MISO. 

MISO models do not provide directly the appearance of cracks nor crushing within the material. 

As an indication for such failure modes the maximum principal strains, which are shown in 

Figure 7, can be interpreted (only the plots obtained for the 10 mm models are presented for the 

sake of briefness but similar patterns were found for the 30 and 50  mm models). As it can be 

seen, both plane stress and 3D models show a symmetric x pattern of the strains which is typical 

on simple compression tests of brittle materials and is considered as a satisfactory failure pattern 

[15].    

 

The obtained stress-strain curves from the diagonal compression simulations are shown in 

Figure 8 and Figure 9 for the plane stress and 3D models respectively. Wider scattering was 

reported by Miccoli et al. for the shear response of the cob wallets as can be seen from the upper 

and lower limit curves. All plane stress MISO models fit within such limits. Unfortunately, the 

discrepancy values for the peak strengths are slightly high, between 13 and 20 %, as can be 

seen in Table 4.   
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(a) (b) 

Figure 7. Maximum principal strains for the simple compression MISO models (a) plane 

stress & (b) 3D. 

    

 

Figure 8. Plane stress diagonal compression stress-strain curves using MISO. 

On the other hand, 3D MISO stress-strain curves do not fit within the reference range. These 

results are similar as those reported for the 3D MISO simple compression curves. A stiffer 

behavior can be observed which may be explained by the Poisson´s ratio effect in the orthogonal 

directions of the wall plane for the 3D models. Moreover, an important difference between the 

finer mesh (10 mm) and the coarser ones (30 & 50 mm) can be seen. Discrepancy values for 

the peak strengths are within 39 and 41 % for the 30 and 50 mm models whereas that for the 10 

mm model this value increases up to 76 % (see Table 4).  

 

 

Figure 9. 3D diagonal compression stress-strain curves using MISO. 

Figure 10 shows the maximum principal strains from the diagonal compression simulations. 

Due to the geometry of the models, singularity points appear at the contact between the sharped 
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edges of the steel plates with the cob wallettes. These figures do not match with the failure 

pattern observed during the experimental campaigns and place serious doubts regarding the 

validity of the results obtained. In future work, those singularities must be removed for example 

by rounding the edges of the plates or by applying the displacements directly on the edge nodes 

of the cob wallettes.   

 

  
(a) (b) 

Figure 10. Maximum principal strains for the diagonal compression MISO models (a) 

plane stress & (b) 3D. 

The stress-strain curves obtained with the CONCR model for the simple compression 

simulation are shown in Figure 11. They display a slightly stiffer pre-peak behavior in 

comparison with the experimental response of cob. Nonetheless, the overall behavior turned 

out to be quite accurate. Regarding the mesh sensitivity results, discrepancy values for the peak 

strengths were computed within 10 % for the three mesh sizes implemented.    

 

 

Figure 11: 3D simple compression stress-strain curves using CONCR. 

The CONCR material model, in combination with the finite element SOLID65, has the 

capability to represent cracks and/or crushing explicitly in a graphical way. Figure 12 shows 

those plots at three different stages of the simulation, namely, at substeps 40, 50 and 100 (last 

substep). It can be appreciated how the failure starts at the corners of the wallette (a), propagates 

to the center forming the typical cone shape of compression tests (b) and finally reaches the 

total damage of the material (c). 

 

The simulation of the diagonal compression test with CONCR was more mesh sensitive as can 

be seen in Figure 13. None of the three models was capable to reproduce the post-peak ductile 

behavior of cob reported after the experimental campaign. Moreover, the models with 30 and 

50 mm mesh size gave quite big discrepancy values regarding the peak strengths of around 47 

%. On the other hand, the 10 mm model gave a very accurate peak strength value. Even though 

ICCM2018, 6th-10th August 2018, Rome, Italy

294



it presented a relatively brittle post peak behavior, the values for the final strains are similar to 

those reported by Miccoli et al. This model represents the more accurate way to reproduce the 

non-linear behavior of cob from the three different material models studied in this paper. 

 

   
(a) (b) (c) 

Figure 12. Crack and crushing development for a simple compression test using 

CONCR; (a) at substep 40, (b) at substep 50, (c) at substep 100. 

Regarding the failure pattern of the CONCR model, it can be seen from Figure 14 that cracks 

initially appear at the center of the wallette (a), then propagate diagonally in both directions (b) 

until they reach the faces of the wallette (c) forming the typical x pattern expected from a 

compression test.   

    

 

Figure 13. 3D diagonal compression stress-strain curves using CONCR. 

Finally, the stress-strain curves and the maximum principal strain plots for the DMGE/DMGI 

models are presented in Figure 15 and Figure 16 respectively. Even though input parameters 

were calibrated to provide an accurate strength value for the simple compression test (see Figure 

15 (a) and the mesh sensitivity values for the discrepancy of the peak strengths presented in 

Table 4), neither the pre-peak nor the post peak behavior of cob was captured properly. 

DMGE/DMGI material shows a stiffer pre-peak behavior and, after reaching the peak strength, 

a sudden loss of strength. Thus, depicting a fully brittle material behavior rather than the 

progressive loss of capacity and ductile post peak behavior of cob. Furthermore, the shear 

responses from the simulations were far from replicating the cob performance reported by 

Miccoli et al. (see Figure 15 (b)). 

 

As can be seen in Figure 16, neither the simple compression nor the diagonal compression 

maximum principal strains correspond with the expected x pattern considered as satisfactory. 

For the simple compression plot, strains accumulate at the interface between the steel plates 

and the top and bottom of the cob wallette. Whereas that for the diagonal compression plot, 
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strains accumulate at the singularity points between the sharpened edges of the steel plates in 

contact with the faces of the cob wallettes.  

 

   
(a) (b) (c) 

Figure 14. Crack and crushing development for a diagonal compression test using 

CONCR; (a) at sub step 50, (b) at sub step 70, (c) at sub step 100. 

 

 
(a) 

 
(b) 

Figure 15. Plane stress stress-strain curves using DMGE/DMGI for (a) simple 

compression & (b) diagonal compression simulations.  

As said before, the input parameters of the DMGE/DMGI models were calibrated to obtain the 

same peak strength as the reference for the simple compression test. Therefore, the discrepancy 

values are quite small (within 1 %). On the other hand, the discrepancy values for the peak 

strengths of the diagonal test are the higher ones among all set of simulations (going from 48 

up until the 86 %). As neither pre-peak/post-peak behavior nor the distribution of the maximum 

principal strains correspond to the results obtained from the experimental campaign, the 
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DMGE/DMGI material models are the less suitable to reproduce cob´s structural response 

among the set of three different material models implemented. 

 

  
(a) (b) 

Figure 16. Maximum principal strains using DMGE/DMGI for (a) simple compression 

model & (b) diagonal compression model. 

Table 4. Mesh sensitivity in terms of peak strengths. 

Test Model 

Mesh 

size 

(mm) 

Peak 

strength 

(MPa) 

Reference 

value (MPa) 

Discrepancy 

(%) 

Simple 

compression 

2D MISO 

50 1.704 1.59 7.16 

30 1.722 1.59 8.28 

10 1.736 1.59 9.15 

3D MISO 

50 1.965 1.59 23.60 

30 2.201 1.59 38.44 

10 2.196 1.59 38.08 

CONCR 

50 1.680 1.59 5.67 

30 1.752 1.59 10.21 

10 1.714 1.59 7.81 

DMGE/DMGI 

50 1.587 1.59 0.18 

30 1.587 1.59 0.21 

10 1.572 1.59 1.11 

Diagonal 

compression 

2D MISO 

50 0.569 0.50 13.75 

30 0.566 0.50 13.27 

10 0.611 0.50 22.20 

3D MISO 

50 0.706 0.50 41.26 

30 0.696 0.50 39.11 

10 0.883 0.50 76.55 

CONCR 

50 0.263 0.50 47.36 

30 0.262 0.50 47.57 

10 0.492 0.50 1.70 

DMGE/DMGI 

50 0.070 0.50 86.07 

30 0.152 0.50 69.64 

10 0.257 0.50 48.69 
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Conclusions 

The suitability of three constitutive material models (MISO, CONCR & DMGE/DMGI) 

available in ANSYS to replicate the non-linear response of cob wallettes was assessed. The 

simulations were based on results obtained from previous experimental campaigns.  

 

MISO could reproduce the pre-peak behavior of cob and principal stresses could be used as an 

indication of the opening of cracks. On the other hand, it did not capture the softening post-

peak behavior of the material. CONCR provided quite accurate pre-peak behavior results and 

peak strength values. Moreover, it was possible to plot the opening of cracks and those plots 

agreed with the experimental results. Nevertheless, as CONCR is suitable to reproduce brittle 

failures, it did not capture the long deformations characteristic of cob. Finally, the 

DMGE/DMGI proved to be inaccurate to reproduce both pre-peak and post-peak behavior. 

Although parameters could be calibrated to obtain the appropriate peak strength, neither stresses 

nor do strains correspond to what was observed in the experimental campaign.   

 

The model that better represented the behavior of cob was the 3D CONCR with a 10 mm mesh 

size. The discrepancy values for both simple and diagonal compression peak strengths are 

smaller than 10 %. Moreover, the cracks obtained in the model are in good agreement with the 

typical failure pattern presented in these types of experimental tests.  
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Abstract 
The objective of this study is to evaluate the structural integrity of a reactor pressure vessel 
during a pressurized thermal shock event by applying deterministic fracture mechanics. The 
deterministic fracture mechanics analysis was performed using three-dimensional finite 
element models. The impacts of the input parameters, such as the crack location, the aspect 
ratio, and the cladding properties were reviewed through the corresponding sensitivity 
analyses. In addition, the maximum allowable transition temperatures were estimated. 
 

Keywords: Reactor Pressure vessel (RPV), Pressurized Thermal Shock, Deterministic 
Fracture Mechanics 

Introduction 

The reactor pressure vessel integrity is ensured by a proper margin between its loads bearing 
capacity given by the vessel design and material properties, and the acting loads, which could 
occur during a plant operation. Thus, it is designed and manufactured according to the strict 
code requirements to ensure its structural integrity. 
Before the late 1970s, it was postulated that the most severe thermal shock that a pressurized 
water reactor (PWR) vessel must withstand is a large break loss of coolant accident (LOCA). 
In this type of overcooling transient, low-temperature emergency core coolant will rapidly 
enter the reactor pressure vessel (RPV) and cool the vessel wall. The resulting temperature 
gradient in the vessel wall will cause a significant thermal stress, within the inner surface of 
the wall. However, the stresses due to the system pressure along with the thermal stresses 
were not considered, since it was expected that during a large break LOCA, the system will 
depressurize fast and remain at a low pressure. In 1978, the occurrence of a pressurized 
thermal shock (PTS) at the Rancho Seco nuclear power plant in California showed that some 
overcooling transients can be accompanied by a re-pressurization of the primary system, 
which will compound the effects of the thermal stresses. When a system pressure remains 
high or slowly decreases during thermal shock events, an additional stress from the system 
pressure greatly increases the possibility of a crack initiation and propagation. In particular, 
the surface cracks and underclad cracks located in the RPV inner wall can pose concerns 
under a PTS event. To assure the integrity of RPVs under a PTS event, the PTS rule requires 
that the RTNDT of RPV beltline materials should be lower than the PTS screening criteria. 
However, a PTS analysis for the integrity of a RPV is a complex task, which places 
significant requirements on the experts performing it. These requirements include knowledge 
of the dominant physical phenomena and associated computer codes, knowledge of the plant 
being analyzed, and knowledge of the relevant codes and standards for a RPV integrity 
assessment. In addition, several different procedures and approaches are presently used for the 
integrity assessments of RPVs. This implies that the results from the assessments are not 
comparable between individual RPVs as different procedures and approaches are used. 
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Therefore, it is necessary to undertake a parameter study for the fracture mechanics evaluation 
of a RPV under a PTS event. 
The objective of this study is to evaluate the structural integrity of a RPV under PTS 
conditions by applying deterministic fracture mechanics. The deterministic fracture 
mechanics analysis was performed using three-dimensional finite element models. The crack 
configurations, crack aspect ratio, and cladding properties were considered in the parametric 
study. In addition, the maximum allowable transition temperatures were investigated. 

Problem Definition 

Geometric 
The RPV considered in the analysis is a typical 3-loop PWR, which is made of ASTM A508 
Class 3 with an inner radius of 1994 mm, a base metal thickness of 200 mm, and a cladding 
thickness of 7.5 mm. The postulated defect as a base case (Case 1) is a through-clad surface-
breaking semi-elliptical crack of 19.5 mm in depth by 117 mm in length for a/c = 1/3, as 
shown in Fig. 1. The configuration of an elliptical underclad crack (Case 6) is shown in Fig. 2.  
 

l =
 2

c

   

l =
 2

c

 
 

Figure 1.  Schematic Illustration of   Figure 2.  Schematic Illustration of  
a postulated crack (Case 1)    a postulated crack (Case 6) 
 

Transient Conditions 
One overcooling transient due to an assumed leak is defined as in Fig. 3, for which axi-
symmetric loading conditions are assumed. The figure shows a typical PTS transient with re-
pressurization. The temperature and pressure start to decrease, but at a certain time, namely, 
about 7200 seconds after the transient begins, the system pressure increases rapidly. It is 
maintained and a slow heating occurs, which shows the typical characteristics of a PTS 
transient. In this case, the pressure is assumed to be a dominant factor. 
 
Sensitivity Study 
Several parametric studies are proposed to investigate the influence of certain parameters on 
the results. Of them, considered here is a postulated defect of those parameters such as 
underclad vs. surface cracking, defect aspect ratio (a/c=1/3, 1/2, 1/1), and elliptical vs. 
semielliptical cracking. An analysis matrix for the sensitivity of the postulated defect is shown 
in Table 1. In addition, the effects of the cladding are investigated for three conditions of Case 
1 as follows: 

C1: No cladding. Cladding properties are assumed as identical to the base metal. 
C2: Cladding thermal conductivity is considered. Additional stress due to a steep 

temperature gradient in the cladding is evaluated. 
C3: Cladding is fully considered. Additional stresses due to a steep temperature gradient 

and a differential thermal expansion are evaluated. 
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Figure 3.  Transient histories of a PTS with repressurization 

 
Table 1. Analysis matrix for a sensitivity study of a postulated defect 

Case Location Shape Aspect 
ratio ( ca / ) 

Depth 
a  ta /  

1 surface semi-elliptical 1/3 19.5 0.06 
2 underclad semi-elliptical 1/3 12.0 0.06 
3 underclad semi-elliptical 1/3 15.0 0.075 
4 surface semi-elliptical 1/2 19.5 0.06 
5 surface semi-elliptical 1/1 19.5 0.06 
6 underclad elliptical 1/3 12.0 0.06 

Finite Element Modeling 

In this paper, three-dimensional finite element analyses were performed for an assessment of 
various cracks in the RPV under PTS conditions. The model was designed using 20-node 
isoparametric quadratic brick elements with reduced Gaussian integration points and 20-node 
quarter point brick elements for the crack front point. Typical examples of the meshes are 
shown in Figs. 4 (semi-elliptical surface crack) and 5 (elliptical underclad crack), respectively. 
Three-dimensional finite element analyses, including thermal and mechanical calculations, 
were performed using the ABAQUS finite element analysis program. For each geometrical 
configuration, the stress intensity factor was calculated from the value of the J-integral 
obtained at the deepest point.  

     
 

Figure 4. 3-Dimensional FE mesh   Figure 5. 3-Dimensional FE mesh  
for the semi-elliptical surface crack for the elliptical underclad crack 
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Finite Element Analysis Results 
Maximum Allowable RTNDT 
The maximum allowable nil ductile transition temperature for each crack geometric under a 
PTS event is presented in Table 2. 

Effects of Crack Aspect Ratio 
The effects of the crack aspect ratio on the stress intensity factor curves are shown in Fig. 6. 
The stress intensity factor curves decrease with an increase in the crack aspect ratio. 

Influence of Crack Configuration 

The effects of the crack location are shown in Fig. 7 for surface and underclad cracking. The 
stress intensity factor for a surface crack is much higher than that of an underclad crack with 
the same deepest point. In Case 2_C3, the stress intensity factor is so small that crack 
initiation does not occur during the transient event. Fig. 8 shows the stress intensity factor 
curves for the existing cracks in the base metal. The two results show a similar tendency. The 
stress intensity factor curves at two crack tip points are shown in Fig. 9 for the elliptical 
underclad crack. The stress intensity factor curve at point B is much higher than that of point 
A at the deepest point of a crack front. This means that it is possible to predict a crack 
initiation at point B. 

Influence of Cladding Properties 
Fig. 10 shows the stress intensity factor curves with different properties of the cladding. The 
curve of Case 1_C3 is much higher than that of Cases 1_C2 and C3. Accordingly, the 
maximum allowable NDTRT  of Case 1_C3 is the lowest. 
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Figure 6. Comparison of the SIF   Figure 7. Comparison of the SIF 

with various crack aspect ratios  with various crack locations 

Conclusions 

In this paper, three-dimensional finite element analyses were performed to evaluate the 
integrity of a RPV under PTS conditions, and the following conclusions were obtained. 

1. Stress discontinuity takes place at a boundary line between the cladding and base 
metal. 

2. As the crack aspect ratio increases with the same crack depth, the maximum allowable 
nil ductile transition temperature increases. 
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3. When the differences in the thermal conductivity and the thermal expansion 
coefficients of a cladding are fully considered, the stress intensity factor curve 
increases. 

4. The stress intensity factor of a surface crack is much higher than that of an underclad 
crack with the same deepest point. 

5. For an elliptical underclad crack, the possibility of a crack initiation was monitored at 
the boundary between the cladding and base metal. 
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 Figure 8. Comparison of the SIF   Figure 9. Comparison of the SIF 
with various crack shapes   with crack tip points 
 

Table 2. Maximum Allowable RTNDT by the maximum criteria at the deepest point 

 

0.0

20.0

40.0

60.0

80.0

100.0

0 50 100 150 200 250 300

Crack Tip Temperature(OC)

S
tr

e
s
s
 I
n
te

n
s
it
y
 F

a
c
to

r 
(M

P
a
√
m

) 
  

. Case 1_C1

Case 1_C2

Case 1_C3

 
Figure 10. Comparison of the SIF with various thermal/mechanical properties of the 

cladding 

Case Cladding Maximum allowable  RTNDT   (℃) 

1 
C1 69 
C2 71 
C3 56 

2 C3 No intersection 
3 C3 62 
4 C3 No intersection 
5 C3  89 

6 C3 (Point A) No intersection 
C3 (Point B) 78 
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Abstract 

In this paper, we study entropy generation in Sikiadas nanofluid flow along a moving plate 
subject to an inclined magnetic field and a Cattaneo-Christov heat flux model that may predict 
the effects of thermal relaxation time in the boundary layer flow. The nonlinear transport 
equations are solved using a spectral-quasi linearization method. An analysis of the 
convergence of the method is presented, and the importance of various fluid and physical 
parameters on the behavior of the solutions is explored. It is shown that the method converges 
fast and gives accurate results. The results show that entropy generation increases with an 
increase in the Reynolds number. 
 
Keywords: Cattaneo-Christov heat flux model; inclined magnetic field; Nanofluid; 
SQLM. 
 
 
Introduction: 
 
Heat transfer characteristics in a fluid have traditionally been studied using Fourier’s law of 
heat conduction. It is important in many industrial and engineering processes including 
nuclear reactor cooling, space cooling, energy production, biomedical applications such as 
magnetic drug targeting, heat conduction in tissues etc. and many others. The temperature 
difference between two unlike bodies causes heat transfer mechanism. The heat transfer 
phenomenon was primarily described by Fourier [1] which is parabolic energy equation for 
temperature field. One of the major shortcomings of this model is that it produces a parabolic 
energy equation which means that an initial disturbance would instantly affect the system 
under consideration. After that Cattaneo [2] modifies the Fourier law of heat conduction in 
which he added the thermal relaxation term. The addition of thermal relaxation time causes 
heat transportation in the form of thermal waves with finite speed. A material invariant 
formulation of the Cattaneo’s model was presented by Christov [3] through the consideration 
of Oldroyd’s upper-convected derivative. The Cattaneo-Christov equations uniqueness and 
structural stability were discussed by Ciarletta and Straughan [4]. Mushtaq et.al [5] were 
studied Sakiadis flow of UCM fluid by considering Cattaneo–Christov heat flux model and 
concluded that temperature distribution is Non-Monotonic with an increasing thermal 
relaxation time. Han [6] explored the heat transfer phenomenon of viscoelastic fluid under the 
Cattaneo–Christov theory and Salahuddin et.al [7] analysed the MHD flow of Williamson 
fluid with variable thickness by considering Cattaneo–Christov heat flux model.  
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The addition of nano-sized metallic or metal oxide particles to base fluids such as oil or water 
leads to nanofluids. These fluids have enhanced thermo physical properties such as a higher 
thermal conductivity, viscosity, thermal diffusivity and convective heat transfer coefficients 
compared to base fluids. Dogonchi and Ganji [8] investigated the importance of the Cattaneo–
Christov heat flux model for heat transfer in an MHD nanofluid flow between parallel plates. 
Sithole et al. [9] investigated entropy generation in a second grade fluid flow over a stretching 
sheet.  

The innovation of our study in heat transfer fluids involves the addition of nano-sized metallic 
or metal oxide particles to base fluids such as oil or water. The resulting nanofluids have been 
found to possess enhanced thermo physical properties such as the thermal conductivity, 
viscosity, thermal diffusivity and convective heat transfer coefficients compared to the of base 
fluid. These novel properties ensure that nanofluids have great potential for useful as heat 
transfer fluids, in, for instance, microelectronic devices, fuel cells, engine cooling/vehicle 
thermal management, heat exchangers and in boiler flue gas temperature reduction. The 
boundary layer flow of a third-grade viscoelastic power-law non-Newtonian fluid over a 
porous wedge was investigated by Rashidi et al. [10].  He  studied the impact of buoyancy and 
thermal radiation on magneto hydrodynamic nanofluid flow past a stretching sheet. Khan and 
Pop [11] obtained a numerical solution for the two-dimensional flow of nanofluid over a 
linearly stretching sheet. Buongiorno [12] presented a nonhomogeneous equilibrium 
mathematical model for convective transport in nanofluids. Kuznetsov and Nield [13] studied 
the nanofluid boundary layer flow past a vertical plate. De et al. [14] were investigate the flow 
of nanofluids. She concluded that Brownian motion and thermophoretic diffusion of 
nanoparticles are the most important mechanisms for the abnormal convective heat transfer 
enhancement.  
 
The aim is to explore entropy generation and heat transfer characteristics in an MHD fluid 
flow for the well-known Sakiadis problem and a Maxwell nanofluid using the Cattaneo–
Christov heat flux model. The conservation equations are solved numerically using the 
spectral quasilinearization method. The significance of physical and fluid parameters on the 
flow and entropy generation fields is discussed in detail. 
 
Mathematical formulation: 

 
The plate is assumed to be at a constant temperature Tw and T∞ denotes the ambient fluid 
temperature. Christov’s heat flux model is used. The uniform magnetic field is applied at an 
angle Λ  to the positive direction of the y−axis. Making use of the standard boundary layer 
approximations, the equations governing the steady incompressible flow of nanofluid and heat 
transfer can be expressed as below: 
 

0u v
x y
∂ ∂

+ =
∂ ∂

                                                                                                            (1) 

2 2 2 2 2
2 2 2

1 02 2 22 ( )u u u u u u uu v v uv B sin u
x y x yx y y

sλ n
ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + + + = − ∧  ∂ ∂ ∂ ∂∂ ∂ ∂ 

                (2) 

2

. ( ) T
p p Bf

DT T C T Tc u v c D
x y y y T y

ρ ρ
∞

    ∂ ∂ ∂ ∂ ∂ + = −∇ + +   ∂ ∂ ∂ ∂ ∂     
q                             (3) 
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2 2

2 2
T

B
DC C C Tu v D

x y Ty y∞

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
                                                                           (4) 

 
In the energy equation, q is the heat flux that satisfies the following equation  

2 . . ( . )V V V k T
t

λ ∂
+ + ∇ − ∇ + 

 
 

∇ = − ∇
∂
qq q q q                                                        (5) 

In which ( , ,0)V u v=  2-Dimensional velocity vector, 2λ  is the relaxation time for heat flux 
and k is the thermal conductivity of the fluid. We considered flow is incompressible so that 
equation (5) takes the form as 
 

2 . .V V k T
t

λ ∂
+ + ∇ − 

 ∇ = − ∇
∂ 

 
qq q q                                                                      (6) 

Eliminating q from equations (3) and (5), we obtain the following equation (for more details 
see Christov [25] and Han et al [28]) 
 

22

2 22 2 2
2 2

2 2 2

T
B

u u T v v Tu v u v
x y x x y y DT T T C T Tu v D

x y y y T yyT T Tu v uv
x yx y

λ α τ
∞

    ∂ ∂ ∂ ∂ ∂ ∂
+ + +      ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂      + + = + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂     + + + ∂ ∂∂ ∂ 

  (7) 

In addition, the boundary conditions are 

,     0,     ,     0         0T
w B

DC Tu U v T T D at y
y T y∞

∂ ∂
= = = + = =

∂ ∂
                                               (8) 

0,     ,                   u T T C C as y∞ ∞→ → → →∞                                                                  (9) 
 
where x, y are the coordinates along plate and normal to the plate respectively, u, v are 
velocity components of  along x and y axis respectively,  1λ  is the relaxation time of the fluid, 

pc  is the specific heat ,  is the density of the fluid, n  is the kinematic viscosity, BD and TD is 
the Brownian diffusion coefficient and  thermophoretic diffusion coefficient respectively. 

( )
( )

p

f

c
c

ρ
τ

ρ
=  is the ratio between the effective heat capacity of the nanoparticles material and 

heat capacity of the fluid, T and C are fluid temperature and nanoparticles fraction, 
respectively, wT  and T∞  are the temperature of the fluid at the wall and ambient temperature. 
 
Introducing the following similarity transformations 
 

, ( ), ( )U Uy u Uf v f f
x x

nη η η
n

′ ′= = = − − , ( ) , ( )
w

T T C C
T T C

θ η φ η∞ ∞

∞ ∞

− −
= =

−
      (10) 

By using similarity transformations equations (1), (2), (4) and (6) reduces to 
 

( )2 2 211 2 ( ) 0
2 2

f ff ff f f f f f Msin fβ η′′′ ′′ ′ ′′ ′′′ ′ ′′ ′+ − + + − ∧ =                                                 (11) 

( )2 221 1 3 0
2 2

f ff f Nb Nt
Pr

βθ θ θ θ θ φ θ′′ ′ ′ ′ ′′ ′ ′ ′+ − + + + =                                                       (12) 
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1 0
2

NtLePrf
Nb

φ φ θ′′ ′ ′′+ + =                                                                                                    (13) 

 
 
and the boundary conditions are 
 

1,  0,  1,  0        0f f Nb Nt atθ φ θ η′ ′ ′= = = + = =                                                               (14) 
0,  0,  0      .f asθ φ η′→ → → →∞                                                                                 (15) 

Here 
2
0B

M
U

s
ρ

=  is the magnetic parameter, ∧  is the inclined angle, 1
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Entropy Generation:  
 
The volumetric entropy generation in the Cattaneo-Christov nanofluid, which is based on the 
second law of thermodynamics, is given by 
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It is suitable to define the entropy generation number NG as a ratio between the local 
volumetric entropy generation rate '''

genS and a characteristic rate of entropy generation which 

is defined by '''
0S  

22
'''

0

)(
xT

TTk
S wf

∞

∞−
=                                                                                                               (17) 

The entropy generation number NG can be obtained as 
 

2
2

22
'''

0

'''

'Re''Re'Re'Re φ
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φθ
χχ

θ ∑
+

∑
++== fMBr

S
S

N gen
G                                                  (18) 

Where Re is the Reynolds number, Br is the Brinkman number, ∑ is the constant and χ is 
the temperature difference parameter. 
 
Equation (18) can be obtained as a summation of the entropy generation number caused by the 
heat transfer (N1) and the entropy generation number caused by both diffusive irreversibility 
and magnetic field (N2). That is NG = N1 + N2, where 
 

2'Re1 θ=N , 2
2

2 'Re''Re'Re2 φ
χ

φθ
χχ

∑
+

∑
+= fMBrN                                                  (19) 

 
The heat transfer irreversibility, diffusive irreversibility and the magnetic field all contribute 
to entropy generation. It is therefore worthwhile investigating the conditions under which heat 
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transfer dominates entropy generation. To investigate this question, the Bejan (Be) number is 
defined as the ratio of entropy generation due to heat transfer and the entropy generation 
number. 
 

GN
NBe 1

=                                                                                                        (20) 

 
The Bejan number takes values in range [0, 1]. At the extreme when Be = 1 the irreversibility 
of heat transfer dominates. On the other extreme when Be = 0 the combined effects of 
diffusion and magnetic field dominates the irreversibility. When Be = 0.5, the contribution of 
heat transfer in entropy generation is the same as the combined contribution of diffusion and 
magnetic field in entropy generation. Additionally, the Bejan number Be is considered at the 
best values of the parameters at which the entropy generation its minimum. 
 
Method of solution: 

The nonlinear-coupled ordinary differential equations (11)-(13) subject to the boundary 
conditions (14) have been solved numerically using the spectral quasi linearization method 
(SQLM). The quasi linearization method is employed to linearize the equations before they 
are solved iteratively using the Chebyshev spectral collocation method. Applying the quasi 
linearization procedure to equations (11)-(15), the resultant equations are 

            ''' '' '
1, 1 2, 1 3,1 1 4, 1 1   r r r r r r rf f f f Rα α α α+ + + ++ + + =                                                       (21) 

            ''' ' '
1, 1 2, 1 3, 4, 1 5, 1 21r r r r r r r r rrff Rβ β β θ β θ β φ+ + + +++ + + + =                                          (22) 

            '' ' ' '
1, 1 2, 3, 4, 1 31 1  r r r r r rr rf Rγ γ θ γ φ γ φ+ ++ ++ + + =                                                           (23) 

and the boundary conditions are 

           ' ' '
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1 1 10,    0,  0 at  .r r rf θ φ η+ + += = = →∞                                                                (24) 

Where 

'' ' '' ''' ' '' '' 2
1 1 1 1

' '2 21 1

1, 2,

3, 41 ,

1 sin ( )
2

1
2 2

, ,

, 1
2

r r r r r r r rr r

r

r

r rrr r r

f f f f f f f f f M

f f f f f

β β β η β

β ββα η

α α

α

 = = − 
 

= − − = −

− − −

+

− Λ
  

' ' '' ' 2' 2 2 2
1, 2, 3,(3 2 )

2 2
31 1, , ,

2 2 Prr r rr r r r r r rrf f f fβ β ββ θ βθ βθ θ= − =+ − = −   

'
4,

' '2
,

'
5

1 2
2 2

3 ,r r r rr r r rf f Nb Ntf Nbβ φβ β θθ− =+ +=                                                                    

ICCM2018, 6th-10th August 2018, Rome, Italy

309



'
1, 2, 3, 4,

1 1, , , 1
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 r r r r r r r r r rR f Nt Nb f f fθ θ θ φ β θ θ= + + − +   

3
1 
2 r rR PrLef φ′=   

The equations (21) to (24) constitutes a linear system of coupled differential equations with 
variable coefficients and can be solved iteratively using any numerical method for r = 1, 2, 
3.... In this work, as we discussed below, the Chebyshev spectral collocation method was used 
to solve the QLM scheme (21) to (24).  Before applying the spectral method, it is convenient 
to transform the domain in the η  direction is approximated to [0, L] where L is the edge of 

the boundary limit (large enough), use the transformation of algebraic mapping ( 1)
2

Lτη +
=  

to map the physical domain into the computational domain [-1, 1]. This basic idea of this 
method is approximating the unknown functions by the Chebyshev interpolating polynomials 
in such a way that they are collocated at the Gauss-Lobatto points defined as 

                 cos( ),     1 1,     0,1, 2, ,i
i i N

N
πτ τ= − ≤ ≥ = …                                                        (25) 

where N is the number of collocation points. The derivative of 1rf +  at the collocation points is 
represented as 
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where 2 D
L

=D  and D is the Chebyshev spectral differentiation matrix 

0 1[ ( ), ( ),... ( )].Nf f fτ τ τ=F Similarly the derivatives of  ,θ  and φ  given by 

.p p p pθ φ= Θ = ΦD D  .p p p pθ φ= Θ = ΦD D  where p is the order of derivative, and D  is 
the matrix of order ( 1) ( 1).N N+ × +  Substituting (24)-(25) into the equations (21)-(23) we 
obtain 

          3 2
1, 2, 3, 4, 1 1  r r r r r+ + + + = α D α D α D α F R                                                            (27) 

          2
1, 2, 1 3, 4, 1 5, 1 2 r r r r r r r r+ + +    + + + + =    β D β I F β D β D Θ β D Φ R                          (28) 
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          2 2
1, 1 2, 1 3, 4, 1 3 r r r r r r r+ + +     + + + =     γ I F γ D Θ γ D γ D Φ R                                    (29) 

Applying spectral method on the boundary conditions gives 

1 , 1 1 , 1 , 1
0 0 0
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The above system of equations is written in the matrix form as 

11 12 13 1 1

21 22 23 1 2

31 32 33 1 3

r

r

r

A A A
A A A
A A A

+

+

+

    
     =    
        

F R
Θ R
Φ R

                                                                            (31) 

Where 

3 2
11 1, 2, 3, 4,[ ] [ ] [ [ ] ]r r r rA diag diag diag diagα= + + +D α D α D α I   

12  A = 0  , 13  A = 0   

21 1, 2,[ ] [ ]r rA diag diag= +β D β I  , 

2
22 3, 4,[ ] [ ] , r rA diag diag= +β D β D   

23 5,[ ] rA diag= β D  ,  31 1, [ ] ,rA diag= γ I   

2
32 2,[ ] , rA diag= γ D  2

33 3, 4,[ ] [ ] r rA diag diag= +γ D γ D   

Whereα , β  and γ are ( 1) ( 1)N N+ × +  diagonal matrices, I  , 0   is a ( 1) ( 1)N N+ × +  Unit 
matrix and zero matrix respectively. The approximate solutions for F , Θ  and Φ  are obtained 
by solving the matrix system (31). 

Convergence analysis: 
 
The coupled ordinary differential equation (11)–(13) with the boundary conditions (14)-(15) 
are solved using the SQLM. To validate the accuracy of the numerical results, the residual 
errors and the error norms are calculated. The residual error measures the extent to which the 
numerical solution approximates the genuine solution. The error norm is the difference 
between the approximate values at successive iterations and may be used to evaluate 
convergence and stability of the iteration scheme. We studied the change in the residual and 
error norms with several physical parameters such as the magnetic field, viscoelasticity, the 
thermal relaxation time, the Brownian motion and the thermophoresis parameter. The results 
are shown in Figs. 1 to 9.  
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Figs 1 to 3 show the residual errors in velocity profiles against iterations for different values 
of the magnetic field parameter, viscoelastic fluid and thermal relaxation time   parameter.  
The residual errors converge after the fifth iteration with a residual error of 10-10. The error 
norms decrease and smooth converge is achieved.  
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Fig.1: Residual error in the velocity profiles for different values of the magnetic parameter. 
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Fig. 2:  Residual error in the velocity profiles for different values of 1β . 
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Fig.3: Residual error in the velocity profiles for different values of 2β . 

Figs. 4 –5 show the residual errors and solution error norms against the number of iterations 
for different values of the thermal relaxation time and thermophoresis parameter. The residual 
errors converges after the fourth iteration with a residual error 10-10.  The solution error norm 
decreases and convergence is rapid. 
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Fig.4: Residual error in the temperature profiles for different values of 2β . 
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Fig.5: Residual error in the temperature profiles for different values of Nt. 

 

Figs. 6-9 show the residual errors and solution error norms against iterations for different 
values of the viscoelastic fluid, dimensionless thermal relaxation time, Brownian motion and 
thermophoresis parameter.  The residual errors converge after four iteration with a residual 
error is 10-10.    
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Fig.6: Residual error in concentration profiles for different values of 1β . 
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Fig.7: Residual error in concentration profiles for different values of 2β . 
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Fig.8: Residual error in concentration profiles for different values of Nb. 
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Fig.9: Residual error in concentration profiles for different values of Nt. 

Fig. 10 shows the effect of the magnetic parameter on the entropy generation number. An 
increase in magnetic parameter results in an increase in entropy generation number. In the 
neighborhood of the sheet vicinity, the magnetic field has a significant impact on the entropy 
generation number. This tends to increase the resistance of the fluid motion, and 
consequently, the heat transfer rates. However, far from the sheet vicinity, the influence of 
magnetic parameter is insignificant.  
 
Fig. 11 shows entropy generation with the Brinkman number, which represents a measure of 
the significance of the heat produced by viscous heating proportional to heat transported by 
molecular conduction. An increase in the Brinkman number tends to increase the entropy 
generation number especially near the sheet.  
 
 
Fig. 12 shows the behavior of the entropy generation number with the temperature difference 
parameter. We observe that in the neighborhood of the sheet, the entropy generation number 
increases with the temperature difference parameter.  
 

Fig. 13 relates the entropy generation number to the Reynolds number. We note that the 
Reynolds number has a significant impact on the entropy generation number as an increase in 
the Reynolds number leads to a significant increase in the entropy generation number, near the 
sheet. By increasing the Reynolds number, the fluid acceleration increases near the sheet.  
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Fig. 10: Effects of the magnetic parameter on the entropy generation number NG. 
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Fig. 11: Effects of Brinkman number on the entropy generation number NG. 
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Fig. 12: Effects of temperature difference parameter on the entropy generation number NG. 
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Fig. 13: Effects of Reynolds number on the entropy generation NG. 

Fig. 14 shows that the Bejan number is proportionally related to the magnetic parameter. As 
magnetic parameter increases, the entropy generation traced to diffusive irreversibility and 
magnetic field is totally controlled by the entropy generation due to heat transfer at the 
vicinity of the sheet. Figs.15 and 16 show the variations in the Bejan number with different 
values of the Brinkman number and the temperature difference parameter. We observe that an 
increase in the Brinkman number and temperature difference parameter leads to an increases 
in the Bejan number. An increase in the Brinkman number and the temperature difference 
parameter contribute to the increase in the magnitude of the diffusive irreversibility. However, 
the Brinkman number and the temperature difference parameter have no influence on heat 
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transfer irreversibility. Consequently, the irreversibility ratio increases and the Bejan number 
decreases. 
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                         Fig.14: Effects of the magnetic parameter on the Bejan number (Be). 
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Fig.15: Effects of the Brinkman number on the Bejan number (Be). 
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Fig. 16: Effects of temperature difference parameter on the Bejan number (Be). 

Conclusions: 
In this paper, we have investigated the influence of some fluid parameters on the entropy 
generation in Sakiadis nanofluid flow using Cattaneo-Christov heat flux model. The flow is 
over a stretching sheet subject to an inclined magnetic field. The transport equations were 
solved numerically using the spectral quasi-linearization method. The accuracy of the 
solutions was determined through an analysis of error norms and residual errors. Some key 
findings from the study include the following:  
 

• The entropy generation number increases with an increase in temperature difference 
parameter, the Brinkman number and the Reynolds number. 

• The Bejan number is strongly affected by variations in the temperature difference 
parameter and the Brinkman number. 
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Abstract 

This paper presents a computational procedure for the determination of the stochastic material 
properties of defective graphene sheets. The lattice of graphene is modeled using the 
molecular structural mechanics approach, which is a continuum based nanoscale modeling 
technique, where the C-C covalent bonds are replaced by energetically equivalent beam 
elements. The statistical properties for each component of the elasticity matrix are obtained by 
performing Monte Carlo simulations on randomly generated finite element models of 
defective graphene sheets. Moreover, computational homogenization of graphene sheet 
reinforced composites is performed considering material and geometrical uncertainty. The 
results demonstrate the effect of combined uncertainty on the homogenized properties of the 
composite material.  

Keywords: Graphene, Vacancy defects, Microstructural uncertainty, Homogenization, 
Composites. 

 

Introduction 

Graphene is an allotrope of carbon consisting of a single layer of carbon atoms arranged in an 
hexagonal lattice exhibiting superb mechanical and physical properties (approximately 
Young’s modulus 1 TPa, ultimate strength 130 GPa, thermal conductivity 3000 W.m-1.K-1, 
electric conductivity 2.5x105 cm2V-1s-1). These exceptional properties of graphene along with 
its high aspect ratio make it ideal reinforcement in composite materials. This is illustrated 
among others in Aluko et al. [1], where the elastic response of graphene nanoplatelet (GNP) 
reinforced composites was shown to increase with increased GNP volume fraction, 
dispersion, and strain rates. Bending and buckling analyses of functionally graded polymer 
composite plates reinforced with GNP conducted in Song et al. [25] have shown that an 
addition of a very small amount of GNPs into the polymer matrix can significantly reduce the 
bending deflections and increase the critical buckling load.  
 
In order to study the mechanical behavior of graphene reinforced polymers, the 
characterization of the mechanical properties of isolated graphene is important. For this 
purpose, a lot of experimental [4][11][18] and numerical [16][13][10][24] studies have been 
conducted. However, there are limited studies computing the mechanical properties of 
defective graphene lattices (e.g. [2][28][19][20]). A direct experimental evidence for the 
existence of defects (e.g. topological defects, vacancies and adatoms) in graphene layers has 
been provided by Hashimoto et al. [5]. 
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In this paper, statistical properties for the components of the elasticity tensor of graphene 
lattices, which contain randomly dispersed single vacancy defects are computed first. Then, 
composites containing randomly dispersed graphene sheets to which homogenized stiffness 
properties have been assigned, are analyzed. The presented numerical results demonstrate the 
effect of combined material and geometrical uncertainty on the homogenized properties of 
graphene sheet reinforced composite materials. 

Computation of random material properties of graphene sheets 

Structure of graphene 

Graphene is an allotrope of carbon in the form of a two-dimensional, atomic-scale, hexagonal 
lattice in which one atom forms each vertex. Each atom has four bonds, one σ-bond with each 
of its three neighbors and one π-bond that is oriented out of plane. The distance LC-C between 
the carbon atoms is about 1.42 Å. Graphene's stability into a single layer of carbon atoms is 
due to its tightly packed carbon atoms and a sp2 orbital hybridization. The thickness of a 
monolayer graphene is about 0.34 nm, which corresponds to the interlayer spacing of graphite 
and the thickness of one carbon atom. 
 
Graphene is the basic structural element of other allotropes, including graphite and carbon 
nanotubes which can be formed via stacking and wrapping of the graphene's layers, 
respectively. Specifically, the helicity of a carbon nanotube is characterized by the roll-up 

vector hC


. This is called the chiral vector and it is defined as: 

    h 1 2C n m   
  

     (1) 

where 1 C C3L ,0
    


and 2 C C C C0.5 3L ,3L 

    


 are basis vectors of length C C3L   

defined on the hexagonal lattice of graphene (see Fig. 1) The pair of indices (n, m) define the 
chiral angle 

hC
  as 

    
h

1

C

3m
tan

2n m
  

     
      (2) 

As it can be deduced from Eq. (2), 
h

o

C
0  for zig-zag direction (m=0) and 

h

o

C
30  for 

armchair direction (m=n). For all other directions of the chiral vector,  
h

o o

C
0 ,30  . 

 
Figure 1. Graphene lattice structure and definition of chiral vector hC


. 
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The molecular structural mechanics approach 

The molecular structural mechanics (MSM) approach is a continuum based nanoscale 
modeling technique developed by Li and Chou [12], which has attracted great attention 
because of its simplicity and effectiveness. In this framework, the potential energy produced 
by the C-C atomic interactions is equating to the sum of energies produced by the 
deformations of a beam element, which substitute the C-C chemical bond. Thus, the method 
results in a space frame model built by connected beam elements, which is equivalent to the 
atomistic model of the graphene's lattice. In principle, this approach provides a linkage 
between molecular mechanics and continuum structural mechanics by which geometry and 
material properties of the beam elements are obtained. 
 
In the context of molecular mechanics, graphene can be regarded as a molecular system 
consisting of carbon atoms. The lattice deformation under a specific load is governed by the 
atomic motions which are regulated by a force field. This force field, which is generated by 
electron-nucleus and nucleus-nucleus interactions, is usually expressed in the form of a steric 
potential energy. The general expression of this total steric potential energy is a sum of 
energies due to valence or bonded and non-bonded interactions as follows: 

    r vdW esU U U U U U U             (3) 

where Ur, Uθ, Uφ, Uω are the bond-stretching energy, the bond-angle variation energy, the 
dihedral-angle torsion energy and the inversion (out of plane torsion) energy, respectively. 
UvdW and Ues are associated with non-bonded van der Waals and electrostatic interactions, 
respectively, which are usually negligible and therefore are omitted. The corresponding 
interatomic interactions are schematically represented in Fig. 2. 
 

 
Figure 2. Interatomic interactions in molecular mechanics: a) stretching, b) bending, c) 

dihedral angle torsion, d) out of plane torsion and e) van der Waals. 
 

By adopting a quadratic potential force field to account for linear covalent C-C interactions 
and a circular beam element in the context of the finite element (FE) method, the following 
relationships between structural mechanics parameters and molecular mechanics force field 
constants are derived 

    
2 2
r C C r C C

2

k k L k k L
d 4 , E , G

k 4 k 8 k
   

  

  
 

     (4) 

Substituting the force field constant values kr=938 kcal.mole-1.Å-2=6.52 x10-7 N.nm-1, kθ=126 
kcal.mole-1.rad-2=8.76x10-10 N.nm.rad-2 and kτ=40 kcal.mole-1.rad-2=2.78x10-10 N.nm.rad-2, 
defined by Cornell et al. [3], the values of diameter d=0.147 nm, Young's modulus E=5.49 
TPa and shear modulus G=0.871 TPa of the beam elements are obtained.  
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Random material properties of defective graphene sheets 

Various structural defects are generated during the production or chemical functionalization 
process of graphene sheets such as Stone-Wales (SW), single vacancy (SV) and double 
vacancy (DV) defects [5][14][26]. The most common types of defects are the vacancy defects 
which are characterized by the number of the absent atoms from the lattice of graphene. In 
this paper, we will examine graphene sheets containing only SV defects which are formed by 
removing one carbon atom and its three adjacent bonds from the lattice. 
 
The FE model of a defective graphene sheet is constructed using 2d Bernoulli beams with 
properties obtained from the MSM approach described in the previous section. The defects 
are uniformly distributed on the lattice. Each defect is treated as an individual scattering 
center (independently of the defect type or the number of atoms that forms it). The defect 
density is defined as Nd/Na×100 where Nd and Na are the number of defects and number of 
atoms in the pristine graphene, respectively. A FE model of a defective graphene sheet 
containing 3% randomly dispersed SV defects is shown in Fig. 3. 
 

 
Figure 3. FE model of a defective graphene sheet containing 3% randomly dispersed SV 

defects. 
 

The homogenized in-plane anisotropic stress-strain relation of the graphene material can be 
expressed by: 

    
1 11 12 13 1

2 22 23 2

3 33 3

C C C

C C

sym C

      
            
           

     (5) 

with [σ1 σ2 σ3]
T=[σxx σyy σxy]

T and [ε1 ε2 ε3]
T=[εxx εyy εxy]

T the stress and strain tensors 
respectively and C the homogenized anisotropic elasticity tensor. Notice that, due to 
symmetry, only six components Cij, with i, j=1,2,3 are needed to fully determine the 
homogenized elasticity matrix. In order to solve for these unknown parameters, three 
independent uniform strain (Dirichlet) boundary conditions are applied on a square graphene 
sheet of size 10×10 nm2, which are derived from the following set of strain deformation cases: 
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1

2

3

0 0

0 , ,  0

0 0

      
             
            

      (6) 

Substituting the first strain vector in Eq. (5), the components C11=σ1/ε1, C21=σ2/ε1 and 
C31=σ3/ε1 can be directly calculated, while the remaining unknown components of C are 
computed in a similar way by applying all other strain vectors of Eq. (6). The statistical 
properties for each component Cij of the elasticity matrix are obtained by performing 1000 
Monte Carlo simulations on randomly generated FE models of defective graphene sheets 
containing 3% randomly dispersed SV defects. The mean and standard deviation of the 
average axial stiffness (Cii/2, i=1, 2) are calculated as μ=910.73 GPa and σ=29.95 (COV=σ/μ 
≈3%), respectively and of the shear stiffness C33 as μ=413.63 GPa and σ=16.41 (COV≈4%), 
respectively. The histograms of Cii/2 and C33 are depicted in Fig. 4. 

 
 

 

 
Figure 4.  Histograms for average axial stiffness and shear stiffness of graphene sheet 
with 3% randomly dispersed SV defects obtained from 1000 Monte Carlo simulations. 

Determination of effective material properties for graphene sheet reinforced composites 

The computational procedure for the determination of effective material properties for 
graphene sheet reinforced composites is illustrated in Fig. 5. In the first step, 1000 Monte 
Carlo simulations are performed in order to compute the statistical properties for the 
components of the elasticity tensor of defective graphene lattices containing 3% randomly 
dispersed SV defects. The graphene lattices are analyzed using the MSM approach described 
previously. Then, homogenized graphene sheets with material properties considered as 
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random variables are randomly dispersed into a polymer matrix. The resulting composites are 
analyzed using the extended finite element method (see Savvas et al. [23]) and homogenized 
mechanical properties are computed by performing Monte Carlo simulations as described in 
the next section. 

 
Figure 5. a) Graphene lattices with random vacancy defects, b) Homogenized graphene 

sheet derived from Monte Carlo simulation and homogenization, c) Graphene sheet 
reinforced composite material with random dispersion of inclusions. 

 

Computational homogenization 

The homogenization scheme adopted in this paper is based on the fundamental assumption of 
statistical homogeneity of the heterogeneous medium [6] which means that all statistical 
properties of the state variables are the same at any material point and thus a representative 
volume element (RVE) can be identified. It has been shown in the literature that the size of 
the RVE is related to a scale factor δ=lmeso/lmicro (under the condition lmicro<<lmeso with lmicro 
the length scale of the reinforcement (e.g. diameter, thickness, length) and lmeso the length 
scale of the examined volume element [17] [27][21][22]. Satisfaction of this condition leads 
to homogenized material properties independent of the type of the boundary conditions 
imposed on the model. Note also that the relation lmeso<< lmacro, with lmacro denoting the 
characteristic length over which the macroscopic loading varies in space, must always hold 
for complete separation of scales. In this case, the uniformity of microscopic stress and strain 
fields near the boundary surface ∂Ω of the mesoscale model Ω, required in the context of 
Hill's homogenization theory, is valid [8]. 
 
The Hill-Mandel homogeneity condition postulates that the strain energy computed on a 
material point of the macro-continuum medium has to be equal to that computed over the 
mesoscale volume element in an average sense: 

     1
: dx

V 

           (7) 

where V is the volume of the mesoscale volume element and the macroscopic stresses and 
strains are computed as: 
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       1 1
x dx, x dx

V V 
           (8) 

Eq. (8) is valid provided that the following constraint is satisfied: 

       1
t n u x dS 0

V 
            (9) 

which is a priori satisfied by both kinematic uniform boundary conditions (KUBCs) and static 
uniform boundary conditions (SUBCs) as shown in Huet [9]. The constraint of Eq. (9) can be 
also satisfied by orthogonal uniform mixed boundary conditions (OUMBCs) [7] and periodic 
boundary conditions (PBCs) [15]. 
 
Miehe and Koch [15] proposed a computational procedure to define homogenized stresses 
and overall tangent moduli of microstructures undergoing small strains. They have shown that 
homogenized properties can be defined in terms of discrete forces and stiffness properties on 
the boundary of discretized microstructures. Using these deformation-driven algorithms, the 
homogenized elasticity tensor of a mesoscale model can be calculated by solving a kinematic 
uniform or a static uniform boundary value problem. 
 
Specifically, for the case of kinematic uniform boundary conditions, a prescribed uniform 
strain tensor  11 22 12,  ,  2      is applied on the boundary ∂Ω of a discretized mesoscale 

model Ω through displacements in the form: 

    bu  T
bD       (10) 

where Db is a geometric matrix which depends on the coordinates of the boundary node b and 
is defined as: 

     
b

b b b

b b

2x 0
1

0 2y  with x , y
2

y x

 
   
  

bD      (11) 

Note that the stiffness matrix K of the extended finite element model of the graphene sheet 
reinforced composite can be rearranged into sub-matrices associated with interior nodes i and 
boundary nodes b. Thus the static problem is denoted by: 

    ii ib i i

bi bb b b

K K U F

K K U F

     
     

     
     (12) 

Then the homogenized elasticity tensor C(θ) can be calculated in terms of the condensed 

stiffness matrix 1
bb bb bi ii ibK K K K K   in the form: 

      T
bb

1
K

V
 C D D      (13) 

where  1 2 MD  D DD   with M the total number of boundary nodes. Note that θ denotes the 

randomness of the computed homogenized elasticity tensor due to material uncertainty related 
to the random properties assigned to graphene sheets and to geometrical uncertainty related to 
the random dispersion of the inclusions (graphene sheets) within the composite material. 
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Numerical results 

In this section, the two sources of microstructural uncertainty (material and geometrical) are 
considered simultaneously and their effect on the homogenized constitutive properties of the 
composite material is assessed. Note that the composites are assumed to be under plane stress 
conditions. The statistical properties of the homogenized material for the graphene sheets 
have been calculated in a previous section. The material of the matrix is considered isotropic 
and linearly elastic with Young’s modulus Em=1 GPa and Poisson’s ratio vm=0.3. Fig. 6 
illustrates the empirical distribution and the statistical convergence of mean and COV of the 
axial stiffness Cii/2 (i=1,2) of the graphene sheet reinforced composite material. Similar 
results are presented in Fig. 7 for the shear stiffness C33. Note that all composites are 
reinforced with 40% vf of graphene sheets with arbitrary shape (see Fig. 5). It is noted that the 
first two statistical moments of the average axial and shear stiffness of the above composites 
seem to converge sufficiently within 1000 Monte Carlo simulations. 
 
 
 

a)

b) c)  
Figure 6. a) Histogram of average axial stiffness Cii/2, b) Statistical convergence of 
mean(Cii/2) with respect to the number of Monte Carlo simulations, c) Statistical 

convergence of COV(Cii/2) with respect to the number of Monte Carlo simulations. 
 

ICCM2018, 6th-10th August 2018, Rome, Italy

329



a)

b) c)  
Figure 7. a) Histogram of shear stiffness C33, b) Statistical convergence of mean(C33) 
with respect to the number of Monte Carlo simulations, c) Statistical convergence of 

COV(C33) with respect to the number of Monte Carlo simulations. 

Conclusions 

In this paper, the effect of the two sources of microstructural uncertainty (material and 
geometrical) on the homogenized elastic properties of graphene sheet reinforced composites 
was assessed. The lattice of graphene was modeled using the molecular structural mechanics 
approach. The statistical properties for each component of the elasticity matrix were obtained 
by performing Monte Carlo simulations on randomly generated finite element models of 
defective graphene sheets. Subsequently, computational homogenization of graphene sheet 
reinforced composites was performed considering material and geometrical uncertainty. A 
magnification of uncertainty was observed, as the COV of the material properties of the 
composite was larger than the corresponding COV of the reinforcements, especially in the 
case of shear stiffness. 
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Abstract 

The work theorem establishes an energy relationship between a statically – admissible stress 
field and an independent kinematically – admissible strain field in a local region. The 
Meshless Method with reduced integration (IMFM) is derived through a weighted-residual 
formulation that leads to the work theorem of structures theory. 

In the formulation of the IMFM, the kinematically – admissible strain field is chosen as the 
one corresponding to an arbitrary rigid – body displacement; as a consequence, the domain 
term is canceled out and the work theorem is reduced to regular local boundary terms only. 
The Moving Least Squares (MLS) approximation of the elastic field is used to construct the 
trial function in this local meshless formulation. IMFM has a highly performance in problems 
with irregular nodal arrangement leading to accurate numerical results in two-dimensional 
elasticity problems. 

This paper presents the size effect of the irregularity nodal arrangement (cn) on energy and 

displacement relative error to solve the Timoshenko cantilever beam using different 

parameters of the local support domain (αs), the local quadrature domain (αq) and three 

different nodal discretization. Results are compared with the exact solution and the Meshless 

Local Petrov–Galerkin (MLPG) method and optimal results have been obtained for 2D 

problems plane stress. 

 

Keywords: Meshless Method with reduce integration (IMFM), Meshless Local Petrov-
Galerkin (MLPG), work theorem, Moving Least Squares (MLS), irregular nodal arrangement. 

Introduction 

Numerical methods based in grid, like Finite Element Method (FEM), are widely used for 

scientific researches. Grid-based methods required high quality meshes to solve fracture 

mechanics problems with material discontinuity, large deformation where excessive mesh 

distortion takes place and other situations. The meshless methods were generated with the 

expectation of providing more adaptive, accurate and stable numerical solutions that can deal 

with problems where conventional methods are not suitable [1]. Generally, their formulation 

is based in the weighted-residual method [2]. 

 

Different meshless methods have been developed during the last 20 years [3]. Some methods 

based on a weighted-residual weak-form formulation were applied in solid mechanics such as 

the Diffuse Element Method (DEM) [4], the Reproducing Kernel Particle Method (RKPM) 

[5], and the Element-free Galerkin (EFG) [6], were the first. After, other methods emerged 

based on local weighted-residual weak forms, such as the Meshless Local Petrov-Galerkin 

Method (MLPG) [7,8], the Meshless Local Boundary Integral Equation (MLBIE) [9], the 

Local Point Interpolation Method (LPIM) [10], Local Radial Point Interpolation Method 
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(LRPIM) [11], the meshless Finite Volume Method (FVM) [12], the Rigid-Body 

Displacement Mesh-Free (RBDMF) and the Generalized-Strain Mesh-Free (GSMF) [13]. 

 

The Meshless Method with reduce integration (IMFM) formulation presented by [14], the 

kinematically – admissible strain field is chosen as the one corresponding to an arbitrary rigid 

– body displacement; as a consequence, the domain term is canceled out and the work 

theorem is reduced to regular local boundary terms only. The Moving Least Squares (MLS) 

approximation of the elastic field is used to construct the trial function in this local meshless 

formulation. IMFM and the popular MLPG using the MLS approximation, this fact allowing 

to have more precise conclusions when comparing the two methods. 

 

This paper is focused on the size effect of the configuration parameters of the local support 

domain (αs), the local quadrature domain (αq) and irregularity nodal arrangement (cn). It 

presents a comparison of the energy and displacement relative error for three different 

irregular nodal distribution to solve the Timoshenko cantilever beam. The results are 

compared with the exact solution and the Meshless Local Petrov–Galerkin (MLPG) method, 

optimal parameters have been determined. 

Methodology  

Let Ω be the domain of a body and Г its boundary subdivided in Гu and Гt that is Г = Гt U Гu, 

as represented in Fig. 1. The general fundamental boundary value problem of linear 

elastostatics aims to determine the distribution of stresses σ, strains ε and displacements u, 

throughout the body, when it has constrained displacements u , on Гu and is loaded by an 

external system of distributed surface and body forces with densities denoted, respectively by 

t , on Гt and b, in Ω. 

 

Figure 1. Meshless discretization of the global domain Ω and the local domains ΩP, ΩQ 

and ΩR, with boundary Г = Гu U Гt represented.  

The solution of these problem is a totally admissible elastic field that simultaneously satisfies 

the kinematic admissibility and the static admissibility. If this solution exists, it can be shown 

that it is unique, provided linearity and stability of the material are admitted [15, 16]. 

In the domain of the body, loaded by a system of external distributed surface and body forces 

with densities denoted, respectively by t , on the boundary Гt and b, in the domain Ω, 

consider a statically admissible stress field σ, that is any stress field that satisfies equilibrium 

with the system of applied external forces which therefore satisfies 
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0T + =L σ b  (1) 

in the domain Ω, with boundary conditions  

,= =t nσ t   (2) 

on the static boundary Гt, in which σ: Stress components, L: Matrix differential operator, t: 

represents the traction components, t : Prescribed tractions values, n: Unit normal components 

to the boundary. 

In the domain Ω, with boundary Г = Гt U Гu, consider an arbitrary local domain ΩQ, assigned 

to a reference point Q ϵ ΩQ, with local boundary ГQ = ГQi ∪ ГQt ∪ ГQu, in which ГQi is the 

interior local boundary, while ГQt and ГQu are local boundaries that share the global 

boundaries, respectively the static boundary Гt and the kinematic boundary Гu, as represented 

in Fig. 1. The work theorem is derived as a local form that is valid in an arbitrary domain ΩQ, 

associated to the reference point Q.  

 

The general work theorem of the theory of structures stablishes an energy relationship, valid 

in an arbitrary local domain ΩQ ∪ ГQ ϵ Ω ∪ Г, between two independent elastic fields that can 

be defined in the body which are, respectively a statically admissible stress field that satisfies 

equilibrium with a system of external distributed surface and body forces, and a kinematically 

admissible strain field that satisfies compatibility with a set of constrained displacements. 

Derived as a weighted residual statement, the work theorem serves as a unifying basis for the 

formulation of numerical models Continuum Mechanics [17]. 

Expressed as an integral local form, defined in the local domain ΩQ ∪ ГQ, which can be 

written in a compact form as  

Q Q Q

T T Td d d
  

+  =   
* * *t u b u σ

 

(3) 

in which the stress field σ and the strain field ε* are not linked by any constitutive relationship 

and therefore, they ae independent of each other.  

Kinematic formulations consider, in the work theorem, a particular and convenient 

specification of the kinematically admissible strain field, leading thus to an equation of 

mechanical equilibrium that is used in numerical models, to generate the respective stiffness 

matrix of each model. A simple case of local equilibrium equations, based on a kinematically 

admissible strain field generated by a rigid-body displacement. 

Bearing in mind the key feature of the work theorem, which is the complete independence of 

the statically admissible stress field σ and the kinematically admissible strain field ε*, the 

strain field can be conveniently defined by a rigid-body displacement that is 

*(x) ,=u c
 

(4) 

where c is a constant vector that conveniently leads to null strains that is  

*(x) . = 0  (5)
 

When considered the kinematecally admissible strain field generated by arbitrary rigid-body 

displacement, Eq. (4), the local form of the work theorem, Eq. (3), leads to the next 

expression  
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              d  d  d 0

Q Qt Qt Q −  

+ +  =  t t b      
(6) 

 

which states an integral form of mechanical equilibrium, of tractions and body forces, in the 

local domain ,Q Q    are represented in Fig. 2. 

 

Figure 2.  Schematic representation of the equilibrium of tractions and body forces, 

pointwisely defined at collocation points of a local form of the work theorem associated 

with a field node Q.  

The modelling strategy adopted in this paper, is based in the application of the work theorem, 

in the set of kinematically admissible strain fields, to solve the actual elastic problem. 

Consider the local form of the work theorem, Eq. (3). To derive the equilibrium equations of 

the numerical model, the kinematic formulation of the local form is carried out through the 

specification of an appropriate kinematically admissible strain field ε*. This paper considers 

the arbitrary rigid-body displacement formulation that leads to the local form of equilibrium 

Eq. (6), in which are then used to generate the stiffness matrix of the meshfree numerical 

model. 

The statically admissible stress field σ, which is required to satisfy equilibrium with a system 

of external forces, is assumed as the stress field that settles in the body, when it is loaded by 

the actual system of external distributed surface and body forces, with the actual displacement 

constraints. 

     Recall that the elastic field that settles in the body is the only totally admissible elastic 

field that satisfies the given problem. Therefore, besides satisfying static admissibility, 

through Eq. (1) and (2), that is the same as satisfying equilibrium through Eq. (6), generated 

by the weak form Eq. (3) of the work theorem, this unique totally admissible elastic field also 

satisfies kinematic admissibility defined as  

       , =Lu  (7) 

in the Defining the Statically Admissible Stress Field domain Ω, with boundary conditions  

     ,=u u  (8) 

on the kinematic boundary Гu, in which the displacement  is assumed continuous with small 

derivatives, to allow for geometrical linearity of the strain field ε. Hence, Eq. (8), which 

specifies the constraints of the actual unique solution of the elastic problem must be fulfilled. 
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For the sake of simplicity, this paper considers the formulation of the meshfree numerical 

methods in the absence of body forces. Consequently, the equations of equilibrium are always 

defined only on the boundary of the local domain. 

The essential feature of meshfree numerical methods is that they perform the discretization of 

the problem domain and boundaries with a set of scattered field nodes that do not require any 

mesh for the approximation of the field variables. The meshfree method IMFM, presented in 

this paper, is based on the moving least-squares (MLS) approximation, introduced by [18].  

The MLS approximation is considered to be one of the best methods to approximate data with 

a good accuracy. Circular or rectangular local supports centered at each nodal point can be 

used. In the region of a sampling point X, the domain of definition of MLS approximation is 

the subdomain Ωx, where the approximation is defined, as showed in the Fig. 3 

 

Figure 3. Representation of a global domain Ω and boundary Г in the meshless 

discretization, with Xi nodes distributed within the body. 

In general, this local domain is a circular or rectangular region, centered at the respective node, 

where the rigid-body displacement formulation of the work theorem is defined as a local form 

of mechanical equilibrium. 

The local character of the MLS approximation is a consequence of the compact support of 

each node, where the respective MLS shape functions are defined. The size of the compact 

support, in turn, sets out, in a neighborhood of a sampling point, the respective domain of 

MLS approximation at this point. The domain of definition contains all the nodes whose MLS 

shape functions do not vanish at this sampling point. Therefore, the domain of influence of 

each node, is the union of the MLS domains of definition of all points in the local domain of 

the node. 

Finally, local meshfree formulations use a node-by-node stiffness calculation to generate, in 

the domain of influence of the local node, the respective rows of the global stiffness matrix. 

In the absence of body forces, the local form of the work theorem with the rigid-body 

displacement, Eq. (6), can be written simply as  

 d  d

Q Qt Qt − 

 = −  t t  
(9) 

which represents mechanical equilibrium of boundary tractions of the local domain ΩQ, 

associated with the field node .QQ  
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General numerical methods can be effectively formulated through a reduced integration of the 

equilibrium Eq. (9) which, in the simplest linear case, leads to a point-wise discrete, form that 

improves the accuracy and the computational efficiency, as numerical results clearly 

demonstrate. 

Assuming a variation linear of the tractions along each boundary segment of the local domain, 

the local integral form of equilibrium can be evaluated with a single quadrature point, 

centered on each segment of the boundary. Applying this linear integration process in the Eq. 

(9), the following expression is obtained 

x x

1 1

i t

l j

n n

i t

l ji t

L L
t

n n= =

= −  t  
(10) 

In which ni and nt denote the total number of the integration points, one per segment, defined 

on the interior local boundary ,Qi Q Qt Qu =  − − with length Li, and the local static 

boundary Qt , with length Lt. This integrated equation represents a point-wise discrete form of 

the mechanical equilibrium of boundary tractions, evaluated at a set of points on the boundary 

of the local domain ΩQ, as showed in the Fig. 4.  

 

Figure 4. Schematic representation of the equilibrium of tractions and body forces, 

pointwisely defined at collocation points of a local domain associated with a field node Q. 

Consider a meshfree discretization of the body. The local meshless method with reduce 

integration is used to compute the respective system of algebraic equations, in node by node 

process, throughout traction evaluation at each central point of the boundary segments of the 

integrated local form assigned to each node with rectangular local domain. Figure 5 represents 

these local domains with four boundary segments and one point on each segment.  

 

Figure 5. Schematic representation of rectangular local domain with one point on each 

side.    
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Discretization of Eq. (10) is carried out with the MLS approximation, for the local domain ΩQ, 

in terms of the nodal unknowns ˆ ,u thus leading to the system of two linear algebraic equations  

x x x

1 1

ˆ
i t

l l j

n n

i t

l ji t

L L

n n= =

= − n DB u t  (11) 

that can be written as 
ˆ

Q Q=K u F
 

(12) 

in which KQ, the nodal stiffness matrix associated with the local ΩQ, is a 2x2n matrix given by  

x x

1

i

l l

n

i
Q

li

L

n =

= K n DB  (13)
 

and FQ is the respective force vector given by 

   
1

.
tn

t
Q

jt

L

n =

= −  jxF t
 (14) 

Consider that the problem has a total of N field nodes Q, each one associated with the 

respective local region ΩQ. Assembling Eq. (15), for all M interior and static – boundary field 

nodes leads to the global system of 2M x 2N equations  

ˆ .=Ku F
 

(15) 

Finally, the remaining equations are obtained from the N – M boundary field nodes on the 

kinematic boundary. For a field node on the kinematic boundary, a direct interpolation 

method is used to impose the Kinematic boundary condition as
 

j j

1

ˆ(x ) (x ) ,
n

k i ik k

i

u u
=

= = u
 (16) 

Or, in matrix form as 
û ,k k k=  =u u

 
(17) 

with k = 1, 2, where ku  is specified nodal displacement component. Equations (17) are 

directly assembled into the global system of equations (15).  

It can be easily anticipated high computational efficiency, with very accurate results, of this 

local formulation with linear reduced integration. As a matter of fact, the nodal stiffness 

matrix is effectively computed, in Eq. (13), with only 4 integration points (1 integration point 

on each side of the local boundary), which basically implies a very short processing time to 

run the analysis. In addition, the reduced integration leads to high accuracy of the results, 

which plays a key role in the behavior of IMFM, since it implies a reduction of the nodal 

stiffness which, in turn, leads to an increase of the solution accuracy and, which is most 

important, presents no instabilities. For more information about the formulation for these 

method, see [14]. 

Parameters of the Meshfree Discretization 

This section presents some numerical results for Cantilever beam and the Plate with a circular 

hole for different nodal configurations. The effects of the size of local support and quadrature 

domain are analyzed and compared with exact solution. 

For a generic node i, the size of the local support ΩS and the local domain of integration Ωq 

are respectively given by  
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,S S ir d =
 

(18) 

,q q ir d =
 (19) 

in which di represents the distance of the node i, to the nearest neighboring node; for the 

analysis is performed for two different values of the local support domain size (αs = 2.00 and 

αs = 2.11), and the local quadrature domain size (αq) which vary 0.45 to 0.55 with increments 

0.01. 

Irregular nodal arrangement 

The nodal irregularity is generated by changing randomly the coordinates of the nodal 

regularity distribution by small distance, this movement can be calculated by 

11 1' ,
ii i n xx x c d= 

 (20) 

22 ' ,
ii i n xx x c d= 

 
(21) 

in which Cn is a parameter that controls the nodal irregularity and vary randomly in the range 

of 0.0 and 0.4. For nodes located in the boundary there are restrictions that depend on the 

position of the node.  

Numerical Examples 

Displacement and energy norms can be used for error estimation and can be computed, 

respectively as 

1
2

Tu u ud


 
=  
 
  (22) 

1
2

1

2

T D d  


 
=  
 
  (23) 

 

The relative error for u and  is given, respectively by 

num exact

u

exact

u u
r

u

−
=  (24) 

num exact

exact

r
 



−
=  (25) 

Cantilever Beam                                                       

A Cantilever beam showed in Fig. 6, is subjected to a parabolic traction at the free end. The 

main properties are tabulated in Table 1 and the problem is solved for plane stress case. 

 
Figure 6.  Cantilever beam 
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Table 1. Properties of Cantilever Beam 

 

                                               Parameters                              Values 

       

                                               Height, D                                12 m 

                                               Length, L                                48 m 

                                               Thickness, t                             1 m 

                                               Load, P                                    1000 N 

                                               Modulus of Elasticity, E         30 MPa 

                                               Poisson`s Ratio, ν                   0.3 

 

 

The parabolic traction and the moment of inertia is given by  

     
2

2

2 2 2( ) ,
2 4

P D
t x x

I

 
= − − 

 

 (26) 

        
3

12

D
I =  (27) 

 

The exact solution of the problem is given by [19]. The equations for the exact displacement 

are:  

 

( ) ( ) ( )
2

22
1 1 2 1 2, 6 3 2

6 4

Px D
u x x L x x

EI


  
= − − + + −  

    

(28) 

         

( ) ( ) ( ) ( )
2

2 21
2 1 2 2 1 1 1, 3 4 5 3

6 4

D xP
u x x x L x L x x

EI
 

 
= − + + + − 

   

(29) 

And the exact stress components are given by 

 

1 2
11 1 2

( )
( , )

P L x x
x x

I


−
= −  

(30) 

2
2

12 1 2 2( , )
2 4

P D
x x x

I


 
= − − 

 
 

(31) 

22 1 2( , ) 0x x =
 

(32) 

 

The IMFM is used for solving this problem, both a regular (cn = 0.0) and irregular (cn = 0.1, 

0.2, 0.3 and 0.4) nodal distribution are employed with a discretization of 21 x 9 = 189 nodes.   

 

In the first discretization the nodes located in the boundary have a regular distribution and 

nodes located inside of the beam have an irregular distribution; it is called Configuration A as 

is showed in Fig. 7 (presented by [20]) and Fig. 8.  
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Figure 7.  Irregular internal nodal arrangement for the Cantilever beam (MLPG [20]) – 

Configuration A 

 

 

 
Figure 8.  Irregular internal nodal arrangement for the Cantilever beam (IMFM) – 

Configuration A 

 

Second discretization shows all nodes with an irregular distribution called Configuration B as 

is showed in Fig 9. 

 

 
 

Figure 9.  Irregular nodal arrangement for the Cantilever beam (IMFM) – 

Configuration B 

 

Influence of the local support domain size (αs) 

 

This parameter must be greater than 1.0, the algorithm of MLS approximation may be 

singular and the shape function cannot be constructed for the small values. Initially, the 

influence of αs in the solution is obtained for the local quadrature domain fixed (αq = 0.5), this 

value presented an optimal result for regular nodal distribution by [14]. 

 

Figure 10 shows the variation of relative error as a function of the size of the parameter of 

nodal irregularity which vary between 0.0 to 0.4 with 0.1 increments. Results are presented 

for two values of local support domain (αs = 2.00 and αs = 2.11) using both nodal 

configuration (A and B).  
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Figure 10. Effect of irregularity on the nodal arrangement on energy relative error with 

αq = 0.5, carried out with 21 x 9 = 189 nodes.      

  

Figure 10 shows that the value of 2.11 for the local support domain (αs) presents low relative 

energy errors for model performed with both configurations. Additionally, the magnitude of 

the energy relative error increase with the nodal irregularity, presenting a directly proportional 

behavior between the two variables. 

 

The energy relative error for two different methods is presented in Fig. 11, the same irregular 

nodal discretization called Configuration A is showed in the Fig. 7 for MLPG and the Fig. 8 

for IMFM. The energy relative error for MLPG and IMFM have the same expression 

presented in Eq. 26 and 28. These values for MLPG were obtained in [20].    

 

 
Figure 11. Effect of irregularity on the nodal arrangement on energy relative error for 

MLPG and IMFM, carried out with 21 x 9 = 189 nodes.      

 

For the irregular nodal discretization IMFM and MLPG presented similar behavior for the 

configuration A, the IMFM presented more accuracy.   
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Influence of the local quadrature domain size (αq) 

 

This parameter must be less than 1.0, the reason is to ensure that the local sub – domains of 

the internal nodes are entirely within the solution domain, without being intersected by the 

global boundary. The influence of αq is obtained for the local support domain fixed (αs = 2.11).  

 

Figure 12 shows the variation of relative error as a function of the size of the local support 

domain which vary between 0.45 to 0.55 with 0.01 increments. Results are presented for four 

values of parameter of nodal irregularity which vary between 0.0 to 0.4 with 0.1 increments; 

using the nodal configuration A.  

 
Figure 12. Effect of irregularity on the nodal arrangement on energy relative error with 

αs = 2.11, carried out with 21 x 9 = 189 nodes.      

 

Figure 12 shows that the value of 0.5 for the local quadrature domain (αq) presents low 

relative energy errors for all values of parameter of nodal irregularity. Similar results are 

obtained for displacement relative error. 

 

Influence nodal discretization  

 

Other different irregular nodal discretization was carried out to know the influence on the 

accuracy on the energy and displacement relative error. Two additional configurations were 

presented with 11 x 5 = 55 nodes and 33 x 17 = 561 nodes.  

 

Figure 13 and 14 show respectively, the variation of energy and displacement relative error as 

a function of the size of the parameter of nodal irregularity which vary between 0.0 to 0.4 

with 0.1 increments. Results are presented for three nodal discretization using values fixed of 

the local support domain (αs = 2.11) and the local quadrature domain (αq = 0.5), using both 

nodal configuration (A and B).  
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Figure 13. Effect of irregularity on the nodal arrangement on energy relative error with 

αs = 2.11 and αq = 0.5, carried out with 11 x 5 = 55 nodes, 21 x 9 = 189 nodes and 33 x 17 

= 561 nodes.   

 
 

Figure 14. Effect of irregularity on the nodal arrangement on displacement relative 

error with αs = 2.11 and αq = 0.5, carried out with 11 x 5 = 55 nodes, 21 x 9 = 189 nodes 

and 33 x 17 = 561 nodes. 

 

The Figure 13 and 14 shows that the energy and displacement relative error decreases with 

finer nodal distributions for both configuration. This result evidences that the meshless 

methods with reduce integration has the potential to be a very method including nodal 

arrangement with greater irregularity. 

Conclusions 

The effect of the nodal irregularity is very little on energy and displacement relative errors for 

different configuration and discretization. This fact reveals that the meshless methods with 

reduce integration (IMFM) and meshless Local Petrov Galerkin (MLPG) are stable for 

irregular nodal arrangements, but the IMFM presented more accuracy.  
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The nodal irregularity and the energy relative error presented a directly proportional relation 

for the cantilever beam. A similar behavior is showed for different mesh discretization, using 

a fixed value αq = 0.5 on the local quadrature domain. 

 

The local quadrature domain (αq = 0.5) for regular and irregular nodal arrangement, different 

mesh discretization and any value of the local support domain presented the most accurate 

results for the cantilever beam. 

 

The discretization with the nodes located in the boundary have a regular distribution and 

nodes located inside of the beam have an irregular distribution presents lower energy and 

displacement relative error that the discretization which all nodes have an irregular 

distribution. 
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Abstract  
The paper presents results of calculations of forces in members of selected types of statically 
indeterminate trusses carried out by application of the two-stage method of computations of 
such structural systems. The method makes possible to do the simple and approximate 
calculations of the complex trusses in two stages, in each of which is calculated a statically 
determinate truss being an appropriate counterpart of the basic form of the statically 
indeterminate truss structure. Systems of the statically determinate trusses considered in the 
both stages are defined by cancelation of members, number of which is equal to the statically 
indeterminacy of the basic truss. In the paper are presented outcomes obtained in the two-
stage method applied for two different shapes of trusses and carried out for various ways of 
removing of appropriate members from the basic trusses. The results are compared with 
outcomes gained due to application of a suitable computer software for computation of the 
same types of trusses and for the same structural conditions.  
 
Keywords: Truss, Calculus of vectors, Superposition method, Statically indeterminate system, 
Cremona’s method, Approximate solution.  

Introduction 
Values of forces acting in members of the statically indeterminate systems are computed by 
the application of various methods like for instance, the force method, the displacement 
method, the iteration methods like the method of successive approximations, and the finite 
elements method, etc. Procedures of these methods are nowadays adapted in numerous and 
various types of computer software [1]-[7]. Concept of computational procedure used in the 
two-stage method is described in previous papers [8]-[10] and it is in simplified way shown in 
Fig. 1.  
 

 
Figure 1.  Concept of two-stage method of calculation of statically indeterminate trusses 
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The point of the two-stage method is to define shapes of the statically determinate trusses 
calculated in the intermediate stages, which shapes are appropriately compatible with the 
basic system. It is done after cancelation suitable members from the geometry of the basic 
truss, number of which equals the degree of statically indeterminacy of the basic truss system. 
Then in each stage of this method it is calculated the statically determinate truss loaded by 
forces having half values of the load forces applied to the basic truss. Final values of forces 
acting in a member of the basic truss is the resultant of forces calculated in both stages acting 
in the members having appropriate positions in the calculated trusses. Because in the two-
stage method there are not taken into account differences between stiffness of members joined 
in the same node, that is why it is an approximate method of calculation of the statically 
indeterminate trusses.  
 
The two-stage method uses in general the principles of geometry of strains as well as the 
static equilibrium regarding reactions and the generalized internal forces. These principles are 
based on the background of statics of the rigid body therefore they can be applied for 
solutions of statically determinate systems. Methods used for calculations of statically 
indeterminate systems apply concepts of virtual work [11]-[14] what causes, that they give the 
exact values of forces really acting in members of such complex structural systems.  

Subject of static calculations and analyses 
Although the two-stage method gives the approximate results but on basis of conclusions of 
previous research one can state that its accuracy is good enough for the engineering practice. 
In the initial analyses there have been considered simple forms of trusses similar to the 
geometry schemes shown in Fig. 1. These trusses have been mostly loaded by concentrated 
forces applied in symmetric way along their lengths only to the top chord or only to the 
bottom chord. Moreover in the first stage members of the top chord were canceled, while in 
the second stage members of the bottom chord were rejected. Subject of the current research 
refers to the same truss geometry but the investigated trusses are loaded in way presented in 
Fig. 1a and in Fig. 1d. Moreover it is assumed, that in each stage are canceled members at the 
same time form the top chord and from the bottom chord. There are defined following types 
of structural configurations of the calculated trusses.    
 

 
 
Figure 2.  Basic static schemes of two groups of calculated trusses 
 
If the truss has some vertical members and in each stage two members are excluded from the 
top and bottom chord then this structural configuration, shown in Fig. 2b and in Fig. 2c, is 
marked by symbol V 2/2. When the truss has in its chords horizontal members and like 
previously two members of external chords are deleted in each stage then that type of 
structural configuration is marked by symbol H 2/2, compare Fig. 2e and Fig. 2f. In this 
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research there are considered also other subtypes of such configurations, in which three 
members of the top chord are excluded and only one member of the bottom chord is rejected 
in suitable stages. These structural configurations are marked respectively by symbols V 3/1 
and H 3/1. Various types of considered static schemes of the calculated trusses are assumed 
purposely in order to recognize more precisely the features of two-stage method and exactness 
of obtained results. Values of forces calculated in the two-stage method for the presented truss 
systems are compared with outcomes gained by application of a computer software for the 
same static and structural conditions for all the calculated truss systems. Basic structures are 
of 5.00 m clear span and their construction depth is equal to 1.00 m.  
 
The both compared types of truss systems consists of the same number of members and 
nodes.  Number of nodes is defined by symbol “w”, while symbol “p” defines number of 
members. The condition for the inner statically determinacy of the plane truss is defined as 
follows: 
 

                                                           p = 2 ∙ w – 3                                                         (1) 
 

The considered truss systems are built by number of nodes w = 16, what implies that the 
statically determinate truss created by means of this number of nodes has to be constructed by 
the following number of members: 
 
                                                              29 = 2 ∙16 – 3                                                         (2) 
 
The basic truss systems are in each case built by the number of members p = 33, what means 
that the calculated structures are the fourfold statically indeterminate systems. It implies that 
in order to create the statically determined system it is necessary to delete 4 appropriate 
members from area of the basic truss. Static systems of considered trusses calculated 
according to the rules of the two-stage method in its stages, for the structural configuration 
marked by symbols V 2/2 and H 2/2, are shown in Fig. 2. Final values of the forces calculated 
for the both basic system will be resultants of forces defined in each stage for members of 
suitable positions. The concept of the assumed calculation method is compatible with rules of 
calculus of vectors, principle of superposition and with the three fundamental conditions of 
equilibrium presented below:  
 

                                                       ∑ 𝐹𝐹𝑛𝑛
𝑖𝑖=1 ix = 0                                                           (3) 

                                                            
                                                       ∑ 𝐹𝐹𝑛𝑛

𝑖𝑖=1 iy = 0                                                           (4) 
 

                                                       ∑ 𝑀𝑀𝑛𝑛
𝑖𝑖=1 i = 0                                                           (5) 

 
It is assumed that the both basic trusses are subjected to the same type of load. In this 
investigation three concentrated forces are applied to the nodes of the top chord located in the 
close vicinity to the support node A, while remaining two concentrated forces are applied to 
the bottom chord located closer to the support node B, compare Fig. 2. It is assumed that the 
unit load forces F have value equal to 1.00 kN. 
 
The same static systems of basic trusses have been subjected to the static calculation carried 
out by the application of the Autodesk Robot Structural Analysis Professional 2017. The 
computer software is used for the exact calculation of the force values acting in members of 
the statically indeterminate systems. Static calculations were made by assumption that the 
truss consists of steel tubular members having diameter of 30.00 mm, the thickness of the 
section equals to 4.00 mm and the steel material has the Young’s modulus equal to 210 GPa.  
 
Values of forces calculated for structural configurations V 2/2 and V 3/1 
 
The truss system with vertical members is the subject of the first group of static calculations 
carried out by means of the two-stage method for two selected types of rejection of members, 
which was shortly discussed above. In the first case two members of are appropriately deleted 
from the top and from the bottom chords of the basic truss system. Results obtained in the 
first stage of calculations, together with Cremona’s polygon of forces, are presented in Fig. 3. 
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Outcomes of second stage of computations are shown in Fig. 4. Final values of forces 
calculated for the truss configuration V 2/2 are presented in Fig. 7a.      

 
 
Figure 3. Values of forces determined in the first stage of calculations for the truss type 
configuration V 2/2 together with Cremona’s polygon of forces 
 

 
 
Figure 4. Values of forces defined in the second stage of calculations for the truss type 
configuration V 2/2 together with Cremona’s polygon of forces 
 
The same shape of truss system is now calculated in the two-stage method for structural 
configuration denoted by symbol V 3/1. Results of such calculations are shown in Fig. 5 and 
in Fig. 6. The final force values computed for this configuration are also presented in Fig. 7a. 
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Figure 5. Values of forces determined in the first stage of calculations for the truss type 
configuration V 3/1 together with Cremona’s polygon of forces 

 
Figure 6. Values of forces determined in the second stage of calculations for the truss 
type configuration V 3/1 together with Cremona’s polygon of forces 
 
After application of computation procedures appropriate to the two-stage method values of 
forces defined in the same members of the basic statically indeterminate truss are of the same 
values, what does not depend on the considered types of configurations. It implies that they 
are exactly equal, when in process of calculation are removed 2 corresponding members from 
external chords, type configuration V 2/2, and when from the top chord are deleted 3 
members and 1 member from the bottom chord, which configuration is marked by symbol V 
3/1. Truss of the same static scheme, compare Fig. 1a, has been calculated by application of 
the computer software Autodesk Robot Structural Analysis Professional 2017. Outcomes of 
the computer calculations are presented in Fig. 7b.    
 

 
Figure 7. Values of forces in members for the truss type configuration V 2/2 together 
calculated, a) in the two-stage method, b) by means of computer software 
 
Differentiations of the force values calculated in the both compared methods in members of 
external chords are rather small. For example the compression force defined in the two-stage 
method in member situated between nodes 4 and 5 equals -2.00 kN, while by application of 
the computer software it is equal to -2.10 kN, which constitutes about 5 % of the biggest 
value. Bigger differentiations one can notice between force values defined in vertical 
members and in the cross braces. For instance the force value calculated in the two-stage 

a 
 

b 
 

a 
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method in vertical member located between nodes 2 and 11 equals -0.50 kN, while by the 
computer software it is equal to -0.31 kN. Similar bigger differentiations one can notice only 
between values of forces, calculated in the both methods, however having the very small 
absolute values.  
 
Values of forces calculated for structural configurations H 2/2 and H 3/1 
 
The second group of calculations has been carried out by application of the two-stage method 
for the statically indeterminate truss having static system shown in Fig. 2d. In Fig. 8 and in 
Fig. 9 are presented results gained for the truss schemes, where in both the stages are removed 
two members from external chords of the basic truss, truss configuration denoted H 2/2. 
Values of forces defined for configuration marked by symbol H 3/1 are shown in Fig. 10 and 
in Fig. 11.    
 

Figure 8. Values of forces determined in the first stage of calculations of the truss type 
configuration H 2/2 together with Cremona’s polygon of forces 
 
 

 
Figure 9. Values of forces determined in the second stage of calculations of the truss type 
configuration H 2/2 together with Cremona’s polygon of forces 
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Figure 10. Values of forces determined in the first stage of calculations of the truss type 
configuration H 3/1 together with Cremona’s polygon of forces 

 
Figure 11.  Values of forces determined in the second stage of calculations of the truss 
type configuration H 3/1 together with Cremona’s polygon of forces 
 
All final results of the calculated statically indeterminate truss are presented in Fig. 12. Values 
of forces defined in members of the basic truss by means of the two-stage method using 
procedure of cancelation of two members from each of the external chords, type of 
configuration H 2/2, are shown in Fig. 12a. Results obtained in this method for the procedure 
of excluding three appropriate members from the top chord and cancelation of single member 
from the bottom chord, type of configuration H 3/1, are shown in Fig. 12b. Values of forces 
determined by application of suitable computer software are presented in Fig. 12c.  
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Figure 12. Values of forces defined in members of the H truss system by application of 
two-stage method, a) for the type configuration H 2/2, b) for the type configuration H 
3/1,  c) calculated by application of computer software 
 
From analysis of all results obtained in compared calculations carried out in the two-stage 
method for various types of rejection of members from the outer chords follows, that values 
of forces defined in members of these chords and in cross braces of the basic truss are mostly 
of the same or of nearly the same values, compare Fig. 12a and Fig. 12b. Moreover they are 
also mostly of the same values of forces, which are calculated by application of the Autodesk 
Robot Structural Analysis Professional 2017, see Fig. 12c. Slightly bigger differentiation one 
can notice in values of forces defined in members of the middle chord. For instance value of 
force determined in member located between nodes 6 and 7 by application of the two-stage 
method  equals +0.25 kN for the configuration H 2/2, see Fig. 12a, while in the same member 
for the configuration H 3/1 it is equal to +0.50 kN, see Fig. 12b. In general one can state, that 
results obtained in the two-stage method for the configuration H 3/1 are very similar to values 
of forces calculated in the basic statically truss by help of the computer software. 
 
Results of all calculations, presented above, can testify the usefulness of the two-stage method 
for calculations of statically indeterminate trusses. It belongs to a group of recently developed 
methods of approximate solutions of such systems [15] invented on basis  of various types of 
basic principles.   

Conclusions 
Values of forces obtained by application of the two-stage method for the calculation of the 
statically indeterminate trusses are approximated but mostly very similar to the force values 
determined by use of the exact methods applied in computer software. Bigger differences one 
can notice in values of very small forces, but they can be considered of small importance in 
the engineering practice. Accuracy of these results in a very small degree depends of the way 

a 
 

b 
 

c 
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of the necessary cancellation of selected members from area of the basic truss in order to 
create the intermediate forms of statically determinate systems computed in the both stages. 
Other characteristics of the two-stage method will be subjects of the next research.  
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Abstract  
The paper presents application of two-stage method to calculations of the force values acting 
in members of selected type of statically indeterminate truss having longer span than trusses 
considered in previous scientific articles. The calculations are carried out in two stages. The 
two-stage method applies principles of calculus of vectors as well as rules of superposition. At 
each stage of this method it is calculated a statically determinate truss system, shape of which 
is determined by reduction of the appropriate number of members from the basic statically 
indeterminate truss. The number of deleted members equals the statically indeterminacy of the 
basic truss. Thus in both stages there are calculated the statically determinate trusses. The 
final values of forces acting in the members of the basic truss are resultants of forces 
calculated for the counterpart members in each stage. Basic shape of the statically 
indeterminate truss has horizontal layer of members located in the middle of construction 
depth. The basic truss is subjected to symmetrical and nonsymmetrical type of the load. There 
are discussed differences between results obtained for these two types of the load and between 
force values calculated in the two-stage method and by application of a suitable computer 
software.   
 
Keywords: Truss, Statically indeterminate system, Superposition method, Calculus of vectors, 
Cremona’s method, Approximate solution.  

Introduction 
Truss systems are applied for a long time in the structures of roofs and floors. In comparison 
to bending beams of the same clear span and the same conditions of load the trusses are more 
lightweight. Members of the truss are connected together by means of theoretically articulated 
joints, due to which the members are subjected to act only of axial forces. The assumption 
that members are connected in articulated nodes is one of the basic requirements of the truss 
system. This assumption makes possible the application of principles of the calculus of 
vectors to the methods of calculation of values of forces in statically determinate trusses, like 
for instance the Cremona’s method. Some analytical methods are used for this purpose, 
Ritter’s method is one of them [1]-[4]. More complex trusses are mostly the statically 
indeterminate systems and they are also more efficient structures than the statically 
determinate trusses. In both systems the basic structural assumptions remain the same but due 
to their complexity, however the way of force distribution inside statically indeterminate 
trusses also depends on the stiffness of members joined in each particular node [5,6]. 
Therefore the processes for calculation of forces in members of these systems are also more 
complex. In such cases the distribution of forces in a single node depends, among others, on 
mutual ratios of the stiffness of members connected in it. There are numerous other factors 
having influence on force distribution between members especially in statically indeterminate 
systems, which have to be taken into consideration in various methods of the static 
calculations [7]-[11]. The degree of difficulty of the calculation procedure increases 
enormously with the growing number of members and nodes of the structure. It is especially 
important for the space trusses also called the space structures or the space frames [12]. At 
present the new numerical methods used into modern software make the calculation processes 
of complex statically indeterminate trusses very fast and enormously efficient. In certain types 
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of the structural analysis it is not necessary to take into consideration the exact values of 
forces acting in the truss members.  

Concept of the two-stage method and subject of calculations  
The two-stage method was worked out during initial static analyses of a simple tension-strut 
truss, being initially a statically indeterminate system. If the basic tension-strut structure is 
overloaded some of its members are excluded from the force transmission and the remaining 
structure become a statically determinate system. The number of excluded tension members is 
equal to the statically indeterminacy of the basic truss system. Then the reduced  structure can 
be calculated by one of very simple methods, for instance by help the Cremona’s method. The 
new calculation procedure should keep rules of the calculus of vectors, together with principle 
of superposition and the below given basic conditions of equilibrium of coplanar force 
systems: 
 

                                                       ∑ 𝐹𝐹𝑛𝑛
𝑖𝑖=1 ix = 0                                                           (1) 

                                                            
                                                       ∑ 𝐹𝐹𝑛𝑛

𝑖𝑖=1 iy = 0                                                           (2) 
 

                                                       ∑ 𝑀𝑀𝑛𝑛
𝑖𝑖=1 i = 0                                                           (3) 

 
Calculations of the force values are carried out in two stages. In each stage the considered 
truss is shaped on pattern of the basic truss by removing of number of members equal to 
degree of statically indeterminacy of the basic truss. Moreover in each stage the load forces 
are of the half values and they have to be applied to the suitable nodes. Final values of forces 
acting in particular members are resultants of forces calculated in the both stages for 
appropriate members and having corresponding localizations into the truss area.  
 
The point of the two-stage method is described in papers [13,14,15], where are presented 
results of calculations of simple forms of trusses having relatively very small clear spans. The 
paper presents outcomes obtained by application of the two-stage method to defining values 
of forces acting in the statically indeterminate truss of longer clear span than trusses 
calculated previously. The basic truss system is subjected to symmetrical and nonsymmetrical 
type of load. The concentrated load forces are applied to suitable nodes of the top chord. 
Static analysis of the assumed form of the basic truss is undertaken in order to estimate 
accuracy of the force values calculated in two-stage method for trusses of complex shapes and 
larger clear spans.  
 
Methods, results of calculations and comparison analyses 
 
Some characteristic results gained by the application of the two-stage method can be closely  
recognized after analyses of the force values calculated for truss of geometry shown in Fig. 1.  
 

 
Figure 1. Static scheme of the basic truss subjected to symmetrical load 
 

ICCM2018, 6th-10th August 2018, Rome, Italy

357



The basic truss has clear span of 10.00 meters, its construction depth equals 1.00 meter and it 
is loaded by concentrated forces, each of value equal to 1.00 kN. Here are consider the two 
ways of the force application. The first one is a symmetric loading, while concentrated forces 
are applied to each node of the upper chord. The second one is called asymmetric, when these 
forces will be applied to half the number of the upper chord nodes, only on one side of the 
truss. The basic truss is calculated by application of the two-stage method and these results 
are compared with outcomes gained by usage of the software Autodesk Robot Structural 
Analysis Professional 2017, designed for the precise calculation of force values in the 
statically indeterminate systems. It has been assumed that the truss consists of steel tubular 
members having diameter of 30.00 mm, the thickness of the section equals to 4.00 mm and 
the steel material has the Young’s modulus equal to 210 GPa. 
 
Analysis of basic truss loaded in symmetric way 
 
The condition for the inner statically determinacy of the plane truss is as follows: 
 

                                                   p = 2 ∙ w – 3                                                            (4) 
 

where symbol “p” defines number of members, while “w” determines number of nodes. The 
considered shape of the truss system shown in Fig.1 is created by number of nodes w = 16, 
what implies that the statically determinate truss created by number of members p = 68, which 
are connected together by means of number of nodes w = 31. A statically determined truss 
consisting of this number of nodes has to be created by a number of members determined by 
the equation below: 
  
                                                          59 = 2 ∙31 – 3                                                           (5) 
 
It implies that the considered truss is the nine-fold indeterminate system (68 – 59 = 9). 
Therefore in each stage of the two-stage method one should remove nine appropriate 
members. In the first stage there were deleted nine members from the top chord of the basic 
truss. Because the truss is of symmetric form and moreover it is symmetrically loaded the 
calculation process can be limited only to half of the truss. The load forces are of halve 
values, they equal to 0.50 kN and they are applied to the top chord nodes. The values of forces 
calculated in the first stage by the application of Cremona’s method is presented in Fig. 2.  
 
 

 
 
Figure 2. Results calculated in the first stage of calculations for the basic truss loaded in 
symmetric way together with Cremona’s polygon of forces 

ICCM2018, 6th-10th August 2018, Rome, Italy

358



 
According to previously explained rules in the second stage of this method one should 
eliminate nine members from the bottom chord of the basic truss. From analysis of the 
geometry of this truss and the general conditions of equilibrium it follows, that load forces of 
values equal 0.50 kN have to be applied to the bottom chord nodes. Scheme of the calculated 

truss system together with results gained by means of Cremona’s method are shown in Fig. 3.  
 
Figure 3. Results calculated in second stage for basic truss loaded in symmetric way 
together with Cremona’s polygon of forces 
 
Resultant values of forces in members of the truss are calculated by the application of the 
two-stage method are shown in Fig. 4a. The results calculated for the same truss by the 
application of Autodesk Robot Structural Analysis Professional 2017 are presented in Fig. 4b.  
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Figure 4. Final values of forces calculated for the symmetrical loaded truss, a) in the 
two-stage method, b) by application of computer software 
 
Let us compare outcomes gained by usage of various methods for the same members. For 
instance, the value of the force acting in the member placed between node No 5 and node No 
6 calculated in the first stage of the two-stage method equals zero, see Fig. 2, because it has 
been removed in this stage. In the second stage the value of the compression force is 
determined as  -12.50 kN, which is why the final, resultant force value in this member is equal 
to -12.50 kN, see Fig. 4a. By application of the computer software the compression force 
value in member located between nodes No 5 and No 6 is defined as -12.45 kN, see Fig. 4b. 
The difference in relation to the smaller force value is rather small and it comes to 0.40 %. 
Bigger differences of the force values are noticed in other members like, for example, in the  
member connected to the support and placed between the support node A and No 1. In the 
first stage of calculations the compression force has value of -0.353 kN, see Fig. 2, while in 
the second stage its value is calculated as equal to -3.182 kN, see Fig. 3. Therefore the final 
value of the compression force defined in this member by means of the two-stage method 
equals -3.53 kN, see Fig. 4a. The value of the compression force calculated by the application 
of Autodesk Robot Structural Analysis Professional 2017 in the same member is equal to -
3.89 kN, see Fig. 4b. The real difference between these two values equals 0.36 kN, which 
gives the relative difference coming to 10.1 %. A bigger relative differentiation can be noticed 
between values of forces defined in both compared methods for members of the middle layer 
located e.g. between nodes No 9 and No 10. In the two-stage method the force acting in this 
member is of zero value, while calculated by means of the computer software it is a tension 
force of value equals +0.49 kN. From initial analysis of the gained results follows the 
conclusion, that the biggest relative differences of forces appear in members subjected to act 
of relatively small absolute values. 
 
Analysis of basic truss loaded in asymmetrically way   
 
The statically indeterminate truss system shown in Fig. 5 has the same geometric and 
structural parameters like the truss structure presented in Fig. 1, what implies that it is a nine-
fold indeterminate system, but it is now loaded in an asymmetric way. In this case the truss is 
loaded by five concentrated forces, each of 1.00 kN value, applied only to five successive 
nodes located only on the right site, in close vicinity to the support node B.  In the first stage 
of the two-stage method nine members of the top chord have to be removed from the basic 
truss in order to make the truss a statically determinate system. The concentrated forces are of 
half value, equal to 0.50 kN, are applied to the same nodes of the upper chord. 
 

 
Figure 5 . Static scheme of the basic truss subjected to asymmetric way of load 
 
 
Results of this stage of the calculations together with a suitable Cremona’s polygon of forces 
are shown in Fig. 6. In the second stage of the two-stage method there are removed also nine 
members, but this time from the lower chord. Like previously the load forces of half values 
are applied to the corresponding nodes of the lower chord. All values of forces calculated in 
the second stage of calculation of the asymmetric loaded truss are presented in Fig. 7. The 
final results, being resultants of the force values calculated in both stages for the counterpart 
members, are shown in Fig. 8a. The procedure for determining  the force values in particular 
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truss members is the same as described above. The results defined for the same truss by the 
application of the computer software Autodesk Robot Structural Analysis Professional 2017 
are presented in Fig. 8b. 

  
 

Figure 6. Results calculated in the first stage for the asymmetrically loaded truss 
together with Cremona’s polygon of forces 
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Figure 7. Results calculated in the second stage for the asymmetrically loaded truss 
together with Cremona’s polygon of forces 
 
 

 
 
Figure 8. Final values of forces calculated for the asymmetrically loaded truss, a) in the 
two-stage method, b) by application of computer software 
 
Differentiation of force values in members of the outer chords in the considered truss is rather 
small. For instance the force value calculated in the two-stage method in compression 
member of upper chord located between nodes No 6 and No 7 equals -7.00 kN, while by 
application of the computer software it is equal to -6.84 kN. The difference in amount of 0.16 
kN constitutes towards the smaller value only 2.33 % of its basic dimension. One can notice 
some differences between the calculated force values acting in members of the middle chord 
spaced between support nodes A and B. Forces calculated in both of the compared methods in 
such members placed closely to support A are of the same value equals 0.00 kN. One should 
notice that these members are located quite far from the area, where the applied outer load 
forces are located. One can observe substantial differences in the members of the middle 
chord located closely to the support node B in the sector, where there are only  the applied 
load forces. For example the force value calculated in the two stage method in the member 
placed between nodes No 15 and No 16 equals zero, while by application of the computer 
software it is estimated that the tensile force has a value of +0.34 kN. The differences can be 
considered as significantly big, but one has to be aware that they refer to very small values of 
forces. A similar force differentiation  can be noticed in values calculated in cross braces. In 
the area located in the vicinity of the support A, forces defined in both the compared methods 
are of identical values. In the zone located close to support B differences of the estimated 
force values are evident. The tensile force calculated in the member placed between node No 
17 and No 8, by means of the two-stage method, is of the value +0.53 kN, while by 
application of the computer software Autodesk Robot Structural Analysis Professional 2017 it 
is defined to equal +0.18 kN. However the difference is only equal to 0.35 kN of the absolute 
value, but the relative difference is of 194% in relation to the smallest force value. In spite of 
this observation one should be aware that the biggest relative differentiation appears only for 
the smallest force, close to the zero value. 
 
Conclusions 
 
This paper presents examples of the application of the two-stage method of calculation of 
statically indeterminate trusses together with a comparison of the results gained by the 
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application of a commonly used computer software package. The investigated plane truss has 
two outer chords and a middle chord consisting of horizontal members, while its clear span is 
ten times bigger than its construction depth. The basic truss is subjected to symmetrical and 
asymmetrical way of load. The two-stage method is an approximate method of calculation of 
statically indeterminate trusses because it incorporates processes of calculations, which 
among others do not take into consideration different stiffness of members connecting in 
particular nodes. From the comparison of results obtained from both of the compared methods 
follows that in general the results obtained by means of the two-stage method are very 
compatible with results gained by application of the exact calculations made by means of 
Autodesk Robot Structural Analysis Professional 2017. The differentiation of the force values 
calculated in both methods in the same members are subjected to the biggest forces is 
relatively small, it is around couple of percent. The differences are considerably big for 
members, where values of calculated forces are very small, being close to the zero value. One 
should to point out, that members subjected to such small forces are designed by applying 
suitable rules or requirements of building codes, which implies that areas of their cross-
sections are sometimes many times bigger than it directly follows from the calculated values 
and forces and strength of a material. Due to its simplicity and due the sufficient 
approximation of obtained results the two-stage method can be applied not only in the initial 
structural design of the statically indeterminate trusses. It can be adapted for an appropriate 
and new type computer software what will be not complex because of the simplicity of 
elementary calculation procedures needed for this purpose. Accuracy of the two-stage method 
can be significantly improved by application of a set of suitable coefficients, which can define 
ways of the force distribution according to differentiation of stiffness of members connecting 
in the same node. One should expect that principles of the method can be relatively easily 
adapted for the calculation procedures of space trusses. 
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Abstract 

Pressure piping is the most productive way for large volume compressed natural gas (CNG) 

transportation. In pipeline constructions, the thickness of between two pipes joining together 

is often not consistent due to the miss-match in dimensions, and thus stress concentrations can 

often occur at the pipe joints, arising safety concerns. Therefore, it is of importance to 

accurately analyze the key influencing factors of dimensional miss-matching defects, 

providing theoretical basis for the preliminary design and post-repair of pipelines. This work 

uses the smoothed finite element method (S-FEM) that has been proven accurate in stress 

analysis compared with the traditional FEM. Since the geometry and the load of the pressure 

piping are both axisymmetric, a novel axisymmetric S-FEM element is firstly developed, 

coded and integrated in ABAQUS using the user-element-library (UEL). Intensive studies are 

then carried out to examine the effects of different level of miss-match in the thicknesses of 

two joined pipes and the effects of the radius of the transitional fillet used to bridge the miss-

matches. It is found that the maximum hoop stress reduces as the radius of the transitional 

fillet increases. For the thinner section of the pipe, the maximum hoop stress is only affected 

by the thickness miss-match. 

Keywords: Pressure piping; Finite element analysis (FEA); Smoothed finite element method 

(S-FEM); Hoop stress; Transitional fillet 

 

Introduction 

As demand of compressed natural gas (CNG) is increasing, pressure piping is widely used for 

long distance CNG transportation. However, leaks and explosions of pressure piping could 

cause huge property losses even threaten people's life safety. There are many possible sources 
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of defect such as production defect, installation error, fatigue, etc. [1-3]. But there is very little 

research has been done about defect of different level of miss-match in the thicknesses of two 

joined pipes caused by production process. Since it is an important kind of reason for pressure 

piping’s failure, it’s necessary to analyze the defective piping under working condition 

providing theoretical basis for the preliminary design and post-repair. 

In general, finite element analysis (FEA) [4-5] is the most common way for model simulation 

as its high efficiency and low cost. For this study, as geometry and load of the pressure piping 

are both axisymmetric, two-dimension (2D) axisymmetric elements is selected to discrete the 

problem domain. Relate large mesh density should be applied at the defective section to 

compute more accurate results. Nevertheless, for current FEA software packages, it’s hard to 

control the most suitable mesh density at defective sections. If mesh density is too small, it’s 

impossible to compute accurate maximum stress for stress concentration issue. On the 

contrary, overlarge mesh density will cause computing inefficiency and heavily distorted 

elements will occur between dense and sparse mesh regions. Therefore, smoothed finite 

element method (S-FEM)[6-[8] is processed to analyze models instead of the traditional FEM. 

It has been proved that S-FEM computing more accuracy results and quicker convergence 

speed compared with traditional FEM. In addition, models with distorted mesh condition can 

be calculated by S-FEM with accuracy results.  

For pressure piping in this study, the defect of different level of miss-match in the thicknesses 

of two joined pipes is analyzed by S-FEM in ABAQUS. In general, at the stagger sections of 

interconnected piping, transitional fillet is applied to reduce the stress concentration. 

Examining the effects of different level of miss-match in the thicknesses of two joined pipes 

and the effects of the radius of the transitional fillet for the pressure piping.  

Effect of thickness difference and transition fillet size on hoop stress 

In this section, Pressure piping with the defect of thickness difference and transition fillet size 

have been studied. And the model of thickness difference at both inner surface and outer 

surface are all analyzed with S-FEM. Finally, the effect of the thickness difference and the 

size of the transition fillet on the maximum hoop stress is obtained. 

We firstly analyzed a 500mm pressure piping with thickness difference at middle of the inner 

surface as shown in Fig. 1. The pressure piping can be divided into two parts. For the lower 

part, inner and outer radius are fixed to 230mm and 250mm, respectively. But for the upper 

part, the outer radius is fixed to 250mm, the inner radius is changed from 230.5mm to 234mm, 
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and the increment is 0.5mm. Meanwhile, the radius of transition fillet is also changed from 

0.5mm to the maximum thickness difference, and the increment also is 0.5mm.  

 

 

 

 

 

 

 

 

 

 

Fig. 1 Pressure piping with defect of thickness difference at inner surface 

 

All the models are analyzed by the S-FEM in ABAQUS. Since the hoop stress is the largest 

among the stress components, the hoop stress is compared for each model. The maximum 

hoop stress is at the transition fillet, and there is also relatively larger hoop stress at the upper 

part because of the thin wall thickness. Therefore, the maximum hoop stress is compared at 

the transition fillet and upper part respectively for all the models. And the effect of thickness 

difference and transition fillet size on hoop stress can be obtained. The purpose of making 

convenient for results analyzing, the value of the maximum hoop stress of the defective piping 

is divided by that of the piping without defect. For the thin-walled part, the maximum hoop 

stress is only effected by the thickness difference rather than the size of the transition fillet as 

shown in Fig. 2 (a) and (b). And for the transition fillet part, the maximum hoop stress has 

linear relationship with the thickness difference as shown in Fig. 2 (c). In addition, keeping 

the thickness difference unchanged, the maximum hoop stress has quadratic function relation 

with the radius of the transition fillet as shown in Fig. 2 (d). For the case of thickness 

difference at the outer surface, the change rule of the maximum hoop stress for different size 

of thickness difference and radius of the transition fillet is the same as that of the defect at 

inner case. 
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(c)                                                                                  (d) 

Fig. 2 The maximum hoop stress: (a) for different thickness difference at the thin-walled part; (b) for 

different radius of the transition fillet at the thin-walled part; (c) for different thickness difference at the 

transition fillet part; (d) for different radius of the transition fillet at the transition fillet part. 
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Abstract 

Determination of material properties is essential for structural design, optimization and 

prediction of the mechanical behavior of the structures. Currently, the material properties are 

measured after the material is produced using standard specimen. However, the material 

properties at some parts of the structure can change non-uniformly as the results of plastic 

deformation and hardening during the manufacturing processes, such as metal forming 

processes. Therefore, the material properties of the manufactured structure components 

become nonhomogeneous, can vary continuously, and can be very much different than those 

evaluated based on the specimen measurements. This paper presents an inverse method to 

systematically determine the variation of the material properties in post-manufactured 

structure components via, for example, a metal forming process. Our inverse technique uses 

ABAQUS to simulate the mechanical behavior of the structure, and then the responses are 

used to train a radial basis function (RBF) neural network (NN). The material properties at 

any point of the structure can then be obtained rapidly and accurately by measuring the 

structure responses. Our technique is validated using a hat-shaped plate formed by stamping. 

It is found from a simulated measurement data that the average error of the inversely 

identified is less than 2%, which is sufficient for most of the engineering applications. 

Keywords: Material properties; Inverse problem; Inverse identification; RBF neural 

network; Metal forming 

 

Introduction 

In structural design, optimization or safety analyses, the accuracy of material properties 

directly determines the reliability of the results [1,2]. Currently, most of the material 

parameter identification methods are applied to materials without considering the effects of 

manufacturing processes, and hence the obtained results are effectively the equivalent 

parameters that omits the spatial inhomogeneity. In actual fact, however, due to the non-

uniform loading and plastic deformation in the structure during manufacturing processes such 

as forming processes, there are significant discrepancy in the material properties at different 

parts of the structure [3,4,5]. To overcome this shortcoming, an inverse method is proposed in 

this paper which allows the material properties changes continuously in space manufactured 

structures.    

Description of the problem 

The material properties are assumed vary continuously spatially. In the space over which the 

material properties change, it can be divided into a number of key regions using discrete 

points. Then, the material properties of the structure’s region are obtained by interpolating 

values at these discrete points. Finally, only the material properties at these key points are 
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needed to be identified, thus it can reduce the number of inversion parameters. Radial basis 

function neural networks and finite element methods are used in the present method for 

solving the inverse problem and collecting training data needed for neural networks. The task 

of this work is to establish such a method that can systematically and rapidly Identifies 

continuously distributed material properties. In order to develop an effective and practical 

procedure for continuously distributed material properties, we employ the following strategies: 

 Use the well-established FEM (in particular ABAQUS®) as the forward model. This is 

because the material properties in any element in a FEM model can be different from the 

others. In addition, ABAQUS is mature and reliable, and can compute structural 

responses very fast for a given distribution of materials for a structure.  

 The ABAQUS models are then used to train a neural network (NN), so that during the 

inverse analysis, we can infer the material parameters in real-time without calling for 

time-consuming ABAQUS.  

 In training of the neural networks, we use radial basis functions (RBF). This is because 

the moment matrices using RBF is always investible and hence the training process 

becomes reliable and effective. Our RBF-NN is expected offering a real-time inverse 

solver for identifying the continuous distribution of material properties of post-

manufactured structures. 

Finite element model 

This method is applied to the material parameter identification of hat-shaped structure. Due to 

the symmetry of the plate, only the one-half model is selected for modeling shown in Fig. 3.1. 

The left end of the one-half model is completely fixed and the load in z direction is applied to 

the right end of the structure.  

The material used for the model is stainless steel SUS201, which has an initial Young's 

modulus of 207000 MPa. In fact, after stamping process, the Young's modulus of material is 

continuously variable throughout the entire structure, even the Young's modulus in some local 

areas of the structure may reach twice of the original Young's modulus [6,7]. Therefore, the 

model is firstly divided into four blocks by five measuring points 1, 5, 8, 9, 12 as shown in 

Fig. 3.1 and each block is then divided into several equal-sized areas. The whole model is 

divided into 254 areas with different Young's modulus, and the Young's modulus of each area 

is obtained by interpolating from that of the measurement points at both ends of the block. As 

long as the Young's modulus of the measuring points (5, 8, 9, 12) is determined, the Young's 

modulus at other positions is obtained. To avoid stress singularity, appropriate triangular 

meshes is applied. The total number of elements in the model is 101600 and the number of 

nodes is 51255.  
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Fig. 0.1 One-half model of hat-shaped structure 

 

Sensitivity analysis and establishment of neural networks 

In the process of material properties inversion, there should be a strong sensitivity between 

the parameters to be reversed and the measured response of the load, in order to guarantee the 

existence and solvability of the inverse solution [,8,9,10,11,12]. After sensitivity analysis, it is 

found that the z-direction and the x-direction displacement of positioning points L, M, and N 

are sensitive to the change in material parameters as shown in Fig. 3.1 and Table 0.1. The 

displacement responses are represented by ULx, ULz, UMx, UMz, UNx, UNz, where U represents 

the displacement response, L, M, and N are the names of the positioning points, and x and z 

represent the direction of the displacement. It can be seen in Table 0.2 that the displacement 

responses of the three positioning points (L, M, N) are less sensitive to the change of Young's 

modulus at point 5 while they are highly sensitive to the change of Young's modulus at points 

9 and 12. Because the deformation of the structure always occurs firstly in the position with a 

lower Young's modulus when the structure withstands external forces. The Young's modulus 

at point 9 and point 12 are smaller than that of point 5 and point 8, thus, the displacement is 

likely to be more sensitive to here. Based on the results of sensitivity analysis, with these six 

displacement responses of the points (L, M, N) as inputs, the material parameters of the five 

measuring points are outputs, the inverse problem neural network is established, and 

appropriate training and error analysis are performed. 

Table 0.3 The sensitivity coefficient of displacement responses of points L, M, and N to 

the changes of Young's modulus of the measuring points 

point ULx ULz UMx UMz UNx UNz 

5 4.44% 1.04% 4.44% 8.27% 4.44% 12.02% 

8 21.37% 4.00% 21.37% 13.33% 21.37% 16.44% 

9 40.07% 38.61% 40.07% 35.96% 40.07% 34.42% 

12 39.09% 58.52% 39.09% 46.30% 39.09% 41.10% 
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Conclusions 

In this work, a novel method of continuous inverse identification of material properties was 

proposed to accurately obtained the material properties at arbitrary position of structure. It is 

found that the average error of the inversely identified result is less than 2%, compared with a 

simulated measurement data. The radial basis function neural network is used to solve the 

inverse of the positive problem because of its advantages in solving complex nonlinear 

problems. The method of approximating the material properties at any position of the 

structure by interpolating material properties of key positions of the structure reduces the 

number of outputs and simplifies the solution of inverse problem. In addition, this method 

separates the simulation from the solution and it is more convenient for engineering 

applications. 
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Abstract 
This paper advances a new finite volume alternative for solving poroelasticity problems 
employing a staggered arrangement for pressure and displacements in an unstructured grid 
framework. By staggering these variables, an improvement is obtained for the pressure-
displacement coupling, which is claimed by the authors to prevent the numerical solution 
from instabilities in the pressure field. The two-dimensional formulation is still under 
development, but preliminary one-dimensional results are presented to demonstrate this 
capability. It is shown that the staggered formulation keeps second order accuracy for both 
pressure and displacement, even for highly non-uniform grids. In addition, the formulation 
does not present any spurious pressure oscillations, a key issue when solving poroelasticity 
problems under undrained conditions. The results suggest that staggering the rock 
displacements related to the pore pressure is a very promising approach to confer robustness 
to the numerical scheme. The novel method is founded on the analogy among pressure-
velocity coupling for the Navier-Stokes equations and pressure-displacement for the 
poroelasticity problems. It is worth to mention that both physics are treated with the same 
conservative method. 
 
Keywords: Staggered grids, unstructured grids, numerical stability, poroelasticity 

Introduction 

Several engineering problems are modeled by systems of coupled partial differential 
equations, many of them involving different physics. In geomechanics, in which compacting 
porous media is coupled with the fluid flow, is one example. In this case, a delicate coupling 
between pore-pressure and rock displacement is present, since under certain conditions, as in 
the very beginning of the transient, or at the interface of two materials with different 
permeability, pressure wiggles appear in the numerical solution. Those situations, which 
resemble an undrained condition, impose an almost zero compressibility, which creates the 
condition for this pathology to appear. In the class of Finite Element methods, extensively 
used for solving the rock mechanics in porous media, several remedies for this pathology is 
available, being mixed finite element [1] and discontinuous Galerkin some of the possibilities. 
However, those remedies are at a cost of considerably increasing in computer time. 
Alternatively, some authors [2,3] have proposed stabilization techniques that do not increase 
the computational cost and still eliminate the instabilities, but at a cost of introducing 
numerical diffusion to the solution. Recently, in the context of finite volumes, Honório and 
Maliska [4] have proposed a strategy for avoiding such instabilities, which can be also 
regarded as a stabilization technique. In spite of all these alternatives, a numerical scheme that 
efficiently eliminates the pressure wiggles without increasing computational cost, while 
keeping the same order of accuracy for both pressure and displacements, is still pursued. 
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An analysis of the coupling between pressure and displacement for poroelasticity, and 
pressure and velocity for Navier-Stokes flows, reveals that they are of the same nature, so it is 
expected that the remedies employed in one class of problems can be applied to the other one 
with success. It should be recalled that the oscillatory pressure fields arising when solving 
incompressible Navier-Stokes flows, and its remedies, is known for more than four decades, 
and can be fully mitigated if a staggered grid approach is employed [5]. This remedy was 
abandoned when unstructured grids were required for solving fluid flows in complex 
geometries, due to the alleged complexity of implementation. This paper addresses this issue, 
advancing a finite volume method using unstructured grids with staggered variables, avoiding 
the oscillatory pressure field that appears in poroelasticity. Another important feature of the 
methodology herein presented is the solution of the both physics, fluid flow and rock 
mechanics, with the same finite volume technique [6].  
 
Firstly, it is presented the mathematical model for the coupled poroelasticity problem. Then, 
the fundamentals of the staggered arrangement of variables are discussed, and a brief analogy 
is established between pressure-displacement in poroelasticity and pressure-velocity for 
Navier-Stokes flows. The model equations are discretized for two-dimensions and results are 
presented for 1D problem for both staggered and collocated arrangements. Finally, a few 
remarks close the work. 

Mathematical Model 

The mechanical behavior of saturated porous media, besides being affected by its mechanical 
properties, it is also influenced by the pressure of the fluid filling its pores. Terzaghi [7] 
introduced the concept of effective stress into the equations of stress equilibrium in order to 
take the pore pressure into account, yielding 

 
pα∇⋅ − ∇ =σ b       (1) 

 
in which ∇  is the nabla operator, σ  is the effective stress tensor, α  is the Biot coefficient, p  
is the pore pressure and b  is a source term. Moreover, considering small strains and a stress-
strain relationship represented by the constitutive matrix £  (Voigt notation), the effective 
stress tensor can be written in terms of the displacement vector u  by the expression 
 

S= ∇σ u£        (2) 
 
with S∇  being the symmetric nabla operator. The closure of the model is ensured by the mass 
conservation equation for deformed porous media, given by 
 

( )1 f sp q
M t

∂ +∇⋅ + =
∂

v v      (3) 

 
in which 1 M  is the Biot module and q  is a source term. Equation (3) is conveniently written 
here in terms of the fluid velocity, fv , and the solid grains velocity, sv , which are 
respectively given by 
 

f p
µ

= − ⋅∇kv        (4) 
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s

t
∂=
∂
uv        (5) 

 
with k  being the absolute permeability tensor and µ  the fluid viscosity. The gravitational 
term in equation (4) has been neglected with no loss of generality. 

Staggered Grid Arrangement 

One of the major challenges faced by the numerical schemes developed to solve equations (1) 
and (3) is how to avoid pressure wiggles that can appear under undrained consolidation. In 
this situation the consolidation process takes place in a much smaller time scale than the fluid 
motion ( s f>>v v ), which yields the following mass conservation equation 
 

1 sp q
M t

∂ +∇⋅ =
∂

v       (6) 

 
Equation (6) is very similar to the mass conservation equation that appears when solving the 
Navier-Stokes equations. It is well known that satisfying this equation is of utmost importance 
to avoid the well-known checkerboard pressure problem [8]. The key issue in poroelasticity 
resides on how to determine a displacement field that satisfy both mass and momentum 
equations. For the Navier-Stokes equations the problem is exactly the same, except that the 
unknown variable is the velocity field instead of displacement. 
 
Ensuring mass and momentum conservation is not a trivial task to be accomplished. The 
pioneering work to address this issue is due to Harlow and Welch [5], in the context of finite 
differences.  They staggered the positions of pressure and velocities, such that momentum and 
mass conservation are satisfied for different control volumes but for the same set of variables. 
In this manner, pressure and velocities are directly available where they are required when 
integrating the corresponding partial differential equation in a control volume for mass or 
momentum. This technique is recognized to completely mitigate pressure wiggles for the 
Navier-Stokes equations. Due to the similarity of equation (6) with its counterpart in Navier-
Stokes flows, a staggered grid arrangement between pressure and displacement might have 
strong chances to completely eliminate the pressure wiggles appearing in poroelasticity 
problems. 
  
Finite Volume Formulation 
 
The traditional procedure for obtaining the approximate equations via a finite volume method 
starts by integrating the differential equations over each control volume. Since it is being 
proposed a staggered arrangement for u  and p  the control volumes for pressure and 
displacement must be clearly identified.  In this work, we follow the methodology presented 
by Peters and Maliska [9] for building the staggered control volumes on unstructured grids. 
 
In figure (1a) it is shown the base mesh (the elements) provided by the grid generator. As 
depicted in figure (2b) the control volumes for mass conservation, pΩ , coincides with the 
elements of the base mesh. This control volume is for pressure. For the momentum 
equilibrium, however, the control volumes, Ωu , are built around the edges of the elements by 
connecting the vertices of the edge with the centroids of the two adjacent elements. A control 
volume Ωu  is represented in figure (1c) and the position of ju  is at the midpoint of the edge 
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of the element. The key point of this configuration is that the displacements are located at the 
faces of the control volume pΩ  (figure (1b), which will have a direct impact on the 
volumetric strain computation over pΩ , as will be shown later.  
 

 

Figure 1 Geometrical entities: (a) mesh composed by triangular and 
quadrilateral elements; (b) control volume for mass conservation and (c) 

control volume for momentum conservation. 

 

Figure 2 Integration points (a) for mass and (b) for momentum 
 
Mass Conservation Equation 
 
Equation (3) is integrated over a time step, tΔ , along with an implicit first-order backward 
Euler scheme and over the control volume p

iΩ . The divergence theorem is applied to obtain 
the surface integrals. By the midpoint rule, the semi-discretized form of equation (3) is 
 

( )
p
i

p p o
f s pi i i i

i iip
ip

p p
q

M t M t∈Γ

ΔΩ ΔΩ⎡ ⎤+ + ⋅ = ΔΩ +⎣ ⎦Δ Δ∑ v v s    (7) 

 
in which the variables evaluated at the previous time level carries the superscript º,  and no 
superscript refers the current time level. Each control volume pΩ is bounded by a set of faces 
(or edges) and at the midpoint of each face is located an integration point ip . The set of 
integration points surrounding p

iΩ  is denoted by p
iΓ , as highlighted in figure (2). Each 

integration point has an area vector, ips , pointing outwards the control volume. In addition, 
the volume of pΩ  is represented by pΔΩ . Recalling equation (5), the mass fluxes crossing 
the faces of pΩ  due to the rock deformation and fluid motion are, respectively, given by 
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( ) ( )oip ips s
ip ipip
w

t

−
≈ ⋅ = ⋅

Δ

u u
v s s      (8) 

( ) ( )1p f
ip ipipip
w p

µ
≈ ⋅ = − ⋅∇ ⋅v s k s      (9) 

 
The main advantage of staggering pΩ  and Ωu  becomes clear by inspecting equation (8), 
noting that the displacement vectors ipu  and o

ipu  are directly available at the integration points 

of p
iΓ  (see figure (2)), avoiding any kind of interpolation. The benefits of this feature are of 

particular importance during undrained consolidation (equation (6)), where the mass fluxes 
through the control volume's faces is entirely given by sw . This is precisely the point one is 
claiming to be the key point for avoiding the pressure instabilities. 
 
The next step is to choose how to reconstruct the pressure gradient of equation (9) at the 
integration points belonging to pΓ . The literature is abundant on these kind o methods, and 
Cerbato et al. [10] present an extensive analysis of several techniques for gradient 
reconstruction specifically applied to unstructured grids, which could be readily applied here 
to approximate equation (9). The reconstruction could also be done by a Multi-Point Flux 
Approximation (MPFA), as proposed by Aavastmark et al. [11].  
 
Equilibrium Equations 
 
Equation (1) is integrated over the control volume jΩu , as depicted in figure (1c), and the 
divergence theorem is applied to the divergent operator yielding 
 

( )  d
j

j

j j jip
ip

pα
Ω

∈Γ

⋅ − ∇ Ω = ΔΩ∑ ∫ u
u

u uσ s b     (10) 

in which jΓu  is the set of integration points surrounding jΩu , as shown in figure (2b), and s  is 
an appropriate arrangement of the area vector components, which for the two-dimensional 
case is 

0
0
x

y

y x

s
s

s s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

s        (11) 

 
The volumetric integral of the pressure gradient in equation (10) is approximated by the 
Green Gauss theorem 
 

 d
j

j j jp p
Ω
∇ Ω ≈∇ ΔΩ∫ u

u u   ,   (12) 

 
Now, it is important to notice that jp∇  is exactly the same as the pressure gradient required 
by equation (9), since a displacement position j  always coincide with an integration point 
belonging to p

iΓ , as it can be seen in figure (2). Therefore, the methodology chosen to 
evaluate equation (9) can be the same used to compute equation (12). 
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The remaining term to be evaluated in equation (10) is the stress tensor, ipσ , at the integration 

point belonging to jΓu . This is performed using equation (2). The procedure to compute the 

displacement derivatives S∇ u  at the integration points of jΓu  follows the approach presented 
in [9] for computing the velocity derivatives. 
 
One Dimensional Formulation 
 
The corresponding 1D formulation of the methodology just described is now considered. The 
1D formulation simplifies considerably the geometry, but still carries all the ingredients to 
evaluate the ability of the scheme to avoid pressure instabilities.  Therefore, some preliminary 
results of the above formulation using the grid shown in figure (3) are presented. The results 
are compared with the traditional collocated arrangement of variables, as depicted in figure 
(4). It is worth to mention that the grids can be unequally spaced.  
  
 

 

Figure 3 (a) 1D grid, (b) control volume for pressure and (c) control 
volume for displacement. 

 

 

Figure 4: Collocated (coincident) control volumes associated to a 1D grid 
 
1D Staggered Grid Formulation 
 
Integrating equations (3) and (1) over p

iΩ  and jΩu  of figure (3), respectively, results in 
 

( ) ( )1 1
1

p p o
o oi i i i

j j j j
j j

p pk p p
u u u u

M t x x t M t t
α α

µ + +
+

⎛ ⎞ΔΩ ΔΩ∂ ∂− − + − = + −⎜ ⎟⎜ ⎟Δ ∂ ∂ Δ Δ Δ⎝ ⎠
 (13) 

 
( )1 1 0i i i ip pσ σ α− −− − − =        (14) 

 
with the following approximations at the integration points 
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1 1

1 1 1

i i i i

j i i j

p p p pp
x x x x

+ +

+ + +

− −∂ ≈ =
∂ − Δ

       (15) 

1 1

1

i i i i

j i i j

p p p pp
x x x x

− −

−

− −∂ ≈ =
∂ − Δ

       (16) 

( ) ( ) ( )1 1

1

2 2 2j j j j
i

i j j i

u u u uu
G G G

x x x x
σ λ λ λ+ +

+

− −∂= + ≈ + = +
∂ − Δ

   (17) 

( ) ( ) ( )1 1
1

1 1 1

2 2 2j j j j
i

i j j i

u u u uu
G G G

x x x x
σ λ λ λ− −

−
− − −

− −∂= + ≈ + = +
∂ − Δ

  (18) 

 
The set of equations (13) and (14), along with equations (15-18), composes a linear system of 
equations for pressure and displacement that is solved in a simultaneous (monolithic) fashion.  
 
Co-located Formulation 
 
The discretization of the equations for a collocated grid is basically the same as the previous 
case, except that the integration for both variables is performed over the same control volume 

iΩ . In this manner, the resulting equations are 
 

( ) ( )1 1 1 1
2 2 2 2

1 1
2 2

o
o oi i i i

i i i i
i i

p pk p p
u u u u

M t x x t M t t
α α

µ + − + −
+ −

⎛ ⎞ΔΩ ΔΩ∂ ∂− − + − = + −⎜ ⎟⎜ ⎟Δ ∂ ∂ Δ Δ Δ⎝ ⎠
 (19) 

( )1 1 1 1
2 2 2 2

0i i i ip pσ σ α+ − + −− − − =       (20) 

 
The approximations at the integration points still hold 

 

1 1
2 2

1 1

1

i i i i

i i i i

p p p pp
x x x x

+ +

+ + +

− −∂ ≈ =
∂ − Δ

       (21) 

1 1
2 2

1 1

1

i i i i

i i i i

p p p pp
x x x x

− −

− − −

− −∂ ≈ =
∂ − Δ

       (22) 

  
σ

i+ 1
2
≈ λ + 2G( )ui+1 − uj

xi+1 − xi

= λ + 2G( )ui+1 − uj

Δx
i+ 1

2

     (23) 

( ) ( )1
2

1
2

1 1

1

2 2i i i i
i

i i i

u u u u
G G
x x x

σ λ λ− −
−

− −

− −≈ + = +
− Δ

     (24) 

 
It can be seen now that equations (19) and (20) require the evaluation of u  and p at the 
integration points, where they are not available, due to the co-located arrangement. In this 
case, we use a linear interpolation of these variables, thus the following relationships are 
employed 
 

2 1
3 3

1
2

1
2

1i ii i

i
i

x p x p
p

x
++ +

+
+

Δ +Δ
≈

Δ
       (25) 
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2 1
3 3

1
2

1
2

1i ii i

i
i

x p x p
p

x
−− −

−
−

Δ +Δ
≈

Δ
       (26) 

2 1
3 3

1
2

1
2

1i ii i

i
i

x u x u
u

x
++ +

+
+

Δ +Δ
≈

Δ
       (27) 

2 1
3 3

1
2

1
2

1i ii i

i
i

x u x u
u

x
−− −

−
−

Δ +Δ
≈

Δ
       (28) 

in which 2 1
3 2

1ii ix x x++ +Δ = − , 1 1
3 2

ii ix x x+ +Δ = − , 1 1
3 2

ii ix x x− −Δ = −  and 2 1
3 2

1ii ix x x −− −Δ = − . 

 
These two formulations will be used for solving the classical problem of poroelasticity, the 
Terzaghi’s column, shown in Figure 5, with two main goals, to obtain the order of 
approximation of the staggered scheme, and demonstrate that the co-located grid arrangement 
without a stabilizing scheme is unable to damper the pressure oscillations, while the staggered 
arrangement fully mitigate the pressure oscillations without any stabilizing scheme. 
 

 

Figure 5 Geometry and boundary conditions for the one-dimensional  
consolidation problem (Therzaghi’s column). 

 
Numerical Results 
 
As depicted in figure (5), the domain has its bottom boundary fixed and impermeable, and the 
top boundary is fully-permeable ( 0 kPatopp = ) and subjected to a compressive load of 

10 kPatopσ = . The structure is initially not deformed and the initial pore pressure equals to 

zero. The fluid phase properties are: 3998,2 kg mρ = , 31,002 10  Pa.sµ −= ×  and 
4 1c 1,0 10  MPaf

− −= × . The solid phase properties are: 1,732 MPaG = , 2,597 MPaλ = , 

0,3φ = , 1,0α =  and 41,0 10  m sK −= × , where K  represents the hydraulic conductivity. 
 
The numerical solutions are now checked against analytical solutions for validation purposes, 
followed by an analysis of the order of approximation of the staggered scheme, concluding 
demonstrating that the staggered scheme is efficient in damping the pressure oscillations. 
Slightly and highly non-uniform spaced grids are employed. With a fixed time step size of 0,1 
seconds, the pressure and vertical displacement profiles along the vertical direction are plotted 
against the analytical solution for specified time levels.  
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Figure 6  Pressure and displacement fields. Slightly non-uniform grid 

 

Figure 7 Pressure and displacement fields – Highly non-uniform grid 
 
Figures (6) and (7) show the numerical and analytical solutions for the pressure and 
displacement profiles for slightly and highly non-uniform grids, indicating that the solutions 
are not affected by the non-uniformity of the grid.  
 
Convergence Analysis 
 
The assessment of the convergence characteristics of the staggered scheme is performed 
considering two sets of progressively refined grids. The sets have slightly and highly non-
uniform spaced grids randomly generated. For each set of grids, pressure and displacement 
profiles are taken at 500t =  seconds. These profiles are compared with the analytical 
solutions and the Euclidean norm (L2-norm) of the error vector is computed. Four different 
time step sizes are considered: 0,1, 1, 10 and 100 seconds.  
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   (a)              (b) 

Figure 8 Convergence analysis of the staggered scheme for slightly non-
uniform grid. (a)Pressure and (b) displacement. 

   (a)          (b) 

Figure 9 Convergence analysis of the staggered scheme for highly non-
uniform grids. (a) Pressure and (b) displacement. 

 
The behavior of the pressure and displacement error as the grid is refined is presented in 
figures (8) for slightly non-uniform grids. As can be seen, a second order decay of the error is 
obtained for both pressure and displacement. For highly non-uniform grid Figure (9b) shows 
second order of accuracy for displacement, while Figure (9a) suggests that the pressure is 
somehow affected by the grid non-uniformity, but it still can be regarded as a second order 
approximation. 
 
Numerical Instabilities in the Pressure Field 
 
As shown in the previous section, the staggered formulation is second-order accurate for 
pressure and displacement, even for highly non-uniform grids. It is well known that equal-
order approximations for both pressure and displacement can cause numerical instabilities 
during undrained consolidation, where the fluid velocity is nearly zero. In this section, the 
same problem (Terzaghi’s column) is solved with a time step size of 0,1 seconds and the 
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solution taken at 1,0t =  second. In this situation the fluid does not have enough time to move 
as the solid matrix deforms, inducing an undrained consolidation. In fact, pressure instabilities 
are expected for equal-order formulations when the time step size is small enough to violate 
the minimum time step criteria postulated in [12]. This problem is solved with four different 
grids summarized as below 
 

Grid 1 16 nodes Slightly non-
uniform 

Grid 2 16 nodes Highly non-
uniform 

Grid 3 32 nodes Slightly non-
uniform 

Grid 4 32 nodes Highly non-
uniform 

Table 1: Types of grids. 

 
The numerical and analytical profiles are depicted in the figures below. The numerical 
solutions of the pressure and displacement profiles are obtained by both staggered and 
collocated arrangement of variables. Both numerical solutions are compared with the 
analytical one. 
 

 

Figure 10 Pressure and displacement profiles for grid 1 (16 nodes). 
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Figure 11 Pressure and displacement profiles for grid 2 (16 nodes ). 

 

Figure 12 Pressure and displacement profiles for grid 3 (32 nodes). 

 

Figure 13 Pressure and displacement profiles for grid 4 (32 nodes). 
 
As it can be seen in figures (10-13), the collocated formulation shows numerical instabilities 
also for the displacement field, what would be expected, since it directly depends on the 
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pressure gradient. For the grids with 16 nodes, figures (10) and (11) show an unacceptable 
solution obtained by the collocate formulation for the vertical displacement, which 
deteriorates even more with the grid non-uniformity.  For the more refined grids (32 nodes), 
the numerical instabilities of the collocated arrangement concentrate along the upper-middle 
of the domain and they also get worse with the grid non-uniformity. 
 
The staggered formulation, by its turn, despite presenting the same order of approximation for 
both pressure and displacement, does not show numerical instabilities at all. Instead, an 
excellent agreement is verified with the analytical solution. In addition, the staggered 
formulation for randomly spaced grids does not introduce any numerical diffusion, which is a 
common drawback of stabilization techniques commonly employed to equal-order 
formulations. 
 
 
Conclusions 
 
In this work, a two-dimensional finite volume formulation has been presented for modeling 
the coupled fluid flow/geomechanics using staggered arrangement of variables for 
unstructured grids. An equivalent one-dimensional formulation for randomly spaced grids has 
been implemented and tested. The results show an overall second order accuracy for both 
pressure and displacement, even for highly non-uniform grids. Despite this fact, it has been 
shown that the staggered formulation does not present any numerical instability during critical 
situations and does not introduce any numerical diffusion to the solution. If this conclusion 
persists for 2D and 3D cases, and we believe it will since the 1D formulations carries the key 
reasons for the stability, the formulation advanced will generate poroelasticity solutions free 
from spurious oscillations, free from numerical diffusion and keeping second order of 
accuracy for both pressure and displacements, all embodied in a conservative scheme for 
mass, momentum and equilibrium equations. 
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Abstract 

The SPH based two-phase mixture model was improved by taking the soil porosity into account. 

The soil porosity was treated as a spatial variable but not a constant. A servo-control method 

was developed to model the stress boundary condition based on the frictional sliding contact 

algorithm. Then a 2-D consolidation numerical analysis was conducted to validate the ability 

of the SPH based two-phase model to predict the pore water pressure. Comparison with 

previous research proved that the SPH based two-phase mixture could capture the pore water 

pressure satisfactorily. In addition, the servo-control method could model the stress boundary 

condition well. 

 

Keywords: SPH; Porosity; Two-phase mixture; Pore water pressure; Servo-control 

1. Introduction 

 

The well-known Biot-Zienkiewicz consolidation theory has been widely applied to 

consolidation and seepage problems in geotechnical engineering field [1]. Generally speaking, 

the Biot-Zienkiewicz theory focus on the soil deformation or the stationary state. The 

acceleration of the fluid phase is ignored and the soil-water interaction is taken into account 

implicitly. Few attention was paid to the flow process or the interaction between pure water 

region and the mixture. Therefore, the Biot-Zienkiewicz theory was rarely reported on studying 

the fast flows through high permeable porous media such as piping and scouring. By contrast, 

the two-phase mixture theory [2], in which soil and water are assumed to occupy part of the 

macroscopic mixture, is suitable for dealing with these problems. In the two-phase mixture 

theory, the soil and water satisfy their own governing equations and the interaction force is 

composed of pore water pressure and viscous drag force. Hence, not only the soil-water 

interaction within the mixture but also the interaction between the pure fluid region and the 

mixture could be investigated. Detailed theoretically comparison between the mixture theory 

and the Biot-Zienkiewicz theory could be found in Coussy [3].  

 

Although extremely large soil deformation has been encountered when solving the 

abovementioned problems, smoothed particle dynamics (SPH) has been utilized to avoid the 

mesh distortion [4]. Recently, an amount of numerical studies has been reported on problems 

involving fast flow through porous media [5] and large soil deformation using SPH. Typical 

examples include saturated soil excavation by water jet [6, 7] and liquefaction problems [8–10]. 

However, the applicability of the SPH based two-phase mixture model has not been sufficiently 

validated. The most troublesome one is the ability to predict the pore water pressure. Different 

from the Biot-Zienkiewicz theory, in the two-phase mixture theory, the conservation equations 

of fluid phase are solved separately but not combined to the soil phase. The pore water pressure 

is in fact calculated through density variation. In this study, the ability of the SPH based two-

phase mixture to capture the pore water pressure is validated through a classical 2-D 
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consolidation problem. In addition, the original SPH mixture model was improved by 

considering the effect of the porosity. Besides, a servo-control algorithm has been developed to 

model the stress boundary condition. It is proved that the SPH based two-phase model could 

also predict the pore water pressure satisfactorily and the servo-control method could model the 

stress boundary condition well. 

2. SPH background 

 

In SPH, the computation domain is discretized by a finite number of particles, which carry field 

variables and material properties [11–13]. All the field variables and functions are interpolated 

on the particles and governing equations could be solved. The final particle approximation form 

of function and its derivative are given by 

 ( )
1

( ) ( ) ,
N

j

i j

j j

m
f f W h

=

= i j
x x x - x  (1) 

 ( )
1

( ) ( ) ,
N

j

i j j

j j

m
f f W h

=

 = −  i j
x x x - x  (2) 

where i  and j  denote particles; N  is the total number of neighbor particles; m  is mass 

and   is the density; j jm   actually gives the finite volume jV   that originates in the 

infinitesimal volume d x . W is the kernel or smoothing function; h  is the smoothing length 

defining the influence domain of W  . ff the several proposed kernels, we apply here the 

Wendland type [14] for its accuracy and efficiency, 

 ( ) ( ) ( )
4

1 / 2 2 1 ,     0 2,
,

    0,                          2
d

q q q
W q h

q


 − +  
= 


 (3) 

where d  is the normalizing factor, 27 4d h = for 2-D problems; q  is relative distance, 

q h= x - x . 

3. Governing equations and SPH formulations 

 

The two-phase mixture theory is based on the assumption that each constitute occupies part of 

the macroscopic mixture [2]. The mass conservations are given in the following Lagrangian 

forms 

 ( )
d

,    1
d

s

s s s sn
t


  = −   = −v  (4) 

 
d

,    
d

f

f f f fn
t


  = −  =v  (5) 

 

where n  is the soil porosity; s  is the particle density of soil and f  is the intrinsic density 

of the water; s  and f  are the apparent density of soil and water, respectively; sv  and fv

are the spatially averaged velocity of soil and water, respectively. Assuming that the particle 

density of soil keeps unchanged, the governing equation for the soil porosity could be obtained 

by 

 ( )
d

1
d

s

n
n

t
= −  v  (6) 

 

It could be seen from equation (6) that the soil porosity was treated as a spatial and temporal 

field variable but not a constant. Hence, the effect of soil porosity on the mixture behavior could 
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be considered. In contrast, the soil porosity was either neglected or treated as a constant in 

previous studies, which was not in accord with the reality. 

The conservation equation of momentum are given as 

 ( )
d

1
d

s

s f d sn p
t

 =   − −  + +
v

σ f g  (7) 

 ( ) ( )
d

d

f

f f f f d fnp p n n
t

 = − +  + − +
v

τ f g  (8) 

 
( )2

f f s

d

n g

k

 −
=

v v
f  (9) 

 ( )1 f fn p n= − − +σ σ I σ  (10) 

  f f fp= − +σ I τ  (11) 

 

where σ  is the total stress tensor decomposed based on the Terzaghi’s concept of effect stress. 
σ  is the effective stress relating to the strain rate in the constitutive model for soil. 

fp  and 

fτ  are the pore water pressure and shear stress of water, respectively. g  is the gravity 

acceleration. df  is the viscous drag force calculated by Darcy’s law. k  is the hydraulic 

conductivity.  

 

By applying the particle approximation formulation, equation (5)-(9) could be rewritten in the 

following SPH form, 
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where i , j  denote soil particles and a , b  denote water particles. ab a b= −v v v , 
ji j i= −v v v . 

The second term on the right side of equation (12) is added to avoid density fluctuation and to 

obtain accurate pore water pressure, which is based on the SPH −  method [15]. 

( )
2

2 ab

ab a b

ab

  = −
x

x
. 

f  is a constant normally set to 0.1, 
fc  is the sound speed of water. 

ij  

and ab  are Monaghan-type artificial viscosity [16] used to remove unphysical penetration, 

defined as 
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ab  could be obtained by simply replace i , j  with a , b .  and   are respectively set to 

0.1 and 1.0 for soil, while for water take values of 0.01 and 1.0. 

 

In this research, serious tensile instability was observed in low permeable soil. The artificial 

pressure method proposed by Monaghan [17] has been adopted throughout this study, i.e. the 

term ( )ab a bf R R + . 
abf  is the repulsive term and specified by 

( ),

ab

ab

W
f

W d h
=


 . d  denotes the 

initial particle spacing,   is usually taken as ( ) ( )0, ,W h W d h . For Wendland kernel, n  has 

the value about 3.24 with h  equals to 1.2 d . The factor aR  and bR  are determined in terms 

of pressure, 

 2
,     if  0

   0,         otherwise

a
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a a

p
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 (20) 

 

where  is a small constant and typically taken as 0.2; bR  is calculated analogously. 

 

To close the above equations, constitutive models are needed to determine σ , 
fp , 

fτ . In 

order to keep consistent with the results to be compared in Boer et al. [18] and Breuer [19] , an 

elastic constitutive relationship is adopted. The water is considered as weakly compressible 

Newtonian fluid. The final SPH discretized constitutive model for soil and water are given as 

follows. 

 

For soil, 

  2i i i iGe K      = +  (21) 
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For water, 
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where   and   denote the Cartesian components x , y , or z .   is the Kronecker delta 

symbol. G  is the shear modulus and K  is the bulk modulus, respectively given by 

( )2 1

E
G


=

+
, 

( )3 1 2

E
K


=

−
. E  is Young’s modulus and   is the Poisson’s ratio. 

ie   is the 

deviatoric strain rate tensor, 1

3i i ie      = − . B  is a problem dependent parameter that sets 
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a limit to maximum density variation.   is a constant normally set to 7. 0f  is the reference 

intrinsic density of water.   is the dynamic viscosity of water. 

4. Boundary contact and servo-control method 

Boundary deficiency is an inherent drawback of SPH. For particles moving near or on the 

boundary, the support domain is incomplete and the calculated acceleration is not accurate. 

Several attempts have been tried in previous studies. The boundaries of rigid have been modeled 

using a) ghost particles, b) fluid particles, c) normalizing conditions, d) boundary particle force 

and e) particle-to-particle or particle-to-surface contact based on momentum equations [13] . 

Regrettably, the above methods can only be applied to completely smooth or rough boundary 

conditions. Here we adopt the frictional sliding contact algorithm proposed by Wang et al [20, 

21] to simulate the contact between the mixture and boundary. The final form of the contact 

force is given by 

 ( )
( )

( )02

2
1 i

n

m
d

t


 
= − +  

  

F G n n  (26) 

 
,     if 

,        otherwise

n

n 

 







  

= 
 

F
F F F

F F

F

 (27) 

 
( )

( )
2

2 im

t

 =  − 


F u u n  (28) 

 

where nF  , F   are the normal, tangent component of the contact force, respectively.   

defines the extent of penetration allowed and was taken as 0.01-0.1.    is the frictional 

coefficient. G  is the vector from the particle to its perpendicular foot on the boundary. n  is 

the outward normal vector of the contact surface.  

 

Different from the single phase or quasi-single phase theory, stress boundary condition can not 

be applied to the mixture. It is because that the portion of the external load carried by each 

phase is uncertain. As shown in Fig.1, a novel method base on the above contact algorithm is 

developed here to simulate the stress boundary. 

rigid boundary

soil particle

water particle

 

Fig.1 Schematic diagram of servo-control method 

 

The rigid boundary is assigned velocity along the outward normal vector through 

 ( )
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where g  is the target stress, m  is the measured contact stress in the present time step; im  

and am  represent the mass of soil and water, respectively. sN  and fN  are respectively the 

total number of soil and water particles contacting with the rigid. csA is the contact area. cs is 

a scaling factor used to weaken the oscillation, taken as 0.01. iF   and aF   are calculated 

through equation (26). 

5. 2-D consolidation modelling and analysis 

 

A 2-D consolidation problem was simulated to validate the two-phase mixture SPH model and 

the servo-control algorithm. Boer et al. [18] and Breuer [19] studied the same problem by FEM. 

The parameters used here were taken the same for comparison. The geometry of the model is 

shown in Fig.2. The soil-water mixture was 20.0 m long and 10.0 m wide, with 15 KPa  

uniformly distributed load at the top. The left, right and the bottom were fixed and undrained, 

whereas the top was drained. The soil parameters are: 5583 KPas =  , 8375 KPas =  , 
32000 kg/ms =  ,  =0.33n  , 0.2 =  , 0.01 m/sk =  . The water parameters are: 

31000 kg/mf =  ,

97.5 m/sfc = . 

q=15KPa

1
0

.0
 m

20.0 m

draineddrained

undrained
fixed

 

Fig.2 Geometry of the 2-D consolidation model 

 

The initial SPH model is shown in Fig.3. Totally 800 particles were used with initial resolution 

0.5 md = . The left, right and bottom were all modeled as non-slip using ghost particles. The 

velocity of the rigid boundary at the top was assigned velocity through equation (29) to model 

the stress boundary condition. Soil and water particles were initially superimposed and then 

moved separately according to their own governing equations. 

 

Fig.3 Initial SPH model of the 2-D consolidation problem 
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The evaluation of the excess pore water pressure at different intervals of time is shown in Fig.4. 

FEM results by Breuer [19] are also included for comparison (on the left, in KPa). It is shown 

that the excess pore water pressure predicted by SPH corresponds to FEM results well. In the 

beginning, i.e. t = 0.01 s , the excess pore water pressure increased to around 14000 Pa quickly. 

The reason is that the deformation of soil lagged behind the water. Accordingly, the whole 

external load was mainly carried by the water. With the passage of time, the pore water flew 

out of the void and the soil skeleton carried more and more external load. As the result, the 

excess pore water pressure decreased gradually. After 10 s the excess pore water pressure was 

about zero. 

 

It was proved that the excess pore water pressure could be captured satisfactorily by means of 

the proposed method. Besides, the servo-control algorithm method could be used to simulate 

the stress boundary condition. 

 

 
              (a) 0.5 st =                                          (b) 2 st =  

 
               (c) 8 st =                                          (d) 10 st =  

Fig 4 Comparison of excess pore water pressure between FEM (left: in KPa) and SPH 

(right: in Pa) at different intervals of time 

6. Conclusions 

 

The SPH based two-phase mixture model has been recently applied to geotechnical problems 

involving fast flow through porous media and large soil deformation. However, the 

applicability of the SPH based two-phase mixture model to the evaluation of pore water 

pressure has not been validated. 

 

In this study, the SPH based two-phase mixture model was first improved by taking the soil 

porosity into account. The soil porosity was treated as a spatial variable but not a constant and 

was interpolated and integrated at all particles. Soil and water particles were superimposed and 

then moved separately according to their own governing equations. The interaction force of the 

two phases was composed of pore water pressure and viscous drag force. Tensile instability 

was properly handled by using the Monaghan’s artificial pressure method. Then a servo-control 

method was proposed based on the frictional sliding contact algorithm in order to model the 

stress boundary condition. Finally, a 2-D consolidation numerical test was conducted and 
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compared to previous research. It was proved that the SPH based two-phase mixture model 

could satisfactorily predict the pore water pressure. Besides, the servo-control method could 

model the stress boundary condition well. 

Acknowledgement 

This research is supported by the National Natural Science Foundation of China (Grant Nos. 

51678360, 41727802 and 51779084). 

References 

[1]  Biot MA (1956) Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐

Frequency Range. J Acoust Soc Am 28:168–178 .  

[2]  Drew DA (1983) Mathematical Modeling of Two-Phase Flow. Annu Rev Fluid Mech 15:261–291 

[3]  Coussy f, Dormieux L, Detournay E (1998) From mixture theory to biot’s approach for porous media. 

Int J Solids Struct 35:4619–4635 . 

[4]  Wu H, Wang J, Wang JH, Liao CC (2017) Asymmetric Adaptive Particle Refinement in SPH and Its 

Application in Soil Cutting Problems. Int J Comput Methods 1850052 

[5]  Peng C, Xu G, Wu W, et al (2017) Multiphase SPH modeling of free surface flow in porous media with 

variable porosity. Comput Geotech 81:239–248 .  

[6]  Bui HH, Sako K, Fukagawa R (2007) Numerical simulation of soil-water interaction using smoothed 

particle hydrodynamics (SPH) method. J Terramechanics 44:339–346 .  

[7]  Wang C, Wang Y, Peng C, Meng X (2016) Smoothed Particle Hydrodynamics Simulation of Water-Soil 

Mixture Flows. J Hydraul Eng 142:4016032 . doi: 10.1061/(ASCE)HY.1943-7900.0001163 

[8]  Huang Y, Zhang W, Dai Z, Xu Q (2013) Numerical simulation of flow processes in liquefied soils using 

a soil–water-coupled smoothed particle hydrodynamics method. Nat Hazards 69:809–827 . 

[9]  Maeda K, Sakai H, Sakai M (2006) Development of Seepage Failure Analysis Method of Ground With 

Smoothed Particle Hydrodynamics. Struct Eng / Earthq Eng 23:307s–319s .  

[10]  Nakamura K, Satomi T, Takahashi H (2014) Improved Model for Soil as a Two-Phase Mixture Based on 

Smoothed Particle Hydrodynamics ( SPH ). 1053–1060 

[11]  Liu MB, Liu GR, Zong Z (2008) An overview of smoothed particle hydrodynamics. 1:135–188 

[12]  Liu MB, Shao J, Chang J (2012) On the treatment of solid boundary in smoothed particle 

hydrodynamics. Sci China Technol Sci 55:244–254 .  

[13]  Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries. Comput Phys 

Commun 180:1811–1820 . 

[14]  Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of 

minimal degree. Adv Comput Math 4:389–396 .  

[15]  Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH 

schemes with numerical diffusive terms. Comput Phys Commun 181:532–549 .  

[16]  Monaghan JJ (1995) SPH simulation of multi- phase flow. Comput Phys Commun 87:1–2 

[17]  Monaghan JJ (2000) SPH without a Tensile Instability. J Comput Phys 159:290–311 .  

[18]  Boer R, Ehlers W, Liu Z (1993) One-dimensional transient wave propagation in fluid-saturated 

incompressible porous media. Arch Appl Mech 63:59–72 . doi: 10.1007/BF00787910 

[19]  Breuer S (1999) Quasi-Static and Dynamic Behavior of Saturated Porous Media with Incompressible 

Constituents. Transp Porous Media 34:285–303 .  

[20]  Wang J, Wu H, Gu C, Hua H (2013) Simulating frictional contact in smoothed particle hydrodynamics. 

Sci China Technol Sci 56:1779–1789 .  

[21]  Wang J, Chan D (2014) Frictional contact algorithms in SPH for the simulation of soil-structure 

interaction. Int J Numer Anal Methods Geomech 38:747–770 . 

ICCM2018, 6th-10th August 2018, Rome, Italy

393



CFD simulation of chemical gas dispersion under atmospheric boundary 

conditions  

 
†*George XU¹, Arthur LIM1, Harish GOPALAN1, Jing LOU1 and Hee Joo POH1 

1Fluid Dynamics Department, Institute of High Performance Computing, A*STAR, Singapore. 

*Presenting author: xu_xiangguo@ihpc.a-star.edu.sg  

†Corresponding author: xu_xiangguo@ihpc.a-star.edu.sg 

Abstract 

Pollutant control is one of the key concerns in the design of buildings, for the sake of 

occupational health, safety and environment sustainability. In particular, risk analyses related 

to emergency leakage of chemicals from storage tanks or chemical processes have aroused 

increasing attentions in recent days, as well as the effectiveness of mitigation measures in 

order to eliminate, reduce and control the risks. In this paper, a CFD methodology with non-

reactive chemical gases treated as passive scalars has been developed to simulate the gas 

dispersion across urban environments, subject to atmospheric wind conditions. Special 

treatments to maintain the consistency in atmospheric flow profiles, turbulence modeling and 

boundary conditions have also been accounted for. The developed model for gas dispersion 

has been implemented in the open source CFD code - OpenFOAM. The proposed 

methodology has been validated by modeling the gas dispersions for two urban-related test 

cases: the street canyon measured in a laboratory wind tunnel and the Mock Urban Setup Test 

(MUST) field experiment conducted in the desert area of Utah State. Effects of turbulent 

Schmidt number have been primarily addressed in this study. Statistical analyses about the 

discrepancies between predicted and experimental data have been carried out to quantity the 

accuracy of the proposed methodology. Simulations results from passive scalar transport 

equation demonstrate good agreement with experimental data, though tracer gases heavier 

than the atmospheric air were used in the both measurements.  Furthermore, sensitivity tests 

also indicate that the accuracy of the simulation results is sensitive to the value of turbulent 

Schmidt number.  

Keywords: CFD, gas dispersion, OpenFOAM, urban environment modeling 

Introduction 

In the design of residential, commercial, industrial or infra-structure buildings, pollutant 

control has become an important design feature to be addressed for the sake of occupational 

health, safety and environmental sustainability. The same concern has been extended for 

chemical plant design where emergency leakage of chemicals from storage tanks or chemical 

processes may take place. Risk analysis related to such emergency cases should be carefully 

investigated during the planning and design stages, and then effective mitigation measures 

should be proposed and evaluated to eliminate, reduce and control the risks. All these 

concerns are related to modeling of the gas dispersions.  

Chemical gas dispersion in space is conventionally evaluated using empirical methods, such 

as Gaussian plume modeling [1]. Such empirical methods are very efficient, usually with the 

consideration of dynamic changes in atmospheric wind conditions. They have been widely 

adopted to study the impacts of plumes out of chimneys or vent shafts upon the environment 

within a large space. However, the obstructions due to buildings is one of the drawbacks, in 

particular near the ground area, cannot be accurately resolved with these methods. Recently, 

due to the rapid advance in computers, computational fluid dynamics (CFD) method has 
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become more attractive in assessing the environmental pollution, because its higher accuracy 

and richer field information. Comparatively, CFD method can be used to accurately predict 

the pollutant dispersion due to the obstructions of buildings, thus it is more suitable tool to 

simulate the pollutant dispersion in an urban environment that is highly occupied by high-

density of buildings.  

Multi-species modeling and passive scalar modeling are the two CFD methods that are 

usually adopted to simulate gas dispersions. The former can result in high-accuracy 

prediction, due to the well consideration of most physics relevant. However, it depends on the 

accuracy and full set of thermodynamic properties of chemical species. Besides, it is very 

time consuming in simulation. Comparatively, the passive scalar modeling is much more cost 

effective and less demand in input parameters, which is suitable for quick solutions for 

engineering problems.  

As a part of the objectives for a government-funded project, a passive scalar modeling 

methodology for non-reactive chemical gases dispersion across urban environments has been 

developed, subject to atmospheric boundary conditions. The main objective in this study is to 

characterize the accuracy of passive scalar modeling methodology, when it is applied to 

simulate chemical gases dispersed in urban environments. Research efforts are limited to the 

development of efficient solver for dilute dispersion of chemical gases in spaces relatively 

away from the leakage site. In the proposed methodology, the leaked gas is represented by 

well-mixed volumetric clouds and the transport equation for passive scalar is adopted to trace 

the concentration of chemical gases. Special treatments to maintain the consistency in 

atmospheric flow profiles, turbulence modeling and boundary conditions have also been 

accounted for. All the development work has been implemented in OpenFOAM [2] – an open 

source CFD code.  

In this paper, the proposed CFD methodology is to be first introduced briefly, followed by the 

in-depth discussion about the simulation results for two testing cases. Some remarks upon the 

proposed CFD methodology for gas dispersion modeling are finally summarized in the 

conclusion section. 

CFD Methodology 

In this study, steady-state incompressible flows under isothermal conditions are primarily 

focused. In addition to the continuity and momentum equations, the passive scalar transport 

equation has been chosen to model the concentration changes. The two-equation k- models 

are adopted to address the turbulence effects.   

The governing equation for passive scalar transportation takes the following form: 

( ) ( / )) [( ] cc t tc c S c SD
t

c


   


u                                      (1) 

where c, u and t denote the concentration of pollutant, air velocity and time, respectively; Dc 

and t  represent the molecular diffusivity of pollutant of concern and the turbulence 

kinematic viscosity; Sc is the source term; and tSc denote the turbulence Schmidt number.  

In the proposed method, the chemical gas released from leakage region is modeled with the 

source term, Sc. Linearization of the source term, as proposed by Patankar [3] has been 

adopted during the solution procedure for the sake of improved numerical stability.  

Second-order discretization schemes have been adopted to approximate the partial differential 

terms in governing equations. The resultant algebraic equations are solved with the well-

known SIMPLE solution procedure. 
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Results and Discussion 

The accuracy of the proposed methodology has been demonstrated with the solutions to two 

test cases: gas dispersions across street canyon in a laboratory scale and gas dispersion around 

a mock up setting test (MUST) under a realistic atmospheric scale. Details about the flow 

behaviors will be discussed in the following section.  

Test Case 1: Street Canyon  

The first test case is based on the wind tunnel test for a street canyon configuration that was 

designed and measured by the Laboratory of Building and Environmental Aerodynamics at 

the Institute for Hydromechanics (IfH) in the University of Karlsruhe, Germany [4]. As 

shown in Figure 1, the computational domain consists of two parallel buildings which form 

the street canyon of concern. Four sub cell zones on the street are chosen to represent the line 

sources for tracer gas (SF6), emulating the chemicals emitted from traffic vehicles. The total 

release rate is 10g/s. Compliant with the test conditions, the power-law wind profile is 

adopted to represent the incoming wind perpendicular to the street.  

Consistent with the measured data, the normalized concentration of tracer gas is calculated as  

/

Hcu H
c

Q l

                                                                   (2) 

where uH is the reference velocity at the building height, H; Q and l denote the gas release rate 

and the length of the line sources, respectively. It should be noted that the values of c+ 

measured on the leeward and windward surfaces are available for validation.  

 

 

 

 
Figure 1. Computational domain and grid. Figure 2. Airflow across the street canyon 

and contours of gas concentration on wall 

surfaces. 
 

 As shown in Figure 2, the incoming atmospheric wind, perpendicular to the street canyon, 

induces the recirculated air flow across the canyon, similar to the lid-driven cavity flow. The 

pollutant released from the sources on the ground turns to follow the airflow travel in space. 

The downward movement of the airflow along the windward surface turns to clear the 

pollutant from the respective surface. On the other hand, the recirculated air eventually carry 

the pollutant to travel towards the opposite building. It results in the higher concentration of 

the pollutant gas on the leeward surface.  

The predicted gas concentration on the leeward and windward surfaces are presented in 

Figures 3 and 4, where the measured values are also included for comparison. It is apparent 

that good agreement between the numerical results and the measured values is achieved.   
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(a) Measurement (a) Measurement 

  
(b) CFD (b) CFD 

Figure 3. Contours of c+ on the leeward 

surface of the street canyon. 

Figure 4. Contours of c+ on the 

windward surface of the street 

canyon. 
 

Sensitivity studies about different forms of k- models, i.e. standard, realizable and RNG k- 

models, have been investigated for the street canyon test case. It is found that standard k- 

model yields the most accurate prediction. Besides, subject to the standard k- turbulence 

model, additional studies about the impact of Sct value have also been performed.  

Statistical analyses [5] about the predicted and measured values of c+ on the two building 

surfaces of concern have been conducted. Fractional Bias (FB), Normalized Mean Square 

Error (NMSE) and Fraction of Predictions within a factor of two of the observations (FAC2) 

are selected to quantify the accuracy of the proposed CFD model. As summarized in Table 1, 

all the values for Sct that have been tested produce reasonable results. In addition, the most 

agreeable prediction with the measurement can be obtained when Sct = 0.3.  

 

Table 1. Impacts of Sct on the gas dispersion. 

Name Definition Model 

Perfects 

Acceptable 

Model 

Sct 

0.7 0.3 0.2 

FB 
0 02 ( ) / ( )p pC C C C     0 -0.3<FB<0.3 -0.39 -0.02 0.17 

NMSE 2

0 0( ) / ( )p pC C C C   0 NMSE<4 0.06 0.09 0.11 

FAC2 
0 / pC C  1 FAC2>0.5 1.49 1.02 0.84 

 

Test Case 2: MUST 

The second case that has been simulated correspond to the airflow across the array of 

containers geometry of the Mock Urban Setting Test (MUST) field experiment. In the field 

test, 12 by 10 array of containers (each 12.2m long, 2.42m wide and 2.54m high) were 

deployed in desert of western Utah to mimic the urban environment. Details about the 

experimental studies are clearly addressed in DPG Document No. WDTC-FR-01-121 [6].  

Test Scenario #2681829, as studied by Bekka et. al. [7], is chosen to be simulated with the 

proposed methodology. In the MUST field test, Propylene (CH2CHCH3) was used as tracer 

gas and released at different locations of concern. In the test scenario simulated here, the 

release rate of propylene is 225 l/min. Concentration of the released gas at 48 locations, as 

indicated by elliptic dots in Figure 5, are monitored and compared with the measured values.  

It should be noted that 40 receptors are located at 1.8m height and additional eight receptors 

are installed at various vertical heights on the tower located at the centre of the test field.  

The neutral-state log-law wind and turbulence profiles, consistent with the atmospheric 

boundary conditions during the measurement, are implemented as the inflow conditions. To 

maintain the horizontal homogeneity, as recommended by Blocken [8], changes have been 
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made to the constants for k- turbulence model and wall functions and care has been taken in 

the grid generation in particular for the first-layer of grid on the ground.  A total of 9.6-million 

hexa-dominated elements have been generated and used in simulations.   

 

 
Figure 5. MUST site and locations of receptors for Test Scenario #2681829. 

 (Courtesy to Bekka et. al. [7] for the reuse of their image).   

 

Sensitivity tests about the impacts of Sct have been carried out. As summarized in Table 2, 

predicted results show poor agreement with measured data when Sct takes the smaller value, 

and the most accurate prediction can be achieved when Sct becomes as high as 0.9. Thus most 

of simulations subsequently conducted are based on Sct = 0.9. 

Table 2. Impacts of Sct on the gas dispersion. 

Name Definition  Model 

Perfects 

Acceptable 

Model 

Sct 
0.3 0.7 0.9 

FB 
0 02 ( ) / ( )p pC C C C     0 -0.3<FB<0.3 0.60 0.23 0.15 

NMSE 2

0 0( ) / ( )p pC C C C   0 NMSE<4 0.87 0.60 0.73 

FAC2 
0 / pC C  1 FAC2>0.5 1.85 1.26 1.16 

 

It is interesting to find that the without atmospheric boundary layer (ABL) correction as 

proposed by Blocken et. al. [5], predicted gas concentration show better agreement with 

experimental results, as shown in Figure 6(a). Besides, the simulated results, subject to ABL 

correction, seem insensitive to the relationship between sand grain roughness and the height 

of first-layer ground elements. All these findings are not consistent with the ABL treatment 

techniques [8]. Details for the reasons behind will be further investigated in future.  

Sensitivity studies about the variation in wind direction for the test scenario have been 

conducted. As indicated in the measurement report [6], for the test scenario of concern here, 

the change in wind direction is 9.5. Two additional simulations have been carried out 

according to the two extreme wind directions. As shown in Figure 6 (b), it is manifest that the 

predicted concentrations are sensitive to the change in the wind direction. Better agreement 

with measured data can be obtained when  = (-41+9.5). Such sensitivity studies demonstrate 

the complexity in the uncertainties qualification of prediction models, when the real-life 

measurement data are used for validation.      
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(a) Effect of ABL correction (b) Effect of wind direction 

Figure 6. Comparison of predicted gas concentration with measured at various 

locations. 

Conclusions 

A CFD approach for gas dispersion modeling in urban-alike environment has been proposed, 

subject to atmospheric boundary layer conditions. The chemical gas is represented by passive 

scalar and the impact of the species transport upon the airflow is neglected.  

Numerical tests for two different scales of urban-alike test cases show that the simulation 

results are agreeable well with the measured data, though tracer gases heavier than air were 

used in measurement. Sensitivity tests about Sct yield different optimal values for the two test 

cases. This implies that care should be taken in the choice of Sct value when Reynolds-

averaged turbulence models are adopted to study the gas dispersion.   

Subsequent research efforts will be put further to address the heavy gas dispersion using 

multi-species modeling methodology. 
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Abstract 

The paper deals with derivation of 2D formulation as well as numerical implementation and 

study of coupling effects in elastic functionally graded material (FGM) plates within the theory 

of stationary thermo-elasticity. Unified formulation is developed with involving the 

assumptions used in the classical Kirchhoff-Love theory for bending of thin elastic plates as 

well as the assumptions used in the shear deformation plate theory of the 1st and 3rd order. The 

governing equations and the boundary conditions for deformations are derived from the 

variational principle, while the formulation for thermal problem is derived by averaging the 3D 

heat conduction formulation with respect to the transversal direction. The strong formulation 

and meshless approximation are developed for the derived formulation. The coupling effects 

are studied by numerical simulations in FGM plates with possible variable thickness and subject 

to three kinds of stationary loading: (i) uniform transversal loading; (ii) simple tension in plane 

of the plate; (iii) prescribed different temperatures on the bottom and top surfaces of the plate.   

Keywords: Stationary thermo-elasticity, continuous inhomogeneity, plate bending, 2D 

formulation, coupling effects, numerical study 

 

Introduction 

Plate structures are attracting attention of engineers, designer and researchers for a long time 

because of their superior properties and new features appearing with development of new 

materials. Due to the small aspect ratio of thickness to in-plane dimensions, in the plate theories 

the 3D formulation of elasticity problem is assumed in semi-integral form with integration 

across the plate thickness, and resulting into simplified 2D problems. In stationary thermo-

elasticity [1], the temperature field is independent of elastic fields, though it is not valid in 

reverse. Thus, the thermal problem can be solved separately in advance and one can utilize the 

obtained temperature field in evaluation of the semi-integral fields occurring in the governing 

equations for bending problem. For this purpose, it is necessary to replace the Hooke law by 

the Duhamel-Neumann constitutive law known from the theory of thermo-elasticity [1]. In 

general, however, we don’t know the temperature field in terms of integrable functions and the 

2D formulation for bending of plates with including thermal effects cannot be derived in closed 

form. Therefore the development of 2D formulation for thermal problems in plates is desired.  

Functional gradation of material coefficients and/or variable thickness of the plate represent 

another reason why the correct formulation for plate problems must be derived for FGM plates 

by performing the integration with respect to the transversal coordinate in the variational 

formulation of the original 3D thermo-elasticity problem. The FGM composites [11-15] have 

significant utilization in design of structural elements not only because of superior properties 

of micro-constituents but also for elimination of interface discontinuities occurring in laminated 

composite structures [16]. The most frequently used modeling of functional variation of 

material coefficients is the rule of mixture where the material coefficients of multiphase 

ICCM2018, 6th-10th August 2018, Rome, Italy

400

mailto:vladimir.sladek@savba.sk


materials are related directly to the volume fractions and individual coefficients of the 

constituents. Besides several rather simple models for spatial gradation of volume fractions by 

analytical functions, there have been developed also more sophisticated models (see e.g. [17-

19]) for spatial distribution of volume fractions with including some microstructural aspects of 

constituents of micro/nano-composites. In this paper, we confine to simple power-law 

gradations of material coefficients in two-constituent composites, in order to demonstrate some 

new coupling effects due to gradation of material coefficients and/or plate thickness.    

In the most simplified theory, the Kirchhoff-Love theory (KLT), the shear deformations are 

omitted. There have been developed also generalized shear deformation theories including the 

1st order shear deformation theory (FSDPT) [16, 20] and higher order shear deformation 

theories (HSDPT) [16, 20-23], which account for transverse shear strains and stresses in 

contrast to the KLT. In this paper, starting from the principle of virtual work and assuming the 

power-law gradation in the transversal direction, the dependence of all elasticity fields on the 

transversal coordinate is known a priori and the integrations along the direction of gradation 

can be accomplished analytically in closed form. Thus, the original 3D problems is converted 

to 2D problem with correctly derived governing equations and boundary conditions. In 

stationary thermoelasticity, the temperature field is not influenced by the elasticity fields and 

the thermal problem can be solved separately. In order to get the 2D formulation also for thermal 

problem in plates, we consider the power series expansion of the temperature field with respect 

the transversal coordinate up to the 2nd power, which is physically meaningful as long as the 

plate thickness is significantly smaller than its characteristic length in the mid-plane of the plate. 

Having known the dependence of thermal fields on the transversal coordinate, we can consider 

the 3D heat conduction equation in the averaged sense. This 2D governing equation together 

with the boundary conditions on the bottom and top surfaces of the plate play the role of 

governing equations for primary thermal fields. The complete 2D formulation for plate bending 

in stationary thermo-elasticity is discretized by using the meshless Moving Least Square 

approximation (MLS) [5-8] for spatial variations of all 2D field variables. Since the governing 

equations are represented by the partial differential equations (PDE) with variable coefficients 

and the accuracy of approximation of derivatives is decreasing with increasing their order, we 

decomposed the original PDE of the 4th order into the system of PDE with 2nd order derivatives 

by introducing new field variables, in order to eliminate high order derivatives. To facilitate the 

numerical solution as much as possible for the considered system of the PDE with variable 

coefficient, we propose to use strong formulation, which is free of any integrations and reduces 

the amount of evaluations of shape functions, since the evaluations are localized to nodal points.  

The numerical simulations are employed for study of coupling effects in FGM plates with 

possible variable thickness and subject to three kinds of stationary loading: (i) uniform 

transversal loading; (ii) simple tension in plane of the plate; (iii) prescribed different 

temperatures on the bottom and top surfaces of the plate.    

2D formulation of bending problems for FGM plates in stationary thermo-elasticity 

It is well known that in stationary thermo-elasticity [1], the temperature field is not affected by 

mechanical fields, while in linear theory the thermal strains are proportional to the deviation of 

temperature from its value at the reference state  0( , )kl kle z     x , with   being the linear 

thermal expansion coefficient. Therefore the thermal problem can be solved separately in 

advance and subsequently the elasticity problem can be solved with bearing in mind thermal 

strains known from the solution of thermal problem. Evidently, the thermo-elasticity problem 

is reduced to a pure elasticity problem, if either the temperature is kept on the reference 0  

value or 0  .  
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It is well known that the original 3D elasticity problem for plate structures can be reduced to 

2D problem because of significantly smaller thickness than the other in-plane length 

dimensions. According to assumptions adopted for deformation of plates, several theories have 

been developed for bending of elastic plates. Among the most frequently applied theories to 

bending of elastic plates, one can name the Kirchhoff-Love theory for bending of thin elastic 

plates (KLT), and the shear deformation theories of the 1st and 3rd order (FSDPT, TSDPT). 

Recall that a unified formulation can be developed for bending of elastic plates with possibility 

to switch between three above mentioned theories by selecting proper values for two key factors 

[2],[3]. Without going into details, we outline the derivation of the unified formulation for 

bending of FGM plates within stationary thermo-elasticity. The three components of 

displacements 3( , )iv xx  can be expressed in terms of the in-plane displacements ( )u x , 

transversal displacements (deflections) ( )w x  and rotations of the normal to the mid-surface 

( ) x as 

  3 1 3 3 , 1 3 3( , , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )i i iv x t u t c x x w t c x t w t           x x x x x                              (1) 

where 3 3 2 3( ) : ( )x x c x   , 
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characteristic length in the mid-surface   as L , the expression (1) is based on the assumption 

/ 1h L . Taking into account the thermal strains and the total strains  , , / 2ij i j j ie v v   

together with Hooke’s law, one can write the stress tensor components as 
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are strain contributions corresponding to in-plane displacements, rotations, deflections, and 

temperature, respectively. Furthermore, E and   stand for the Young modulus and Poisson 

ratio, while  

1 , plane stress problems
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The Young modulus and linear thermal expansion coefficient are allowed to be continuous 

functions of position with assuming the power-law gradation in the transversal direction as 
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which result from utilization of rule of mixture for two-constituent micro-composite and the 

power-law gradation of volume fractions in the transversal direction. Moreover, the thickness 

of the plate is allowed to be variable on the in-plane coordinates, ( )h x .  

 

Since the dependence of mechanical fields on 3x  is known a priori, the pure elasticity 3D 

problem can be converted to 2D problem. In order to extend such a possibility to thermo-elastic 

problems, we should know also the dependence of temperature on the transversal coordinate 

prior to solving the 3D thermal boundary value problem. In thin structures ( / 1h L ), it is 

physically reasonable to simulate the distribution of the temperature field by using the power 

series expansion   

2
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in which the new fields ( )s x for ( 0,1,2s  ), are variable in the plate mid-plane. In view of (3) 
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Now, the variational formulation of the mechanical part of the original 3D thermoelacticity 

problem is given by the principle of virtual work 
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in which the work of external forces is represented by the transversal loading 3( )t x applied on 

the top/bottom surfaces, and ( )t x are in-plane tractions applied on the lateral surfaces of the 

plate. The integration with respect to 3x can be performed analytically and we obtain the 2D 

formulation given by governing equations at x : 
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where  
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is the generalized shear force and the following semi-integral fields have been introduced by 

the definitions 
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where the shear correction factor   has been introduced as the Reissner modification of the 

shear stresses in order to be predicted a correct amount of energy in the case of the FSDPT (

1 21 0c c   ). Furthermore, the twisting moment has been introduced as 

 ( )( ) ( ) : ( ) ( ) ( )
wwT t n M  x x x x                                                                                                  (11)  

and the jump at a corner point on the oriented boundary edge  is defined as 

( ) : ( 0) ( 0)c c cA A A   x x x .  

The explicit expressions for semi-integral fields are given in Appendix, since the integrations 

prescribed in (10) can be performed in closed form. Substituting (A.2) into (8) and (9), one 

obtains the governing equations and the possible boundary conditions in terms of primary fields 

and their derivatives.  

Up to now, we have supposed that the temperature is known from the solution of stationary 

thermal problem. Now, we need to derive the governing equations and boundary conditions for 

particular fields ( )s x defined in Eq. (5) with starting from the 3D formulation, where the heat 

conduction equation is given by the PDE 

 3 , 3 ,
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in which k is the heat conduction coefficient, which is prescribed by continuous functions in 
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Substituting (5) into (12), we obtain the PDE, which is still dependent on the transversal 
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In order to get the pure 2D formulation, we can consider Eq. (14) in averaged sense over the 

plate thickness, which is physically meaningful as long as / 1L h . Performing the integration 

of Eq. (14) over the plate thickness, we obtain the averaged heat conduction equation 

2 2 2( )( ) ( )
, ,

1 0 0

( ) ( , ) ( ) ( , ) ( ) ( , ) 0ss s
s s s

s s s

C t G t G t
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with 

 

2
( )

2
0

( )
( ) : (1 / 2) ( 1) ( 1/ 2)

( )

a aH
V V

kL
C k k

h
h





 
       

 

x
x

x

                                                           (16) 

 ( )
(0) ( ) ,( ) : ( )a

a s a HG L d d k


  x x ,     ( ) 2
(0) ( )( ) : ( )a

a s a HG L d d k
  x x . 

Obviously, Eq. (15) is the PDE in 2D domain   and two additional equation result from the 

thermal boundary conditions on the bottom and top surfaces of the plate. Usually, we 

distinguish three kinds of thermal boundary conditions, which result into the following 

additional equations 

(i) Dirichlet type:  0 1 2 0
1 1

( ) ( ) ( ) ( , / 2)
2 4

h        x x x x                                                (17a) 

(ii) Neumann type:     0 1 2( ) ( / 2) ( ) ( ) ( , / 2)H Vk k k h hq h    x x x x                                  (17b) 

(iii) Robin type:  0 1 2 0 1 2
1 1

1 ( ) ( ) ( ) ( ) ( / 2) ( ) ( ) 0
2 4

H VA Bhk k k h    
 
       

 
x x x x x x     (17c) 

in which ( , / 2)h x and ( , / 2)q hx stand for the prescribed temperature and heat flux on the 

top and bottom surfaces of the plate.  

 

Finally, the PDE (15) is to be supplemented with the boundary conditions on the boundary edge 

of the plate. Since 3 0 0( , 0) ( )x    x x , the boundary conditions on  can be given as 

(i) Dirichlet type:  0 3 0( ) ( , 0)x  


  x x                                                                        (18a) 

(ii) Neumann type: 0 0,( ) (0) ( ) ( ) ( ,0)H Vk k k n q 


 x x x x                                                  (18b) 

(iii) Robin type: 0 0 0,( ) ( ) (0) ( ) ( ) 0H VA Bk k k n  
 

 x x x x  .                                        (18c) 

in which 3( , 0)x x and ( ,0)q x are the prescribed values of the temperature and heat flux, 

respectively, on the boundary edge of the plate. 

Note that the governing equations involve the 4th order derivatives of deflections and 3rd order 

derivatives of in-plane displacements and rotations. Since the accuracy of approximations of 

derivatives is decreasing with increasing the order of derivatives, we propose the decomposition 

of the derived system of the PDE into a set of PDE with derivatives not higher than the 2nd order 

by introducing new field variables [4] as 

 

2( ) : ( )m wx x ,     2( ) : ( )s u x x  ,    2( ) : ( )f x x .                                                     (19) 

Summarizing, the governing equations for thermal problem are given by Eqs. (15) and (17) at 

x  and the possible boundary conditions on  are given by Eq. (18). The governing 
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equations for the mechanical part of the thermo-elastic problem are given by Eqs. (8) and (19) 

at x , while the possible boundary conditions can be properly constructed from Eq. (9).  

Numerical implementation 

Although the proposed decomposition of the original system of high-order PDE of elliptic type 

into the system of 2nd order PDE increases the number of field variables and finally the size of 

the matrix of discretized equations, it brings the possibility to solve the system of the 

decomposed PDE using the strong formulation which accelerates the computation significantly 

as compared with the weak formulation especially in case of utilization of meshless 

approximations, because the evaluations of shape functions is localized to nodal points. The 

functional in-plane gradation of material coefficients leads to the PDE with variable coefficients 

and the classical element-based discretization methods are mostly disqualified for efficient 

treatment of such rather complex problems. In order to simplified the mathematical complexity 

as much as possibly with preserving the physical nature of the solved problems, we propose to 

utilize the strong formulation and the meshless approximation of spatial variations of field 

variables, which is in this paper, the Moving Least Square approximation [5]. The nodal points 

are freely distributed in the analyzed domain and on its boundary without creating any 

connectivity among the nodes. Without going into details [6, 7], the approximation of a field 

variable ( )g x and its derivatives around the central approximation node xq  can be expressed by    

( , )

1

ˆ( ) ( )

qN
a q a

a

g g 



x x ,   ( , )
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ˆ( ) ( )

qN
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x x ,   ( , )
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1

ˆ( ) ( )

qN
q aa

a

g g 



x x  ,                        (20) 

where ( , )a n q a is the global number of the a-th node from the influence domain of xq , qN is 

the number of nodal points in the influence domain, which is smaller than the total number of 

nodes, and ( , ) ( )x
q a is the shape function associated with the node ( , )n q a . This shape function 

is not known in a closed form [8], but it must be evaluated at each point x . Recall that ˆ ag is the 

nodal unknown associated with the node a and is different from the nodal value ( )ag x . The 

central approximation node can be selected as the nearest node to the field point x . For creation 

of shape functions, we have used cubic monomial basis and Gaussian weights.  

 

In the strong formulation, the governing equations are collocated at interior nodes and the 

boundary conditions at boundary nodes.  

Numerical examples 

In numerical investigations, we consider a square plate L L with 1L  and the results are 

presented for dimensionless quantities specified as:  
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. 

In what follows, we shall omit the superscript * in dimensionless Cartesian coordinates.   

In all numerical computations, we have used a uniform distribution of nodal points (36 x36 

nodes) with  being the distance between two neighbour nodes. The other parameters in the 

MLS-approximation with Gaussian weights have been taken as: the radius of the influence 

domain 3.001a  , shape function parameter ac  , and cubic monomial basis. Note that 
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the number of nodes falling into the influence domain of a global node varies from 11 to 27 

depending on the position of the global node.    

Elasto-static simulations  

We start the study of coupling effects due to continuously variable: (i) Young’s modulus in 

transversal direction  3 3( ) 1 1 / 2 /
p

VE x x h   ; (ii) in-plane gradations of Young’s modulus 

  0
0 1( ) 1 /

b
HE x L x ; (iii) variable plate thickness  1( ) 1 /

s
h x L  x .  The Poisson ratio is 

assumed to be constant 0.3  . The boundary edges of the plate are clamped and the plate is 

subjected to uniform transversal loading 3 ( ) 1t x .  

The influence of thickness of the plate on deflections is shown in Fig.1 for homogeneous plate. 

It is seen that the KLT is applicable only to thin plates 0/ 50L h  , when the deviation of the 

KLT results from those by the SDPT is less than 1%. 

 

   
Figure 1. Comparison of deflections by KLT and SDPT: (a) deflections along 1x -axis; (b) 

% deviations vs. ratio of length to thickness 

 

Fig. 2 shows the response of three thin plates (homogeneous and FGM plates with 2 different 

levels of gradation of Young’s modulus, 1   and 3  ) to uniform transversal loading. The 

evidence of coupling between the bending and in-plane deformation modes is clearly seen from 

Fig. 2(c), since finite in-plane displacements arise only in FGM plates.  

 

The influence of the in-plane power-law gradation of Young’s modulus on the response of thick 

plate is shown in Fig. 3. It is seen that deflections are affected more expressively by the level 

of gradation than by the exponent of gradation. This can be explained by the effect of lower 

bulk content of the material with higher value of the Young modulus. The shift of maximal 

deflections toward the softer side of the plate is evident. 

ICCM2018, 6th-10th August 2018, Rome, Italy

407



        

 
Figure 2. The response of three plates by various theories. In-plane distribution: (a) 

deflections of thin plate; (b) deflections of thick plate; (c) in-plane displacements 
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Figure 3. Influence of in-plane gradation of Young’s modulus on the response of thick 

FGM plate. The effects by: (a) different levels of gradation; (b) different exponents of 

power-law gradation 
 

Form Fig. 4(a), it can be seen that the influence of levels of linear in-plane gradations of plate 

thickness on deflections is more significant than the influence of gradation of Young’s modulus. 

The negative effect of thinning the plate can be compensated or suppressed by parallel gradual 

increasing the Young modulus with resulting in overall reduction of deflection (Fig. 4(b)).  

       
Figure 4. Response of plates with variable parameters of in-plane gradations: (a)   

and/or 0 ; (b)    and/or 0  including combined gradations of Young’s modulus and 

plate thickness 

Now, we shall continue in numerical simulations and study of multi-gradation effects in square 

FGM elastic plates with transversal gradation of Young’s modulus  3 3( ) 1 1 / 2 /
p

VE x x h  

combined with: (i) in-plane gradation of Young’s modulus   0
0 1( ) 1 /

b
HE x L x ; (ii) in-plane 

continuous variation of plate thickness  1( ) 1 /
s

h x L  x ; (iii) simultaneous in-plane 

gradations of Young’s modulus and plate thickness. The plate is subject to uniform in-plane 

tension *
1 1 2 1 0 1 2( 1, ) ( 1, )T x x h h x x 
    , and the boundary conditions on the other edges are 

given as: 1 1 2( 0, ) 0u x x   , 21 1 2( 0, ) 0T x x   , 2 1 2 2 1 2( , 0) ( , 1) 0T x x T x x 
     , with assuming 

two alternatives for bending modes: 

 clamped boundary edges 

*( ) 0w


x ,  
*( )

0
w








x

n
,  ( ) 0




x ,  3 ( ) 0t x  

 simply supported edges 

 *( ) 0w


x , ( )*
( ) ( ) ( ) 0

w
n n M  


x x x , ( )*

( ) ( ) 0n M


 


x x , 3 ( ) 0t x .  

The in-plane loading doesn’t yield finite deflections in homogeneous as well as FGM with only 

transversal gradation of Young’s modulus.  
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Firstly consider the FGM plates with clamped sliding edges. Fig. 5 show the in-plane 

displacements and deflections in thin FGM plates with combined gradations of Young’s 

modulus for various levels and/or exponents of in-plane gradation. The combined gradation of 

Young’s modulus is sufficient for arising finite deflections in FGM plates subject to in-plane 

tension.  

        

     

Figure 5. Influence of gradation parameters: (a) levels of gradations; (b) exponents of 

gradations on in-plane displacements and deflections in thin FGM plates with combined 

transversal and in-plane gradations of Young’s modulus 

Numerical simulations indicate that similar behavior is observed also in FGM plates with 

transversal gradation of Young’s modulus and continuously variable thickness (Fig. 6). Note 

that the nonlinear gradation of the plate thickness leads to more significant deflection response 

than in the case of linear gradation.   

Note that in the case of thin plates, the KLT results are almost identical with those by SDPT. 

However, in the case of thick plates, it is necessary to use the TSDPT. More remarkable 

deflection response to in-plane loading is observed in the case of thick plates if 1s   (Fig. 7).  
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Figure 6. Influence of gradation parameters: (a) levels of gradations; (b) exponents of 

gradations on in-plane displacements and deflections in thin FGM plates with combined 

transversal gradation of Young’s modulus and in-plane variation of plate thickness 
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Figure 7. Influence of gradation parameters: (a) levels of gradations; (b) exponents of 

gradations on deflections of thick FGM plates with combined transversal gradation of 

Young’s modulus and in-plane variation of plate thickness 

In the rest of the elastostatical subsection, we shall consider FGM plates with simply supported 

sliding edges. Now, the transversal gradation of Young’s modulus is sufficient for finite 

deflection response, in contrast to the plates with clamped sliding edges (Fig.8). For more 

details, we refer the reader to the work [9]. 

 

       

Figure 8. Influence of the level of linear transversal gradation of Young’s modulus on 

the response of the FGM plates with SSE to in-plane tension: (a) in-plane displacements; 

(b) deflections 

The numerical simulations in the FGM plates with combined gradations and simply supported 

edges (SSE) resembles qualitatively those in the FGM plates with multi-gradation and clamped 

edges (CE). However, the deflection response in FGM plates with SSE is much more expressive 

than that in the FGM plates with multi-gradation and CE. Finally, the results for the FGM plates 

with variable thickness and combined transversal and in-plane gradations of Young’s modulus 

are illustrated in Fig.9.  
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Figure 9. Influence of the multi-gradations of Young’s modulus and plate thickness on 

the response of the FGM plates with SSE to in-plane tension: (a) in-plane displacements; 

(b) deflections 

Thermo-elastic simulations  

In addition to functional gradation of elasticity coefficients, we assume the transversal gradation 

of the linear thermal expansion and the heat conduction coefficients specified by Eqs. (4) and 

(13), and the following in-plane power-law gradations  

  1
1 1( ) 1 /

b
H x L  x ,     2

2 1( ) 1 /
b

Hk x L x . 

The natural thermal boundary conditions are assumed on the bottom and top surfaces of plate 

( , / 2)h   x  with 0 1  , 0 20    ,   0      

and heat flux is assumed to be vanishing on the boundary edges of the plate 

0 0,( ) (0) ( ) ( ) ( ,0) 0H Vk k k n q 


  x x x x . 

Then, the temperature field is distributed uniformly within the mid-plane   and the value of 

the temperature is affected only by the level of gradation of the heat conduction coefficient, 

. The numerical simulations presented in Fig. 10 show that the KLT and TSDPT give different 

response of the FGM plates with clamped edges (CE) to considered thermal loading even if the 

plates are thin. It can be seen from the analysis of the governing equations [10] that there is a 

coupling between deflections and thermal fields in the KLT only if  2 ( ) ( ) 0H HE  x x  while 

in the case of the SDPT such a coupling appears even if  ( ) ( ) 0H HE  x x .  

               

Figure 10. Deflection response to thermal loading in FGM plates with in-plane gradation 

of material coefficients and clamped edges 

The plates with simply supported edges (SSE) exhibit quite different behavior as plates with 

clamped edges. One observes finite deflections also in homogeneous plates with SSE, because 
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the thermal contribution to the bending moment, 
2 ( )( ) ( )

0

aaw w

a

n n M n n C
 

    




  , on the 

boundary edge is compensated by contribution associated with deflection strains, i.e. 
( )w

n n M


  


is the boundary source for 
2

( ) ( )( )

0

ww www

a

n n M n n C     



  . On the other hand, 

such thermal source is ineffective on the clamped edge.  

 

      

Figure 11. Deflection response to thermal loading in FGM plates with simply supported 

edges and various gradations of material coefficients: (a) transversal gradation; (b) in-

plane gradation 

The influence of gradation of material coefficients on the deflection responses in FGM plates 

with simply supported edges are shown in Fig. 11. It is seen that deflection response is much 

more expressive than in the case of plates with clamped edges.    

Conclusions 

The unified formulation for FGM plates is developed within stationary thermo-elasticity with 

including the assumptions of the Kirchhoff-Love theory as well as the 1st and 3rd order shear 

deformation plate theories. The functional gradation is considered in the transversal and/or in-

plane direction for such material coefficients as: the Young modulus, coefficient of linear 

thermal expansion, and heat conduction coefficient. Moreover, the plate thickness can be 

continuously variable too. For the derived 2D formulation, the numerical implementation is 

developed with making use the strong formulation and meshless approximation of spatial 

variations of field variables. The original system of the governing PDE is decomposed into the 

system of the 2nd order PDE, in order to decrease the order of derivatives in the original system. 

The numerical simulations are employed for study the coupling effects in FGM plates subjected 

to three kinds of stationary loading: (i) uniform transversal mechanical loading; (ii) simple 

tension applied in the plane of plate; (iii) thermal loading. Individual as well as combined 

gradations of material coefficients and the plate thickness are considered. The coupling between 

the bending and in-plane deformation modes is explained and particular coupling effects are 

documented and discussed.    
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Appendix 

The integrations required in definition of semi-integral fields can be performed in closed form 

and expressed in terms of two kinds of integrals 

1/2
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In view of the definitions (10), (3), (6) and (A.1), the semi-integral fields are given as 
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with the coefficients ( ) ( )C x being given as 
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Abstract 
A prolonged seismic sequence struck the regions of Central Italy between August 2016 and 
January 2017, causing several fatalities and widespread damage to the built environment. The 
main objective of this work was to study the structural and seismic behavior of “Pietro 
Capuzi” school, located in Visso, in the Marche region, which was severely damaged by the 
2016-2017 Central Italy Earthquake. A 3D finite element (FE) model of the entire school was 
prepared, adopting a macro-modelling approach to represent masonry materials. An 
eigenvalue analysis was initially performed in order to identify the dominant modes of 
vibration of the structure and calibrate the numerical model according to the results of the 
dynamic identification tests. Afterwards, non-linear static analyses were performed on the 
calibrated FE model to evaluate the seismic response of the structure. Finally, the numerical 
results obtained in terms of failure mechanisms and seismic capacity were compared with the 
real damage experienced by the building. The numerical model proved to accurately predict 
the seismic response exhibited by the structure during the past seismic events. 

Keywords: Unreinforced masonry, finite element modeling, seismic assessment, non-
linear analysis 

Introduction 
Recent and past earthquakes have shown that unreinforced masonry buildings are prone to 
damage by seismic actions. However, the seismic assessment of such structures is a highly 
demanding task, not only for the potential complexity of this kind of buildings, but also for 
the lack of data usually available regarding geometry, construction details and material 
mechanical characterization. This study was aimed at assessing the seismic performance of 
“Pietro Capuzi” school, located in the municipality of Visso (Marche, Italy), which was 
severely damaged by the 2016-2017 Central Italy earthquake, also named the Amatrice-
Visso-Norcia seismic sequence. The school was an excellent case study to investigate the 
seismic capacity of an existing masonry structure for several reasons. Firstly, “Pietro Capuzi” 
school is part of the public buildings permanently monitored by the Seismic Observatory of 
Structures (hereafter named OSS). As a result, the entire seismic sequence affecting the 
structure was recorded by the existing system of accelerometers [1], thus providing valuable 
information in terms of seismic input at the base as well as vibrations experienced at different 
levels. Secondly, the inspection and extensive experimental campaign that were performed in 
2011 on behalf of the OSS supplied detailed documentation regarding geometry, structural 
configuration, construction details as well as some information about the mechanical 
properties of masonry [2][3][4]. Furthermore, dynamic identification tests were also carried 
out in 2011 to characterize the dynamic response of the structure [5]. Such documentation, 
acquired from the OSS, was integrated with the information about geometry, structural 
configuration, past interventions and seismic damage supplied by the Italian Network of 
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University Laboratories in Seismic Engineering (RELUIS) and the University of Genova, in 
charge of post-earthquake surveys [6][7]. In addition, the photographic record of the 
progressive damage experienced by the building during the entire seismic sequence was 
provided by the Italian Department of Civil Protection [8]. In conclusion, the availability of 
such detailed data, which is not very common, allowed for the preparation of a detailed FE 
model of the entire structure. This was then updated on the basis of the modal parameters 
determined experimentally by the OSS. Furthermore, the detailed description of the damage 
experienced by the structure during the entire seismic sequence provided the opportunity to 
validate the numerical model of “Pietro Capuzi” school through a comparison between the 
damage simulated and the damage pattern observed. 

Description of the building 

Overall configuration and use  

Built in the 1930s, "Pietro Capuzi" nursery and primary school (Figure 1) is a stand-alone 
structure located in the urban area of Visso, in the Marche region. The building has four 
levels, three of them above ground (raised ground floor, first floor and attic) and a basement 
partially sub-grade (Figure 1c). The three levels above ground have a plan area of 
approximately 605 m2 each, whereas the basement has a plan area of approximately 120 m2. 
The basement, raised ground floor and first floor have an inter-storey height of 3.09 m, 4.44 
m and 4.26 m respectively. The attic has a maximum height of about 3.19 m, resulting in a 
total height above ground of about 13.50 m in correspondence of the main façade. The total 
built volume is estimated at about 4800 m3. 
 
The building does not present any narrowing or enlargement of the horizontal section along 
the height in the part above ground. However, it is strongly irregular in plan since it presents a 
T-shape configuration given by the connection of two orthogonal bodies (hereafter named 
Body A and Body B as shown in Figure 1b). Body A, characterized by an elongated 
rectangular shape and oriented in NW-SE direction (hereafter called X direction as indicated 
in Figure 1b), hosts most of the classrooms, while the areas used as offices, the canteen and 
toilets are allocated in Body B. A staircase connecting the basement, raised ground floor and 
the first floor is located on the east side of Body B. 
 

  

 

(a) (b) (c) 

Figure 1 – “Pietro Capuzi” school: (a) external view, (b) plan of the raised ground floor, 
and (c) section AA [2]. 

Structural configuration and technical details  

The structure of the building consists of load-bearing masonry walls that extend upwards 
from the basement until the attic. The prevalent type of masonry is a stone masonry, whereas 
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the sporadic presence of solid brick masonry can be observed in some pillars in the staircase 
as well as in portions of walls filled with solid bricks during past interventions. The thickness 
of the walls varies with height, ranging from about 70-85 cm at the basement to 
approximately 70 cm at raised ground floor and 50-70 cm at first floor. Foundations are made 
of the same stone masonry of the upper levels that extend downwards until a depth of 
approximately 60 cm from the planking level of the basement. 
 
Concerning horizontal diaphragms, the slabs of the raised ground floor and first floor are 
lightweight slabs, with a thickness of 30 cm each, while the slab between first floor and the 
attic is a steel-clay slab. In the areas of the raised ground floor where there is no basement, the 
slab on grade consists of a concrete slab resting directly on the ground. The staircase is made 
of reinforced concrete, and it is supported on load-bearing masonry walls on three sides, and 
three masonry pillars on the internal short side. The hipped roof has a timber structure 
consisting of purlins and rafters that are supported by a system of trusses or by the inner walls 
extending until the top of the roof.  In correspondence of ridges and valleys, hip rafters are 
present. Above the timber structure, clay tiles are located. A reinforced concrete bond beam is 
located at the height of the spring line of the roof. 

Past damage and previous strengthening interventions 

“Pietro Capuzi” school was damaged by the seismic events that hit the regions of Umbria and 
Marche between 1997 and 1998. Cracks mainly appeared in the staircase where the two 
bodies composing the building connect to each other. This led to a strengthening intervention 
performed in the 1990s, which was aimed at: (1) repairing the seismic damage, (2) improving 
the seismic capacity of the building, and (3) solving static problems due to the decay of some 
parts of the timber roof. As for the latter, the original roof timber structure was replaced with 
new glue laminated timber elements in the central part of Body A above the classrooms. As 
for the seismic damage, the major cracks were repaired using the technique of “cuci and 
scuci”. Regarding the seismic improvement, the interventions carried out included: (1) 
addition of metallic profiles studded to the internal side of masonry walls at the height of the 
slab between first floor and attic, (2) connection of the roof timber elements to the perimeter 
walls by means of metallic plates anchored with bars, (3) creation of a steel frame around the 
openings of the main façade at the first level, (4) addition of metallic tie-rods, (5) injections of 
lime mortar in some piers where pipes were filled in the past with solid brick masonry, and 
(6) filling with solid brick masonry of the spans between the pillars in the staircase. 

Seismic damage and monitoring data 

The 2016-2017 Amatrice-Visso-Norcia seismic sequence started on August 24th, 2016 with 
the Amatrice earthquake (Mw 6.0), which hit a vast area of the Central Apennines producing 
almost 300 casualties and widespread damage to the built environment. The sequence was 
characterized by nine mainshocks with moment magnitudes higher than 5, which occurred on 
August 24th, 2016 (Mw 6.0 and Mw 5.4), October 26th, 2016 (Mw 5.4 and Mw 5.9), October 
30th, 2016 (Mw 6.5) and January 18th, 2017 (four shakes with Mw ≥5.0). 

Damage suffered in the 2016-2017 Amatrice-Visso-Norcia seismic sequence 

 “Pietro Capuzi” school suffered severe damage due to the Amatrice-Visso-Norcia seismic 
sequence. A detailed description of the damage experienced by the building, updated on the 
date of December 8th, 2016, was reported in [6][7]. As shown in Figure 2a, the walls were 
affected by severe cracks at both the raised ground floor and first floor, especially in the Y 
direction where the damage is more severe and widespread than in the X direction. The 
building mainly presents diagonal shear cracks developing through the entire thickness of the 
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walls in both piers and spandrels. Furthermore, a shear-sliding mechanism producing an 
important residual deformation was activated in the northwest (NW) side of the building 
(Figure 2b). Flexural cracks can also be observed on the southeast (SE) side of Body B 
(Figure 2c). In addition to the in-plane damage, an out-of-plane mechanism occurred in the 
NW corner of the building, resulting in the partial collapse of the masonry walls and adjacent 
attic slabs (Figure 2d).  
 
With regards to the other slabs, two local collapses occurred in the slab between the raised 
ground floor and first floor (Figure 2e). Furthermore, the steel slab between first floor and 
attic experienced an extensive collapse because of the out-of-plane mechanisms as well as 
cracks along the metallic profiles in the portions of slab still standing. For the connection 
between vertical walls and slabs, horizontal cracks were present in the external walls at the 
slab locations. In the interior, severe cracks were observed in correspondence of the 
connection between walls and slabs (Figure 2f). 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2 – Damage state updated on December 8th, 2016: (a) diagonal shear cracks in 
piers and spandrels, (b) shear-sliding mechanism, (c) out-of-plane mechanism, (d) 

flexural cracks, (e) local collapse of the slab between raised ground floor and first floor, 
(f) cracks in correspondence of the connection between walls and slabs [6]. 

A partial reconstruction of the damage development experienced by “Pietro Capuzi” school 
during the Amatrice-Visso-Norcia seismic sequence was carried out thanks to the 
photographic documentation provided in [8]. After the seismic event of August 24th, the 
building exhibited an in-plane response with cracks occurring in both masonry piers and 
spandrels (Figure 3a). In addition to moderate cracks widespread throughout the entire 
building, severe cracking appeared in some piers of internal and external walls. As shown in 
Figure 3b, the earthquakes that occurred on October 26th, 2016 produced significant 
deterioration of the damage level. Not only did the severity of the in-plane damage increase 
significantly, but an out-of-plane mechanism also occurred. As for the in-plane response of 
masonry walls, it was observed than, more than in the creation of new cracks, the 
deterioration of the damage state mainly consisted in the enlargement of the cracks produced 
by the seismic event of August 24th. As shown in Figure 3c, the damage state did not change 
significantly after the shake of October 30th with respect to October 26th. 
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After August 24th
,
 2016 After October 26th, 2016 After October 30th, 2016 

   

   
(a) (b) (c) 

Figure 3 – Observed damage in “Pietro Capuzi” school after the earthquakes occurred 
on: (a) August 24th, 2016, (b) October 26th, 2016, and (c) October 30th, 2016 [8]. 

Permanent Monitoring by the Seismic Observatory of Structures 

As part of the OSS, “Pietro Capuzi” school is permanently monitored by a system of 
accelerometers located in different parts of the structure: one tri-axial accelerometer is located 
in the basement to measure the seismic input, and ten bi-axial accelerometers are placed at the 
first and second levels at the intrados of the slabs to record the accelerations experienced by 
the structure. For all of these sensors, the OSS provided the authors with the time histories in 
acceleration and displacement obtained for the seismic events occurred on August 24th (Mw 
6.0), October 26th (Mw 5.4 and 5.9) and October 30th (Mw 6.5) [1][6]. These recordings 
allowed characterization of the seismic input at the base of the structure and aided in drawing 
significant conclusions about the accelerations experienced by the building. 
 
For the four seismic events considered, Table 1 reports the distance of the epicenter from 
“Pietro Capuzi” school as well as the values of the peak ground acceleration (PGA) obtained 
for the two horizontal components XX and YY, and vertical component ZZ. The structure 
was subjected to significant values of horizontal ground motion, in particular the highest 
values of horizontal PGA were recorded during the Mw 5.9 earthquake of October 26th, which 
are equal to 0.36 g and 0.47 g in the XX and YY directions, respectively. 
 
 
 
 
 

ICCM2018, 6th-10th August 2018, Rome, Italy

422



Table 1 – Distance from the epicenter and PGA for the seismic events of August 24th, 
October 26th and October 30th. 

Seismic event Distance from 
epicenter [km] PGA x [g] PGA y [g] PGA z [g] 

2016/08/24_Mw = 6.0 28 0.33 0.32 0.14 

2016/10/26_Mw = 5.4 7 0.30 0.21 0.41 

2016/10/26_Mw = 5.9 4 0.36 0.47 0.31 

2016/10/30_Mw = 6.5 10 0.29 0.30 0.33 
 
Figure 4 shows a comparison between the 5% damped acceleration response spectra of the 
horizontal components of motion in XX and YY directions for the four earthquakes 
considered, and the elastic response spectrum in accordance with the Italian Building Code 
(hereafter called NTC2008 [9]) for a return period of 712 years and soil of type B [3]. It is 
observed that the seismic events of August 24th (Mw 6.0) and October 26th (Mw 5.9), which 
caused the most severe damage to the structure, resulted in significant amplifications of the 
acceleration with respect to the elastic spectrum of NTC2008. Furthermore, it is important to 
note that the YY component of the acceleration spectrum of October 26th earthquake 
exceeded the code spectrum for all the significant ranges of period, thus agreeing with the 
severe damage suffered by the structure in this direction. 
 

  
Figure 4 - Comparison between the response spectra (XX and YY component) of the 

seismic events of August 24th, October 26th and October 30th and the elastic spectrum of 
NTC2008 for soil B and return period Tr=712 years (damping 5%). 

The monitoring system installed in the school provided useful information to characterize the 
seismic performance of the building during the entire seismic sequence. Table 2 reports the 
values of the maximum acceleration recorded on the structure (PSA), the amplification factor 
(αPSA/PGA, calculated as the ratio between PSA and PGA), and the maximum inter-storey drift 
(Dmax, i.e. the maximum ratio of the relative floor displacement to the height of the 
corresponding floor), for the seismic events on August 24th (Mw 6.0), October 26th (Mw 5.4 
and 5.9) and October 30th (Mw 6.5). First, it was observed that the structure underwent values 
of acceleration that were significantly amplified with respect to the maximum acceleration 
measured at the base. Indeed, very high values of amplification factors, even higher than 4, 
were obtained. Furthermore, some interesting observations could be drawn analyzing the 
values of inter-storey drift produced during the seismic sequence. With this aim, the OSS 
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already provided the following reference values regarding drift-damage relation for masonry 
buildings: (1) no damage for drift ranging from 0 to 2‰, (2) slight damage for drift ranging 
from 2‰ to 4.5‰, (3) moderate damage for drift ranging from 4.5‰ to 8‰, and (4) severe 
damage for drift higher than 8‰ [10]. The highest values of drift were produced by the Mw 
5.9 earthquake of October 26th, for which values of 13.53 and 16.01 were obtained in X and Y 
direction respectively. These values were significantly higher than the ones resulting from the 
shakes of August 24th and October 26th (Mw 5.4). According to the reference values provided 
by OSS, the values of drift obtained for the Mw 5.9 earthquake of October 26th corresponded 
to serious damage, while moderate and slight damage were respectively associated to the 
shakes of August 24th and October 26th (Mw 5.4). Note that the values of drift obtained for the 
Mw 6.5 earthquake of October 30th were less meaningful since the building had been severely 
damaged by the previous seismic events. These results were consistent with the damage level 
exhibited by the building during the entire seismic sequence. Furthermore, the higher values 
of drift obtained in the Y direction for the seismic events of October agree with the more 
severe damage observed in the structure in the Y direction with respect to the X direction. 
Consequently, the inter-storey drift was found to represent a reliable measure of the damage 
suffered by the structure after the earthquake. 
 
Table 2 – Parameters characterizing the seismic response of the structure for the seismic 

events of August 24th, October 26th and October 30th. 

Seismic event PSA x [g] PSA y [g] αPSA/PGA,x αPSA/PGA,y 
Dmax x 

[‰] 
Dmax y  

[‰] 
2016/08/24_Mw = 6.0 1.05 0.80 3.21 2.52 6.10 4.23 

2016/10/26_Mw = 5.4 1.27 0.78 4.27 3.70 3.95 2.46 

2016/10/26_Mw = 5.9 1.41 1.33 3.86 2.81 13.53 16.01 

2016/10/30_Mw = 6.5 1.36 1.47 4.65 4.89 5.52 10.98 

Numerical model 

Preparation of the FE model 

A 3D finite element (FE) model of “Pietro Capuzi” school was created in Midas FX+ Version 
3.3.0 Customized Pre/Post-processor for DIANA software [11]. A macro-modelling approach 
was used to represent masonry, which was considered as a composite material without any 
distinction between units and mortar [12]. Geometry definition is essential when dealing with 
the modeling of a complex structure [13] since any adopted strategy may entail different final 
results. “Pietro Capuzi” school has three levels above the ground and a basement partially 
sub-grade. Modeling building portions below ground is often controversial, especially when 
detailed information about the foundations is not available. Hence, the first decision to be 
made was the basement modeling strategy, and three different models were considered, as 
illustrated in Figure 5. As shown in Figure 5a, the basement occupies only a part of the plan 
area of the first level of Body B. Model A neglects the portion of the basement underground 
(Figure 5b), whereas model B and C take it into consideration by extending the walls of the 
basement downwards. The main distinction between models B and C is that the first one 
considers only the walls where the basement is located according to the geometrical survey 
(Figure 5c), whereas the second one assumes an equal height underground (1.47m) along all 
the walls of Body B, in agreement with past modelling strategies [4]. Note that the passive 
earth pressure exerted on the walls of the basement was not considered due to the limited 
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height of the portion of the basement underground. The choice of the model to use for 
structural analyses was based on the comparison between the experimental and numerical 
responses of the different models in terms of frequencies and mode shapes (see the following 
paragraph). Note that the three models only differ for the presence of the basement, therefore 
the description of geometry and materials presented below is applicable to all. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 – (a) Plan of the basement, and geometry of the different FE models prepared 
for the school: (a) model A, (b) model B, (c) model C. 

Masonry walls were modeled using solid FEs; in particular, four-node three-sided 
isoparametric solid tetrahedron elements (TE12L) were adopted [11]. Although the use of 
shell elements for the walls would have resulted in a significant reduction of the number of 
degrees of freedom and, consequently, a more limited computational effort, the strategy of 
using solid FEs was adopted because of the presence of masonry panels characterized by a 
similar length in both axial and transversal directions.  
 
Regarding diaphragms, three-node triangular (T15SH) and four-node quadrilateral (Q20SH) 
isoparametric curved shell elements were adopted to model the intermediate slabs [11]. The 
roof was built as an ensemble of inclined surfaces supported by masonry walls (Figure 6a). 
Since a detailed survey of the roof timber structure was not available, it was believed that this 
solution might allow an adequate load distribution on the perimeter walls. In the case of the 
roof, only three-node triangular isoparametric curved shell elements were used to assure a 
better-quality mesh and prevent the creation of elements with undesirable shapes in the 
corners.  
 
Finally, 1D elements were used to model beams and tie-rods. Two-node, three-dimensional 
class-I beam elements (L12BE) were adopted for the reinforced concrete beams located at the 
entrance and in the staircase as well as the reinforced concrete bond-beam present at the top 
of the building. Two-node regular directly integrated (1-point) truss elements (L2TRU) were 
adopted to mesh metallic tie-rods [11]. 
 
The geometry and final mesh of the school are shown in Figure 6 for model B. In total, the 
numerical model is composed by 180.567 nodes and 696.997 elements in the case of model 
A, 187.988 nodes and 727.853 elements as for model B, and 189.256 nodes and 730.953 
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elements in the case of model C. Regarding the boundary conditions, a clamped boundary 
condition was adopted at the base of the walls, and all the degrees of freedom were restrained. 
 

  
(a) (b) 

Figure 6 – Three-dimensional model: (a) geometry and (b) mesh discretization. 

Material and diaphragm properties 

A description of the properties adopted for materials and diaphragms is presented below. To 
perform numerical analyses, a non-linear behavior was adopted exclusively for masonry 
materials, whereas a linear elastic behavior was employed for slabs, reinforced concrete 
beams and tie-rods. The physical non-linear behavior of masonry was simulated by means of 
the Total Strain Rotating Crack Model that is available in DIANA [11]. To represent masonry 
behavior in tension and compression, an exponential stress-strain relationship and a parabolic 
stress-strain relationship were adopted, respectively. Three different types of masonry were 
identified in the building and represented in the FE model: (1) cut stone masonry with good 
texture, (2) stone masonry injected during past interventions, and (3) solid brick masonry.  
 
The physical and mechanical properties of the different types of masonry adopted in the 
numerical model are reported in Table 3. The elastic properties of masonry materials were 
defined according to the prescriptions given by the Italian Circolare for knowledge level LC2 
[14], considering also the qualitative and quantitative information obtained from past 
inspections and tests [3][6]. Some corrective coefficients, as indicated in [14], were adopted 
to improve the properties of stone and brick masonry due to the presence of injections and 
good mortar, respectively. As for the inelastic properties, they were determined on the basis of 
information and recommendations available in literature [15][16]. 
 
Table 3 - Material properties of the different types of masonry adopted in the numerical 

model. 

Material property Stone 
masonry 

Stone masonry 
(+ injections) 

Brick masonry 
(+ good mortar) 

Specific weight [kN/m3] 21 21 18 
Elasticity modulus [MPa] 1740 2610 2250 
Poisson's ratio [-] 0.2 0.2 0.2 
Compressive strength [MPa] 2.67 4.00 4.00 
Compressive fracture energy [N/mm] 4.27 6.40 6.40 
Tensile strength [MPa] 0.108 0.163 0.190 
Tensile fracture energy [N/mm] 0.024 0.024 0.024 
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The physical and mechanical properties adopted for reinforced concrete and steel are 
presented in Table 4. Since no physical or mechanical characterization was available, the 
properties of these materials were derived from NTC2008 [9]. 
 

Table 4 – Material properties of reinforced concrete and steel. 

Material property Concrete Steel 
Specific weight [kN/m3] 25 78.5 
Modulus of elasticity [MPa] 31500 210000 
Poisson's ratio [-] 0.2 0.29 

 
Regarding the slabs, the only properties to determine were bending and axial stiffness since a 
linear elastic behavior was adopted for them. These properties are automatically calculated in 
DIANA on the basis of the elasticity modulus of the material assigned to the slabs and the 
thickness of the FEs (curved shell elements in this case) used to model them. In this study, the 
values of an equivalent modulus of elasticity Eeq and an equivalent thickness heq to input in 
DIANA were calculated based on the real bending and axial stiffness of a strip of slab as wide 
as the spacing between the principal elements composing the slab structure.  
 
An isotropic or orthotropic material was adopted for two-way and one-way slabs, 
respectively. For the former, the same value of stiffness was adopted in the two in-plane 
directions, whereas for the latter, stiffness equal to the 10% of the principal direction was 
assumed in the secondary direction. As for the stiffness in the orthogonal direction (vertical 
direction), it was estimated so that it fulfilled the requirements of orthotropic elasticity 
reported in [11].  
 
Table 5 presents the in-plane axial stiffness in both principal and secondary directions (E1h 
and E2h) and the bending stiffness in the vertical direction (E3h3/12) for the different types of 
slabs. 
 

Table 5 - Properties of diaphragms adopted in the numerical model. 

Type of diaphragm 
Type of 
material 

E1h 
(kN/m) 

E2h 
(kN/m) 

E3h3/12 
(kNm) 

Lightweight concrete slab (one-way) orthotropic 3.001E+06 3.001E+05 7.051E+03 
Lightweight concrete slab (two-way) isotropic  2.644E+06 2.644E+06 1.061E+04 
Steel slab (one-way) orthotropic 3.822E+05 3.822E+04 6.618E+02 
Roof  isotropic 1.889E+06 1.889E+06 5.666E+02 

 

Eigenvalue analysis and model updating 

A first eigenvalue analysis was carried out to obtain the natural frequencies and modes shapes 
of the three different models prepared for “Pietro Capuzi” school. In order to identify which 
model better simulated the real behavior of the structure, the numerical results were compared 
with the ones derived from the dynamic identification tests performed by [5] in terms of 
natural frequencies and mode shape. The OSS provided the natural frequencies as well as the 
mode shape vectors for three vibration modes. For these modes, the deformed shape, shown 
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in Figure 7a for the first level of the building, was obtained in this study by drawing in scale 
on the plan of the building the modal displacements associated to each mode shape vector. 
The modes identified experimentally were global modes corresponding to: (1) a translational 
mode in the transversal direction of the building (mode 1 - 3.175 Hz), (2) a torsional mode 
(mode 2 - 3.755 Hz), and (3) a translational mode in the longitudinal direction (mode 3 - 
4.047 Hz).  
 
In order to gather more information about the modal response of the structure and visualize 
animations of the mode shapes, a further dynamic identification was performed in ARTeMIS 
Modal 5.0 software [17] by processing the signals recorded by [5] during the dynamic tests 
carried out in 2011. Though richer in terms of more possible frequencies, this dynamic 
identification whose results are reported in [18], was consistent with the one carried out by 
[5]. The latter was used by the authors to perform the updating of the numerical model. 
Hence, the model updating was focused on the three modes identified in [5], which were 
compared with the ones obtained numerically that presented a similar mode shape (Figure 
7b). Note that only the mode shapes obtained for model B are presented in Figure 7b due to 
the similarity of results obtained for the three models. 
 

   
Mode 1 (3.175 Hz) Mode 2 (3.755 Hz) Mode 3 (4.047 Hz) 

 (a)  

   
Mode 1 (5.57 Hz)  Mode 2 (5.77 Hz) Mode 3 (5.92 Hz) 

 (b)  

Figure 7 - Mode shapes obtained (a) experimentally and (b) numerically (for model B). 

Subsequently, for the three global modes identified, a comparison between numerical and 
experimental results was performed in terms of frequency error and modal assurance criterion 
(MAC). The latter is a statistical indicator that is normally used to compare the mode shapes 
obtained from analytical or numerical models with the ones obtained experimentally [19].  
 
Table 6 presents the average frequency errors and MACs for the three models. A similar 
frequency error of about 60%, calculated on average between the frequencies of the three 
modes, was obtained for the three different models. As for the average of MACs, the value 
obtained for model C (0.53) was much lower than the ones obtained for model A (0.68) and 
model B (0.69). Since the average frequency error was slightly lower for model B (58.5%) 
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when compared with model A (59.8%), model B was considered the model that better 
simulates the real behavior of the structure, and it was used for model updating and further 
structural analyses.  
 

Table 6 - Comparison of numerical and experimental frequencies and mode shapes 

 Model A Model B Model C 
Average frequency error [%] 59.8 58.5 56.2 
Average MAC  0.68 0.69 0.53 

 
As shown in Table 6, the average of the frequency errors for model B is significantly high, 
consequently model updating was necessary to calibrate the numerical model of the school. 
Two different strategies of model updating were adopted considering different parameters as 
variables to tune and using an iterative procedure in order to minimize frequency error and 
MAC.  
 
Table 7 presents the results obtained for the two calibrations carried out. The first calibration 
was performed adjusting the properties of masonry materials and diaphragms. Concerning 
masonry materials, the elasticity modulus of stone and brick masonry was considered for the 
updating process. As for the slabs and roof, the axial stiffness was varied while keeping the 
bending stiffness constant. However, this last strategy was disregarded since considerable 
reductions of the axial stiffness of the diaphragms produced only limited decreases in the 
values of the numerical frequencies, but, at the same time, resulted in a sharp decrease of the 
average MAC. On the other hand, since the natural frequencies obtained numerically were 
significantly higher than the experimental ones, a sharp reduction of the initial values adopted 
for the elasticity modulus of masonry was needed to reach a reasonable average frequency 
error of about 6%. The latter was derived considering an elasticity modulus of 700 MPa, 1050 
MPa and 905 MPa respectively for stone masonry, stone masonry with injections and brick 
masonry. Although these values were still within the range of values provided by the Italian 
Circolare [14], such a significant reduction may indicate that masonry was poorly built, was 
damaged when the dynamic tests were performed, or soil conditions significantly influenced 
the measures of frequency values. For these reasons, a further calibration was carried out 
considering soil-structure interaction and adopting a finite stiffness for the soil.  
 
To model the soil, plane interface elements (T18IF [11]) were placed at the base of the walls 
in the numerical model. The values of normal stiffness modulus kn and shear stiffness 
modulus kt that must be input for the interfaces were adopted as the variable to update. On the 
basis of the values of dynamic Young’s modulus and dynamic shear modulus of the soil (as 
reported in [3]), the reference values of the normal stiffness modulus and shear stiffness 
modulus of the interfaces were assumed as 1.91E+05 kN/m3 and 6.83E+04 kN/m3, 
respectively. A new eigenvalues analysis was performed on the numerical model with 
interfaces at the base. Model updating was then carried out adjusting the values of normal and 
shear stiffness moduli of the interfaces until achieving an error between experimental and 
numerical frequencies lower than 5% for both each mode and on average. Such an error was 
obtained adopting a value of 1.32E+05 kN/m3 for the normal stiffness modulus and a value of 
4.71E+04 kN/m3 for the shear stiffness modulus.  
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Table 7 – Results obtained from different updating strategies. 

 Frequency error [%] MAC 
Average f. 
error [%] 

Average 
MAC 

Updating 
variables 

 
Mode    Mode   

All modes All modes 
1 2 3 1 2 3 

Emasonry  
reference values 

75.2 53.0 47.2 0.73 0.77 0.59 58.5 0.70 

Emasonry 

updated values 
13.5 -1.3 -3.5 0.73 0.79 0.63 6.1 0.72 

kn, kt interfaces 
reference values 

14.4 5.2 6.1 0.88 0.57 0.70 8.6 0.72 

kn, kt interfaces 
updated values 

4.3 -2.8 -2.0 0.89 0.55 0.71 3.1 0.72 

 
According to the results reported in Table 7, it can be concluded that the average of MACs is 
almost insensitive to the updating strategy employed, whereas the model updating based on 
the stiffness of interfaces resulted in a better matching between the natural frequencies 
obtained experimentally and numerically. Not only is the error, on average, almost the half of 
the one obtained by updating the elasticity modulus of masonry, but the error in the frequency 
of the first mode also comes down to a value of 4.3%, which is significant lower that the 
13.5% reached with the first calibration. 
In conclusion, the calibrated FE model with interfaces was chosen to perform further 
structural analyses. For this model, Figure 8 presents the three global mode shapes obtained 
numerically and corresponding to the experimental ones. 
 

   
Mode 1 (3.31 Hz) Mode 4 (3.65 Hz) Mode 5 (3.97 Hz) 

Figure 8 – Mode shapes of the three global modes obtained for the calibrated model with 
interfaces. 

Non-linear static analyses 

Pushover analyses were performed to evaluate the seismic performance of “Pietro Capuzi” 
school. A lateral distribution pattern proportional to the mass of the structure was adopted to 
apply horizontal loads. The analyses were performed along the X and Y global axes of the 
numerical model, corresponding respectively to the longitudinal and transversal directions of 
the structure, in both positive and negative directions. Eight control nodes, located at the top 
of the building and characterized by large displacements but small deformations, were used to 
plot the capacity curves (Figure 9). The damage was associated to high values of principal 
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tensile strains, which indicated cracking [20]. The principal crack width strain (mm) was also 
taken into consideration to evaluate the damage state.  
 

 
Figure 9 – Control nodes for the pushover analyses. 

Figure 10 shows the capacity curves obtained for the pushover analyses performed in +X, -X, 
+Y and -Y. As for -Y direction, it is important to note that the curve exhibited a long, almost 
flat, plateau, consistent with a shear or rocking failure mode of masonry elements, without 
material crushing or geometrical non-linear effects. This made the last point of the curve 
physically less meaningful, but only related to convergence issues. For this reason, the 
ultimate capacity of the structure was estimated by taking into consideration the value of 
ultimate displacement indicated by the Italian Circolare [14] for the verification with respect 
to ultimate (life safety) limit state for existing masonry buildings. Consequently, the capacity 
curve presented in Figure 10 was interrupted when the values of ultimate displacement was 
overcome. Note that the same verification was performed for the analyses carried out in +Y, -
X and -X direction, but in these cases the ultimate displacement was not exceeded. 
 
As shown in Figure 10, the building exhibits a higher stiffness and lateral load-carrying 
capacity in X direction than in Y direction. The maximum values of lateral load factor 
obtained from the analyses in -X and -Y are, indeed, equal to 0.55 g and 0.44g, respectively. It 
is observed that the structure is characterized by a lower capacity in +Y and +X directions 
with respect to -Y and -X directions, respectively. However, this can be attributed to the fact 
that the curves in +Y and +X directions were plotted for smaller ultimate displacements, as 
the curves almost coincide in the positive and negative directions. 

 

 
Figure 10 - Capacity curves obtained from the analyses performed in +X, -X, +Y and -Y 

directions.  
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Figure 11 presents the damage pattern of masonry walls in terms of principal crack width 
strain for the pushover analyses in -Y and -X direction, for which the maximum values of 
horizontal load factor were obtained. A global failure mechanism is observed in both the 
directions of analysis, with masonry walls mostly affected by diagonal shear cracks. Flexural 
cracks are also observed, especially in the spandrels. Furthermore, it is observed that, despite 
the higher values of horizontal load applied in -X direction, the damage is more severe in the 
analysis in -Y direction, as shown by damage distribution and higher values of principal crack 
width strain. 
 

 

 

  
-Y  

   
-X  

Figure 11 - Principal crack width strain for pushover analyses in -Y and -X directions. 

Finally, even if pushover analyses are not able to fully represent the simultaneous action of an 
earthquake in different directions, a comparison can be attempted between the results obtained 
from pushover analyses and the seismic performance exhibited by the structure during the 
Amatrice-Visso-Norcia seismic sequence. According to the damage survey, “Pietro Capuzi” 
school was characterized by an in-plane response with severe cracks, mainly due to shear, in 
both internal and internal walls. Consequently, the damage mechanisms obtained from the 
numerical model are in good agreement with the crack pattern observed in the structure. As 
for the out-of-plane mechanism activated in one corner of the building after the seismic event 
of October 26th, 2016, it is to note that such a mechanism was difficult to obtain from the 
numerical model due to the presence of the concrete bond-beam at the top of the structure. 
Furthermore, it possibly resulted from a local disintegration of the material, which it is not 
considered in the FE model.  
 
Regarding the seismic capacity, the maximum values of horizontal load that the structure was 
found to bear from pushover analysis are consistent with the values of PGA recorded during 
the seismic event of October 26th. In particular, this is clear in -Y direction where the 
maximum lateral load applied in the FE model was equal to 0.44 g and it was associated to a 
severe damage state compatible with the one observed in the building in the walls oriented in 
Y direction (Figure 12a). As for X direction, according to the results of pushover analyses, the 
building exhibited a higher seismic capacity, with a maximum lateral load equal to 0.55g, but 
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less severe damage. From Figure 12b, the PGA recorded in X direction was much lower and, 
indeed, the damage was less severe in X direction than in Y direction. In conclusion, the 
numerical model was found to accurately predict the seismic performance of the building in 
terms of horizontal maximum load and failure mechanisms. 
 

  
(a) PGAx = 0.36g (b) PGAy = 0.47g 

Figure 12 - Comparison between the damage distribution obtained in the walls oriented 
in X (a) and Y (b) after the Mw 5.9 earthquake of October 26th. 

Conclusions 

This paper presented the seismic assessment of “Pietro Capuzi” school in Visso, Marche, 
which was severely damaged by the 2016-2017 Amatrice-Visso-Norcia seismic sequence. 
First, the progressive damage suffered by the building after the subsequent earthquakes was 
analyzed in terms of development of the crack pattern and inter-storey drift. Secondly, on the 
basis of the documentation available in terms of geometry, construction details and material 
properties, a 3D macro FE model of the entire structure was prepared and calibrated according 
to the results of past identification dynamic tests. Finally, pushover analyses were performed 
in order to assess the seismic performance of the building. In both X and Y directions, the 
school exhibited a global in-plane response with cracks occurring in masonry piers and 
spandrels. A higher seismic capacity was observed in X direction with respect to Y direction. 
From the comparison between the numerical damage and the observed crack pattern, it was 
possible to conclude that the numerical model was capable to realistically simulate the seismic 
performance exhibited by the building during the past seismic events in terms of capacity to 
bear horizontal loads as well as failure mechanisms. 
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Abstract 

This paper deals with the resilience of rock mounted lighthouses impacted by extreme waves. 
The investigated lighthouse of Wolf Rock is built with large and meticulously dovetailed gran-
ite blocks. For this structural typology, uplift of blocks and separation of joints is possible under 
intense wave impacts. Sliding between subsequent courses of stones is limited by the existence 
of vertical keys between the blocks. The lateral forces that can trigger uplift and rocking, a 
highly nonlinear behaviour, are calculated with the use of Limit Analysis method through an 
iterative procedure written in Python programming language. Three different overturning 
mechanisms, which correspond to different hypotheses about the working section of the light-
house, are considered for the uplift. The most conservative limits, i.e. with only a portion of the 
circular section taking the load, are representative for small and medium waves which can cause 
a small uplift and very local opening of a joint. The mechanism that considers the whole section, 
i.e. less conservative, is more representative for very strong wave impacts. The sliding failure 
mechanism is also considered. The Limit Analysis thresholds are validated with Discrete Ele-
ment (DE) time-history analyses using the commercial software 3DEC. Intense uplift and rock-
ing take place, and are especially present when the less conservative Limit Analysis thresholds 
are exceeded. The study also revealed the beneficial role of the vertical keys, without which the 
lighthouse would fail due to intense sliding before the overturning mechanisms are activated.   

Keywords:   Limit analysis, Discrete Element Method, historic lighthouse, rocking, wave 
impact 

Introduction 

Lighthouses on hostile and exposed rocks around the British Isles and Ireland have been resist-
ing the impacts of extreme waves for over a century. However, the history of these landmarks 
of engineering has not been smooth. Lighthouse engineering has evolved after repeating col-
lapses of under-designed structures and the subsequent upgraded design. The majority of the 
surviving rock-mounted lighthouses in the area are built based on an ingenious design: a tapered 
masonry structure with large-scale interconnected blocks, proposed by John Smeaton who de-
signed a lighthouse of Eddystone in the mid-18th century. Prior to this design, three other light-
houses on the same rock had failed. The first presented unrepairable damages in its first winter, 
the second collapsed after a winter storm in its fourth year, and the third caught fire nearly 50 
years after its construction. Though more resilient than their predecessors, plenty of the existing 
rock-mounted lighthouses have manifested uplift and motion after intense wave impacts. The 
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importance of the lighthouse network to the safety of navigation, in combination with the her-
itage value of these iconic lighthouses, provided the motivation for this structural analysis. 
The uplift and rocking behaviour of slender structures was first introduced by Housner [1]. His 
work evidenced that the structural behaviour of bodies capable of uplifting differs significantly 
to the one of continuous structures. Later studies verified the complexity of the rocking behav-
iour [2]–[4]. However, all of these studies are focused on base excitation and not on lateral 
wave impacts. Although plenty of research has been devoted on the estimation of wave impacts 
[5]–[7], little has been done regarding wave impacted rock lighthouses [8].   

This paper presents the application of the limit analysis method on a masonry lighthouse. At 
first, the limits of wave impact intensity for each impact height are calculated. The activated 
mechanisms, i.e. overturning or sliding, are calculated for Wolf Rock lighthouse. Then, the 
limit analysis results are confronted with the time-history numerical results of a Discrete Ele-
ment Method (DEM) model for wave impacts calculated for the specific location and structure.  

Wolf Rock lighthouse 

The rock mounted lighthouse of Wolf Rock is located around 13 km south-west from the point 
of Land’s End, in the menacing coastline of Cornwall, UK. The construction of the current 
lighthouse which survives till today was initiated in 1862 and finished in 1869. Prior to this 
structure, the Wolf Rock had seen a series of four beacons failing after violent storms and plenty 
of designs for new lighthouses being abandoned as insufficient to resist the colossal wave im-
pacts [9]. 

   

a b 

Figure 1. Wolf Rock lighthouse: (a) original section drawing and (b) details of dovetail-
ing and keying for a course of stones. 

The lighthouse consists of a granite masonry body that is 35.1 m high and has a 6.1 m high 
lantern at the top. The diameter of the granite body is 12.2 m at the base and gradually decreases 
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to 5.2 m near the top. The masonry structure consists of 6 vaulted levels, plus the lantern struc-
ture on the top. The wall thickness varies between 2.37 m at the entrance level and 0.69 m at 
the upper level. Finally, a steel frame helideck was constructed on the top of the masonry body 
in the early 1970s for facilitating the movement of personnel and supplies. 
The horizontal and vertical interlocking of the granite blocks through dovetails in the vertical 
courses and keys in the horizontal courses is shown in Figure 1b. In this structural typology, 
apart from uplift, no other high relative movement between blocks is possible without fracture 
of the dovetailed connections. Sliding, along the horizontal joint between two successive 
courses of stones, is also blocked by the vertical key connections. The original drawing suggest 
that the height of the key is around 7.6 mm high. Although most lighthouses of this typology 
have the same keying technique, Wolf Rock bears additional vertical connections on the lower 
third of its height. This is an evidence that the designer engineer, James Nicholas Douglas, was 
indeed concerned about the severity of the wave impacts which could cause uplift or sliding.  

Extreme wave loading 

Until now, a theoretical description of the loading condition induced by the breaking waves on 
emerged cylinders is not available. Thus, due to this lack and to the impellent necessity to per-
form a survivability assessment of these ancient structures, the method of Wienke and Oume-
raci [5] is applied as final tool to describe the impulsive wave load.  The method consists of 
five main steps: i) The extreme offshore wave climate is identified by means of statistical ex-
treme analysis.  The Generalised Pareto Distribution, in combination of Peak Over Threshold 
method, is used through Bayesian inference [10] in order to identify the extreme significant 
wave heights (HS) Figure 3, while the relationship between the significant wave height and peak 
period (TP) is described by means of exponential equation, Figure 3 [11], [12]. The final result 
is a set of return periods, significant wave heights and peak periods describing the offshore 
wave climate.  

 

Figure 2. Wolf Rock Lighthouse offshore significant wave height (HS) vs return period 
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Figure 3. Wolf Rock Lighthouse offshore peak periods (TP) vs significant wave height 
(HS)  

ii) In the surrounding area of the Wolf Rock, the bottom topography can be represented by very 
steep bottom that never reach shallower water condition. The approach of Goda [13] was ap-
plied to calculate the wave transformation from offshore to the lighthouse site identifying the 
local significant wave height, (HS,L). iii) The effects of the restricted depth-to-height ratio and 
of breaking wave on the maximum wave height are considered by means of Battjes and 
Groenendijk’s method [14], therefore, the design breaking wave height is assumed to be H0.1%. 
iv) Finally, the crest elevation with respect to the still water level is calculated according to 
Hansen’s method [15]. v) Wienke and Oumeraci’s method [5] is, then, applied considering the 
variation of the average radius of the lighthouse along to the calculated impact area. Load dis-
tribution is kept constant both in horizontal and vertical direction, while frontal area affected 
by the load distribution is considered included between ±30° from the wave dominant direction. 
The process is summarised in Figure 4. 
 

 

Figure 4.  Summary of the process leading to the breaking wave load description. 

For a wave impact with return period equal to 50 years, the total impact duration is equal to 
0.075 s, and the maximum impact force, at t = 0, is 43031 kN. The force is applied between the 
21st and the 35th course on a frontal section of 60° with uniform distribution. Thus, the load is 
applied on 15 courses and the force resultant is at a height of 16.37 m from the base of the 
structure and 12.1 m from the sea level.  The time-history of the total force that this impulsive 
wave applies on the structure is presented in Figure 5.  
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Figure 5. Time-history of the impulsive wave total force applied on the structure 

Limit analysis 

The limit analysis method calculates the magnitude of lateral force that is necessary for trigger-
ing a failure mechanism such as overturning or sliding (Figure 6). For overturning, the equilib-
rium of moments around a rotation hinge is calculated between the stabilisation forces, i.e. self-
weight, and the external forces. For sliding, the equilibrium of horizontal forces is calculated 
by comparing the stabilisation forces, i.e. friction in horizontal joints, and the external forces. 
Regarding the overturning, three different mechanisms were considered. The first takes into 
account the whole section of the lighthouse (Figure 6a), the second considers only the front half 
section (Figure 6b), and the last mechanism considers only a frontal section of 60° (Figure 6c) 
which coincides with the impact section of the impacting wave [5]. Although the last two mech-
anisms (180° and 60°) are not realistic since the lighthouse is not fractured and therefore be-
haves as a continuous body, their calculation is useful for estimating the magnitude of external 
force that can cause a partial uplift. It has to be stated that the activation of an overturning 
mechanism is reversible. This means that for small duration impacts there can be some uplift 
and rocking but this does not necessarily mean overturning and collapse [1]–[3]. Note also that 
the existence of vertical keys for this lighthouse prevents any large sliding and therefore col-
lapse due to sliding. Nevertheless, finite sliding due to small gaps between the vertical keys of 
the joints is still possible.  
 

 

Figure 6. Failure mechanism for limit analysis: (a) overturning for 360° section, (b) 
overturning for 180° section, (c) overturning for 60° section, (d) sliding for 360° section 
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A drawback of the limit analysis is that the magnitude of activation force that is necessary for 
triggering the overturning mechanism depends on the selection of the hinge. Therefore, many 
hinge positions have to be tried in order to find the mechanism with the lowest activation force. 
Similarly, for the sliding mechanism, different joint levels have to be considered. To perform 
these calculations, an iterative procedure was written in Python 3.6 programming language. The 
self-weight of each course of stones is calculated based on the detailed geometrical data ob-
tained during the archival research. All possible positions of horizontal activation forces are 
considered. Subsequently, all possible hinge or sliding levels are regarded for each external 
force scenario.  The results for each height position of external force and the necessary magni-
tude for activation of the respective failure mechanism are presented in Figure 7.  
The vertical axis in Figure 7 corresponds to the impact height and the horizontal axis shows the 
impact force that is necessary for the activation of each failure mechanism. The limit analysis 
curves for overturning (continuous blue, dashed black and green dash-dot green) and the sliding 
(dot red) are presented. The activation force decreases for increasing impact heights, which 
illustrates the importance of the impact height to the structural stability. The marker at force 
equal to 43031 kN and impact force equal to 16.37 m represents the resultant force of the 50 
years return period wave which stands much higher than all limit analysis curves for overturn-
ing. This suggests that intense uplift and rocking is expected for this wave impact. In the same 
graph, the sliding forces, due to the wave impact, that act on each course are plotted as contin-
uous red line. If this continuous line crosses the red dot line that represents the sliding limit, 
activation of sliding mechanism is possible. However, if vertical keying is present, such a mech-
anism cannot be activated unless the joint opens more than the height of the vertical keys or 
there is a rupture of the keys. The results for the 50 years wave shown in Figure 7 suggest that 
sliding would have been detrimental without the presence of keying.   

 

Figure 7. Limit analysis curves for overturning (continuous, dashed and dash-dot lines) 
and sliding (dotted line) 

Numerical analysis 

The numerical modelling of the structure was based on the Discrete Element Method (DEM) 
introduced by Cundall [16]. The method regards the structure as an assembly of discrete blocks 
and the solution is based on a time algorithm of sufficiently small time-steps. This solution 
scheme is described by Cundall (1976) as the DEM cycle. The cycle consists firstly on the 
calculation of the block motion in terms of velocity and acceleration, which are assumed to be 
constant within a given time-step. As the blocks move relatively, new contacts between blocks 
are detected and the relative contact velocities and forces are updated with the use of a force–
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displacement law. Finally, the new forces for each block centroid are calculated and the new 
block motion is updated with the application of Newton’s second law. The relatively simple 
theory behind the DEM circle makes the method particularly efficient for reproducing structural 
response of rigid bodies that is characterised by large displacements and separation between 
blocks [17]. 
The three-dimensional numerical model of the lighthouse is developed with the use of the DEM 
software 3DEC [18]. Each course of stones is modelled as an independent rigid block. The 
vertical keys were also modelled in detail, hence impeding large sliding unless significant uplift 
takes place. The Coulomb friction law is implemented for the joints between blocks with zero 
cohesion and an angle of friction equal to 30°. Moreover, the joint is given normal stiffness 
equal to 5.93·1010 Pa/m and shear stiffness equal to 4.45·1010 Pa/m. The specific weight of the 
masonry blocks is taken equal to 2463 kg/m3, which corresponds to granite similar with the one 
used for Fastnet lighthouse [19]. Additional mass is added to the top course in order to account 
for the mass of the lantern and helideck that were not introduced to the model. Based on previ-
ous experimental work [19], mass proportional Rayleigh damping is adopted (α = 1.57, β = 0). 
The time-stem for each DEM circle is equal to 3.41·10-5. 

Limit analysis vs DEM results 

The DEM model is tested for various impact intensities by scaling the original wave time-his-
tory. The maximum intensity of the scaled waves is presented herein normalised for the force 
calculated by the limit analysis for the 360° section. For instance, the original wave calculated 
for 50 years return period corresponds to a normalised force of 4.94. A total of 26 analyses are 
carried out for normalised wave forces varying between 0.01 and 4.94. 
 

   

Figure 8. (a) Wave impact on Wolf Rock; (b) DEM model and control points; (c) DEM 
model section  

The qualitative results of the tests suggest that the DEM model is able to reproduce a realistic 
structural response for the wave impact. Although the courses are modelled as rigid blocks, the 
structure is deformable due to the joint interfaces which behave as unidirectional springs. The 
stiffness of the joints was calculated in order that the model behaves with an equivalent modulus 
of elasticity equal to 30 GPa in the vertical direction [19].  
The curves presented in Figure 9 and Figure 10 testify that the correlation between the impact 
forces and the structural response in terms of displacements is not linear. Both the vertical and 
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the horizontal displacement curves begin as linear for small impact intensities but they become 
parabolic for stronger impacts. Note that the transition from linear to parabolic shape is gradual 
and thus cannot be attributed to the exceedance of a strict threshold. The transition phase is 
clearly presented Figure 10 for normalised forces ranging between 0.01 and 0.5. The finding 
that there is no specific threshold over which the nonlinearity is triggered, supports the approach 
of using multiple assumptions (60°, 180°, 360° section), for the limit analysis as guides for the 
structural assessment. The trend of the vertical and horizontal displacement curves is linear for 
forces near the most conservative limit analysis assumption (60° section), and becomes nonlin-
ear much earlier than the less conservative threshold (360° section). This unclear boundary 
between linearity and nonlinearity can be explained by the dynamic nature of the impact force 
that has a duration of only 0.075 s. For impacts of much higher duration, the structural response 
would appear more discretised and would resemble the assumptions of the limit analysis.   

 

Figure 9. Maximum horizontal and vertical displacement from DEM analyses together 
with limit analysis threshold values; range of normalised impact forces 0.01 - 4.94 

 

Figure 10. Maximum horizontal and vertical displacement from DEM analyses together 
with limit analysis threshold values; range of normalised impact forces 0.01 – 0.50 
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In order to explain the change from linear to parabolic trend for the maximum displacements, 
it is worth comparing the structural response for a strong impact, i.e. the 50 years return period 
wave, with the response for a weak generic wave of normalised peak force equal to 0.01. 
The structural response in terms of vertical and horizontal displacements of the DEM model for 
the estimated impact of the 50 years wave is shown in Figure 11 and Figure 12 respectively. 
This is a particularly intense impact with normalised force equal to 4.94. The results yield in-
tense rocking and opening of the horizontal joints. The response time-histories reveal a time lag 
of the peak displacements between the upper and lower part of the lighthouse. The vertical 
displacements reveal that the joint opening is initiated between the control points C7 and C19 
(Figure 11). The maximum uplift is found on the highest control point, i.e. C69, and is recorded 
around 0.28 s after a first peak found on the lower courses. Similarly, the maximum horizontal 
response is equal to 0.14 m and is found at C69 with a time lag of 0.2 s compared to a peak 
recorded on the lower courses (Figure 12).  

 

 

Figure 11. Structural response of the DEM model for the wave of 50 years return period 
recorded at the control points: vertical displacement 

 

Figure 12. Structural response of the DEM model for the wave of 50 years return period 
recorded at the control points: horizontal displacement 
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The structural response of the weak impact is presented in Figure 13. This graph shows the 
horizontal displacement of the control points for a duration of 1.5 s, which includes the impact 
time (initial 0.075 s) and a damped post-impact free-vibration. It is worth noticing the intense 
phase difference of the upper versus the lower control points for the beginning of the motion. 
The higher frequencies (dominating in the lower courses) though are gradually damped out and 
all areas of the lighthouse pass to an in-phase vibration. Compared to the intense rocking caused 
by the 50 years wave, this behaviour resembles the dynamic oscillation of a quasi-linear elastic 
structure. Therefore, this qualitative comparison suggests that the structural response of the 
lighthouse passes from quasi-linear elastic oscillation to highly nonlinear rocking for increasing 
wave impact intensity. 
 

 

Figure 13. Horizontal displacement at control points for normalised wave impact force 
equal to 0.01 

Structural assessment for the 50 years wave impact 

According to the DEM results for the 50 years return period wave impact, the maximum hori-
zontal displacement calculated on the top of the masonry body (control point C69) is equal to 
0.33 m. For the same point, the maximum uplift is equal to 0.14 m, which is around twice the 
height of the vertical key. However, due to the elasticity of the structure, accounted by the 
stiffness of the joints, this uplift is not concentrated at a single joint, which would be cata-
strophic, but is a sum of multiple joint separations. The opening of joints is concentrated on two 
areas of the lighthouse (Figure 14a). The first involves the 4th till the 19th course, below the 
impact, where the joints open on the side of the impact. The second area is more localised and 
consists of the 31st till the 33rd course, just above the resultant of the impact forces, which open 
on the opposite side of the impact (Figure 14b). On the impact side, the maximum vertical 
separation between successive courses of stones is equal to 0.015 m and is recorded between 
the 9th and 10th course. This uplift is smaller than the height of the vertical keys, hence sliding 
is unlikely to happen in this area. On the opposite side, the maximum vertical separation be-
tween successive courses of stones is equal to 0.032 m and is recorded between the 32nd and 
33rd course.  Although sliding forces are not applied to this area, this uplift corresponds almost 
half of the key height. This suggests that the structural response is particularly intense. 
According to limit analysis for the 360° section, joint opening on the impact side takes place at 
the joints below the impact forces. Once the overturning mechanism has been activated, accel-
erations due to inertial forces are applied to the rotating body, i.e. the courses above the open 
joints, which can cause new joint openings and overturning on the opposite direction. The same 
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Python code that was created for the limit analysis was enhanced in order to predict joint open-
ing on both sides of the structure. The code predicts opening between the 13th and 20th course 
on the impact side and the 25th and 26th course on the opposite side. Although these openings 
are at the same regions as the ones predicted by the DEM analysis, the two methods do not 
perfectly align. This is expectable due to parameters such as damping, friction at the keys, and 
mainly the elasticity that are taken into account only in the DEM model. The elasticity of the 
structure allows limited deformation and therefore redistribution of the internal forces that in-
fluence the structural response by slightly shifting or expanding the joint opening areas. 
 

 
a b 

Figure 14. Joint opening at 0.075 s for the 50 years wave impact: (a) overall aspect; (b) 
detailed view between the 31st and 33rd joint  

Conclusions 

The coupling of limit analysis with DEM time-history analyses for wave impacts offers valua-
ble knowledge about the structural behaviour of the Wolf Rock lighthouse. The main findings 
of this paper are summarised below:  

 The iterative code developed for the limit analysis, offers important understanding about 
the structural behaviour of the lighthouse. The limit analysis results show that the com-
bination of bigger diameter and greater weight near the bottom makes the lighthouse 
able to resist significantly bigger forces if the impact area is near the bottom. Moreover, 
the huge importance of the vertical keying to the stability of the lighthouse is revealed. 
Although an overturning mechanism can be reversible, meaning that exceeding of the 
threshold does not necessarily mean damage, the sliding mechanism is not reversible.  

 The DEM analysis produces very satisfactory results and is able to reveal the crucial 
areas of the structure where opening of horizontal joints takes place. The same qualita-
tive structural behaviour is shown with the iterative code for the limit analysis. Though 
in similar areas, the joint opening is not identical for the two methods. This is mainly 
because of the elasticity of the DEM model that changes the distribution of the internal 
forces. 

 The structural response of the lighthouse resembles a quasi-linear elastic vibration for 
small impacts and becomes highly nonlinear with intense rocking and joint separation 
for stronger impacts. Moreover, the parametric analysis shows that the amplitude of the 
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maximum vertical and horizontal displacements follows a linear trend with for small 
impacts and gradually becomes parabolic for stronger impacts. This transition is not 
strictly correlated with any of the limit analysis thresholds. For the most conservative 
limit analysis assumption, i.e. overturning section of 60°, the trend is still linear and 
becomes parabolic before the exceedance of for the least conservative threshold, i.e. 
360° section. 

 The 50 years wave impact that was calculated based on the climatic wave conditions for 
Wolf Rock which has a steep bottom topography, causes intense rocking and opening 
of the horizontal joints. This wave causes joint opening both on the side of the impact, 
below the impact area, and on the opposite side, above the impact area. The maximum 
separation between successive joints is 0.032 m which is roughly half the height of the 
vertical keys. A maximum horizontal displacement equal to 0.33 m and uplift equal to 
0.14 m are found for the control point on the top of the masonry body. Both the limit 
analysis and the DEM analysis confirm that this is a particularly intense wave. Wolf 
Rock lighthouse would not be able to survive such an impact without the presence of 
vertical keying. 
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Abstract 

Concrete fracture is a phenomenon that material science deals with since its very beginning. 
With increase of computational capacity, linear models previously used for the description of 
material behavior in the vicinity of stress concentrators are being replaced with complex 
models using nonlinear material laws. Such models can be continuous, but for the better 
description of material behavior at the scale, where heterogeneities are recognized, discrete 
formulations are usually adopted. 
The contribution presents simulations of concrete fracture in dynamic regime using rigid body 
spring network. The material is represented by interconnected rigid cells of convex polyhedral 
shape. In the dynamic regime, for relatively slow loading rates, use of implicit time 
integration scheme for solving system of equations is quite common. For faster loading rates, 
the explicit scheme is usually used, however, in the presented contribution, the implicit 
scheme is conveniently used as well. The time step length is then not restricted by the stability 
of the system, but only by the desired accuracy. Model is applied to dynamic simulations of 
Brazilian splitting discs experimentally investigated in literature. 

Keywords: Concrete Fracture; Implicit Dynamics; Discrete Modeling; Meso-scale; 

Strain Rate 

Introduction 

It is well known that response of a tested specimen is highly dependent on loading rate. To 
obtain material properties such as tensile, flexural or compressive strength, the loading rate is 
usually of order 10-4 m/s. Using higher loading rate may affect the resulting values of 
obtained material properties. It is due to change in mechanism of failure. For a quasi-static 
loading, damaged volume of material is relatively small, in a case of tensile failure, the initial 
micro-cracking finally localizes into one relatively narrow highly damaged region – macro-
crack. With increasing loading rate, the energy accumulated in a material volume is too high 
to be consumed by one crack only and multiple cracking occurs. The total damaged volume is 
then larger and damage is diffused in a wider region. 
Attempts to describe this phenomenon of strain-rate dependency can be found in literature 
[1,7,8]. The relative increase (with respect to quasi-static rate) of material characteristic 
(strength, fracture energy, elastic modulus) is described by Dynamic Increase Factor (DIF). 
However, this phenomenon is associated not only with the increase in material resistance, but 
also with material inertia. General use of DIF is complicated, since it is not applicable to 
different geometry than the one it was obtained at. 
It is therefore convenient to use the model that already incorporates the influence of inertia. 
Strain rate dependency of the material properties can then be investigated. 
The contribution presents simulations of dynamic tests on Brazilian Splitting Discs. 
The simulations are calculated using discrete particle model. The time dependent response is 
obtained solving equations of motion using implicit time integration scheme according to 
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Newmark [6]. The performance of the mathematical model is compared with experimental 
results from literature [5]. 

Particle model 

When modeling heterogeneous materials behavior, discrete approach is particularly 
convenient. It is because of its ability to represent internal material structure of concrete. 
The material volume is discretized into polyhedral particles that are assumed to be ideally 
rigid and their interaction is prescribed at their contact facets. The model particles then 
represent larger concrete/mortar aggregates with surrounding cement paste. The particle shape 
is obtained by Voronoi tessellation applied on a set of points randomly placed in the volume 
domain within prescribed minimum distance lmin, which is related to maximum aggregate 
size. Each particle has 3 translational and 3 rotational degrees of freedom. Omitting direct 
representation of smaller mineral aggregates because of the computational reasons affects the 
model response, however, phenomena occurring below the resolution of the model are 
captured by nonlinear constitutive law. 
The model is adopted according to [2] using further simplifications from [3]. In its basic 
version, only 4 parameters are used for material description; Elastic modulus E0 and 
tangential to normal stiffness ratio α  for elastic behavior and parameters of tensile strength ft 
and fracture energy for tensile failure Gf in nonlinear regime. Other parameters such as 
compressive strength etc. are derived from these according to recommendations in [2]. It is 
important to note that all of these parameters are applied at meso-scale and their values differ 
from overall macro-scale material properties. The approximate relation between meso-scale 
elastic parameters and macro-scale Youngs modulus and Poissons ratio can be obtained from 
principle of virtual work [4] 

 ν210 −
= E

E
         ν

να
+

−=
1

41

  (1) 

As has been stated, constitutive law is applied at the contacts of discrete particles. The contact 
behavior is dependent on straining direction in both elastic and nonlinear regimes. After 
reaching the elastic limit, the damage model is applied to describe loss of integrity of material. 
The stress-strain relation depends on damage parameter D 

 01= ( D)E−s αe          0,1D ∈   (2) 

Here s and e are meso-scopic stress and strain vectors respectively with elements 
corresponding to normal and two tangential directions and α   is diagonal matrix with the first 
diagonal element 1 (for normal direction) and remaining diagonal elements α . Initially, 
parameter D is equal to zero. After reaching the elastic limit, the parameter increases up to 1, 
which indicates stress free crack. The evolution of damage is crucial part of the nonlinear 
behavior of the model. It takes into account combination of normal and tangential straining. 
Since its description is quite complex, the interested reader is referred to [3]. 

Dynamics 

The solution of equations of motion + + =Mu Cu Ku Fɺɺ ɺ  is provided by an unconditionally 
stable time integration scheme according to Newmark [6]. M, C and K stay for mass, 
damping and stiffness matrix respectively, F is a loading vector. The damping matrix is not 
taken into account, since the system is damped in inelastic regime by the energy dissipation 
at contact facets. The solution is based on dynamic equilibrium at the end of each time step 
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(time t+∆t). The values of accelerations uɺɺ  and velocities uɺ  at this time are estimated 
as numerical derivatives of displacements u 

 ( )1 1 1
1

2t+∆t t+∆t t t t2
=
β∆t β∆t β

 
− − − − 

 
u u u u uɺɺ ɺ ɺɺ  (3) 

 ( )1t+∆t t t t+∆t= +∆t γ +γ∆t−u u u uɺ ɺ ɺɺ ɺɺ  (4) 

where β and � are parameters of the Newmark method, which, to keep the solution 
unconditionally stable, need to be kept within limits , 0,1γ β ∈  and 2 0.5β γ≥ ≥ . Omitting 

damping and substituting these into equation of motion, following system is obtained 

 

1 1 1 1
1

2t+∆t t+∆t t t t2 2
+ = + + +
β∆t β∆t β∆t β

    
= −    

    
K M u F M u u uɺ ɺɺ

 (5) 

Each grain contributes to global mass matrix by 6x6 matrix. This particle mass matrix can be 
further divided into 4 smaller 3x3 submatrices. Upper left, relating forces and translations is 
diagonal containing value of particle mass at each diagonal element. Lower right, connecting 
rotations with moments consists of moments and products of inertia. Since the Voronoi cell 
center does not necessarily need to be particle center of gravity, static momentum needs to be 
taken into account to obtain balance, which is included in upper right and lower left 
submatrices. 
No strain rate dependency at the level of constitutive equation was used for simulations 
presented in this contribution, it is assumed that the meso-level model correctly accounts for 
inertia even within the fracture process zone. Viscous effects due to presence of water are 
neglected. 

 

Simulations 

Simulations presented in this section were calculated using mathematical models 
corresponding to experimental series on Brazilian splitting tests reported in [5]. Simplified 
models of Brazilian discs were supported (respectively loaded) by line of boundary 
aggregates as shown in Fig. 1. The loading is applied by increasing deformation under 
prescribed loading rate. It certainly does not fully correspond to experimental loading, which 
was applied by Hopkinson bar setup. Loading by pressure (force) wave would be more 
realistic, but in our case, we can exactly specify the desired strain rate by prescribing it. 
The experiments were performed on concrete and mortar discs with diameter D = 70 mm and 
with thickness T = 30 (further referred to as thin) and 55 mm (further referred to as thick). 
Model geometry was set accordingly. Two materials (concrete and mortar) were used in 
experimental study, therefore also two sets of material parameters were used for the modeling. 
Model parameters used in calculations are listed in Tab. 1. Parameter lmin was set according to 
maximum aggregate size used in experiments. The material fracture parameters were 
estimated according to maximum load obtained by quasi-static tests on thin discs. For quasi-
static simulations, the prescribed displacement rate of 1.67 10-6 m/s was applied. Value of 
material meso-scale tensile strength was set to the value of macro-scopic tensile strength of 
the material and meso-level fracture energy was then found by fitting the model response to 
match the peak load only, since the post-peak behavior is hard to capture in the case of 
splitting test. The fit was performed separately for both simulated materials – concrete and 
mortar. 
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Figure 1 Model setup. 

Table 1 Material parameters used from simulations of concrete and mortar discs. 

 E0 [GPa] ∝ ft [MPa] Gf [N/m2] � [kg/m3] lmin [mm] 
concrete 44 0.237 2.64 9.93 2400 7.50 
mortar 40 0.237 3.47 40.66 2020 2.36 

 
In the case of Brazilian splitting disc tests, the material tensile strength ftu is estimated 
according to eq. (6), 1P  and 2P  are impact and transmitted force respectively, that are different 

in the case of dynamic loading, but equal in the case of quasi-static loading 

 1 2
tu

P P
f

TDπ
+=  (6) 

After finding the best possible set of parameters to match the quasi-static response on thin 
specimens, the response of thick specimens was calculated. Lower strengths were obtained for 
thick discs, which corresponds to experimental data. Values of peak load and tensile strengths 
obtained by the model are listed in Tab. 2 together with experimental values. Note that rows 
corresponding to thin specimens are from the fitted response. 

Table 2 Peak load and tensile strength obtained by the model compared to experiments. 

 
experiments [5] simulations 

peak load [kN] strength [MPa] peak load [kN] strength [MPa] 

concrete 
thin 8.71 2.64 fit 8.71 2.64 
thick 15.71 2.60 15.24 2.52 

mortar 
thin 11.44 3.47 fit 11.44 3.47 
thick 20.26 3.35 23.01 3.80 

 
The dynamical simulations were performed under wide range of displacement rates in 
correspondence to the experimental test. On the graph in the left part of Fig. 2 load-
displacement curves are plotted for strain rates up to 150 s-1. Significant delay in transmitted 
force can be observed as well as different increase of impact force 1P  compared to the 

increase in transmitted force 2P . Greater increase in the first one is mainly caused by inertia. 
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Figure 2 Force vs. displacement curve for thin mortar specimens (left) damaged volume 

obtained by simulation with 10× magnified displacements (right). 

 

 

 

Figure 3 Dynamic increase factor of material tensile strength obtained by the model 

compared with experiments [5]. 
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The smaller increase in transmitted force 2P  can be attributed to the change in material 

resistance due to greater strain rate. 
Right part of Fig. 2 shows crack patterns for quasi-static and fast loading rate. In these 
pictures, displacements are 10× magnified. Particle facets are colored according to value of 
damage D. It can be clearly seen that in case of quasi-static loading, the model predicts the 
specimen to be split into two parts with relatively localized crack path, whereas in case of fast 
rate, the damaged volume is much greater, compare with [5]. 
Fig. 3 displays relation between material dynamic tensile strength according to Eq. (6) and 
strain rate obtained by the discrete particle model compared to the experimental data from [5]. 
Value of DIF is calculated by dividing dynamic and static strength. Since forces evolve in 
time, it is important to note the difference between 1 2max( )P P+  and 1 2max( ) max( )P P+ , even 

though the latter gives us results closer to the experimental evidence, the former should be 
taken into account for DIF estimation. The difference is not only in case of different material, 
but also for different thickness of the specimen, which corresponds to experimental evidence. 
However, even though the trends in increasing value of DIF are present, desired match is not 
obtained. 

Conclusion 

Discrete particle model was used for simulations of Brazilian splitting discs loaded under 
various strain rates. No strain rate dependency of constitutive law was imposed. It has been 
shown that the model is able to predict the increase in material strength, however, the desired 
match is not obtained. Authors believe that it is caused by the effects under the resolution of  
the model, thus finer resolution should be used for investigation of this phenomena. If course 
resolution is kept, the omitted part of the strain rate effect should be incorporated in the 
constitutive law phenomenologically. 
 

Acknowledgement 

Financial support of the project FAST-J-18-5412 is gratefully acknowledged. 
 

References 

[1] BRARA, A., and KLEPACYKO, J. Experimental characterization of concrete in dynamic tension. 
Mechanics of Materials 38, 3 (2006), 253 – 267. 

[2] CUSATIS, Gianluca a Luigi CEDOLIN. Two-scale study of concrete fracturing behavior. Engineering 
Fracture Mechanics. 2007, 74(1-2), 3-17. DOI: 10.1016/j.engfracmech.2006.01.021 

[3] ELIÁŠ, J. Boundary Layer Effect on Behavior of Discrete Models. Materials. 2017, 10(2), 157-. DOI: 
10.3390/ma10020157 

[4] ELIÁŠ, J. Adaptive technique for discrete models of fracture. International Journal of Solids and 
Structures. 2016, 100-101, 376-387. DOI: 10.1016/j.ijsolstr.2016.09.008 

[5] JIN, X, HOU, C., FAN, X., LU, C., YANG, H., SHU, X. and WANG, Z. Quasi-static and dynamic 
experimental studies on the tensile strength and failure pattern of concrete and mortar discs. Scientific 
Reports. 2017, 7(1), -. DOI: 10.1038/s41598-017-15700-2 

[6] NEWMARK, N. A method of computation for structural dynamics. University of Illinois, Urbana, 1959. 
[7] WU, H., ZHANG, Q., HUANG, F., and JIN, Q. Experimental and numerical investigation on the dynamic 

tensile strength of concrete. International Journal of Impact Engineering 32, 1 (2005), 605 – 617. 
[8] YAN, D., and LIN, G. Dynamic properties of concrete in direct tension. Cement and Concrete Research 36, 

7 (2006), 1371 – 1378. 

ICCM2018, 6th-10th August 2018, Rome, Italy

453



Computational Package for the Simulation of Plasma Microscopy 
Properties and Ion Beam-Plasma Interaction in High Energy Density 

Plasmas 
 

†*Juan Miguel Gil1,2, Rafael Rodríguez1,2, Guadalupe Espinosa1, and Pablo R. Beltrán1 
1IUNAT, Departamento de Física, Universidad de Las Palmas de Gran Canaria, Spain. 

2Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, Spain. 

*Presenting and †corresponding author: juanmiguel.gil@ulpgc.es  
 

Abstract 
 
Plasma microscopy properties and ion beam-plasma interaction are fundamental in many 
topics in plasma physics. Fundamental research and modelling in plasma atomic physics, like 
radiative properties and particle and laser beams-plasma interaction, continues to be essential 
for providing basic understanding and advancing on many different topics relevant to high-
energy-density systems, particularly for nuclear fusion and astrophysics plasmas. In this work, 
we present a versatile computational package for the simulation and calculation of atomic and 
radiative properties of high energy density plasmas as well as the properties of ion-beam-
plasma interaction processes. This computational package combines a set of theoretical and 
numerical approximations which yield substantial savings in computing running time, still 
comparing well with more elaborated codes and experimental data. Finally, calculations of 
several relevant plasma magnitudes for various plasma situations are shown and compared. 

Keywords: Non-local thermodynamic equilibrium plasmas, Plasma atomic properties, 
Plasma radiative properties, Simulation and generation of databases of plasma 
properties, Ion bean-plasma interaction. 
 
Introduction 
 
Fundamental research and modelling in plasma atomic physics, like radiative properties and 
particle and laser beams-plasma interaction, continues to be essential for providing basic 
understanding and advancing on many different topics relevant to high-energy-density (HED) 
systems, particularly for nuclear fusion and astrophysics plasmas. Thus, in the field of inertial 
confinement fusion the radiative properties are the responsible of the absorption by the 
dopants in the fuel ablator of the thermal radiation in the indirect drive scheme. In magnetic 
confinement fusion devices, where the radiation emitted by the impurities could lead to 
thermal instabilities or to disruptions in the plasma edge. On the other hand, beam-matter 
interaction experiments are one of the key tools to investigate the fundamental physics 
properties of matter under extreme conditions, like high-energy-density plasmas, and a 
detailed theoretical description of the interactions allows us to diagnose the temperature and 
density, to obtain information about either the dynamic structure function or opacities and the 
equation of state of the plasmas. Also, the beam-matter interaction is one of the most essential 
problems in the nuclear fusion research area, in particular, in the field of beam-driven inertial 
confinement fusion, such as heavy-ion fusion or proton and ion fast ignition, where a precise 
knowledge of the energy deposition of the beam particles is required to design the fusion 
target. Therefore, the plasma properties are essential to analyze and explain both experiments 
and observations and also in their radiative-hydrodynamics numerical simulations. 
Furthermore, the simulations of the plasma properties in HED physics require the 
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development of complex theoretical models and their computational implementation for the 
generation of large plasma properties databases in a wide range of plasma conditions, as for 
example, atomic or opacity data. These plasma properties involve the calculation of a huge 
number of atomic levels (around 105) and atomic processes (around 107), by solving Dirac 
equations to obtain the atomic structure of each quantum atomic level of the ions considered 
in the plasma simulations, as well as, the cross sections of the atomic processes in the plasma. 
It is also necessary, to solve a very large set of coupled rate equations to obtain the average 
ionization of the plasma and the abundances of the atomic levels in both local thermodynamic 
equilibrium (LTE) and non-local thermodynamic equilibrium (NLTE) regimes. Moreover, 
this set must be solved for each plasma condition, i.e. density and temperature, the system 
must be resolved, and in a hydrodynamic simulation the profile of plasma conditions could 
involve around 103 of them.  
In this work we present a versatile computational package based on three coupled codes 
named MIXKIP, RAPCAL [1-2] and STOPP, and their capabilities for the simulation of 
properties of the high energy density plasmas. MIXKIP code calculates the atomic structure 
and atomic kinetic of the ions in the plasma, RAPCAL code calculates the radiative properties 
and STOPP code calculates the energy losses of the ion beams crossing the plasma. This 
computational package combines a set of theoretical and numerical approximations which 
yield substantial savings in computing running time, still comparing well with more 
elaborated codes and experimental data. In order to show the capabilities of the package, 
calculations of several relevant plasma magnitudes for various plasma situations are shown 
and compared. 

Theoretical and computational models 
The determination of the atomic properties is the first step to be solved in the calculation of 
plasma properties in the HED plasmas. Our atomic model performs a detailed description 
(ion-by-ion) in the relativistic detailed configuration accounting approach (RDCA). So that 
each configuration i (either ground or excited one) of the ion with charge state 𝜁𝜁 is 
characterized by one mono-electronic configuration, denoted by 
 

𝐶𝐶𝜁𝜁𝜁𝜁 = ��𝑐𝑐𝜁𝜁𝜁𝜁𝜁𝜁 ≡ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�
𝜁𝜁=1,…,𝑁𝑁
𝑤𝑤𝜁𝜁𝜁𝜁𝜁𝜁 � ;   �𝑤𝑤𝜁𝜁𝜁𝜁𝜁𝜁

𝑀𝑀𝑍𝑍,𝜁𝜁

𝜁𝜁=1

= 𝑁𝑁𝜁𝜁 = 𝑍𝑍 − 𝜁𝜁 

 
where n, l, j, m are the principal quantum number, orbital momentum, total angular 
momentum and third component of the total angular momentum respectively; 𝑁𝑁𝜁𝜁 is the 
number of bound electrons of the ion, 𝑤𝑤𝜁𝜁𝜁𝜁𝜁𝜁 denotes the orbital occupation integer number, and 
finally, 𝑀𝑀𝑍𝑍,𝜁𝜁 is the number of orbitals used in the representation of the configurations which is 
fixed depending on parameters like temperature, density, charge state or nuclear charge 
among others. For a given ion, for each relativistic configuration, we solve the Dirac equation 
for each occupied orbital which gives us its relativistic mono-electronic wave function. The 
corresponding energy is obtained using the density-functional theory (DFT) for each ion in 
the context of Kohn-Shan equations [3] and assuming the local density approach (LDA) for 
the exchange and correlation energy as well as for the exchange and correlation potential [4]. 
This scheme for isolated detailed atom has been extended for atoms and ions in plasmas (non-
isolated ion), both for weakly and strongly coupled plasmas, where the external potential of 
the bound electron system is due to the nucleus of the ion and the plasma surrounding. The 
Dirac equation for each orbital k of the ion with atomic number Z, in the charge state 𝜁𝜁 and 
excited state i-th is given by 
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�𝑐𝑐�⃗�𝛼 ∙ �⃗�𝑝 + 𝑐𝑐2𝛽𝛽 + 𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝜁𝜁�𝑟𝑟;𝑍𝑍, �̅�𝑍(𝑛𝑛,𝑇𝑇)��𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟) = 𝜀𝜀𝜁𝜁𝜁𝜁𝜁𝜁 𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟)     

 
where c is the light speed, α y β are the Dirac matrices, ε’s are the mono-electronic level 
energies and φ’s are the mono-electronic bi-spinor wave functions which depend on the major 
and minor component, P and Q respectively, which are given by 
 
 

𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟) ≡ 𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟) =
1
𝑟𝑟
�
𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟)Ω𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃,𝜙𝜙)
𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟)Ω𝑛𝑛′𝑛𝑛𝑛𝑛(𝜃𝜃,𝜙𝜙)� 

 
being 𝑛𝑛′ = 𝑛𝑛 ± 1 and Ω𝑛𝑛𝑛𝑛𝑛𝑛 the spherical bi-spinors. Moreover, major and minor component 
can be obtained from coupled radial equations it is follows 
 

𝑑𝑑𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
𝑑𝑑𝑟𝑟

= −
𝜅𝜅
𝑟𝑟
𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 +

1
𝑐𝑐
�𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝜁𝜁�𝑟𝑟;𝑍𝑍, �̅�𝑍(𝑛𝑛,𝑇𝑇)��𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 

 
𝑑𝑑𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
𝑑𝑑𝑟𝑟

=
𝜅𝜅
𝑟𝑟
𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 −

1
𝑐𝑐
�𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝜁𝜁�𝑟𝑟;𝑍𝑍, �̅�𝑍(𝑛𝑛,𝑇𝑇)� − 2𝑐𝑐2�𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 

 
with 𝜅𝜅 = (𝑛𝑛 − 𝑛𝑛)(2𝑛𝑛 + 1). Finally, Uef is the self-consistent non isolated effective potential 
which take into account the interaction of one bound electron with the nucleus of the ion, with 
the rest of bound electrons and the plasma surrounding. This effective potential depends on 
the atomic configuration and some plasma parameters, and for non-isolated ions in weakly 
coupled plasmas, we use the non-isolated atomic potential developed in [5], which is given by 
 

𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝑖𝑖(𝑟𝑟;𝑎𝑎) = −1
𝑟𝑟
��𝑁𝑁𝜁𝜁 − 1� �Φ𝜁𝜁𝑖𝑖(𝑟𝑟) − η𝜁𝜁𝑖𝑖(𝑟𝑟;𝑎𝑎)� + �𝑍𝑍 − 𝑁𝑁𝜁𝜁 + �𝑁𝑁𝜁𝜁 − 1�η𝜁𝜁𝑖𝑖(0;𝑎𝑎)�𝑒𝑒−𝑎𝑎𝑟𝑟 + 1�       

with the screening functions of the non-hydrogenic ions given by 

Φ𝜁𝜁𝜁𝜁(𝑟𝑟) = 1
�𝑁𝑁𝜁𝜁−1�

�𝑍𝑍 − 𝑁𝑁𝜁𝜁 + 1 − 𝑟𝑟 �∑ 𝑤𝑤𝜁𝜁𝜁𝜁𝜁𝜁 ∫
�𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟′)�

2

|𝑟𝑟−𝑟𝑟′|
𝑑𝑑𝑟𝑟′𝜁𝜁 + 𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝜁𝜁(𝑟𝑟)��     

with 

𝜌𝜌𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟) ≡ �𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟)�
2

=
1
𝑟𝑟2
�𝑃𝑃𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟) + 𝑖𝑖𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟)�

2
 

and                      

𝜂𝜂𝜁𝜁𝜁𝜁(𝑟𝑟) = 1
2
𝑎𝑎 ∫ 𝑒𝑒−𝑎𝑎|𝑠𝑠−𝑟𝑟|𝜙𝜙𝜁𝜁𝜁𝜁(𝑠𝑠)𝑑𝑑𝑠𝑠∞

0        

being a the inverse of the Debye radius which depend on the electron density ne and 
temperature T as well as on the average ionization �̅�𝑍 of the plasma, and is given by 

𝑎𝑎 = �
4𝜋𝜋𝑛𝑛𝑒𝑒
𝑇𝑇

�𝑍𝑍 + 𝑍𝑍2�

𝑍𝑍
�

1 2⁄

 

For strongly coupled plasmas the non-isolated atomic potential used [6,7] is given by  
 

𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝑖𝑖(𝑟𝑟;𝑎𝑎) = −
1
𝑟𝑟 �
𝑁𝑁𝜁𝜁 − 1� �Φ𝜁𝜁𝑖𝑖(𝑟𝑟)−Φ𝜁𝜁𝑖𝑖(𝑟𝑟;𝑅𝑅𝑜𝑜)� +

𝑍𝑍
2𝑅𝑅𝑜𝑜

�1−
𝑟𝑟2

𝑅𝑅𝑜𝑜2
� 
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at  𝑟𝑟 < 𝑅𝑅𝑜𝑜 and 𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝑛𝑛(𝑟𝑟;𝑎𝑎) = 0 at 𝑟𝑟 > 𝑅𝑅𝑜𝑜, being 𝑅𝑅𝑜𝑜 the sphere-ion radius which is given by 

𝑅𝑅𝑜𝑜 = �
3𝑍𝑍

4𝜋𝜋𝑛𝑛𝑒𝑒
�

1 3⁄

 

 
From the wave functions and level energies of all orbitals of each configuration, we calculate 
the relativistic configuration energy 𝐸𝐸𝜁𝜁 j , given by 
 

𝐸𝐸𝜁𝜁𝜁𝜁(𝑟𝑟) = �𝑤𝑤𝜁𝜁𝜁𝜁𝜁𝜁𝜀𝜀𝜁𝜁𝜁𝜁𝜁𝜁 −
𝜁𝜁

1
2
�𝑤𝑤𝜁𝜁𝜁𝜁𝜁𝜁 ��𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟′)�

2
𝑈𝑈𝜁𝜁𝜁𝜁(𝑟𝑟)𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟′��⃗

𝜁𝜁

 

 
where 𝑈𝑈𝜁𝜁𝜁𝜁(𝑟𝑟) is the atomic potential due to the bound electrons of the ion, which can be 
obtained as  𝑈𝑈𝜁𝜁𝑖𝑖 = (𝑍𝑍 𝑟𝑟⁄ ) + 𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝑖𝑖(𝑟𝑟; 𝑎𝑎 = 0).  Oscillator strength of the transition, from the 
monoelectronic orbital k to k’ of the atomic configurations 𝜁𝜁𝑖𝑖  and 𝜁𝜁𝑖𝑖′, respectively, is 
evaluated in the electric dipole approximation as it follows 
 

𝑓𝑓𝜁𝜁𝜁𝜁,𝜁𝜁𝜁𝜁′ = 𝑤𝑤𝜁𝜁𝜁𝜁𝜁𝜁 �1 −
𝑤𝑤𝜁𝜁𝜁𝜁′𝜁𝜁′

(2𝑛𝑛′ + 1)� 𝑓𝑓𝜁𝜁𝜁𝜁𝜁𝜁,𝜁𝜁𝜁𝜁′𝜁𝜁′ 

with 

𝑓𝑓𝜁𝜁𝜁𝜁𝜁𝜁,𝜁𝜁𝜁𝜁′𝜁𝜁′ =
2
3
�𝜀𝜀𝜁𝜁𝑛𝑛′𝜁𝜁′ − 𝜀𝜀𝜁𝜁𝑛𝑛𝜁𝜁�(2𝑛𝑛′ + 1) ×

× � 𝑛𝑛 1 𝑛𝑛′
1 2⁄ 0 −1 2⁄ � ���𝑃𝑃𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟)𝑃𝑃𝜁𝜁𝜁𝜁′𝜁𝜁′(𝑟𝑟) + 𝑖𝑖𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟)𝑖𝑖𝜁𝜁𝜁𝜁′𝜁𝜁′(𝑟𝑟)�

∞

0

𝑟𝑟𝑑𝑑𝑟𝑟�  

 

where � 𝑛𝑛1 𝑛𝑛2 𝑛𝑛3
𝑛𝑛1 𝑛𝑛2 𝑛𝑛3

� is the 3-j symbol. Another important magnitude overall in the 

interaction of particle beams with plasma is the mean excitation energy 𝐼𝐼𝜁𝜁𝑛𝑛   given  by 
 

𝑛𝑛𝑛𝑛𝐼𝐼𝜁𝜁𝜁𝜁 = 1
𝑁𝑁𝜁𝜁
∑ 𝑤𝑤𝜁𝜁𝜁𝜁𝜁𝜁𝑛𝑛𝑛𝑛𝐼𝐼𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁    

 
where the mean excitation energy of each orbital is obtained as 
 

   𝐼𝐼𝜁𝜁𝜁𝜁𝜁𝜁 = �
𝐸𝐸𝑐𝑐,𝜁𝜁𝜁𝜁𝜁𝜁

𝑟𝑟𝜁𝜁𝜁𝜁𝜁𝜁
2     

being 
𝐸𝐸𝜁𝜁,𝜁𝜁𝜁𝜁𝜁𝜁 = 𝜀𝜀𝜁𝜁𝑛𝑛𝜁𝜁 − ∫𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁∗ (𝑟𝑟)𝑈𝑈𝑒𝑒𝑒𝑒,𝜁𝜁𝜁𝜁�𝑟𝑟;𝑍𝑍, �̅�𝑍(𝑛𝑛,𝑇𝑇)�𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟)𝑑𝑑𝑟𝑟         

and 

𝑟𝑟𝜁𝜁𝜁𝜁𝜁𝜁2 = ∫𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁∗ (𝑟𝑟) 𝑟𝑟2𝜑𝜑𝜁𝜁𝜁𝜁𝜁𝜁(𝑟𝑟)𝑑𝑑𝑟𝑟        

Energies and oscillator strengths play a fundamental role in the photon absorption and 
emission processes from the plasma and in the spectral properties of the plasma, and mean 
excitation energies, in the energy deposition of ion beams in the plasmas.  
Dirac equation is solved by a fourth order Runge-Kutta method in a linear or exponential 
radial mesh, and taking into account the semi-classical non-relativistic approximation at the 
origin and at practical infinity. There are many atomic equations (around 106) as 
configurations considered, and they are coupled with atomic rate equations by means of the 
average ionization of the plasma, and therefore, they must be solved iteratively. At high 
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temperature and low density, the effective potential tends to the isolated one, and the atomic 
and rate equations became uncoupled. On the other hand, although the number of atomic 
levels for a given isolated ion is infinite, this number should be finite for the atoms in a 
plasma if we want to obtain a satisfactory simulation of their radiative properties. This is due 
to the coulomb interaction between the bound electrons and the surrounding plasma, so we 
have to make a previous selection of the levels. However, there is not a priori criterion to 
determine which configurations should be included in the model. In general, the kind of 
configurations to include depends on the plasma conditions, the presence of external radiation 
fields or the interaction with particle beams. The experience achieved, based on the large 
number of cases studied during the development of the computational package, has led us to 
consider a complete enough set of configurations which allow us to obtain reasonable average 
ionization and ion abundances or populations. This set of configuration must be extended to 
obtain reasonable radiative properties of the plasma. In this case, the criterion employed was 
based on a rule of thumb in which the configurations included for each ion in the model are 
those with energies up to twice the ionization energy of the ground configuration of the ion. 
As said before, as the plasma density increase, screening effects due to neighbouring electrons 
and ions modify the atomic potential, and therefore, the ionization energy of the ground 
configuration. This effect is commonly modelled in plasma physics through the so-called 
continuum lowering, that represents the depression of the potential with respect to the isolated 
situation due to the electric fields generated by the plasma charged particles. This effect can 
restrict the number of configurations and, then, it determines the final set of atomic levels 
used for each plasma conditions. In this work, the model used for the continuum lowering is 
based on that provide by our self-consistent non isolated potentials, or based on the widely 
used one developed by Stewart and Pyatt [8]. Another question is related with the degree of 
detail of the atomic description. The most detailed description is the so-called detailed level 
accounting (DLA) approach. However, this description entails very large computational times 
and, therefore, it is only useful for chemical elements of low atomic number. This 
computational package has been designed to provide atomic data generated in the RDCA 
approach from low to high Z plasmas by solving the scheme explained before. Furthermore, 
this package has been also designed to work with external atomic data tables or codes. The 
current external atomic source is FAC code [9], which is designed to provide atomic data in 
DCA and DLA approaches. 
Once the atomic data have been obtained, they are used in the second step which is the 
determination of the plasma level populations. The models commonly used for their 
calculation are based in the so-called collisional-radiative (CR) models [10], which are valid 
for plasmas either at LTE or NLTE. In these models, one has to solve a set of coupled atomic 
rate equations (one per each relativistic configuration in the present model) given by 
 
 

𝑑𝑑𝑁𝑁𝜁𝜁𝜁𝜁(𝐫𝐫, 𝑡𝑡)
𝑑𝑑𝑡𝑡

= �𝑁𝑁𝜁𝜁′𝜁𝜁′(𝐫𝐫, 𝑡𝑡)ℝ𝜁𝜁′𝜁𝜁′→𝜁𝜁𝜁𝜁
+ −�𝑁𝑁𝜁𝜁𝜁𝜁(𝐫𝐫, 𝑡𝑡)ℝ𝜁𝜁𝜁𝜁→𝜁𝜁′𝜁𝜁′

−

𝜁𝜁′𝜁𝜁′𝜁𝜁′𝜁𝜁′
 

 
where 𝑁𝑁𝜁𝜁𝜁𝜁 is the population density of the atomic configuration or level i of the ion with 
charge state 𝜁𝜁. The terms ℝ𝜁𝜁′𝜁𝜁′→𝜁𝜁𝜁𝜁

+  and ℝ𝜁𝜁𝜁𝜁→𝜁𝜁′𝜁𝜁′
−  take into account all the atomic processes, 

both collisional and radiative, that contribute to populate and depopulate the configuration 𝑖𝑖 of 
the ion 𝜁𝜁, respectively. Moreover, two complementary equations have to be satisfied together 
with the set of atomic rate equations. First, the conservation of the ion density 𝑛𝑛𝜁𝜁𝑜𝑜𝑛𝑛, 
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��𝑁𝑁𝜁𝜁𝜁𝜁

𝑀𝑀𝑍𝑍,𝜁𝜁

𝜁𝜁=1

𝑍𝑍

𝜁𝜁=0

= 𝑛𝑛𝜁𝜁𝑜𝑜𝑛𝑛 

 
and, second, the charge neutrality condition in the plasma, 
 

��𝜁𝜁𝑁𝑁𝜁𝜁𝜁𝜁

𝑀𝑀𝑍𝑍,𝜁𝜁

𝜁𝜁=1

𝑍𝑍

𝜁𝜁=0

= 𝑛𝑛𝑒𝑒 

 
In our computational package we solve the atomic rate equations for mono and 
multicomponent plasmas. For the last situation, we have also provide as an input data, the 
molar fractions of the chemical elements in the mixture which are given by  𝑥𝑥𝑛𝑛 =
𝑛𝑛𝜁𝜁𝑜𝑜𝑛𝑛,𝑛𝑛 𝑛𝑛𝜁𝜁𝑜𝑜𝑛𝑛⁄  and they have to be satisfied ∑ 𝑥𝑥𝑛𝑛 = 1𝑛𝑛 , with m runs over the number of 
chemical elements in the plasma. The atomic processes included in the present CR model are: 
collisional ionization and three body recombination, spontaneous decay, collisional excitation 
and de-excitation, radiative recombination, electron capture and auto-ionization. The cross 
sections of theses atomic processes in the plasma are calculated by mean of widely known 
analytical expressions [11] which depend on the atomic data calculated in the theoretical 
frame mentioned above. At this point we want to highlight that in the computational package 
are also implemented the Saha-Boltzmann and Coronal Equilibrium equations which provide 
the asymptotic behaviour of the atomic rate equations at high and low plasma electron 
density, respectively. 
The rate coefficients of collisional processes between an ion, which goes from the state  𝜁𝜁𝑖𝑖 to 
𝜁𝜁′𝑖𝑖′ , and one free electron, with incident energy 𝜀𝜀, are obtained as  
 

〈𝑣𝑣𝜎𝜎𝜁𝜁𝜁𝜁→𝜁𝜁′𝜁𝜁′〉 = � 𝑣𝑣 𝜎𝜎𝜁𝜁𝜁𝜁→𝜁𝜁′𝜁𝜁′(𝜀𝜀) 𝑓𝑓(𝜀𝜀)𝑑𝑑𝜀𝜀
∞

𝐸𝐸𝑡𝑡ℎ

 

 
where 𝜎𝜎 is the cross section of the processes, 𝑣𝑣 = �2𝜀𝜀 𝑛𝑛𝑒𝑒⁄   and 𝑓𝑓(𝜀𝜀) are, respectively, the 
speed and the distribution function of the free electrons. Free electron distribution function 
has to be solved from the free electron rate equation which is coupled with atomic rate 
equations. In our model, free electron plasma is assumed in LTE, and therefore, the free 
electron distribution function is given by the Boltzmann’s distribution which is characterized 
by the plasma electron temperature. The rate coefficients of radiative processes between an 
ion, which goes from the state  𝜁𝜁𝑖𝑖 to 𝜁𝜁′𝑖𝑖′ , and one photon, with energy  ℎ𝜈𝜈, are obtained as  
 

〈𝑐𝑐𝜎𝜎𝜁𝜁𝜁𝜁→𝜁𝜁′𝜁𝜁′〉 = � 𝑐𝑐 𝜎𝜎𝜁𝜁𝜁𝜁→𝜁𝜁′𝜁𝜁′(𝜈𝜈) 𝑓𝑓𝑝𝑝ℎ(𝜈𝜈)𝑑𝑑𝜈𝜈
∞

𝐸𝐸𝑡𝑡ℎ ℎ⁄

 

being 𝑓𝑓𝑝𝑝ℎ the photon distribution function which is related with the spectral radiation intensity 
of the photons by mean 𝐼𝐼𝜈𝜈 = 𝑐𝑐ℎ𝜈𝜈𝑓𝑓𝑝𝑝ℎ(𝜈𝜈). Radiative transfer equation provides the spectral 
radiation intensity from the following equation 
 
 

1
𝑐𝑐
𝜕𝜕𝐼𝐼𝜈𝜈(𝐫𝐫, 𝑡𝑡, 𝜈𝜈,𝒏𝒏)

𝜕𝜕𝑡𝑡
+ 𝒏𝒏 ∙ 𝛁𝛁𝐼𝐼𝜈𝜈(𝐫𝐫, 𝑡𝑡, 𝜈𝜈,𝒏𝒏) = −𝜅𝜅(𝐫𝐫, 𝑡𝑡, 𝜈𝜈)𝜈𝜈(𝒓𝒓, 𝑡𝑡, 𝜈𝜈,𝒏𝒏) + 𝑛𝑛(𝐫𝐫, 𝑡𝑡, 𝜈𝜈) 
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where 𝜈𝜈 is the photon frequency,  𝒏𝒏 is a unit vector in the direction of propagation of the 
photons for any value of solid angle 𝛺𝛺, and finally, 𝑛𝑛(𝒓𝒓, 𝑡𝑡, 𝜈𝜈) and 𝜅𝜅(𝒓𝒓, 𝑡𝑡, 𝜈𝜈) are the 
monochromatic emissivity and absorption coefficients, respectively. Both coefficients include 
electron transitions in the plasma between atom bound levels (line transitions or bound-bound 
contributions), between bound and free levels (photoionization and radiative recombination 
which are bound-free contributions) and between electron free levels (direct and inverse 
bremsstrahlung or free-free contributions). The expressions used to calculate them can be 
found elsewhere [12]. In our model, radiative transfer equation is assumed in stationary 
conditions, and therefore, the first sum in the left hand of the transfer equation equals zero. 
The formal solution of the radiative transfer equation, along the ray defined by the points of 
space (so,s), is given by 

𝐼𝐼𝜈𝜈(𝑠𝑠, 𝜈𝜈) = 𝐼𝐼𝜈𝜈(𝑠𝑠𝑜𝑜, 𝜈𝜈)𝑒𝑒𝜏𝜏(𝑠𝑠𝑜𝑜,𝑠𝑠;𝜈𝜈) + �𝑛𝑛(𝑠𝑠′, 𝜈𝜈)𝑒𝑒𝜏𝜏�𝑠𝑠′,𝑠𝑠;𝜈𝜈�𝑑𝑑𝑠𝑠′
𝑠𝑠

𝑠𝑠𝑜𝑜

 

being 𝜏𝜏 the optical depth, given by 

𝜏𝜏(𝑠𝑠𝑜𝑜 , 𝑠𝑠; 𝜈𝜈) = �𝜅𝜅(𝑠𝑠′, 𝜈𝜈) 𝑑𝑑𝑠𝑠′
𝑠𝑠

𝑠𝑠𝑜𝑜

 

Also, it is assumed a uniform distribution of emitting atoms and isotropic emission in the 
plasma in the three basic geometries (plane, cylindrical and spherical), and moreover, there 
are not external radiation fields. Then, spectral radiation intensity can be written as 
 

𝐼𝐼𝜈𝜈(𝑠𝑠, 𝜈𝜈) =
𝑛𝑛(𝜈𝜈)
𝜅𝜅(𝜈𝜈) �1 − 𝑒𝑒−𝜅𝜅(𝜈𝜈)(𝑠𝑠−𝑠𝑠𝑜𝑜)� 

 
Two ingredients are needed to compute the spectral radiation intensity, or  𝑛𝑛(𝒓𝒓, 𝑡𝑡, 𝜈𝜈) and 
𝜅𝜅(𝒓𝒓, 𝑡𝑡, 𝜈𝜈). First, the cross sections of the radiative processes, which are obtained through 
atomic simulations. Secondly, the populations of the atomic levels in the plasma obtained 
from atomic rate equations. On the other hand, as the rate equations included the radiative 
processes in the plasma, i.e. spectral radiation intensity or the absorption and emissivity 
coefficients, one has to solve a set of coupled equations which are formed by atomic rate 
equations and radiative transfer equation. For optically thin plasmas, where the radiative 
processes can be despised in the atomic rate equations, the coupling is avoided and the atomic 
rate equations and radiative transfer equation can be solved separately: linear system of 
atomic rate equations are solved, and once the absorption and emissivity coefficients are 
obtained from atomic level populations, spectral radiation intensity is calculated. In the 
opposite case, for optically thick plasmas, the set of coupled equations are solved in the 
context of the escape factor formalism which avoids the explicit resolution of the radiative 
transfer equation. The formal solution of the transfer equation is introduced in the atomic rate 
equations, through rate coefficients of the bound-bound radiative processes, and now, a non-
linear system of atomic rate equations is solved. 
Another issue to consider is the method chosen for the solution of the atomic rate equations 
solver. When the electron density is taken as input parameter characterizing the population 
kinetics problem, then the set of rate equations constitute a linear system of M equations for 
the level populations, where M denotes the total number of levels included in the collisional-
radiative model. Solvers can be broadly classified into two categories, direct and iterative. 
The direct solvers compute a solution which is guaranteed to be as accurate as the problem 
definition.  The amount of time required to obtain a solution by such algorithms typically 
scale like M3. In a population kinetics problem, the number of levels can reach the order of 
105, so for such large systems of linear equation the direct methods lead to prohibitively long 
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run times. For the kind of problems that we are interested, the iterative methods yield an 
approximation to the solution significantly faster that direct method. Furthermore, iterative 
methods typically require less memory than direct ones and hence can be the only means of 
solution of the large systems of equations. Our code uses as initial population distribution the 
solution provides by either the corona model or the Saha-Boltzmann equations depending on 
whether the electron density of the case analysed is closer to the regime of low or high-
density respectively.  
Once the atomic data and plasma level populations the atomic configurations are obtained, by 
using the MIXKIP code, they are used as input data in RAPCAl code, to determine the 
radiative properties (spectrally resolved opacity and emissivity, specific intensity, mean 
Planck and Rosseland opacities or radiative power losses), or in the STOPP code to determine 
the energy deposition of the ion beams in plasmas (stopping power, energy losses or range). 
The basic equations of our radiative emissivity model to calculate  𝑛𝑛(𝐫𝐫, 𝑡𝑡, 𝜈𝜈), has three 
contributions. The bound-bound contribution, 𝑛𝑛𝑏𝑏𝑏𝑏(𝐫𝐫, 𝑡𝑡, 𝜈𝜈), is given by 
 

𝑛𝑛𝑏𝑏𝑏𝑏(𝜈𝜈) = ∑ ∑ 𝑛𝑛𝜁𝜁𝑛𝑛→𝜁𝜁𝜁𝜁(𝜈𝜈),    𝑛𝑛𝜁𝜁𝑛𝑛→𝜁𝜁𝜁𝜁(𝜈𝜈) = ℎ𝜈𝜈
4𝜋𝜋
𝑁𝑁𝜁𝜁𝑛𝑛𝐴𝐴𝜁𝜁𝑛𝑛→𝜁𝜁𝜁𝜁𝑁𝑁𝜙𝜙𝜁𝜁𝑛𝑛(𝜈𝜈)       𝜁𝜁,𝑛𝑛𝜁𝜁  (14) 

 

where we have omitted the dependence on the position and time in the formula for simplicity. 
𝐴𝐴𝜁𝜁𝑛𝑛→𝜁𝜁𝜁𝜁 is the Einstein coefficient for spontaneous de-excitation between the bound states 𝑛𝑛, 𝑖𝑖 
of the ion 𝜁𝜁 and ℎ is the Planck’s constant. 𝜙𝜙𝜁𝜁𝑛𝑛(𝜈𝜈) is the line profile and in its evaluation of 
the line profile, natural, Doppler, and electron-impact [13] broadenings were included and 
also the Unresolved Transition Array width [14], which is a statistical method to take into 
account the atomic fine structure of the spectra in the DCA atomic approach used in this 
work. The line-shape function is applied with the Voigt profile that incorporates all these 
broadenings. The bound-free contribution to the emissivity, 𝑛𝑛𝑏𝑏𝑒𝑒(𝐫𝐫, 𝑡𝑡, 𝜈𝜈), is determined by 
means of 

 

𝑛𝑛𝑏𝑏𝑒𝑒(𝜈𝜈) = � �𝑛𝑛𝜁𝜁+1,𝑛𝑛→𝜁𝜁,𝜁𝜁(𝜈𝜈)
𝜁𝜁,𝜁𝜁𝜁𝜁+1,𝑛𝑛

 

𝑛𝑛𝜁𝜁+1,𝑛𝑛→𝜁𝜁,𝜁𝜁(𝜈𝜈) = ℎ4𝜈𝜈3𝑛𝑛𝑒𝑒

2𝜋𝜋𝑐𝑐2𝜀𝜀
1
2
� 1
2𝑛𝑛𝑒𝑒

�
3
2 𝑁𝑁𝜁𝜁+1,𝑛𝑛𝑓𝑓(𝜀𝜀) 𝑔𝑔𝜁𝜁,𝜁𝜁

𝑔𝑔𝜁𝜁+1,𝑗𝑗
𝜎𝜎pho𝜁𝜁+1,𝑛𝑛→𝜁𝜁,𝜁𝜁(𝜈𝜈)  (15) 

 

where 𝜀𝜀 is the free electron energy and 𝑛𝑛𝑒𝑒 the electron mass. In this work, a Maxwell-
Boltzmann distribution 𝑓𝑓(𝜀𝜀) at the electron temperature is assumed. Photoionization cross 
section, 𝜎𝜎pho𝜁𝜁+1,𝑛𝑛→𝜁𝜁,𝜁𝜁(𝜈𝜈), were calculated quantum-mechanically using the FAC code in the 
relativistic distorted wave approach. 𝑔𝑔𝜁𝜁,𝜁𝜁 denotes the statistical weight of level 𝑖𝑖. Finally, for 
the free-free contribution to the emissivity a semi-classical expression, based on the Kramer’s 
inverse bremsstrahlung cross section [15], was used  

 

𝑛𝑛𝑒𝑒𝑒𝑒(𝜈𝜈) = 32𝜋𝜋2𝑒𝑒4𝑎𝑎02𝛼𝛼3

√3(2𝜋𝜋𝑛𝑛𝑒𝑒)3/2ℎ
� 𝑛𝑛𝑒𝑒
2𝜋𝜋𝜁𝜁𝐵𝐵𝑇𝑇𝑒𝑒

�
1/2

𝑍𝑍2���𝑛𝑛ion𝑛𝑛𝑒𝑒𝑒𝑒−ℎ𝜈𝜈/𝜁𝜁𝐵𝐵𝑇𝑇𝑒𝑒  (16) 

 
where 𝑘𝑘𝐵𝐵is the Boltzmann’s constant and 𝛼𝛼 is the fine structure constant.  
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Finally, we present the basic equations of the ion beam-plasma interaction model 
implemented in STOPP code, which allow us to determine the energy losses and the range of 
the ion beam from the stopping power. We consider two contributions to the total stopping 
power, both bound and free electrons. Bound contribution proposed is given by  
 

𝑆𝑆𝑏𝑏�𝑣𝑣𝑝𝑝,𝑍𝑍,𝑍𝑍𝑝𝑝;  𝑛𝑛𝑎𝑎𝑎𝑎 ,𝑇𝑇,𝑍𝑍� =
𝑍𝑍𝑝𝑝2𝑒𝑒4

4𝜋𝜋𝜀𝜀𝑜𝑜2
𝑛𝑛𝑎𝑎𝑎𝑎
𝑣𝑣𝑝𝑝2

𝐿𝐿𝑏𝑏 

where the bound stopping number 𝐿𝐿𝑏𝑏 is given by 
 

𝐿𝐿𝑏𝑏 =

⎩
⎪
⎨

⎪
⎧�𝑍𝑍 − 𝑍𝑍��𝑛𝑛𝑙𝑙𝑔𝑔 �

2𝑛𝑛𝑒𝑒

𝐼𝐼
� −

2𝐸𝐸𝜁𝜁
𝑛𝑛𝑒𝑒𝑣𝑣𝑝𝑝2

� ,      𝑖𝑖𝑓𝑓 𝑣𝑣𝑝𝑝 > 𝑣𝑣𝜁𝜁𝑛𝑛𝑎𝑎

�𝑍𝑍 − 𝑍𝑍�   �
𝛼𝛼𝑣𝑣𝑝𝑝3

1 + 𝐺𝐺𝑣𝑣𝑝𝑝2
� ,                       𝑖𝑖𝑓𝑓 𝑣𝑣𝑝𝑝 < 𝑣𝑣𝜁𝜁𝑛𝑛𝑎𝑎

 

 
where 𝑍𝑍𝑝𝑝 is the charge of the projectile, 𝐼𝐼 and 𝐸𝐸𝜁𝜁 are the mean excitation energy and mean 
kinetic energy of the bound electrons in the plasma, given by 
 

𝐼𝐼 = �𝐼𝐼𝜁𝜁𝜁𝜁
𝑝𝑝𝜁𝜁𝜁𝜁𝑁𝑁𝜁𝜁 �𝑍𝑍−𝑍𝑍�⁄

𝜁𝜁𝜁𝜁

 

and  
𝐸𝐸𝜁𝜁 = �1 𝑍𝑍 − 𝑍𝑍⁄ ��𝑝𝑝𝜁𝜁𝜁𝜁𝐸𝐸𝜁𝜁,𝜁𝜁𝜁𝜁

𝜁𝜁𝜁𝜁

 

being 𝑝𝑝𝜁𝜁𝜁𝜁 the normalized population density, 𝛼𝛼  the viscosity coefficient of the bound 
electrons, given by 

𝛼𝛼 = 1.067 𝐸𝐸𝜁𝜁
1 2⁄ 𝐼𝐼2 

and finally, 𝐺𝐺 is a constant determined from the continuity condition of the bound stopping 
number at  𝑣𝑣𝜁𝜁𝑛𝑛𝑎𝑎, with 𝑣𝑣𝜁𝜁𝑛𝑛𝑎𝑎 = �3𝐸𝐸𝜁𝜁 + 1.5𝐼𝐼.  
Free electron contribution to the total stopping power is given by [16] 
 

𝑆𝑆𝑒𝑒�𝑣𝑣𝑝𝑝,𝑍𝑍,𝑍𝑍𝑝𝑝;  𝑛𝑛𝑒𝑒 ,𝑇𝑇,𝑍𝑍� =
𝑍𝑍𝑝𝑝2𝑒𝑒4

4𝜋𝜋𝜀𝜀𝑜𝑜2
𝑛𝑛𝑒𝑒
𝑣𝑣𝑝𝑝2

(𝐺𝐺𝑒𝑒𝐿𝐿𝑒𝑒 + 𝐻𝐻𝑒𝑒 𝑛𝑛𝑙𝑙𝑔𝑔𝑋𝑋𝑒𝑒) 

with the free stopping number given by  

𝐿𝐿𝑒𝑒 = 𝑛𝑛𝑙𝑙𝑔𝑔 �
𝑅𝑅𝐷𝐷
𝑏𝑏
� 

 where 𝑅𝑅𝐷𝐷 is the Debye radius, 𝑏𝑏 = 𝑍𝑍𝑝𝑝𝑒𝑒2 4𝜋𝜋𝜀𝜀𝑜𝑜 𝑛𝑛𝑒𝑒�𝑣𝑣𝑝𝑝2 + 𝑣𝑣𝑒𝑒2��  is the impact parameter, and 𝑣𝑣𝑒𝑒 
is the mean velocity of the free electrons.  𝐺𝐺𝑒𝑒 and 𝐻𝐻𝑒𝑒 functions are given by 

𝐺𝐺𝑒𝑒 = erf (𝑋𝑋𝑒𝑒 √2) −�2
𝜋𝜋
𝑋𝑋𝑒𝑒𝑒𝑒−𝑋𝑋𝑒𝑒

2 2⁄�  

and  

𝐻𝐻𝑒𝑒 = −
𝑋𝑋𝑒𝑒3 log 𝑋𝑋𝑒𝑒 𝑒𝑒−𝑋𝑋𝑒𝑒

2 2⁄

3√2𝜋𝜋
+

𝑋𝑋𝑒𝑒4

(𝑋𝑋𝑒𝑒4 + 12) 
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where 𝑋𝑋𝑒𝑒 is the ratio between the projectile and free electron speeds. The ion-beam plasma 
interaction model implemented in STOPP code is valid to linear interaction regimen, non-
degenerated free electrons, and finally, fast collisions.  

 
 
Results 
In this section we present some examples of the simulations carried out with the 
computational package based on the MIXKIP, RAPCAL and STOPP codes present before. 
First, we consider the spectral emission of shock waves in xenon plasmas doped with helium, 
at density and temperature conditions of the shock waves generated at PALS [17]. In Figure 1 
we show the total emissivity and opacity, vs photon energy, of the mixture plasma with 90% 
of Xe and 10% of He, at matter density and electron temperature given by 1.5 gcm-3 and 10 
eV, respectively. The spectral emissivity and opacity of the Xe and He as well as the total are 
showed, and we focus our attention in the experimental spectral window given by 35-80 eV. 
At this spectral energy, photons from Lyman series of the helium-like-hydrogen ion are 
present, and their characterization can be used to diagnose the electron density and 
temperature of the plasma. In  
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Figure 1.  Spectral emissivity and opacity of Xe (90%) and He (10%) plasma mixture at 
1.5 gcm-3 and 15 eV. 
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Figure 2.  Specific radiative intensity emitted by Xe (90%) and He (10%) plasma 
mixture at 1.5 gcm-3 and 6 and 10 eV. 
Figure 2 we show the specific radiative intensity emitted by a portion of plasma given by 
0.6x4x0.025 mm, at matter density of 1.5 gcm-3 and temperatures of 5 and 10 eV, and finally, 
for different molar fractions of helium in the plasma. It can be observed that the intensity 
decrease when the temperature and molar fraction arise. It can also be observed the 
contribution to the total intensity of the Lyman series emitted from helium and the sensibility 
of the spectrum to the temperature. 

In Figure 3 we show the stopping power and kinetic energy of proton beam at 0.5 MeV in 
aluminum plasma at 50 eV and different atom or ion densities, as function of depth in the 
plasma. It has been calculated by solving the atomic rate equation in the optically thin 
approximation and Saha-Boltzmann equations with the aim to simulate NLTE and LTE 
thermodynamic regimes in the plasma. At low densities, important differences in the stopping 
and kinetic energies of the proton are observed, while at high densities, NLTE and LTE 
simulations provide very similar results. The maximum stopping power calculated from 
atomic rate equations (NLTE) is lower than those obtained from Saha-Boltzmann equations 
(LTE) while the range is greater. 
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Figure 3.  Stopping power and kinetic energy of proton beam at 0.5 MeV in aluminum 
plasma at 50 eV and different ion densities, as function of depth in the plasma. 
 

Conclusions 
 
In this work we have presented a versatile computational package designed to simulate 
plasma properties of the high energy density physics in a wide range of plasma conditions and 
combine a set of theoretical and numerical approximations which yield substantial savings in 
computing running time, still comparing well with more elaborated codes and experimental 
data. So, it can be simulated the atomic structure, atomic kinetic and radiative properties as 
well as the energy deposition of the ion beams in mono and multicomponent plasmas at LTE 
and NLTE thermodynamic regimens. It can also be simulated the properties of the optically 
thin and thick plasmas, and finally, of the non-stationary plasmas. These plasma properties 
involve the calculation of a huge number of atomic levels (around 105) and atomic processes 
(around 107), by solving Dirac equations to obtain the atomic structure of each quantum 
atomic configuration of the ions considered in the plasma simulations, as well as, the cross 
sections of the atomic processes in the plasma. It is also necessary, to solve a very large set of 
coupled rate equations to obtain the average ionization of the plasma and the abundances of 
the atomic configurations. Moreover, this set must be solved for each plasma condition, i.e. 
density and temperature, the system must be resolved, and in a hydrodynamic simulation the 
profile of plasma conditions could involve around 103 of them. Finally, calculations of several 
relevant plasma magnitudes for various plasma situations are shown and compared. 
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Abstract 

The processes of multilayer composites failure under dynamic loading were investigated. 

Fracture model of brittle materials subjected to high velocity impact was used. Deformation 

and fracture of Al3Ti - Ti metal-intermetallic laminate composite materials under dynamic 

loading was numerically simulated using the finite element method. 

Keywords: MIL composites, dynamic loading, failure 

 

Introduction 

Progress in the creation of new technological innovations mainly depends on the development 

and improvement of technologies for obtaining materials with required properties, so the 

creation of materials with desired structural and functional properties is currently an area of 

increased attention in materials science and technology. A new promising class of structural 

materials includes metal-intermetallic laminate composite materials (MILCM) which are 

represented by a multilayer composition with alternating metal and intermetallic layers [1]-

[7]. These composite materials are attractive for use in aerospace engineering and many other 

areas, and methods for obtaining of MILCM allow us to use new technologies expanding the 

functionality of laminate composites and the area of application. 

In this work the processes of high-velocity interaction of a projectile with a multilayer 

MILCM target were numerically investigated in axisymmetric geometry using the finite 

element method. The set of equations for describing unsteady adiabatic motion of an elasto-

plastic medium, including nucleation and accumulation of microdamages and temperature 

effects, consists of the equations of continuity, motion, and energy [7]-[9]. To simulate 

numerically the failure of the material under high velocity impact, we applied the active-type 

kinetic model determining the growth of microdamages, which continuously changes the 

properties of the material and induce the relaxation of stresses. The strength characteristics of 

the medium (shear modulus and dynamic yield strength) depended on temperature and the 

current level of damage taking into account probabilistic approach to numerical simulation of 

fracture [10]-[12]. The critical specific energy of shear deformations was used as a criterion 

for the erosion failure of the material that occurred in the region of intense interaction and 

deformation of contacting bodies. To simulate the brittle-like failure of the intermetallic 

material under high velocity impact, we modified the kinetic model of failure and included the 

possibility of failure above Hugoniot elastic limit (HEL) in the shock wave and the sharp drop 

in the strength characteristics for the failure of material. 
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Formulation of the Problem 

In the computations we used the target consisting from 17 composite intermetallic Al3Ti - 

titanium alloy Ti-6-4 layers. Total thickness of the target was 19.89 mm. The thicknesses of 

intermetallic layer and the layer of titanium alloy were varied. The penetrator used was a 

tungsten heavy alloy rod with an initial diameter of 6.15 mm and length of 23 mm [1]. Initial 

impact velocity was of 900 m/s. 

 

To simulate numerically the processes of high velocity shock loading, we use the model of an 

elastic-plastic damaged medium characterized by the presence of microcavities (pores, 

cracks). In the model the total volume of the medium W comprises the undamaged part of the 

medium of density ρc which occupies volume Wc, and microcavities of zero density which 

occupy volume Wf. The average density of the damaged medium is connected with the above-

introduced parameters by the relationship ρ = ρc(Wc/W). The degree of damage of the 

medium is characterized by the specific volume of microcavities Vf = Wc/(W*ρ). 

 

A mathematical model used in the numerical code for solving high velocity impact problems 

is based upon a set of differential equations of continuum mechanics. The system of equations 

governing the nonstationary, adiabatic (for both elastic and plastic deformation) motion of a 

compressible medium with allowance for the evolution of microdamages comprises the 

continuity equation, the equation of motion, the energy equation [8] [9]. 

 

To simulate numerically the failure of the material at high velocity impact, we applied the 

active-type kinetic model determining the growth of microdamages, which continuously 

change the properties of the material and induce the relaxation of stresses: 
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Here P
*
 = PkV1/(Vf + V1), and V1, V2, Pk, and Kf are material constants determined 

experimentally. The form of condition (1) was chosen according to the experimental data. We 

assume that there are the fracture areas of identical initial sizes in the material with the 

effective specific volume V1. Cracks or pores are formed and grow in these fracture areas 

when the tensile pressure exceeds a certain critical value P
*
 that decreases during the growth 

of microdamages. The constants in (1) were chosen by comparing the results of computations 

and experiments concerning the recording of a free surface velocity when a specimen was 

loaded by planar impulses of compression. The same set of constants is used to calculate both 

build-up and collapse of cracks and pores (depending on the sign of Pc). 

 

The material model includes the equation of state of the Mie-Grüneisen type that represents 

pressure as a function of specific volume and specific internal energy, the deviatoric elastic 

constitutive relationships, the von Mises yield criterion taking into account temperature 

effects. The strength characteristics of the medium (shear modulus and dynamic yield 

strength) depend on temperature and the current level of damages.  
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Here Tm is the melting point of the substance, and c, V3, V4, and T1 are the constants. 

 

To simulate the brittle-like failure of the intermetallic material under high velocity impact, we 

developed the model for the possibility of failure above HEL in the shock wave and the sharp 

drop in the strength characteristics for the failure of materials [13]: 
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where σsh is the stress in the shock wave (σsh < 0 for compression), k
fP , k

fV , σf, σHEL are the 

constants.  

 

The critical specific energy of shear deformations is used as a criterion of the erosion failure 

of the material that occurs in the region of intense interaction and deformation of contacting 

bodies. The current value of the specific energy of shear deformations is defined from the 

relationship 

 

ijij
sh S

dt

Ed
  

 

The critical value of the specific energy of shear deformations depends on the conditions of 

interactions and is a function of the initial impact velocity 

 

0shsh
c
sh baE   

 

where  sha  and shb  are the constants. When 
c
shsh EE   in the computational cell near the 

contact boundaries, the cell is assumed to be damaged and the parameters in neighboring cells 

are corrected with regard for the principles of conservation laws.  
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Results and Discussion 

We consider the interaction of a projectile with a finite thickness target. The problem is 

formulated using the Cartesian coordinate system with initial (at t = 0) and boundary 

conditions. The initial conditions are characterized by the absence of internal stresses, and the 

projectile moves toward the target with a velocity υ0. There are no external loads on free 

surfaces of the interacting bodies, while the conditions of sliding are implemented on the 

contact surfaces between the projectile and the target. The finite-element relations used to 

solve the formulated problem are given in [14] [15]. 

 

Fig. 1 shows the computer images with a section of the projectile and composite target at the 

time of 60 μs. The thickness of intermetallic Al3Ti layer in this case was of 0.94 mm, the 

thickness of the layer of Ti-6Al-4V titanium alloy was of 0.23 mm. The computations 

demonstrate the fact that the MIL composite target withstands the impact loading.  

     
Figure 1: Computer images with a radial section of the projectile/target assembly (a), 

specific volume of microdamages (b) and specific shear deformation energy (c) at 60 μs 

 

The distribution of the damage and the deformation patterns are illustrated in Figs. 1b and 1c 

which show the section contours of the projectile and composite target, the contours and fields 

of the specific volume of microdamages (Fig. 1b) and the specific shear deformation energy 

(Fig. 1c). The low level of microdamages in the layers of titanium alloy shows the brittle 

damage stops distribution in the intermetallic layers. 

 

Table 1: Results of simulations for target layers of different thicknesses 

 Al3Ti 

[mm] 

Ti-6-4 

[mm] 

Areal density 

[g/cm
2
] 

Depth of penetration 

[mm] 

Average velocity 

[m/s] 

40 µs 60 µs 40 µs 60 µs 

1 0.94 0.23 7.02 17.00 18.49 150 30 

2 1.17 - 6.54 21.12 25.41 350 150 

3 - 1.17 8.97 18.73 20.90 200 50 

4 0.47 0.70 7.99 22.95 28.71 430 250 

5 0.23 0.94 8.49 24.15 - 470 - 

6 0.70 0.47 7.52 21.86 26.44 410 220 

7 1.04 0.13 6.81 22.85 - 440 - 

 

The Table 1 represents the results of simulations for target layers of different thicknesses. The 

results show that the depth of penetration depends on the thicknesses of intermetallic and 

titanium alloy layers. The MIL composite target withstands the impact loading for the 0.94 

mm Al3Ti / 0.23 mm Ti-6-4 (the ratio is about 4/1). In this case the intermetallic layer 

a b c 
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provides the failure of the projectile and the metal layer stops the distribution of damage. In 

the other cases the perforation of the MIL composite target takes place. There is the same 

result for the uniform target made of either Al3Ti (line 2 in the Table 1) or Ti-6-4 (3). 

Conclusions 

The results obtained demonstrate that destruction of the intermetallic layer is brittle compared 

to plastic failure of the metal layer. The computations have shown that the optimal composite 

target has a higher ballistic resistance in comparison with a uniform target either Al3Ti or Ti-

6-4. The optimum construction of the MIL composite should include a metal layer of 

sufficient thickness, which would stop the distribution of brittle damage. The results show 

that the depth of penetration depends on the thicknesses of intermetallic and titanium alloy 

layers. The composite target withstands the impact loading for the ratio about 4/1 (Al3Ti / Ti-

6-4). 
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Abstract

Almost thirty years have passed since the mid-eighties, when the digital has burst into
architectural design and production. From the initial experiments and theoretical enthusiasms,
practiced in geographical, political and cultural different contexts where traditionally there
was a strong relationship between design, technology, administrative institutions and
industries, we have achieved some widespread and standardized results in software industry,
processing, production, profession, spanning from experimental computational applications to
Building Information Modeling. What will be the next conceptual steps and tools and in
which specific fields it seems that the use of Computational Design be strengthened? This
paper tries to reassemble the wires between the experimenters' generation, their earlies
disciples strongly engaged with theoretical works, and the awake of the historians on the
digital and the computation design in architecture.

Keywords: Computation, Architecture, design.

A retroactive awareness

Almost thirty years have passed since the mid-eighties, when the digital has burst into
architectural design and production – after the personal computers spread at large scale –
allowing today to read within a historical perspective the most significant past experiences
and to detect issues anticipating how technology will continue to influence architecture in the
near future. Since then, the use of computer technology in the design and in the building
process of architecture has considerably grown. 
The deanship (1988-2003) of Bernard Tschumi at Columbia University of New York,
Graduate School of Architecture Planning Preservation signed a further phase of architectural
postmodern culture, based on technological innovations, – digital design (research on form,
style), widely disseminated by architectural journals and magazines as Architectural Design,
and computing sciences applied architecture (BIM, prototyping, 3D printing, form-finding,
parametricism) – competing with similar experiences already started at MIT (Negroponte,
Media Lab 1985) and Harvard Laboratory for Computer Graphics and Spatial Analysis (Eric
Teicholz, Jack Dangermond founder of ESRI), established in 1965. 
From the initial experiments and theoretical enthusiasms, practiced in geographical, political
and cultural different contexts where there was traditionally a strong relationship between
design, technology, administrative institutions and industries, we have achieved some
widespread and standardized results in software industry, processing, production, profession,
spanning from experimental computational applications to Building Information Modeling.  
In this new field of research – at that time – a giant as Frank Gehry certainly made digital
design as the fundamental tool for linguistic exploration and for research on the construction
methods to produce architecture. Gehry has played a decisive role for several decades
positioning his practice – hardly imitable – between the development of digital design and the
spread of software and assessment systems with the foundation of Gehry Technologies, at first
getting patents and than selling the company which keeps still his name.
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During the last fifteen years, after an initial phase of individual engagements  (scholars, groups and
institutions), the research results were spread establishing teaching courses and programs, with a
special emphasis provided in cutting-edge schools: Digital Research Lab at Architectural
Association London, Sci-Arch Los Angeles, Angewandte Wien, MIT Boston, Columbia New York,
Cornell Ithaca, ETH Zurich. But recently courses focused on topics as Algorithmic Architecture and
scripting, Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technologies
emerged also in other architectural schools not traditionally engaged in these researches (Stuttgart,
Chalmers, Cardiff, etc) with the intention to expand or reinforce their academic programs.
However, after an in depth analysis related to the institutional and industrial relationships and
academic networks you would understand how decisive were the linkages and nexus between
institutions, market, academia, simplifying the discourse between clients and researchers, politics
and visionaries. For example, how important the relationship between Ian McHarg and Jack
Dangermond (founder of ESRI and McHarg's former student), was for the work on “map overlay”
concept in landscape discipline and the development of GIS. How consistent was the work of
Harvard Laboratory for Computer Graphics with the American Census Bureau and the geographers'
digital research at territorial scale. How strategic was for the American architectural profession to
instruct young architects in the use of digital 3D software to standardise the drawing production for
the construction industry passing by the organization of the drafting, designing, making physical
models, drawing work in the architectural office and the acquisition of a specific software license.
Therefore, also the strong commitment of Nicholas Negroponte, Leon Groisser and Jerome Wiesner
(MIT president) with the defence research, the National Science Foundation and private
corporations. In a seven year found raising period, infact, the Negroponte's Architecture Machine
Group collected 40 million dollars – in which 40 corporations pledged their pre-commercial
research budget – with the support Dean Lawrence Anderson who sought to challenge traditional
architectural pedagogy: the Beaux-Arts teaching method exercised what he called a “residual
influence [that] remains as an incubus that dampens our enthusiasm for any panacea”1. Not to talk
about Buckminster Fuller and his geodesic domes and the interest on them of the American Army.

Imitation-Modeling

What will be the next conceptual steps and tools and in which specific field the use of
Computational Modeling in architecture will be strengthened?
From the point of view of Italian Architecture schools their an increased challenge to enhance the
integration of computation design in their curricula since enormous revolution occurred establishing
the mandatory use2 of Building Information Modeling, within five years, in every public tender. 
It could be useful to recall that in 2005 the School of Architecture “Ludovico Quaroni” of Sapienza
University of Rome organized a Symposium3 on the education of architects with a special panel
titled “Digital innovation in architecture”, chaired by Antonino Saggio, which hosted Patrik
Schumaker, Vasili Stroumpakos, Manuela Gatto, Mark Goulthorpe, Ed Keller, Karl Chu, Claudio
D'Amato, Lucio Barbera and Giuseppe Longo [2] a mathematician from the CNRS Ecole Normale
Supérieure, Paris. Longo had been invited to offer an overall comment to the researches of the
architects making extensive use of computing design. His perception was almost tough after
participating to the panel presentation of the experiments presented, concerning biology and
computing processes 'applied' in/to architecture during the Roman symposium – especially the
“Responsive Environments” by Schumacher and the “Human Genome Project” by Karl Chu.
Longo observed that: “In contrast to the problem of intelligibility in the sciences of nature, for you

1.See Radical Pedagogies: http://radical-pedagogies.com/search-cases/a13-architecture-machine-group-media-lab-
massachusetts-institute-technology-mit/
2. New Public Works Code, active since 2019.
3. Dean Lucio Barbera organized the Symposium “Becoming Architect in the XXI Century” from January 20 th to 22th 
2005. Proceedings, Anna Irene Del Monaco (edited by) Becoming Architect in the XXI Century, Casa Editrice La 
Sapienza 2006.
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[architects], it seems to me, that the role of the mathematical instrument – now information
technology – is that of aid to invention, in this very complex game between science and artistic
fantasy that is precisely the architectural design of a 'thing that is not there'. And 'this' determines a
radical difference from the point of view of the relationship with information technology and its
tools, in particular, and at the same time the problem is even richer in its internal logic deserving a
reflection. The extraordinary novelty we are confronted with is the fact that today we have a
machine that is the result of a very complex historical-evolutionary path. This machine was not
there, in the same way that 200 million years ago there were no mammals on the face of the earth.”
Longo was making reference in his discourse to the Turing machine, a mathematical abstract
concept, an indispensable clarification to architects referred to the non “scientific” (intelligibility)
approach in their simulation (or imitation) “games”. In particular Longo in one of his paper [3] had
already discussed this arguments taking of the double pendulum digital simulations. If you click
“restart” relaunching a virtual pendulum – as Schumacher's did in his “Responsive environments”
presentation – with the same initial data it tends to cover all the possible trajectories (a chaos
aspect) “but with a real physical pendulum, not a virtual one, in a dynamic (non-linear) system –
because of the thermal fluctuation, the density of trajectories –, “once reinitialized, the systems
never take the same trajectory. [...] Specifically, we will see that the digital machine proposes causal
structures and the breaking of symmetry which generate them as being the central structures of the
intelligibility of nature. This will enable to point out a distinction between 'imitation' and 'modeling'
in terms of simulation or formalization, and therefore enable to highlight the limits and the
potentialities of digital simulation. Such a machine is the culminating point of a very specific
process which begins with language, but which is mainly influenced by the birth and development
of the alphabet: the digital machine is at first an alphabetic machine, and then a logical and formal
one”. This argument would deserve a consistent and wide discussion in architecture, especially the
distinction between imitation and modeling – imitation resemble causality, Longo claims – and
which is, more or less the distinction that some scholars as Achim Menges [4] raise quoting Rob
Howard. As Menges (and Howard) belong to a ideal group of researchers – “a research tradition” –
which understand the necessity to distinguish the process of designing to build (o “fabricate”)
towards the necessity to design for in search for authoriality [5, 6], to which the Zaha Hadid and
Coop himmelb(l)au approach to architecture belong: “In parallel to the development of Computer
Aided Design, which is characterized by the transfer of long-established, representational design
techniques into the digital realm, research into generative Computational Design has been
conducted for many decades. In the 1960s design programs such as GRASP (generation of random
access site plans) developed by Eric Teicholz at the Harvard Laboratory for Computer Graphics,
explored ways of generating rather than drawing design solutions and evaluating their performance
(Howard 1998).” 
Going back to Longo's comment on the Turing machine and recalling its conceptual newness, it is
interesting to read that “in short, it is an invention which is both extraordinary and contingent to our
culture, which is marked by the birth of the alphabet, of Cartesian rationality, of Fregean logic, of
Hilbertian formalism” […] The 'principles' which are inherent to Physics (modern Physics), an
interval and the inevitable variation, below the threshold of measurement, suffices to vey quickly
produce a different evolution. The analysis of the equations within the continuum leads to an
understanding of the random aspect of chaos, whereas computational imitation makes it disappear
completely, but the discrete nature of its data types.”
Longo's assumptions remind us the idea of Antoine Picon when asserts that it is the information
based society which invented the computer and not viceversa [7] – showing in his lectures a picture
of the Prudencial Company (financial, insurance, retirement, investment company) at the turn of the
nineteen century – and that the concept of diagram in architecture has failed – mentioning the lost
promises of working on fluxes diagrams by UN Studio –, being in the end more the development of
a Beaux Arts approach than something different and that, looking at a different aspect, the  Building
Information Modeling system imposes the idea of “who is allowed to do what and not the
implementation of the idea of  a fluid world”.
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Not just a happy accident !

The way of approaching  'imitation' and 'modeling' put the work of an entire generation of
academic-architects under a different perspective and recalls the objective meaning of the term
“Computer Aided Architectural Design...” which literary could mean “aid to invention” and provide
some advice to follow especially when we teach and make analogies, comparison with the natural,
physical and abstract realities. 
The generation of  Frank Gehry, Peter Eisenman, Zaha Hadid, Coop Himmelblau, Future System,
although starting the use of computer in their fifties or sixties – and in many cases with them having
no direct personal skills in the use of computer –, made a significative use of computer aided design
to enhance the possibility to draw, design, conceive, assess and build their architectures. Albeit it
was also a generation intersecting the computational early tools with the Deconstructivist
Architecture discourse, as Philip Johnson implicitly demonstrated with his exhibition at MoMA of
1988. This is the case of a generation of architects “that told to the computer what they wanted to
have!”, affirms Greg Lynn in a conference at the Architectural Association of 2013 4; the results was
not “just a happy accident”, like often happen to unconscious native digital students which act out
of cultivated awareness – Lynn continues. It is the case of a generation of architects which found the
way to transfer the information of their drawings into to the frame space structures system in order
to build their projects. Each of them found in digital architecture a way to “complete” their
intellectual impulse toward construction. Eisenman, following his theoretical impulse, did not
disdain “the idea of genetic based architecture” and fed up a generation of younger practitioner and
thinkers (included Greg Lynn), and built the uncompleted Santiago de Compostela project. Hadid (a
graduate in mathematics before architecture) wished to escape the condemnation of being a paper
architect. Gehry got the artistic intuition (the most advanced intellectual stage) to select the right
tools for his formal research and was able to make business with them too.

Archaeology or pre-consciousness?

It is highly significant that Greg Lynn, who has been a young collaborator of Eisenman and Gehry
during the eighties and nineties, and one of the first hour prophets of morphogenetic design (see his
Embryologic House Project), has recently written a book entitled Archaeology of the Digital linked
to an exhibition at the Canadian Center for Architecture  which he has curated with a retrospective
programmatic understanding – and that leaves us very much thinking if we “pre-consciously”
remember the early work by Peter Eisenman “Cities of Artificial Excavation” although Eisenman
commented that archaeological is better than antiquarian . Lynn can be considered together with
Hani Rashid and Lise Anne Couture, Ben van Berkel and Caroline Bos, Farshid Moussavi and
Alejandro Zaera Polo, Jesse Reiser and Nanako Umomoto, Patrik Schumacher, a generation of
academics strongly engaged with digital architecture which have made of that domain their avant-
garde language, intellectual tool and generational strategy to enter the architectural business
(academic and professional) which Antonino Saggio with the IT Revolution in Architecture and
other books [8] had been monitoring in the last twenty years for the Italian and non-Italian scholars
and readers. Many of these architects delivered an early or late book manifesto. In particular Patrik
Schumacher [5, 6] had been ambitiously theorizing in 2010 with The Autopoiesis of Architecture,
Farshid Moussavi wrote the book The Function of Ornament [9] in 2006, and van Berkel and Bos
published  in 1999 Move (3 volumes) [10]. 
In Archaeology of the Digital Lynn analyses four architectures of the eighties classifying them by
the following categories: 1 Design using procedural processing; 2. Transforming robotic structures;
3. Structural optimization and expression; 4. Optimization of the digital medium. Besides the book
the exhibition at CCA curated by Lynn in Canada included additional drawings, physical models
and the interviews to the four authors delving into “the genesis and establishment of digital

4 Greg Lynn - Conversation about Digital Archaeology, Architectural Association 2013-10-10; 
https://www.youtube.com/watch?v=U2ujuFMYkzA&t=4077s
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tools for design conceptualization, visualization, and production at the end of the
1980s and the beginning of the 1990s. Conceived as an object-based investigation of
four pivotal projects that established distinct directions in architecture’s use of digital tools, the
book highlights the dialogue between computer sciences, architecture and engineering that was at
the core of these experiments”. The four architectures that Greg Lynn selected are discussed in his
book considered also the specific software and methodology, drawing techniques used for their
design and eventual construction, probably in search for a “pre-conscious origin of the digital”, as
Peter Eisenman affirmed in the interview released for the publication and for the exhibition [11].
1)The Peter Eisenman’s Biozentrum (1987) (Figure 1) to which Lynn worked as a young architect,
was drew by the software Form Z integrating the digital drawings by a craft assessment system
(layer copies of the variation of geometries superimposed, produced and mailed by Fed Ex every
day from a laboratory located elsewhere). 2) The Chuck Hoberman’s Expanding Sphere (1992)
(Figure 2), in which the author used his own scripts hand-written – he owns 18 patents. After
graduation Hoberman worked at Honeybee robotic and got acquainted with transformable objects.
The software Hoberman used was AutoVIZ, a former language from Autocad. Hoberman had been
the first in architecture to use the CnC manufacturing and 3d printing. The aluminium components
of the Expanding Sphere were CnC cuts and the drawing presented, rarely at that time, by computer
hidden line. 3) The Shoei Yoh’s unbuilt Odawara Municipal Sports Complex (1990–91) (Figure 3).
Shoei came from manufacturing and is the structural engineer that Toyo Ito collaborated with for
Sendai Mediatheque. The project uses space frame structure, a parametric construction technique
that later on become a standard. It is the only project built by the group with the use of the trass. 4)
The Lewis Residence by Frank Gehry (Figure 4), Lyndhurst, Ohio (1989-1995). For this project
SOM did the Autodesk 3D model and structural analysis. From that experience on Gehry decided he
wanted to manage and control the 3D assessment phase and looked for the right tools to succeed.
The physical wooden model was completed by the wax/velvet cloth and pin bars. Then the house
was redesigned for further exhibition and for the CCA's exhibition by the CATIA's inelegant spline
surfaces. After starting using CATIA, Lynn affirms, Gehry started sketching like the spline surface.
CATIA models had to be completely re-drown in Autocad, but there was a fidelity in the measure
and geometries. Referring to the time in which the four projects were conceived Greg Lynn
comments that after “five years later it was a total different story”. Before there were a lot of
correspondences back and forth from the two kind of techniques (digital and analogical): “Either
these techniques were abandoned or diverged. At that time the speed of computer was slow.
Analogical and digital methods were equal in speed, so that producing physical models and sheet
analysis was sometimes more speed than a computer model.” 

Figure 1. Peter Eisenman’s Biozentrum (1987) 
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Figure 2. The Chuck Hoberman’s Expanding Sphere (1992)
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Figure 3. Shoei Yoh’s unbuilt Odawara Municipal Sports Complex (1990–91)

Figure 4. The Lewis Residence by Frank Gehry, Lyndhurst, Ohio (1989-1995). 
The pin bars, plexiglass and wax/velvet cloth model and the CATIA spline drawing.

The awake of historians

The fact that the generation of “young” enthusiasts experimenters of the nineties in the last decade
is focused on theoretical works on Archaeology (Greg Lynn, self-consciousness, quoting Eisenman
again) or Autopoiesis (Parik Schumacher) and that some historians of architecture have begun to
reflect on the phenomenon of digital architecture – some of which establishing that it is in a phase
of "Second Turn"– tells us many things. Recently, Mario Carpo (professor of Reinassance  and
history of cultural technologies) and Antoine Picon (professor of History of Architecture and
technology) have been doing a significant work in conducting their researches on digital
architecture from an architecturals historian point of view and providing focus on different aspects,
at least producing a counterpart effect with respect to the mainstream culture. 
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However some years ago also James Ackerman, a great historian of Renaissance architecture and
Palladio's scholar, writing his contribute after fifty years to the proceedings of the Triennale Milan
1951 “La divina proporzione” (with Le Corbusier and Wittkower as chairman) introduced
significant arguments. He observes that after the Modulor the “golden section” disappears from the
architectural discourse and, at the end of the twentieth century, proportional systems based on plane
geometry and straight spaces begin to “give way to the fluid forms of the architects-engineers
contemporary of Le Corbusier”: Pier Luigi Nervi, Edoardo Torroja, Felix Candela, Buckminster
Fuller, Heinz Eisler. The arguments proposed by Ackerman confirm furthermore the reason why
Mario Carpo and Peter Eisenman are so involved in the digital architecture discourse. In particular,
the passage in which, starting from the definition of Wittkower of Renaissance architecture (Andrea
Palladio, Sylvio Belli) as architecture based on number, seems to be significant, Ackerman
articulates the reasoning inside and outside the scope of the 1951 conference: “ But in the field of
musical composition the limits of the simple Pythagorean consonances had been surpassed for more
than a century. From the beginning of the 15th century, polyphonic music composers had introduced
what theorists followed to define dissonances (as was shown by Robin Evans in the brilliant essay
“The Projective Cast: Architecture and its Three Geometries”; it was to demolish the belief that
'ideal forms are ... in themselves, ideally beautiful').” [12] Then, in addition to addressing the work
of Frank Gehry, whose “buildings with an evolved formal vocabulary [...] have made the definition
of proportion” more complex, and to mention the experiments of Greg Lynn, who promoted a type
of planning based on the concept of calculation and topology, the American historian highlights the
theoretical and design work of Preston Scott Cohen, in particular, the book Contested symmetries
and other predicaments in architecture, which reopens to a line of research that supports the
survival of  the idea of proportion.
In 2011 Mario Carpo published The Alphabet and the Algorithm [13] for the Writing Architecture
series, a project of Any Corporation, Cynthia Davidson editor and brilliant wife of Peter Eisenman,
who certainly appreciated Carpo's highly-qualified consistent engagement with both Renaissance
and Digital Design. The synopsis of Carpo's book clarify what in our discourse get us reconnected
to the Long's arguments on “imitation” and “modeling”: “In The Alphabet and the Algorithm, Mario
Carpo points to one key practice of modernity: the making of identical copies. Carpo highlights two
examples of identicality crucial to the shaping of architectural modernity: in the fifteenth century,
Leon Battista Alberti's invention of architectural design, according to which a building is an
identical copy of the architect's design; and, in the nineteenth and twentieth centuries, the mass
production of identical copies from mechanical master models, matrixes, imprints, or molds. The
modern power of the identical – Carpo writes – came to an end with the rise of digital technologies.
Everything digital is variable. In architecture, this means the end of notational limitations, of
mechanical standardization, and of the Albertian, authorial way of building by design”.
A significant advice already came from ACADIA members. CAD technology, had already be
introduced in the postwar era and adopted in architectural practice beginning in the 1970s, affirmed
Yehuda E. Kalay [14] – founding member, and past president, of ACADIA (Association for
Computer Aided Design in Architecture), and former co-Editor-in-Chief of Automation in
Construction – already in 2004, “CAD [goes] beyond the improvements in drafting, modeling, and
rendering for which it is commonly used. Computer-aided architectural design (CAAD) is capable
of modeling and manipulating objects (not merely their graphical representations), reasoning about
and predicting performance of design solutions, generating new design solutions through
algorithmic and other methods, managing vast amounts of information, and taking advantage of
opportunities offered by the Internet for collaboration across time and space and for design of the
virtual 'space' of the Internet itself.”
Moreover Carpo came out recently with anther book, The Second Digital Turn, whose synopsis
shows the further conceptual steps proposed by the Italian historian: “Almost a generation ago, the
early software for computer aided design and manufacturing (CAD/CAM) spawned a style of
smooth and curving lines and surfaces that gave visible form to the first digital age.  […] this is
because the design professions are now coming to terms with a new kind of digital tools they have

ICCM2018, 6th-10th August 2018, Rome, Italy

479



adopted – no longer tools for making but tools for thinking.” In March 2018 the author presented
the main contents of his late book in a lecture [15] to a non-architects audience (Google's employs)
at University College London and used the metaphor of fishes, potatoes and dogs. “ Frank Gehry
started with a fish!” the historian explained, talking of the fish streamline sculpture by Gehry built
along the Barcelona waterfront and of the “spline” working methods of CATIA which impressed the
streamline also to other Gehry's projects, from the Bilbao Museum up to the Foundation Cartier.
Carpo discussed also about the spread of softwares as Rhino, Maia, Form Z, cheaper than CATIA,
in the teaching courses and in the profession and the fact that today computers are faster and
cheaper, and that big data and environment are emerging issues to be considered. So that, according
to him, the style produced by the software used in the most recent years shifted from fishy (Gehry's
CATIA) to doggy (Heydar Aliyev Center, Baku by Zaha Hadid Architects), a less sophisticate
streamline developed by a very simple algorithm. Unlike “fishes”, “potatoes” and “dogs” belong to
the free-forms category and have no sophisticated mathematics embedded inside their geometries.
The reason why Carpo consider the current condition a “second turn” depends on the fact that for
architecture the technical bottleneck is always determinant. Architecture is always at the mercy of
the tools that make it happens, and his authoritative discourse upholds what I tried to demonstrate in
a comparative study between composition in music and architecture [16] too.
The Italian born historian was particularity bright in clarifying during his London talk that
architecture is a liberal-art and not a scaffolding art and that even though drawing is a notation
system used to eventually build “architects can enter the spirit of the game better than other
professionals, since they uses simple software and have the building phase as a feedback loop,
although computing is not their game but your (google's people) game...”

Geometries, families of solutions, fabrication

However geometry is at the base of every discourse. Also Mario Carpo recalls that his main
arguments are related to the shift of quantification from algebra to calculus. Euclidean geometry, a
quantification and proportional system, was typical of Greek and Roman architecture, while
numbers and arithmetic are the proportional system specific of the neoclassical architecture. Then,
Carpo remind us that with Pierre Étienne Bézier there is the culmination of western mathematic,
after the work of Descartes, Leibniz, Newton which were able to notate conics but not complex
geometries like Gehry's “fishes” – Jean Louis Cohen has started to study Frank Gehry from an
architectural historian point of view [17]. Other relevant contributes to the question of
contemporary geometry, fabrication and construction are elaborated by ETH Zürich research teams
as he Block Research Group (BRG), also established at ETH Zürich hosts led by Philippe Block
and Tom Van Mele, whose experiments were hosted at the Venice Biennale 2016 (Figure 5). Their
research focuses on the  analysis of masonry structures, graphical analysis and design methods,
computational form finding and structural design, discrete element assemblies, and fabrication and
construction technologies, geometry based approach. The Block Research Group of ETH Zürich
works are somehow on the track already traced by Pier Luigi Nervi and Sergio Musmeci (Figure 6).
Another significant contribute from the ETH Zürich is the book Architectural Geometry [18] edited
b y Helmut Pottmann, Andreas Asperl, Michael Hofer, Axel Kilian and published by Bentley
Institute Press – Bentley is the company releasing Microstation, a software used, for example by
Forster and Partners. Shajay Bhooshan, graduate from AA London and Lead Designer, Zaha
Hadid Architects Computation and design group, is completing his PhD with Block Research
Group office and has been a bridge for experimenting collaboration between ETH and ZHA office.
There is another interesting contribute coming from Southern USA: Ronald Rael and Virginia San
Fratello and their practice Emerging Objects (Figure 7) together with their teaching activity at UC
Berkeley and Arizona University demonstrate the impact of computation on a different kind of
architectural and construction tradition and materials as clay and hearth [19, 20].
Ali Farzaneh and Elif Erdine chaired an interesting conference [21] at the Architectural Association
London within the Symposium “Advancements in Design Computation” on February 2016. They
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invited Antoine Picon (GSD Harvard), Achim Menges (Stuttgart University), Francis Aish (Foster
and Partners). Picon focused on the importance of the concept of “materiality” – not “materials” –
to understand digital architecture, in the sense of Condillac's treatise on the sensations (senses and
matter), and of Boulle's relations between human subjects and the material worlds [22, 23]. Achim
Menges's [24] – raised within the Emergent Technologies group at the AA London, developed and
inspired by the morpho-ecologies of Michael Weinstock – design approach is also focused on
“materiality” to what extent you can push the limit of design toward material systems. Menges
reveals to be among the most promising experimenter in the future, for the philological clearness in
the research of coherence between the use of the material, the structural geometrical conception
(derived form the material morphogenetic character) and its fabrication (Figure 8). His work is
highly inspired by nature, biology, material behaviour (spider works: pneumatic inflations; lobster
shells' cavity and fabrics) and by the possibility to synthesize the capability of a machine to imitate
the “modelling” not the form o a spider or a lobster, etc. (Figure 9).

Figure 5. Block Research Group. Above: Construction prototype for ultra-thin concrete roof;
Down: vaulted form made up from two layers of a new type of compressed earth blocks,

Durabric, developed by the LafargeHolcim Foundation for sustainable construction.
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Figure 6.up-left: 3D-printed floor system by Block Research Group; up-right: Industrial
warehouse “Lanificio Gatti” (1951-1953) by Pieri Luigi Nervi, structural concrete.

Down-left: Comparing form finding methods
 by Block Research Group; down-right Ponte sul Basento  (1971-1976), by Sergio Musmeci.

In the same conference after the advanced experiments by menges, Francis Aish from Foster &
Partners, presented a number of project revealing the other side of computation potentiality applied
at the top level professional world: to accelerate the design process. In particular the Dresden
Railway station project in 1997 and the Beijing New Terminal Airport for the 2008 Olympics are a
demonstration of how to shorted the time during the design decision. In Dresden's project the
canopy system and form-finding system were integrated arriving to a solution in less than one hour.
The roof of Beijing Airport represents a low-tech intense project: 3,5 years to design and built the
entire airport and 1,5 years to complete the roof by a space frame structure system with 5,000
workers (Figure 10).
To conclude, Picon and Carpo have a similar opinion toward the impact of Artificial Intelligence in
architecture. The French historian says: “in twenty years from now we will have much more
sophisticated software that we will enable to produce a lot of solutions (families of solutions) [25]
and there will be a problem of choice, which is also one of the fundamental way to understand
information [21]. The Italian historian maintains: “computational design is already a fascinating
testing ground for Artificial Intelligence since the staff we do are simple and cheap and software we
use are elementary and we do physical things, so the feedback loop, the verification stage, is faster
probably than in other professions.” [15]
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 Figure 7. Ronald Rael and Virginia San Fratello, Emerging Objects: “Cabin of Curiosities”
(4.500 ceramic tiles) Oakland, 2018; “Bloom Pavillion”, 3D print cement (This structural

system was inspired by the Iglesia Cristo Obrero of Uruguayan architect and engineer Eladio
Dieste and Jefferson’s serpentine brick walls at the University of Virginia, while the precise

form was inspired by Richard Serra's Torqued Elipse.)
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 Figure 8. Achim Menges. Above: Elytra. Filament Pavilion (Robotic Pavilion) for V&A
Museum, London; Down: Component Membrane AA London, 2008.
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Figure 9. Achim Menges, ICD / ITKE Research Pavilion inspired by the submarine nest of the
diver spider.

Figure 10. Foster & Partners (Francis Aish): Above: Dresden Railway Station, 1997
Refurbishment; Down: The Beijing Capital International Airport, 2008

ICCM2018, 6th-10th August 2018, Rome, Italy

485



Numerical analyses of cement-based piezoelectric smart composites  

 
†*Jan Sladek1, Pavol Novak2, Peter L. Bishay3, and Vladimir Sladek1 

1Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia. 
2Faculty of Mechanical Engineering, University of Zilina, Slovakia 

3College of Engineering and Computer Science, California State University, Northridge, USA. 

*Presenting author: jan.sladek@savba.sk  

†Corresponding author: jan.sladek@savba.sk 

Abstract 

Smart cement-based composite materials have great potential to be used in structural health 

monitoring (SHM) systems. In this work, the effective thermo-electro-mechanical material 

properties of cement-based piezoelectric smart composites are characterized. The 

homogenization techniques are applied on a representative volume element (RVE), where a 

typical distribution of piezoelectric 3-D particles in the cement matrix is considered. The finite 

element method (FEM) is used to solve sets of different boundary value problems for the RVE 

to get the effective thermo-electro-mechanical properties. The effect of the particle volume 

fraction on the effective composite properties is investigated.   

Keywords: 3-D piezoelectric particles, cement matrix, volume fraction, effective material 

properties, finite element method 

 

Introduction 

Reinforced concrete made from cement-based materials is the most popular materials used for 

larger civil engineering structures. However, this material is not convenient for structural health 

monitoring (SHM) systems to prevent catastrophic failure of civil structures. To have this 

possibility for civil structures, cement-based composites with piezoelectric properties need to 

be developed.  Normal mixing and spread techniques were utilized to produce cement-based 

piezoelectric smart composite [1-4]. Published technical papers on the effect of volume fraction 

of particles and their size on the properties of the PZT–cement based composites are still very 

limited in the literature and are mostly based on experimental approaches.  

The goal of the present paper is to provide an efficient computational tool for evaluating the 

effective material properties of PZT–cement based composites. Numerical analyses are 

performed on a representative volume element (RVE), which contains essential physical 

geometrical information about the microstructural components represented by the PZT particles 

in the cement matrix. The computational thermal homogenization, applied to the microscale 

and mesoscale of concrete sequentially in [5], is extended to the PZT–cement based composites.  

The finite element model of the RVE is developed to solve boundary value problems with 

different boundary conditions in order to evaluate the effective thermo-electro-mechanical 

properties of PZT cement-based composites. These results have not been reported in the 

literature, according to the best of the authors’ knowledge.  

Thermal homogenization of smart concrete 

Consider a periodic distribution of 3D piezoelectric particles in a cement matrix, and for the 

numerical simulation, we select a representative volume element (RVE) as shown in Figure 1. 
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Figure 1. The RVE of a piezoelectric cement composite 

 

The governing equations of the thermo-piezoelectricity consist of Maxwell’s equations, the heat 

conduction equation and the balance of momentum [6]: 

, , ,( ) 0; ( ) 0; ( ) 0,ij j i i i iD   x x x      (1) 

where ij , iD  and i  are the stress tensor, electric displacement vector and heat flux vector, 

respectively. x  is the position vector. The strain tensor ij  and the electric field vector jE  are 

related to the mechanical displacement vector iu  and the scalar electric potential  , 

respectively, by 

 , , ,

1
; .

2
ij i j j i j ju u E           (2) 

The constitutive equations express coupling of the mechanical, electrical and thermal fields: 

( ) ( ) ( ) ( ); ( ) ( ) ( ) ( ),ij ijkl kl kij k ij i ijk ik ij j ic e E D e h E p          x x x x x x x x      (3) 

where ijklc , ijke , ijh  and ip  are the elastic, piezoelectric, dielectric and pyroelectric 

material tensors in a thermal piezoelectric medium, respectively.   is the temperature 

difference. The stress-temperature moduli ij  are expressed as functions of the elastic stiffness 

coefficients and the thermal expansion coefficients kl : ij ijkl klc  . 

The constitutive equations can be written in matrix form (using the reduced Voigt notation)    

as: 
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The thermal constitutive equation (Fourier’s law) is given by  

,( ) ( ); wherei ij j j j     x x      (7) 

with ij being the thermal conductivity tensor. 

The governing equations (1) can be satisfied in the weak form. The residual form in the 

analyzed domain V is written as: 

 , , , 0ij j i i i i i T

V

w D w w dV    ,      (8) 

where iw , w  and Tw  are arbitrary weighting functions that are assumed to vanish along the 

boundaries where essential boundary conditions are specified ( u , p  and   respectively).        

In FEM, the generalized primary (mechanical displacements, electric potential and temperature) 

and secondary (strains, electric field and temperature gradients) field variables, u  and ε  

respectively, can be approximated over the domain of each finite element eV  in terms of the 

nodal degrees of freedom, q , and the corresponding shape functions as 

; u Nq ε Bq ,      (9) 

where N  is the shape functions matrix, B  is a matrix that contains derivatives of the shape 

functions, and 
(1) (1) (1) (2)(1) (1)
1 2 3 1 ...

T
u u u u  
 

q  is the nodal degrees of freedom 

vector in 3D, with superscript (k) indicating node number. The finite element equation is then 

given by 
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The composite response is determined by the homogenized composite properties or the 

effective material properties. The effective material coefficients of the piezoelectric cement 

composite can be computed from the constitutive equations written for the average values of 

the secondary fields and the conjugated fields on the RVE sample [7].  

Results  

Consider a sample of Portland cement matrix with embedded PZT-SH particles. The material 

coefficients of the PZT-SH can be found in [8]. Portland cement matrix properties are as 

follows: Young’s modulus 10 21.4 10E Nm  , Poisson’s ratio 0.2  , heat conductivity 

0.29 /W mdeg  , and thermal expansion coefficient 611.10 1/ deg  . Figure 2 and 

Figure 3 show the effect of the PZT particle volume fraction in the smart composite on the 

effective elastic and piezoelectric material properties. The volume fraction of the PZT particles 

is varied from 3% to 60%. One can observe from the figures that as the volume fraction of the 

PZT ceramic particles increases, the elastic material properties of the composite increase. The 

absolute value of all piezoelectric coefficients significantly increases as the volume fraction 

increases. The red point in Figure 2 (right) indicates the values of the effective 13c  for volume 

fraction 30% and sample size of 1.85 mm obtained in [9]. 

 

 
Figure 2. Variation of the effective (left) 11c   and 33c , (right) 12c   and 13c with PZT 

volume fraction in the smart ceramic composite 
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Figure 3. Variation of the effective (left) 44c   and 66c , (right) 31e  ,  33e and 15e  with PZT 

volume fraction in the smart ceramic composite 

 

Figure 4 shows the effect of the PZT particle volume fraction on the effective dielectric (left) 

and thermal conductivity (right) material properties. One can observe that as the volume 

fraction increases, the effective dielectric and thermal conductivity coefficients decrease. 

  
Figure 4. Variation of the effective (left) 11h  and 33h , (right) 11k , 31k , 22k   and 33k  with 

PZT volume fraction in the smart ceramic composite 

 

Conclusions 

A finite element model of an RVE of cement-based piezoelectric composite is developed and 

applied to evaluate the effective elastic and piezoelectric material properties. The effect of the 

volume fraction of the piezoelectric particles on the effective thermo-electro-mechanical 

material properties of the composite are presented.  
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Abstract 
Wire ropes are used in variety of application areas such as cranes, bridges, mining due to their 
large tensile and in addition easy storage capability. It is inevitable to carry out numerical 
tests in order to determine rope behaviors in different application fields. Three dimensional 
solid models without errors are needed for finite element analysis. Therefore, the three-
dimensional meshed model must be prepared for analysis. Traditionally, wire ropes made by 
using circular cross-sectional wires but this behavior is started to change due to the different 
needs in various application areas. For this reason, it seems that different types of rope models 
have been designed, such as flattened or swaged rope surfaces. In this article, a mesh model of 
a wire rope with an elliptical cross-sectional outer wires has been created. This model has a 
great emphasis in the creation of rope models with using different cross-sectional outer wires. 
In future studies, other type of cross-sectional outer wires can be used to model new wire 
ropes using the similar technique. 

Keywords: Wire Strand, Wire Rope, Independent Wire Rope Core, meshed helical 
model 
 

Introduction 

Love is described the mechanical theory of thin rods in his treaties named "Theory of 
Elasticity" [1]. In this book Love mentions the mechanical characteristics of thin rods and 
gives the general equilibrium equations. After 1970, with the help of computer technology, 
many studies are published in the literature. Costello's papers on various aspects of wire ropes 
are shed light to many other researchers to study the different behavior of wire ropes [2]. By 
using the Finite Element Analysis capability in engineering applications computer models of 
wire strands and wire ropes are take attention. At the beginning of the seventies, Carlson and 
Kasper built a simplified model for armored ropes using the finite element method [3]. A 
finite element model of a simple straight strand based on a Cartesian isoparametric 
formulation is given by Nawrocki who take into account every possible interwire motion in 
[4]. A wire rope with an IWRC model, which fully considers the double-helix configuration 
of individual wires considered by Elata et.al. in [5]. Parametric mathematical equations of 
single and double helical wires within an IWRC is represented in [6]. Modeling issues of 
nested helical structure based geometry for numerical analysis and the encountered problems 
and solution techniques are mentioned in [7]. Lately a geometric model of spiral one or two-
layered oval nested wire strands are proposed by Stanova et.al. in [8].  
Modeling wire rope structures needs a comprehensive care for Finite Element Analysis (FEA) 
due to the requirement of error free structured meshed model of the wire rope for FEA. 
Structure of a wire rope consists of different sized wires with various pitch lengths and helix 
angles. In addition wires within a wire strand or wire rope named according to its form as 
straight, single, double or triple. These types of helical shapes are composed by coiling a wire 
around another or wrapping a strand over another one. But before this wrapping process each 
wire basically has a cylindrical shape with circular cross sections. Wire ropes are seen in 
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different structures according to their usage areas. Some new kind of wire ropes by using non-
common cross sectional shaped wires such as a strand created by using some techniques such 
as compacting, swaging, plastic coating and filling or using different shaped outer wires such 
as elliptic outer wires. The process of compacting or swaging flattens the surface of the outer 
wires and reforms internal wires of the strand to increase the density of the strand. In 
compacted wire rope represented in Figure (1) or swaged wire rope, the wires are compacted 
or reduced in diameter while stranding operation or in a separate operation after stranding. 
Due to need for mechanical process for compacting or swaging, elliptical outer wires are 
preferred to use in numerical modeling of wire ropes to find flattened outer surface. The 
importance of this modeling process is to have a meshed model of the wire rope at the same 
time without the need for any other tool. Once the necessary parameters such as pitch length, 
rotational angles, wire radiuses and the type of the wire rope are defined the meshed model of 
the wire rope is created at the same time which is ready to make FEA. 
Each wire within a wire strand or wire rope are straight wires at the beginning of the 
wounding process. Wires within a wire strand consists of a straight center wire wound by 7 
single helical wires called as Wire Strand (WS). Single helical wires also composed by using 
straight wires. Before wounding process each wire is commonly has a circular cross sections. 
In this article a strand, whose outer wire cross section is elliptic, is modeled and meshed. It 
has a straight center wire which is coiled up with six elliptic shaped outer wires as presented 
in Figure (2). 
 

 
Figure 1: Compacted wire rope. 
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Figure 2: A simple wire strand with elliptic outer wires. 

 

Conclusions 

Wire rope modeling with different shaped cross-sectional outer wires is described in this 
paper. The meshed 3D model of the wire strand is modeled using the parametric equations of 
helical geometry. The importance of this modeling process is to have a meshed model of the 
wire rope at the same time without the need for any other tool. In this article a strand, whose 
outer wire cross section is elliptic, is modeled and meshed. It has a straight center wire which 
is coiled up with six elliptic shaped outer wires. This modeling issue enables to analyze 
various shaped wire ropes using the Finite Element Analysis. In addition other type of shapes 
could be modeled using the described modeling technique to create different type of wire 
ropes. 
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Abstract 

The dynamics of the medieval civic clock tower of Amatrice (Rieti-Italy) has been studied by 

means of the Non-Smooth Contact Dynamics (NSCD) method, implementing a discrete 

element numerical model in the LMGC90© code. Schematized as a system of rigid blocks, 

undergoing frictional sliding and plastic impacts, the tower has exhibited a complex dynamic, 

because of the geometrical non-linearity and the non-smooth nature of the contact laws. 

Numerical simulations are performed with the aim of comparing the numerical result and the 

observed damages after the seismic sequence of the Central Italy earthquakes. 

Keywords: NSCD method, nonlinear dynamics, masonry towers, damage assessment 

 

Introduction 

The seismic events which hit Central Italy on 24th August, 26th and 30th October 2016, and 

18th January 2017, have caused casualties and major damage mostly to buildings and 

architectural heritage of the Italian regions of Marche, Lazio, Abruzzo, and Umbria. The 

mainshock occurred on August 24th at 3:36 am (local time) with an epicenter close to 

Accumoli (Rieti province) and with a magnitude Mw= 6.2; it was followed, at 4.33 am, by an 

aftershock with an epicenter close to Norcia (Perugia province) and with a magnitude Mw= 

5.5. These events caused a total of 299 fatalities, 386 injured and about 4800 homeless [1,2]. 

Most of the victims were in the areas of Amatrice, Accumoli, and Arquata del Tronto. In these 

municipalities, heavy damage and collapse of residential buildings were reported. 

On 26th October, there were two strong aftershocks, the first at 07:10 pm with Mw 5.6 and the 

second at 09:18 pm with Mw 6.1. The earthquake of 30th October, which happened at 07:40 

am, with a Mw 6.5, is the largest event in terms of released energy occurred in Italy since the 

Mw 6.9 in 1980 in the event of the Irpinia earthquake. 

The events of 26th and 30th October did not cause any victim thanks to the evacuation of 

people from damaged and vulnerable houses after the previous seismic events. It has also to 

be considered that the October epicenters are located close to Norcia municipality, where 

many buildings had been strengthened after the 1997 earthquake. Nevertheless, the impact of 

the seismic events of 26th and 30th October 2016 and 18th January 2017 was distributed on a 

larger portion of territory extending northwards in the Marche Region respect to the 

earthquake of 24th August that had a very destructive impact on a restricted area included in 

the above-listed municipalities. Many small towns and villages, which have survived to the 

first earthquake, were heavily damaged during the 30th October earthquake [3–5]. Finally, on 
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18th January 2017 took place a new sequence of four strong shocks of Mw=5, with a 

maximum equal to Mw=5.5, and epicenters located between the municipalities of Montereale, 

Capitignano and Cagnano Amiterno. All these earthquakes are indicated in Fig. 1 with the 

relative intensity map. 

 

 

Figure 1. The maps of ground shaking (http://shakemap.rm.ingv.it/shake/index.html) of 

the four main shocks of the central Italy sequence 2016-2017. 

Symbol of the damage and destruction done by a long sequence of the strong earthquake of 

2016-2017 is the Amatrice civic clock tower which will be investigated in this paper. An 

advanced numerical model is here utilized to have an insight into the modalities of 

progressive damage and the behavior of the structure under strong non-linear dynamic 

excitations, namely the Non-Smooth Contact Dynamic (NSCD) method. A full 3D detailed 

discretization is adopted. The tower is schematized as a system of rigid blocks, undergoing 

frictional sliding and perfect plastic impacts. The structure exhibited a complex dynamic 

behavior, because of the geometrical non-linearity and the non-smooth nature of the contact 

laws.  
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From the numerical results, both the role played by the actual geometries and the insufficient 

resistance of the constituent materials are envisaged, showing a good match with actual crack 

patterns observed after the seismic sequence. The numerical analyses provide a valuable 

picture of the actual behaviour of the structure, thus giving useful hints for the reconstruction. 

The Amatrice clock tower 

Symbol of the city of Amatrice (Fig. 2a), the Civic Tower rises in the city center namely 

Cacciatori del Tevere square, underlining the crossroads of the two main streets of the city, 

Via Roma and Corso Umberto I (Fig. 2b). In the opposite side of the tower there is the Town 

Hall, intentionally positioned to symbolize the centralization of civic power. In the area 

behind the tower, still on the same square, it overlooks another small treasure of Amatrice i.e. 

the Church of San Giovanni. There are few historical data about the Civic Tower, its origins 

are placed back to medieval times, as early as 1293 was mentioned in ancient documents. 

These sporadic historical informations tell us that the tower was originally connected to the 

Church of Santa Lucia, demolished in 1684 by the feudal "lord" Alessandro Maria Orsini who 

wanted to give a wider space to the street of the main course, expanding the square. On this 

occasion, the base of the tower was reinforced and a small annex was added, leaning against it 

on two sides, to obtain the main entrance to the belfry. 

 

 

Figure 2. Amatrice (Rieti, Italy) (a), and location of the civic clock tower inside the 

historic center (b). 

The last and probably the only consolidation intervention was carried out on the tower dates 

back to the early 80s. Already requested in the previous decades it was solicited in 1979, 

when, following the earthquake of the Alta Valnerina (central Italy), significant damage was 

noticed to the tower. In 1985 the original bell of 1494 was replaced as the latter, because it 

had undergone a crack during the restoration phases. The original one is preserved in 

Madonna di Porta Ferrata Church and a lighter bell has been inserted in the tower so as to 

avoid the high oscillation of the tower as in the past. 

Geometric survey 

The civic tower of Amatrice has a rectangular plan of 4.00 m x 5.30 m and a height of about 

25 m. At the base, there is a small overhang leaning only two walls, to north elevation with a 

depth of 1.5 m, and to east elevation with a depth of 0.60 m. 

The annex houses the staircase leading to the entrance of upper floors. In its vertical 

development, there are three distinct areas, identified by decorative frames and folds that 

externally show the reduction of the wall thickness. The first floor is located at about 9 m in 

height and it is composed of smoothed stones on the outer side, falling 15 centimeters in the 
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wall thickness, while the second frame is located at a height of about 19 meters and it marks 

the passageway from the tower to the belfry. In its highest part, there is the bell which 

develops longitudinally for just over 5 m. It consists of 4 regular piers, with dimension 

0.90x0.80 m2, on which rest round arches that make up the single-hole openings on the four 

sides of the tower. The belfry has a single symmetry, so the openings of the belfry are the 

same on the opposite sides (see Fig. 3). Finally, the tower presents a pavilion wooden roof. 

 

 

Figure 3. Main fronts of the civic tower of Amatrice. 

The model 

In this section the principal peculiarities of the Non-Smooth Contact Dynamics method, the 

modelling simplifications on which it is based, and its aptitude to reproduce the dynamics of 

large three-dimensional ancient masonry structures are highlighted. As the deepening of the 

NSCD theory goes beyond our purposes, an exhaustive description of the method is reported 

in [6,7]. The problem parameters and the seismic excitation applied to the base of the civic 

tower are also briefly reported. 

Non-smooth Contact Dynamic method 

The dynamics of a system of rigid bodies is governed by the equation of motion and by the 

frictional contact conditions. To describe the frictional contact laws, we must introduce some 

basic definitions. In the following, the notation adopted in [6] is used (scalars, vectors and 

tensors are explicitly declared, and italic letters are used for all of them). Given two arbitrary 

bodies Bi and Bj, let Pi and Pj (Fig. 4a) be the points of possible contact on the boundaries of 

Bi and Bj, respectively, and let n be the outer unit vector, orthogonal to the boundary of Bi in 
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Pi. We define  = (Pj - Pi)·n the gap between Pi and Pj (a dot means scalar product),  

the normal and tangential velocities of Pj with respect to Pi, and (rn,rt) the normal and 

tangential reactive forces of Bi on Bj. 

The contact conditions are: 
 

1. The Signorini’s law of impenetrability (Fig. 4b) 

 , , ,  (1) 

which, in the case of contact , is equivalent to the following Kuhn–Tucker conditions [7] 

 , , ,  (2) 

written in term of relative normal velocity. 
 

2. The dry-friction Coulomb’s law (Fig. 4c), that governs the behavior in the tangential 

direction 

 ; ,  (3) 

with µ the friction coefficient, and λ an arbitrary positive real number. 
 

If q is the vector of the system configuration parameters (unknown translations and rotations 

of each body), and p is the global vector of reaction forces, the equation of motion can be 

written as follows 

 , (4) 

where M is the mass matrix, and f is the vector of external forces. 

The local pairs  and (rn,rt), characteristic of each contact, are related to the global 

vectors  and p, respectively, through linear maps which depend on q (see [1] for details). 

Since the contact laws (1) - (3) are non-smooth, velocities  and reactions p are discontinuous 

functions of time. They belong to the set of bounded variation functions, i.e. functions which, 

at each time, have finite left and right limits. Since the accelerations are not defined when the 

velocities are discontinuous, Eq. (4) is reformulated in integral form (see [6,7] for the 

mathematical details), and solved numerically using a time-stepping approach, alternative to 

the event-driven method (we point out that time-stepping approaches are more appropriate 

than event-driven schemes when problems with many contacts are handled). The time is 

discretized into time intervals, and, within each time interval [ti, ti+1], the equation of motion 

is integrated over the interval as follows 

 ,  

 .  (5) 

Where  is the impulse in . The primary variables of the problem are the velocity 

vector  and the impulse vector  at the instant . In the NSCD method, the integrals in 

(5) are evaluated by means of an implicit time integrator. The overall set of global Eq. (5) and 
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local contact relations (1) and (2), where the reactions are approximated by the average 

impulses in , are condensed at the contact local level, and then they are solved by 

means of a non-linear Gauss-Seidel by block method. 

 

(a)  (b)  (c) 

Figure 4. The interaction between two bodies (a) Signorini’s law (b) Coulomb’s law (c) 

The numerical model, which implements the NSCD method, is based on some modelling 

simplifications which deserve some comments in perspective of its application to ancient 

buildings. Regarding the contacts between bodies, the model does not account for elasto-

plastic impacts governed by restitution laws on velocities (Newton law) or impulses (Poisson 

law) [8], or energetic impact laws [9], although originally the Contact Dynamics method 

proposed by Moreau [7] considered the Newton law. 

The relations (1) imply perfectly plastic impact, i.e., the Newton law with restitution 

coefficient equal to zero. A perfectly plastic impact law makes impossible to describe, for 

instance, bouncing phenomena, and, furthermore, overestimates the energy dissipated during 

impacts. However, in the case of systems of bricks or stones, the restitution coefficient has 

low values, and thus bouncing phenomena are secondary, and they can be neglected. More 

sophisticated impact laws would bring to more accurate models, such as that proposed in [10] 

for the dynamics of masonry arches, but they drastically increase the model complexity and 

result impracticable for large systems with many impacts, like that considered here. 

Furthermore, the deformability of blocks is neglected. This is a reasonable approximation 

since the expected operating compressive stresses at the base of the masonry walls of the 

tower are reasonably low. Deformable blocks have been considered in [11,12] for two-

dimensional systems. Since deformability drastically increases the computational complexity, 

practically it cannot be applied to large three-dimensional structures, like the tower of this 

study. On the other hand, simplified two-dimensional schemes rule out a crucial aspect of the 

dynamics of box-shaped structures such as houses, churches, and towers that is, the 

interaction between adjacent walls laying on different planes (for instance the façade and the 

longitudinal walls in churches), which mutually exchange considerable inertia forces. 

Since we are interested in the dynamical interactions between different parts of the civic clock 

tower, we consider three-dimensional schemes but we neglect blocks deformability. It follows 

that the numerical results obtained depict an overall picture of the tower dynamics and 

describe the failure mechanisms of the whole tower, due to blocks rocking and sliding, but, 

obviously, they do not give a description of the stresses and strain distributions within each 

block.  

Since experimental data are not available, the friction coefficients were selected from standard 

values reported in the literature. The values of µ range from 0.3 to 1.2, according to different 

combinations of units and mortars [13]. As a first attempt, we assume the value µ = 0.5 for the 

interface block/block, and µ = 0.9 for the interface block/foundation in order to observe, 

mainly, the dynamics of the tower without interaction with the foundation. Furthermore, it is 

important to underline that, in real old masonry buildings, the degradation of the mortar over 
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time contributes to deteriorate the friction coefficient confirming the hypothesis of the first 

attempt. 

Finally, it is important to observe that damping, a fundamental aspect of continuum models, is 

not considered here, and only friction and perfectly plastic impacts contribute dissipating 

energy.  

Discretization scheme and analysis settings 

The geometrical complexity of Amatrice civic clock tower requires some geometrical 

simplifications, being impossible to reproduce the real layout of the masonry walls, made by 

brick fragments and ashlars of small size.  

 

(a)  (b) 

Figure 5. Blocks discretization for the geometrical scheme of the tower in LMGC90© (b) 

view inside the thickness of the walls in LMGC90©. 

With the final aim of confirming what occurred following the seismic shocks, it was decided 

to use a punctual mapping of the masonry as it is possible to see from Fig. 2 with the discrete 

approach using the code LMGC90©. The size of the blocks (Fig. 5a) used is directly taken up 

by the reliefs of the facades, while the internal wall texture has been hypothesized avoiding 

the addition of several transversal connections (i.e, diatoni) between the two-external leaf. 

Only in the presence of very small and irregular ashlars, typically at the top of the belfry and 

in the annex walls, we have used larger dimensions than relief, simply merging up to five 

(small) adjacent blocks. As it is possible to observe in Fig. 5b, where the numerical model is 

reported, the two-leaf masonry is modelled at the best of possibilities. Obviously, the rounded 

geometry of the blocks has been regularized using straight vertical and horizontal surfaces to 

avoid further computational burdens. Finally, the numerical model is composed of 2899 rigid 

blocks with different geometries. 

Concerning the seismic loading, the accelerations of Amatrice (Italy) of the 24th August 2016 

earthquake have been considered. During that earthquake in Amatrice (AMT) a Peak Ground 

Acceleration (PGA) of 850.804 cm/s2 and a Peak Ground Velocity (PGV) of 43.549 cm/s 

have been registered (see the website: http://itaca.mi.ingv.it). In the numerical simulations, 

accelerations are applied to FE model and velocities are applied to DE model at the base 

where the tower is laid. The three velocities components in the three main coordinate 

directions are determined by direct integration of the accelerations in a time interval of 28 s, 
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during which the maximum amplitudes are attained, without the use of correlation method 

(Fig. 6). In the simulations, the time step dt = 0.005 s has been used. 

 

 

Figure 6. Velocities of the shock of 24th August 2016 applied to the foundation in the 

three coordinate directions. 

Preliminary results of numerical analyses  

The first numerical results are reported in Fig. 7 for different time steps. With the above data, 

the tower collapses at the bell cell, where the overturning mechanisms is favored by the 

presence of non-regular and small-sized materials. The bell blocks motion occurs in the first 

10 s of the seismic excitation, during which the largest acceleration peaks are attained. For 

time instants larger than 12.5 s, the tower stays at rest, since the acceleration peaks of the 

seismic excitation are not sufficiently large to activate other blocks sliding. Further damage 

can also be read from Fig. 7a in the enlargement area at the base of the tower, where there are 

significant cracks along the perimeter walls, without showing any collapses.  

This agrees with the real damage shown by the tower following the shock of 24th August 

2016, after that the bell tower was seriously damaged in correspondence of the bell cell (Fig. 

7b). The non-activation of the two mechanisms - instead numerically obtained - are certainly 

due to the presence of an interaction with the roofs which, to a certain extent, have prevented 

the start of a tilting mechanism of the bell tower columns and of the perimetral wall at the 

base of the tower. 

Then the subsequent earthquakes have led to the collapse of the bell cell already seriously 

compromised (Fig. 7b).  

As can be observed from the Fig. 7a, the NSCD method totally differs from a continuum 

approach, and it stands as complementary to this latter. While the NSCD accounts for an 
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accurate description of the motions induced by the inertial masses, a continuum approach 

describes stress and strain distributions [3,14–16]. The combination of both two methods can 

bring to a complete comprehension of the mechanical response of such complex structures to 

seismic loadings, but it will be left for future works. 

 

a) 

b) 

Figure 7. Numerical analysis damage with the NSCD method for the friction coefficient 

µ=0.5 at different time steps (a) the increment of real damages after the seismic 

sequences (b). 

Conclusions 

The Non-Smooth Contact Dynamics method, implemented in the LMGC90©, has revealed a 

powerful tool to explore the complex dynamical behavior of an ancient brick-made building, 

as the civic clock tower of Amatrice (Rieti, Italy). Indeed, it combines modelling simplicity 
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and great predictive capabilities. Its simplicity comes from the following fundamental 

simplifying assumptions: (i) block rigidity (often a feasible assumption for masonry 

structures); (ii) simple contact laws, such as the Signorini’s law, which supposes that impacts 

between blocks are purely plastic, and the dry friction Coulomb’s law for the tangential 

relative motions between blocks; (iii) absence of any damping, according to which the 

kinematic energy of the system is dissipated only by impacts and friction. As a result, the 

mechanics are governed by only one material parameter, the friction coefficient. This is an 

advantage for modelling ancient building, for which the determination of the mechanical 

properties (like the material moduli) is always uncertain and variable. Despite its simplicity, 

the model can predict a large variety of behaviors.  

The numerical results have given a deep insight into the seismic vulnerability of the 

considered civic clock tower, pointing out the same portions most damaged during the 

earthquake of 24th August 2016. In fact, the belfry and the enlargement at the base are the 

most damaged portions following the main shock. 
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Abstract 
Two new computational algorithms for the Limit Analysis (LA) of large-scale 3D truss-frame 
structures recently proposed by the authors are reconsidered and adapted for a comparison 
prediction of the elastoplastic response of a strategic beautiful historic infrastructure, namely 
the Paderno d’Adda bridge, a riveted wrought iron railway viaduct that was built in northern 
Italy in 1889. The first LA algorithm traces a fully exact evolutive piece-wise linear 
elastoplastic response of the structure, up to collapse, by reconstructing the true sequence of 
activation of made-available plastic joints (as a generalization of plastic hinges), in the true 
spirit of LA. The second LA algorithm develops an independent kinematic iterative approach 
apt to directly determine the plastic collapse state, in terms of collapse load multiplier and 
plastic mechanism, based on the upper-bound theorem of LA. Specifically, the marvelous 
doubly-built-in parabolic arch of the bridge is analyzed, under a static loading configuration at 
try-out stage, and its elastoplastic response is investigated, in terms of evolutive load-
displacement curve, collapse load multiplier and plastic collapse mechanism. The two LA 
algorithms are found to much effectively run and perform, despite for the rather large size of 
the computational model, with a number of dofs in the order of four thousand, by achieving 
good corresponding matches in terms of the estimate of the load-bearing capacity and of the 
collapse characteristics of the arch substructure, showing this to constitute a well-set structural 
element. Moreover, the direct kinematic method displays a rather dramatic performance, in 
truly precipitating from above on the collapse load multiplier and rapidly adjusting to the 
collapse mode, in very few iterations, by a considerable saving of computational time, with 
respect to the complete evolutive elastoplastic analysis. This shall open up the way for a 
further adoption of such advanced LA tools, with LA regaining a new momentum within the 
optimization analysis of structural design and form-finding problems. 
 

Keywords: Limit Analysis (LA), evolutive elastoplastic response, kinematic (upper-
bound) theorem, collapse load multiplier, plastic collapse mechanism, truss-frame 
structures, historic construction 
 
1. Introduction 

Limit Analysis (LA) constitutes by today a well-established and consolidated discipline, for 
evaluating consistent bounds on the collapse (limit) loads acting on engineering structures 
characterized by a mechanical behavior that may be idealized as perfectly plastic, subjected to 
constant permanent loads and increasing live loads. 
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LA may be considered as a milestone in the more recent history of structural mechanics and 
provides a rather powerful tool for structural design and assessment purposes, within a wide 
variety of engineering situations. It has acquired its rational formulation thanks to the 
contribution by Drucker et al. [1], who have formulated and demonstrated the fundamental 
theorems of LA for a continuum. More recent consolidated contributions, such as those by 
Massonet and Save [2], Kaliszky [3], Lubliner [4], Jirasek and Bazant [5], and many others, 
as those quoted in Maier et al. [6], have further made the theory and the methods of LA rather 
fundamental in various applications of mechanics of solids and structures, becoming by now 
classical references on the topic. LA of frames has also been revived in recent years, with 
several interesting applications (see e.g. Cocchetti and Maier [7], Tangaramvong and Tin-
Loi [8], Lògò et al. [9], Skordeli and Bisbos [10], Bleyer and Buhan [11], Nikolaou 
et al. [12]), despite, basically being employed at an academic level, somehow still far from 
implementations within the engineering profession. 
A new impetus toward the application of the LA discipline within structural engineering has 
been recently targeted by the authors by two different proposals, respectively in 
Ferrari et al. [13,14] and in Ferrari et al. [15], with reference to the structural elastoplastic 
analysis of large-scale 3D truss-frame structures. The effort was motivated by the goal of 
performing an effective LA of the collapse state of a strategic and historic truss-frame 
infrastructure, as described below. In former contribution Ferrari et al. [13,14], a 
computational algorithm for tracing the “exact” piece-wise linear evolutive elastoplastic 
response of the structure up to collapse in the true spirit of LA has been formulated and 
implemented. In latter attempt Ferrari et al. [15], a kinematic upper-bound LA direct method 
of computational analysis has been proposed, allowing to iteratively converge on the collapse 
state in terms of collapse load multiplier and plastic mechanism. 
In the work herein presented, such two new approaches are employed toward the LA analysis 
of a large truss-frame substructure displaying a rather considerable complexity, namely 
a 3D model of the box-formed doubly-built-in parabolic arch of the Paderno d’Adda 
bridge (1889), a beautiful monumental infrastructure in the local territory. This roughly 
involves 1,050 beam finite elements with potentially active plastic joints and more 
than 4,000 degrees of freedom. 
In the paper, it is shown that the kinematic algorithm rapidly converges onto the collapse 
state, as also traced by the full evolutive elastoplastic analysis, with a kinematic load 
multiplier that quickly precipitates from above on the sought collapse load amplifier and a 
plastic mechanism that rapidly adjusts to the true collapse one. The kinematic algorithm has 
proven to display a saving of more than 96% of the computational time employed for the 
evolutive elastoplastic analysis, which additionally reconstructs the whole sequence of 
activation of the plastic joints and traces a rather ductile piece-wise linear load-displacement 
curve, showing the arch to constitute a beautiful well-designed structural element, in terms of 
load-carrying capacity up to the limit state of plastic collapse. 
The present paper is structured as follows. Section 2 briefly introduces the two developed LA 
algorithms. Section 3 illustrates the results achieved from the numerical analyses conducted 
on the truss-frame parabolic arch of the Paderno d’Adda bridge. Brief comments on the 
various computational aspects and the effectiveness of the performed simulations are 
concisely pointed out in the Conclusions. 
 

2. Limit Analysis formulation 

The two computational formulations herein adopted are based on the same underlying 
hypotheses, as briefly listed here. Perfectly-plastic joints have been located at the two edges 
of each beam finite element composing the model structure; a piece-wise linear yield domain, 
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specifically an uncoupled Rankine-type boxed-form yield domain in the space of the static 
variables (i.e. beam internal actions), is chosen. Linear kinematics is assumed, namely 
second-order non-linear geometrical effects are ruled out and equilibrium is enforced in the 
initial (unstressed) configuration of the structure. Permanent (i.e. gravity) loads and a set of 
(basic) loads amplified by a common (“load multiplier”) factor are considered. 
Both formulations have been implemented within MATLAB®, with specific computer 
programs exploiting 3D beam finite elements. Exact time integration is one of the main 
characteristics of the evolutive elastoplastic formulation (see e.g. Ferrari et al. [13,14]). The 
kinematic algorithm of Limit Analysis, discussed in Ferrari et al. [15], and prodromal 
references quoted therein, is based on a kinematic upper-bound approach and is below newly 
applied to a large-scale 3D truss-frame structure, for comparison purposes with the former 
evolutive elastoplastic algorithm. 
 

2.1. Evolutive elastoplastic approach 

The evolutive LA elastoplastic approach proposed in Ferrari et al. [13,14] relies on an 
iterative procedure in which the global elastoplastic matrix of the structure is iteratively 
updated, based on the plastic modes that become active during the increment of the applied 
live loads. In this way, the characteristic non-linear (piece-wise linear) load/displacement 
response curve is estimated, up to collapse.  
A synthesis of the main characteristics of the computational algorithm can be outlined as 
follows. In the approach, the kinematic constraints on the structural system are imposed by 
enforcing the stationary condition of Lagrangian function H : 

 ( ) ( )1,
2

= − − −T T TU R U KU F U R CU VH  (1) 

where vector U collects all the nodal dofs of the system, matrix K is obtained by a classical 
assembly procedure of the finite element stiffness matrices, and vector F is created as the 
assembly of the equivalent nodal force vectors, including only the active loads. In Eq. (1), 
constraint equations CU = V are imposed: matrix C depends only on geometrical quantities, 
vector V collects possible given values of the kinematic quantities, vector R gathers the  
so-called Lagrangian multipliers, which may be interpreted, from a mechanical point of view, 
as the reactions supplied by the constraints. 
The solution of the structural system is derived from Eq. (1), and by applying a Gaussian 
elimination to the system of the constraint equations, in order to eliminate those, among the 
latter, that are just a repetition of others. If this occurs, the elimination procedure leads to a 
reduced system, from which the solution in terms of (independent) displacements (u) can be 
symbolically given by the following expression: 

 1
uu ( )−= +D uu K F F  (2) 

where Kuu is a reduced stiffness matrix and FD and Fu are reduced known-term vectors, 
derived through appropriate mathematical steps, from vector V and vector F, respectively (see 
Ferrari et al. [13] for the details).  
The evolutive approach is based on an incremental procedure that can be outlined as follows: 

(i) At the beginning of the analysis, the structure is not under the effect of loading or of pre-
existing stress states; then, there is no plasticization in the structure (no yield plane is 
active). Afterwards, the following quantity is set acting on the structure: ΔFLi = Δα F, 
where ΔFLi represents the load increment, determined from F through load factor Δα, 
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which is always positive and can be assumed as a chronological variable in the increment 
of F; 

(ii) Given ΔFLi, also quantity ΔFu can be determined. Then, substituting the latter 
into Eq. (2), the incremental solution in terms of displacements Δu is thus provided. It is 
worth to note that at the beginning of the procedure matrix Kuu is totally elastic; 

(iii) Being Δu strictly related to the increment of the static internal variables of each finite 
element (ΔN), the latter can also be computed. Incremental solutions Δu and ΔN do not 
take into account that some modes may be possibly activated during the step; on the other 
hand, it is possible that the extent of incremental load ΔFLi is not enough to determine the 
reaching of at least one internal static variable in a section on the corresponding yield 
limit. Through a comparison between each static internal variable at the beginning of the 
step and the corresponding yield limit, the procedure calculates for each mode, among all 
non-activated ones, the specific scale factor (β) of incremental load ΔFLi leading to 
possible activations. The minimum among all such estimated factors, γ = min{β}, allows 
to get the exact extent of the current step to achieve new activation(s); 

(iv) Through coefficient γ, the original incremental solution is proportionally rescaled, and the 
static and kinematic quantities of the structure at the end of the step are updated; 

(v) At the end of the step some yield planes (at least one) are now activated and stiffness 
matrix Kuu becomes elastoplastic. Its determination is computed through a convenient 
Gaussian elimination procedure, which represents a peculiar feature of the implemented 
evolutive approach (see Ferrari et al. [13] for a comprehensive description of the 
computational formulation). 

The whole procedure assumes an iterative configuration in the repetition of steps (ii)-(v). It 
stops when the collapse of the structure is reached, namely when the minimum eigenvalue of 
global (updated) matrix Kuu calculated within step (ii) vanishes (or it is below a given 
numerical tolerance) and the eigenvector is everywhere associated to a positive load 
dissipation (Ferrari et al. [13]). 
 

2.2. Kinematic upper-bound direct method 

A synopsis of the principal features of the computational algorithm outlined in 
Ferrari et al. [15] is recalled below. 
The direct LA kinematic method is distinguished from other kinematic approaches due to its 
alternative and elegant formulation, which provides a very convenient procedure for the LA 
of truss-frames. According to the upper−bound (kinematic) theorem, the kinematic load 
multiplier is defined as follows: 

 0

g
i e

k
e

L L
L
−

μ =  (3) 

where iL  represents the internal power dissipation of the structure, g
eL  and 0

eL  represent the 
power of the base live loads and the power produced by the permanent loads applied to the 
structure, respectively. A corollary of the upper−bound theorem states that the collapse load 
multiplier is the minimum among the kinematic load multipliers defined for whole set K of 
the kinematically admissible mechanisms, namely { }min .c kμ = μ

K
 Being iL  and eL  

homogeneous functions of order one with respect to the velocity field, 0 1eL =  can always be 
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set for a kinematically admissible mechanism ( )M ; thus, the collapse load multiplier can be 
obtained as the solution to the following constrained optimization problem: 

 ( ) ( ) ( ){ }0min 1g
c i e eM C

L M L M L M
∈

μ = − =  (4) 

If the minimization is limited to a subset of compatible mechanisms C C⊆ , it results: 

 ( ) ( ) ( ){ }0min 1g
c k i e eM C

L M L M L M
∈

μ ≤ μ = − =  (5) 

For instance, with reference to the structure discretization, this can happen when the collapse 
mechanism requires an active plastic joint within one or more beam elements, besides the 
plastic joints at the beam ends. 
The procedure proposed by Ferrari et al. [15] exploits a convenient reshaping of the internal 
power dissipation description of a beam element, in order to adapt an existing efficient 
approach originally presented by Zhang et al. [16], for the LA of continua, within the classical 
FEM analysis based on beam element discretization. In particular, the procedure adopts a 
quadratic form of the internal power dissipation of a beam element, whose expression turns 
out to be defined as follows: 

 ( ) ( )T
iL = q S qq q  (6) 

where vector q  lists the nodal velocities of the structure and matrix ( )S q  is a function of: 
(a) the generalized plastic strains of all the beams that form the structure (the axial and the 
transverse relative rotations and the axial relative displacement, for each joint); (b) the 
corresponding internal actions activating the plastic strains (torque, two bending moments and 
axial force, for each joint). Matrix ( )S q  thus governs the global internal power dissipation of 
the structure; it is symmetric, highly sparse (even narrow-banded with a proper numbering of 
dofs) and positive definite (or positive semidefinite when non-dissipative rigid-body motions 
are allowed by constraints), namely the same properties characterizing the classical global 
stiffness matrix for an elastic FEM frame analysis. 
The direct LA kinematic method is based on an iterative procedure that can be outlined as 
follows: 

(i) At the beginning of the analysis, vector 0q  is set up by a vector of random numbers and 
normalized in order to guarantee that ( )0

0 1eL =q ; 

(ii) Let one now consider iteration n+1. Vector of nodal velocities nq  relevant to the  
n-th iteration (still normalized in order to guarantee that ( )0 1e nL =q ) and corresponding 

load amplification factor n
kμ  are assumed to be known, the last one computed through 

Eq. (3). Then, the iterative process leads to generate a new mechanism, governed by new 
vector 1n+q  that is obtained as the solution of the quadratic constrained minimization 
problem in Eqs. (5)-(6), in which the internal power dissipation, given by Eq. (6), is 
computed through coefficient matrix ( ) ,n nS = S q  related to previous iteration n. The 
resulting constrained minimization problem can be solved by enforcing the stationarity 
condition on a Lagrange function, in this way leading to a set of two equations, each one 
to be a function of an unassigned variable, namely q  and λ , respectively, being the latter 
a Lagrangian multiplier; 

ICCM2018, 6th-10th August 2018, Rome, Italy

510



6 
 

(iii) Ones variables 1n+q  and 1n+λ  are calculated, according to Eq. (3) a new kinematic load 
multiplier ( 1n

k
+μ ) follows, as well as coefficient matrix 1n+S  governing the global internal 

power dissipation of the structure. 

The whole procedure assumes an iterative configuration in the repetition of steps (ii)-(iii). It 
stops when: (a) the number of “inactive” modes has to remain constant for 10 iterations; 
(b) the relative change of the load multiplier from a step to another is lower than 10–3. 
In Ferrari et al. [15] a comprehensive description of the computational formulation is 
provided, along with the proof of convergence of the iterative procedure and some interesting 
remarks concerning the influence of computing round-off errors on the effectiveness of the 
algorithm. The latter turns out to be essential in order to deal with 3D large-scale macro-
structures, endowed with a large number of dofs and associated potentially active plastic 
joints, as the one herein presented as a benchmark structure. 
 

3. Large-scale structural numerical simulations 

3.1. Benchmark structure 

The benchmark structure considered in the present paper is represented by the parabolic arch 
of the Paderno d’Adda bridge, an iron railway viaduct that crosses the Adda river between 
Paderno d’Adda (LC) and Calusco d’Adda (BG) at a height of approximately 85 m from 
water. It allows for connecting the provinces of Lecco and Bergamo, near Milano, in 
Lombardia, northern Italy (Figure 1). The viaduct, co-aged of most celebrated Tour Eiffel, 
and rather similar to that in contemporary structural features, was quickly constructed 
between 1887 and 1889 and is one of the very first great iron constructions designed through 
the practical application of the so-called “Theory of the Ellipse of Elasticity” (Ferrari and 
Rizzi [17]), a graphic-analytic method of structural analysis that was developed in the 19th 
century. The bridge is made of a wrought iron material; the structural elements are 
interconnected by riveted joints. It is composed of: an elegant and robust doubly-built-in 
parabolic arch of about 150 m of horizontal span and 37.5 m of vertical rise; vertical bearing 
piers with a height up to 31.5 m; an upper continuous beam of 266 m of length. The main 
upper continuous beam, 5 m wide and 6.25 m high, is formed by a metallic truss-frame 
supported by nine bearings, four of which are supported by the arch. Wide documentations on 
the historic bridge are available in Ferrari and Rizzi [17], Ferrari et al. [14] and references 
quoted therein. 
For the finalities of the present paper, the homemade FEM model of the arch of the bridge has 
been extracted from a preassembled FEM model of the bridge, earlier implemented within 
commercial FEM code ABAQUS®. It has been constituted by assembling a 3D truss-frame 
with beam elements, mutually built-in at the nodes. The 3D truss-frame of the arch consists of 
two planar parabolic trusses laying into two inclined planes (of an angle α>±8.63° to the 
vertical), symmetrically located with respect to the vertical longitudinal plane of the viaduct. 
The inclined planes are placed at a relative distance of 5.096 m at the keystone. A single arch 
profile is considered in each inclined plane, with an arch body that accounts for the true 
presence of two secondary twin inclined arches, on the two sides of such an inclined plane. 
The truss nodes are linked to each other through a reticular system that corresponds to the true 
bracing system of the arch. The arch presents some additional reinforcing plates between the 
vertical bars in each of the secondary twin inclined arches, placed at the locations of the 
arch/bearing connections. These plates have not been explicitly represented in the FEM model 
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of the structure. To comply with this, the cross sections of the limiting vertical bars 
contouring the stiffening plates have been endowed with larger geometrical characteristics. 
The FEM model of the arch of the bridge is comprised of 1051 beam elements and 342 nodes 
and is endowed with the following material properties, characteristic of a wrought iron 
material (SNOS [18], Nascè et al. [19]): Young’s modulus E=17∙106 tons/m2>170 GPa; 
Poisson’s ratio ν=0.3 (corresponding shear modulus G=6.54∙106 tons/m2>65.4 GPa); mass 
density ρ=7.7 tons/m3. Despite that yield limit characteristics of the material could be set to 
those that may be typically reported for an iron material (Nascè et al. [19]), the yield limit 
assumed in the present computations has been conservatively taken coincident with the 
allowable working stress imposed by the builder at design stage (SNOS [18]), namely 
σy=6.00 kg/mm2>60 MPa (and τy=σy

1/3=3.46 kg/mm2>34.6 MPa). The FEM model of the 
arch of the Paderno d’Adda bridge is depicted in Figure 2, which forms the basis for the 
elastoplastic model with potentially active plastic joints located at the extremes of each beam 
finite element. 
 

 
Figure 1: Contemporary view of the Paderno d’Adda bridge (1889) from the right bank. 
 

 
Figure 2: FEM model of the arch of the Paderno d’Adda bridge. 

 
3.2. Loading configuration 

The loads considered in the performed numerical simulations have been set with reference to 
the static try-out railway loading conditions on the Paderno d’Adda bridge (SNOS [18], 
Nascè et al. [19]). These tests were carried-out using locomotives with tender, each of 83 tons 
of weight, corresponding to a uniformly distributed load on the beam of about q=5.1 tons/m. 
Such distributed live load leads to elastic reactions on the arch, at its interfaces with the piers 
and the upper beam, equal to P1=163.5 tons, P2=171.3 tons, P3=168.7 tons, P4=171.3 tons, for 
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a total live load of Q=674.8 tons just on the arch (Figure 3). These values of Pi come from the 
elastic solution of a nine-bearing continuous beam, with firm supports, and are here assumed 
to be representative of the load distribution directly lying on the arch, when a uniform load is 
acting on the above upper continuous beam (Ferrari et al. [13]). 
In the numerical simulations, only above-mentioned live loads Pi and associated total load Q 
have been considered to be affected by a load multiplier. The self-weight of the structure has 
instead been treated as a pre-imposed permanent load; namely, this has not been affected by 
the load multiplier. In particular, the self-weight of the upper continuous beam and the piers 
on the arch has been considered through loads directly applied to the arch at the arch/beam 
and arch/pier interfaces. To determine such permanent loads, the upper truss structure has 
been considered as a continuous beam supported by nine bearings, subjected to a uniformly-
distributed load representing the weight of the upper beam and set equal to 6.61 tons/m 
(SNOS [18]). Therefore, vertical reaction forces at the bearings located at the level of the 
arch/pier and arch/beam interfaces have been calculated. The two reactions at the level of the 
arch/beam interfaces (P2 and P3 in Figure 3) have then been directly applied to the arch of the 
bridge, meanwhile the two reactions at the level of the arch/pier interfaces (P1 and P4 in 
Figure 3) have been incremented by the weight of the piers resting on the arch, given equal to 
22 tons (SNOS [18]). Permanent resultants P1-P4 applied to the arch, due only to the self-
weight of the upper continuous beam and the piers on the arch (not affected by the load 
multiplier), therefore result equal to P1=233.9 tons, P2=222.0 tons, P3=218.7 tons, 
P4=244.0 tons. 
 

 
Figure 3: Scheme of the considered static load configuration (view from down-stream), 

with loads Pi applied on the arch structure at the arch/pier and arch/beam 
interfaces. 

 

3.3. Numerical results 

The results in terms of elastoplastic load-carrying capacity of the bridge’s arch obtained with 
the above-discussed (Section 2) numerical algorithms of Limit Analysis are consistently 
shown in Table 1. Moreover, the mechanical elastoplastic response of the arch substructure is 
depicted in Figures 4-6. 
 

Table 1: Collapse load multipliers for the benchmark structure. 

Method Collapse load multiplier Limit state 
Evolutive 4.17 First null eigvenvalue of stiffness matrix
Kinematic 4.22 Formation of a collapse mechanism 
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Figure 4: Representation of the characteristic piece-wise linear load–displacement 

response curve. 
 

 
Figure 5: Collapse mechanism of the arch of the Paderno d’Adda bridge by the 

kinematic algorithm. 
 

 
Figure 6: Collapse load multiplier and plastic mechanism estimation along the kinematic 

iterative procedure. 

ICCM2018, 6th-10th August 2018, Rome, Italy

514



10 
 

The numerical evaluation of the collapse load multiplier reported in Table 1 shows a minor 
discrepancy between the upper-bound value obtained by the kinematic method and the 
estimated value achieved by the evolutive analysis (a static evaluation, in essence, and as set 
at the very earliest singularity of the tangent stiffness matrix). This difference (likely forming 
a fork delimiting the real numerical collapse load multiplier) may be due to round-off errors 
and adopted numerical tolerances within the kinematic approach, possibly being linked to the 
diffused amount of very small plastic deformations in several deactivated joints, along the 
iterations. This may require further inspections and refinements of the kinematic algorithm, in 
order to handle such large-scale 3D truss-frame structures. 
Figure 4 reports the characteristic piece-wise linear load/displacement response curve of the 
arch obtained from the evolutive algorithm (Section 2.1), showing a considerable global 
structural ductility. In particular, the horizontal axis depicts the vertical displacement (Δ) of 
the node that, in the end, has shown the maximum displacement at incipient collapse; the left 
vertical axis reports total amplified live load P=μQ, where μ is the load multiplier related to 
the incremental solution of the non-linear elastoplastic analysis; the right vertical axis also 
depicts load multiplier μ. Therefore, in the plot, the response curve for the loading 
configuration can be read on the left or on the right axis, equivalently. The end point of the  
P–Δ curve refers to the so-estimated “exact” collapse of the structure in terms of first 
vanishing minimum eigenvalue of the tangent stiffness matrix of the structure (Section 2.1). 
Notice that in this plot the non-zero initial displacement (at P=0) is due to self-weight only, 
namely to a pre-imposed permanent load not affected by the load multiplier. In this case, the 
computing time to achieve the collapse solution was about 1100 s. The algorithm has been 
implemented and run as a non-compiled code within MATLAB®, under a Windows 10 
operating system, on a Dell laptop endowed with an Intel Core i7-6500U Processor, clock at 
2.50 GHz and 16 GB RAM. 
Figure 5 also depicts the deformed configuration of the structure at incipient collapse 
(namely, the plastic collapse mechanism), as obtained by the kinematic LA algorithm 
(Section 2.2), which is rather consistent with that derived from the evolutive program 
(Section 2.1). 
Figure 6 further illustrates the results related to the kinematic algorithm (Section 2.2). It 
displays the collapse load multiplier computed during the iterative procedure, and the 
associated estimated collapse mechanism along the iterations. In the picture, it is possible to 
appreciate how the implemented algorithm is capable to quickly and easily achieve 
convergence. In fact, the collapse mechanism is almost already achieved at the tenth iteration, 
and in already about 40 iterations the kinematic load multiplier precipitates on the collapse 
one; after that, the load multiplier turns out to be almost flat, at an increasing number of 
iterations. In this case, the computing time to achieve the collapse solution by the direct 
kinematic method (in about 350 iterations) was nearly 37 s, on the same computer platform as 
described above, thus with a saving of more than 96% of the computational time employed 
for the corresponding complete evolutive elastoplastic approach (1100 s). 
 

Conclusions 

The present paper has attempted a comprehensive computational elastoplastic structural 
analysis, truly loyal to the principles of Limit Analysis, in the context of large-scale 3D truss-
frame structures, with reference to the elastoplastic response of a strategic historic 
infrastructure within the local territory (Paderno d’Adda bridge, 1889), in order to investigate 
its potential performance in terms of LA limit states, with focus on the supporting parabolic 
arch. 
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Two approaches have been employed, compared and cross-connected, in view of deciphering 
the resources of the fundamental arch-bearing mechanism of the iron bridge, toward the limit 
state of plastic collapse, as follows: a reconstruction of the complete evolutive response up to 
collapse, with the sequence of activation of the plastic joints in the various members of the 
boxed-form arch structure and the associated tracing of the global load-displacement curve; a 
direct determination of the collapse characteristics, in terms of collapse load multiplier and 
plastic mechanism. 
Both LA methods of analysis consistently run and effectively perform, despite for the rather 
considerable number of dofs considered within the computation (more than 4,000). A true 
match is displayed for the predictions of plastic collapse, with the kinematic iterative 
algorithm showing an impressive performance in really precipitating from above onto the 
collapse load multiplier, and with a plastic mechanism that rapidly adjusts, in very few 
iterations, to the collapse mode. 
As for the interpretation of the achieved results on such a crucial and beautiful historic 
infrastructure, the arch is revealed by both methods to constitute a well-set fundamental 
structural element, with considerable resources in terms of plastic collapse, testifying the 
mastering of the methods of structural design and execution by the art of metallic carpentry at 
the time, despite for being directly conceived on the basis of (graphic-analytic) elastic 
methods of analysis only (see Ferrari and Rizzi [17]). This brings really good news, at present 
stage, in terms of debating possible future destinations of the monumental infrastructure. 
These new LA computational methodologies may open up the way for LA to regaining a new, 
considerable momentum in the structural analysis of large-scale structures, of both a new 
design concept and historic, to be preserved, ones, and with new challenging targets in terms 
of structural optimization, as for structural design or form-finding quests, given the prompt 
availability of the mechanical calculation, within a possible optimization loop that may 
consider variable structural characteristics and trace (optimize) the corresponding variation of 
the elastoplastic response and the attached collapse features. 
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Abstract 

The division of surface becomes an important element in the pragmatics of creating structural 

elevations that simultaneously function as an external barrier. The discretization of freely 

formed surfaces seems to be particularly interesting. Most of the existing solutions are 

concerned with the shaping of elevation panels. However, in structural searches a greater 

interest is placed in algorithmic generation of surface divisions, where the use of appropriate 

method becomes a significant factor in surface discretization. This enables the pursuit of 

synergistic solutions which optimize both the architectural and structural parameters. 

As a result one can expect to obtain optimized structural surfaces shaped according to the 

chosen criteria. In this regard, nature provides an interesting field of research for effective 

patterns. Biological structures shaped under the influence of acting loads are optimized 

through evolution on the basis of, among others, minimisation of material and energy 

consumption. A number of forms observed in the natural world provide interesting examples 

for observing morphogenetic processes. The implementation of biological patterns in the 

design of load-bearing structures affects the design of structural forms in contemporary 

architecture in an interesting way. The article presents the results of model tests conducted on 

selected grid systems based on structures found in nature. 

Keywords:  bionic, structural surfaces, structural optimization, discretization  

of surface, architecture optimization 

Introduction 

In the design of modern architecture, mathematical methods and algorithms play an 

increasingly important role, enabling, among others, imitation of patterns taken from nature. 

The pursuit of synergistic solutions becomes an important element of bionic exploration, 

especially in the interdisciplinary design environment. In the search for structural solutions in 

architecture, shape optimization as well as surface discretization methods are interesting 

research areas. Contemporary digital modeling tools provide new opportunities for the 

rationalization of technical solutions through the design of the tectonics of architectural forms 

– thus realizing the idea of cooperation between architecture and structural design. This paper 

analyzes different variants of canopies’ surface division with the use of bionic patterns. The 

research was aimed at finding effective solutions for the design of structural surfaces. 
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Methods of structural form’s surface discretization 

 

In adopting the method of surface discretization of structural forms it is important to know 

regular tessellations 1, which are used to determine the division of geometrically complex 

surfaces and to obtain planar elements. Tessellations can be achieved as a result of geometric 

transformations of surfaces such as translations, rotation and reflection, and glide reflection - 

when the surface or space is filled with a repeating geometric motif. The characteristic roof 

surface of the Sydney Opera House is an example of polygonal tessellation. The spectacular 

project by Jorn Utzon (created in the years 1956-1973) was the first in which segmental 

approximation of spherical surfaces with different radii was applied. Structural divisions 

occurring in nature are characterized by a more complex structure, and what is important, it is 

possible to find interesting patterns in terms of rationalization of material consumption. The 

forms observed in the natural world constitute an interesting model of morphogenetic 

processes - biological development, the aim of which is to create a structure in the context of 

existing environmental conditions, material, adaptation to live loads, etc. An important factor 

in the development of organic structures is the minimization of material and energy 

consumption, which is another significant analogy to the concept of sustainable development 

in architecture. Parametric modeling, which appeared alongside the possibility of 

implementing bionic patterns in the field load-bearing structures’ design, simultaneously 

allows to generate diverse variants with the same boundary conditions and to verify the 

solutions on the basis of the adopted criteria. The Finite Element Method (FEM), which is an 

advanced numerical method of solving systems of differential equations, uses digital tools in 

the design and discretization of the surface. Equations of this type most often describe the 

phenomena and processes known in nature, and in recent years, along with the development 

of biomimicric trends, are used more and more often in architectural design. In the case of 

grid structures, FEM divides the structure into finite elements by means of nodal points - in 

the newly created record, certain geometrical, physical and mechanical features (so-called 

shape functions) are simultaneously assigned, thus creating a digital model of the structure 

[3]. Interesting examples of surface optimization using FEM can be found in the projects of 

the Italian architectural studio Studio Fuksas (Massimilian and Doriana Fuksas). One of the 

most interesting objects in which the designers used digital triangulation is the 'My Zeil' 

Shopping Center in Frankfurt located in the PalaisQuartier complex (which has the additional 

functions of an office and a hotel). The curvilinear surface constituting both the roofing of the 

building and its frontal elevation was subject to tessellation. From the main entrance to the 

shopping center there is a characteristic "dent" in the elevation, whose geometry, through the 

shape of an irregular tube, transforms into a waving roof of commercial spaces. An organic 

roof with an area of approximately 6000m² was made of a triangular steel mesh (made up of 

around 3,200 triangles) filled with glass and metal panels. The Knippers Helbig office from 

Stuttgart was the author of the structure. Another example of the use of digital tools 

supporting the optimal creation of grid structures by imitating nature can be seen in the 

Dynamic Relaxation Method. By using Newton's second law, Dynamic Relaxation generates 

a catenary model for a given point grid - it is possible to search for the optimal number of 

nodes, and to find the most effective position. Examples of the use of Dynamic Relaxation in 

surface discretization can be found in Foster & Partners’ projects, among others: the 

1 Gawell E., Nowak A., Rokicki W., „Aperiodic tesselations in shaping the structural surfaces in the contemporary  

architecture”, The Journal Biuletyn of Polish Society for Geometry and Engineering Graphics, Volume 26 (2014),  

p. 47-54, Publishing House.: Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej (Polish Society of Geometry and 

Engineering Graphics) 
"So far, 17 periodic tessellations have been described, usually composed of regular polygons such as: equilateral triangle, 

a square, a hexagon, an octagon and a decagon." 
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Smithsonian Institution in Washington, or at the British Museum's Great Court in London. 

The more irregular divisions built on the basis of structural patterns found in nature are 

Voronoi diagrams, describing the optimal division of the surface into cells (or planes on 

convex polygons). The characteristic, polygonal Voronoi fields are created for the indicated 

points, taking into account their location and value (eg size). One Voronoi cell is created 

around each point as a polygon adhering to neighboring cells, and the points around which the 

diagram is created are exactly in the center of gravity of each cell2. In addition, the Voronoi 

Diagram is a dual graph for Delaunay triangulation - in effect, the Voronoi polygon vertices 

are the centers of circles described on the triangles that form the triangular grid. As a result of 

the algorithm based on the Voronoi diagram it is possible to create various solutions in the 

field of surface discretization. Such a method of surface division was used for the 

Landesgartenschau Exhibition Hall project, which was implemented as a research project in 

the Institute for Computational Design, the Institute of Building Structures and Structural 

Design and the Institute of Engineering Geodesy at the University of Stuttgart. The design 

was shaped like the skeleton of a sea urchin, and the structural surface divisions were 

optimized using numerical analyzes. 

 

Own research for selected grid models 

 

The search for the geometrical shape of structural grids is an important factor in the design of 

architecture, both reflecting the intended artistic effect as well as rationalizing technical 

solutions. From the point of view of the solid’s tectonics the surface grid division affects the 

visual reception of the form. Determining the metrics of the distribution is crucial for the 

realization of the curves describing the form such as in the case of free-form architecture. 

Increasing or decreasing the density of the grid is fundamental to structural optimization – too 

many elements cause larger deformations and increase stress due to own weight etc. 

Obtaining effective structural grid divisions should be addressed interdisciplinarily when 

analyzing paradigms from two disciplines: architecture and construction. Such phenomena 

can be observed naturally in the development processes of living organisms. Thanks to the 

algorithmization of tools in the design process such a pattern can be adopted in the creation of 

eco-efficient solutions for contemporary architecture. A recently popularized example can be 

observed in the use of Delaunay triangulation in the construction of grid structures (by using 

multi-variant solutions for the indicated boundary parameters). Choosing one grid system 

becomes a difficult task, requiring the ability to rationalize technical solutions in search for 

artistic effects. The results of the grid structure analysis are described below its construction 

was modeled on a bionic model. It assumed that the catenary was set on rectangular plan with 

the 30.0m x 26.0m dimensions, with three supports – the minimal number of supports 

guaranteeing stability of the structure while reducing any unnecessary geometry (Fig. 1). The 

supports were set with the assumption that the proportions between the individual support and 

cantilever spans were fixed. The supports were positioned in such a way that the lines passing 

through them are always in the 1:3:1 ratio, so the cantilevers are 6.0 m long and the distance 

between them is 18.0 m (according to the scheme – Fig. 2). Due to the varying length of the 

bars, the roof surface was discretized and the divisions were based on Delaunay triangulation. 

(Fig. 3). The idea of search for the curvilinear forms was based on a catenary model, by 

carrying out transformations in the third dimension for each of the metric variants. The 

adopted five-step curvature of the surface was dependent on the variable height in the 

2 On the basis of the Voronoi diagram, two-dimensional space is divided so that for a given set of n points, the plane is  

divided into n areas in such a way that each point in any area is closer to a specific point from the set of n points than from 

the other n-1 points. Voronoi cells, being an intersection of half-planes, are convex polygons whose collection breaks the 

two-dimensional Euclidean space creating an optimal net built of nodal points. 
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proportion of the curvature height to the support span equal to 1/8, 1/6, 1/5, 1/4, and 1/3 

(Fig. 3). Models were generated in the Rhinoceros program with the Grasshopper and 

Kangaroo2 plugins. Determining the basic permutation for planar systems required an 

assumption regarding the divisions (due to the maximum bar length) – the transformations of 

the curvilinear variants occurred only in the third dimension, while maintaining the XY axis 

division of the structure. Additionally, for all examined systems, the location and the fixing of 

supports (restraints) were assumed to be constant. In addition, homogeneous THEX profiles 

(hexagonal tubes), TRON (round tubes) and TREC (rectangular tubes) made of S335 steel 

were used. Due to the initial assumptions, it was assumed that the analyzed structure variants 

will be homogenous, hence each construction bar will have the same cross-section. To obtain 

comparable results, the cross-section database was limited to closed sections. Because all 

variants have a similar geometry (after projecting onto a flat plane), the maximum permissible 

deformation of elements equal to 17.9cm was assumed. Due to the fact that the geometry of 

the analyzed structures is a model study, the analyzes were carried out by taking into account 

the own mass of the structure, wind and snow load according to EC, and the assumed load of 

1.0 kPa for the coating material. 

 

Fig. 1. The principle of setting the roofing supports 

 

  

Fig. 2. Scheme of supports’ placement – top down view of the model 
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Planar grid structures – discretization of the Surface 

 

The use of triangular divisions allowed for the creation of a geometrical model, divided into 

the simplest elements connected at the nodes. Computer aided engineering calculations were 

used for the structural analyzes using the finite element analysis. Defining the grid metric was 

the first step of research. We analyzed 3 random planar variant solutions with various degrees 

of grid density (Fig.3): 

- Variant 1 – maximum bar length = 3,5m 

- Variant 2 – maximum bar length = 4,0m  

- Variant 3 – maximum bar length = 4,5m  

 
Fig. 3.  Juxtaposition of the planar variants determining the grid metrics  

for curvilinear divisions 

 

The planar systems achieved poor computational results and were thus only used to guide 

further research. From the 3 analyzed planar variants, the one with the bar length not 

exceeding 4,5m proved to be the most effective. Thus, further geometrical deformations were 

made by using this metric. 

 

Space grid structures – shape optimization 

 

In the search for structural efficiency due to the accepted minimum mass criterion, the surface 

was transformed using Dynamic Relaxation in the Grasshopper / Kangaroo2 plugin. Spatial 

models were created as a result of moving the center point of the plane on the Z axis (the 

center of gravity between the supports), while maintaining a constant horizontal projection of 

structural divisions. In the analyzed variants, the ratio of height to support span was assumed 

as constant: 

- Variant 4 – 1/8 ratio 

- Variant 5 – 1/6 ratio 

- Variant 6 – 1/5 ratio 

- Variant 7 – 1/4 ratio 

- Variant 8 – 1/3 ratio 
By creating catenary models with different heights for the selected planar layout (with 
a maximum bar length of 4.5m), 5 curvilinear solutions were obtained (Fig.4). It was noticed 
that as the proportion between the height and the span of curvature between the supports 
increased, the total mass of the structure decreased (Tab.1). Although the curvature of the 
surface resulted in an increase of the total length of the bars, the mass of the most effective 
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Variant 8 (1/3) was smaller by 45% in relation to the heaviest Variant 4 (1/8). In addition, the 
bar cross-section has also decreased (the difference between the two extremes variants is 
33%), making the structure more attractive in terms of aesthetics, which affects the reception 
of architecture (Fig. 6a, c). Due to the popularization of formative building technologies, such 
as the printing of construction and building elements, the parameter calculated as the ratio of 
total weight to the square meter area [kg/m²] is significant (Tab.1). Curving the surface up to 
a 1/3 ratio would make it possible to create twice as effective structures as by using the 1/8 
ratio. 

 

Fig. 4. Analyzed variants of space grid structures 

 

 
Fig. 5. Analysis for two extreme variants; Variant 4 (1/8): a - deformation chart; b - stress 

diagram; Variant 8 (1/3): c - deformation chart; d - stress diagram 
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Tab. 1. Calculation results for spatial structures when the projected bars  

do not exceed 4,5m in length. 

 

 

According to the assumptions adopted in the study, the maximum permissible deformation of 
17.9 cm was met for all the variants. In each of the systems, the largest bending occurred on 
the cantilevers. However, differences in the work of individual bars can be seen in the stress 
diagram - curvature of the surface caused an increase in the number of compressed rods in the 
support zones forming structures similar to arboral supports [2]. At the same time, it is worth 
mentioning that the curvilinear deformations of the roof also cause changes in the reactions at 
the fixed supports. 

 

Fig. 6. Analysis of two extreme variants; Variant 4 (1/8): a - shape of the roof together with 

the sketch of the profile; b – graph of limit state ratio for individual bars; Variant 8 (1/3):  

c - shape of the roof together with the sketch of the profile; d – graph of limit state ratio for 

individual bars 
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As a result of approximation with the third degree polynomial, the least squares method was 
used for the given five variants. The curve determined in this way convinces us that for the 
assumed boundary conditions the optimum was not found. However, continuing the 
optimization process by increasing the degree of surface curvature on the one hand will lead 
to a change in the structure of the system (which may be desirable), and on the other will 
affect the aesthetics and functionality of the architectural form. So in the pursuit of optimal 
grid structures in architecture, making rational decisions through compromise, also in the 
context of designing the structure and determining the direction of optimization, is an 
important element. 

 
Fig. 7. Polynomial approximation diagram for p³(xi) and yi values (mass) for individual 

curvilinear variants 

 

Summary 

 

Nowadays we are observing a growing interest in bionic solutions. Digital tools supporting 

architectural design are more often equipped with methods of surface discretization using 

laws governing the processes occurring in nature. Biomimicry in architecture fosters the 

development of digital technologies, thanks to which it is possible to map chaotic systems, 

while the ways of reproducing the undeniable beauty of nature are gradually discovered and 

described by means of discrete mathematics. 

Structural optimization is an integral part of shaping of the architectural vision, and the 

development of knowledge and the standardization of generative design methods have 

a significant impact on the way the architectural form is designed - its shape and the structure 

of the building's surface. Due to dynamically developing digital processes of design 

optimization the designers are not only aware of its logical use in bionic structures but also 

are able to use generative modeling methods to determine rational criteria for more detailed 

searches. 

Delaunay triangulation is one of the bionic methods of surface division which finds 

application in architecture in the design of shell elements such as roofs, elevations, walls, etc. 

In architectural and construction optimization Delaunay triangulation can be used as an 
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alternative way of search for rational, and at the same time, tectonically innovative structural 

solutions. An important element of the optimization of the structural surfaces is the 

determination of the metric describing the density of the grid - so that the structure on one 

hand meets the visual effect intended by the architect, and on the other hand it remains 

a rational solution in the context of construction and building logic. 
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Abstract 

The mathematical modeling of forest fires actions on buildings and structures have been 

carried out to study the effects of fire intensity and wind speed on possibility of ignition of 

buildings. The crown forest fire is introduced as a heat and mass source defined by the 

empirical values of average crown fire temperature and vertical gas velocity at the top crown 

surface dependent on fire intensity. The hydrodynamic and thermal interactions between 

plume, wind flow and building are analyzed. The approach to modeling is based on the use of 

standard non-stationary three-dimensional conservation equations for turbulent flow in a 

multiphase reacting medium that are solved numerically under the input conditions 

characteristic of a large forest fires. 

Keywords: Computation Control volume, Crown fire, Fire spread, Forest fire, 

Mathematical model, Ignition, Building 

 

Introduction 

The protection of buildings and structures in a community from destruction by fire is a very 

important concern. This paper addresses the development of a mathematical model for impact 

of wildfires with buildings. The forest fire is a very complicated phenomenon. At present, fire 

services can forecast the danger rating of, or the specific weather elements relating to, forest 

fire. There is need to understand and predict forest fire initiation, behavior and impact of fire 

on the buildings and constructions. This paper’s purposes are the improvement of knowledge 

on the fundamental physical mechanisms that control forest fire behavior. A great deal of 

work has been done on the theoretical problem of forest fires. The first accepted method for 

prediction of crown fires was given by Rothermal [1] and Van Wagner [2]. The semi-

empirical models [1-2] allow to obtain a quite good data of the forest fire rate of spread as a 

function of fuel bulk and moisture, wind velocity and the terrain slope. But these models use 

data for particular cases and do not give results for general fire conditions. Also crown fires 

initiation and hazard have been studied and modeled in detail (eg: Alexander [3], 

Xanthopoulos, [4], Van Wagner, [5], Cruz [6], Albini [7], Scott, J. H. and Reinhardt, E. D. 

[8]. The discussion of the problem of modeling forest fires is provided by Grishin [9]. A 

mathematical model of forest fires was obtained by Grishin [9] based on an analysis of known 

and original experimental data and using concepts and methods from reactive media 

mechanics. The physical two-phase models used in [10] may be considered as a development 

and extension of the formulation proposed by Grishin [9]. However, the study of crown fires 

initiation and spread [9,10] has been limited mainly to cases studied of forest fires 

propagation without take into account the mutual interaction of crown forest fires with 

different obstacles (roads, glades and etc.), buildings and constructions. In this paper, the 

impacts of crown forest fires on buildings are studied. The dangerous distances between forest 
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and buildings are calculated in cases when the buildings will be ignited under the influence of 

forest fires. 
 

1. Physical and mathematical model 

It is assumed that the forest during a fire can be modeled as 1) a multi-phase, multistoried, 

spatially heterogeneous medium; 2) in the fire zone the forest is a porous-dispersed, two-

temperature, single-velocity, reactive medium; 3) the forest canopy is supposed to be non–

deformed medium (trunks, large branches, small twigs and needles), which affects only the 

magnitude of the force of resistance in the equation of conservation of momentum in the gas 

phase, i.e., the medium is assumed to be quasi-solid (almost non-deformable during wind 

gusts); 4) let there be a so-called “ventilated” forest massif, in which the volume of fractions 

of condensed forest fuel phases, consisting of dry organic matter, water in liquid state, solid 

pyrolysis products, and ash, can be neglected compared to the volume fraction of gas phase 

(components of air and gaseous pyrolysis products); 5) the flow has a developed turbulent 

nature and molecular transfer is neglected; 6) gaseous phase density doesn’t depend on the 

pressure because of the low velocities of the flow in comparison with the velocity of the 

sound. Let the point x1, x2 , x3= 0 is situated at the center of the surface forest fire source at the 

height of the roughness level, axis 0x1 directed parallel to the Earth’s surface to the right in 

the direction of the unperturbed wind speed, axis 0x2 directed perpendicular to 0x1 and axis 

0x3 directed upward (Fig. 1). The building is situated on the right part of the picture. 

 

 

Figure 1.  The scheme of calculation domain. 
 

The problem formulated above reduces to the solution of the next system of equations: 
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The system of equations (1)–(7) must be solved taking into account the initial and boundary 

conditions: 
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Here and above 
td

d
 is the symbol of the total (substantial) derivative; v is the coefficient of 

phase exchange;  - density of gas – dispersed phase, t is time; vi - the velocity components; 

T, TS, - temperatures of gas and solid phases, UR - density of radiation energy, k - coefficient 

of radiation attenuation, P - pressure; cp – constant pressure specific heat of the gas phase, cpi, 

i, i – specific heat, density and volume of fraction of condensed phase (1 – dry organic 

substance, 2 – moisture, 3 – condensed pyrolysis products, 4 – mineral part of forest fuel), Ri 

– the mass rates of chemical reactions, qi – thermal effects of chemical reactions; kg , kS  - 

radiation absorption coefficients for gas and condensed phases; eT  - the ambient temperature; 

c - mass concentrations of  - component of gas - dispersed medium, index =1,2,3 where 1 

corresponds to the density of oxygen, 2 - to carbon monoxide CO, 3 - to carbon dioxide and 

inert components of air; R – universal gas constant; M , MC, and M molecular mass of  -

components of the gas phase, carbon and air mixture; g is the gravity acceleration; cd is an 

empirical coefficient of the resistance of the vegetation, s is the specific surface of the forest 

fuel in the given forest stratum. To define source terms which characterize inflow (outflow of 

mass) in a volume unit of the gas-dispersed phase, the following formulae were used for the 
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rate of formulation of the gas-dispersed mixture Q, outflow of oxygen 51R , changing carbon 

monoxide 52R . 
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The initial values for volume of fractions of condensed phases are determined using the 

expressions: 

 

1 1
1 2 3
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where d -bulk density for surface layer, z – coefficient of ashes of forest fuel, W – forest fuel 

moisture content. It is supposed that the optical properties of a medium are independent of 

radiation wavelength (the assumption that the medium is “grey”), and the so-called diffusion 

approximation for radiation flux density were used for a mathematical description of 

radiation transport during forest fires. To close the system (1)–(7), the components of the 

tensor of turbulent stresses, and the turbulent heat and mass fluxes are determined using the 

local-equilibrium model of turbulence (Grishin, [9]). The system of equations (1)–(7) 

contains terms associated with turbulent diffusion, thermal conduction, and convection, and 

needs to be closed. The components of the tensor of turbulent stresses jivv  , as well as the 

turbulent fluxes of heat and mass 
j pv c T   , jv c    are written in terms of the gradients of the 

average flow properties using the formulas 
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where t, t, Dt are the coefficients of turbulent viscosity, thermal conductivity, and 

diffusion, respectively; Prt, Sct are the turbulent Prandtl and Schmidt numbers, which were 

assumed to be equal to 1. In dimensional form, the coefficient of dynamic turbulent viscosity 

is determined using local equilibrium model of turbulence [9]. The length of the mixing path 

is determined using the formula )/5.21/( 33 hscxkxl dt   taking into account the fact that the 

coefficient of resistance cd in the space between the ground cover and the forest canopy base 

is equal to zero, while the constants kt = 0.4 and h=h2-h1
  (h2, h1 – height of the tree crowns 

and the height of the crown base). It should be noted that this system of equations describes 

processes of transfer within the entire region of the forest massif, which includes the space 

between the underlying surface and the base of the forest canopy, the forest canopy and the 
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space above it, while the appropriate components of the data base are used to calculate the 

specific properties of the various forest strata and the near-ground layer of atmosphere. This 

approach substantially simplifies the technology of solving problems of predicting the state of 

the medium in the fire zone numerically. The thermodynamic, thermophysical and structural 

characteristics correspond to the forest fuels in the canopy of a different (for example pine 

[9]) type of forest. 

2. Numerical Solution and Results 

The boundary-value problem (1)–(14) is solved numerically. A discrete analog was obtained 

by means of the control volume method using the SIMPLE like algorithm (Patankar [11]). 

Difference equations that arise in the course of sampling were resolved by the method of SIP 

[11]. In order to efficiently solve this problem in a reactive flow the method of splitting 

according to physical processes was used. The basic idea of this method is based on the 

information that the physical timescale of the processes is great than chemical. In the first 

stage, the hydrodynamic pattern of flow and distribution of scalar functions was calculated. 

Then the system of ordinary differential equations of chemical kinetics obtained as a result of 

splitting was then integrated. The time step for integrating each function has to be smaller 

than the characteristic time of physical process to ensure the convergence of the numerical 

method. The time step was selected automatically. The accuracy of the program was checked 

by the method of inserted analytical solutions. Analytical expressions for the unknown 

functions were substituted in (1)–(14) and the closure of the equations were calculated. This 

was then treated as the source in each equation. Next, with the aid of the algorithm described 

above, the values of the functions used were inferred with an accuracy of not less than 1%. 

The effect of the dimensions of the control volumes on the solution was studied by 

diminishing them. Fields of temperature, velocity, component mass fractions, and volume 

fractions of phases were obtained numerically. The first stage is related to increasing 

maximum temperature in the place of ignition with the result that a crown fire source appears. 

At this process stage over the fire source a thermal wind is formed a zone of heated forest fire 

pyrolysis products which are mixed with air, float up and penetrate into the crowns of trees. 

As a result, forest fuels in the tree crowns are heated, moisture evaporates and gaseous and 

dispersed pyrolysis products are generated. Ignition of gaseous pyrolysis products of the 

crown occurs at the next stage, and that of gaseous pyrolysis products in the forest canopy 

occurs at the last stage. At the moment of ignition, the gas combustible products of pyrolysis 

burn away, and the concentration of oxygen is rapidly reduced. The isotherms of gas phase 

components moved in the forest canopy by the action of wind. It is concluded that the forest 

fire begins to spread. The results of the calculation give an opportunity to consider forest fire 

spread for different wind velocity, canopy bulk densities and moisture forest fuel. It is 

considered the effect of forest fire front on the building which is situated near from the forest. 

The influences of wind velocity and distance between forest and building on ignition of 

building are studied numerically. The results of calculations can be used to evaluate the 

thermal effects on the building, located near from the forest fires. The temperature fields of 

crown forest fire at definite moment will be interacted with the obstacle - building (Figure 2 

a) and b)) and ignited it. Fig.2. shows temperature fields at the different instants moments of 

forest fire spread for a wind speed of 15 m/s. During this process, the surface of the wall of 

the building heats as a result of convection and radiation heat transfer. The wood building will 

be ignited at definite temperature. It depends on wind velocities, distances from the forest fire 

to building, the height of building and others parameters. The Figures 3-5 represent the 

predicted distributions of temperature on the surfaces of the wall of the building as a function 

of vertical coordinate for the three selected wind speed values and different distances between 

forest and building. In paper [12] it is showed that the wood will be ignited when its 

ICCM2018, 6th-10th August 2018, Rome, Italy

531



temperature exceeds 300C. The results of calculations presented on Figures 3-5 show that the 

surface temperature reach these values at wind velocities more than 6 m/s. The height of 

building in these calculations was H=3 m. 
 

 
Figure 2. Gas temperature field at a) t=15 s, b) t=20 s, c) t=23 s, d) t=25 s for a wind 

speed of 15 m/s; 1 – 1.2, 2 - 1.5, 3 – 2., 4 – 3., 5 – 4; T =T/Te Te=300K. 

 

 

Figure 3. The distribution of temperature on the wall of the building for three wind speed 

values. The distance between forest and building is 21 m. 
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Figure 4.  The distribution of temperature on the wall of the building for three wind 

speed values. The distance between forest and building is 26 m. 

 

 

Figure 5. The distribution of temperature on the wall of the building for three wind speed 

values. The distance between forest and building is 31 m. 
 

As a result of these calculations it was defined maximum safety distances between forest and 

building when the building would not have been ignited by forest fire (Fig. 6). The wind 

speed values increase from 6 to 14 m/s. Also, it was studied the influence of the height of 

building on the value of safety distances. When the height of building changes from 3 to 6 m, 

the safety distances l also increases (Figure 7) for different values of wind speed.  
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Figure 6. The dependence of safety distances between forest and building as a function of 

wind speed values; H=3 m. 
 

 

Figure 7. The dependence of safety distances between forest and building as a function of 

wind speed values. H=6 m. 

3 Conclusions 

A multiphase mathematical model of wind-aided crown forest fires propagating through 

heterogeneous fuel beds has been performed. It takes into account the hydrodynamic aspects 

of the flow and uses Arrhenius kinetics to describe the basic physics and chemical processes 

of thermal decomposition heating, drying, pyrolysis, and combustion. Turbulence and 

radiation are considered in order to improve the physical insight. It allows to investigate the 

dynamics of the impact of forest fires on buildings under the influence of various external 

conditions: a) meteorology conditions (air temperature, wind velocity etc.), b) type (various 

kinds of forest combustible materials) and their state (load, moisture etc.). The calculations let 

to get the maximum distance from the fire to the building in which the object possible 

ignition. It has been found that the effect of increasing the wind speed is to increase the safety 

distances between forest and building. The increasing of building height is observed also led 
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to increase the safety distances between forest and building. Specific experiments are also 

needed to obtain more reliable information on validation of further solution of this problem. 
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Abstract 
The research presented in this paper is aimed at improve drag performance of a ship based on 
a flexible hull form modification method and an effective optimization algorithm. To obtain a 
series of practical new hull forms, a good ship modification method is needed first. Free-form 
deformation (FFD) method is a good deformation method to be widely applied in many shape 
design fields, such as aircrafts, Remote Operated Vehicles (ROV), cars and ships. Here, FFD 
method is extended by adding bending transformation in our in-house ship optimization 
solver, OPTShip-SJTU. In addition, a better optimization algorithm can greatly reduce 
computational cost and optimization responsive time. The efficient global optimization (EGO) 
algorithm has such good properties. It is a Kriging-based global optimization method, making 
the most of the knowledge of the error of Kriging model to search a cost landscape. In this 
paper, The KRISO Container Ship (KCS) is used as the initial ship, locally modified in the 
front half of the ship by FFD method mentioned above. The objective function (the wave-
making resistance) is evaluated by the potential theory, Neumann-Michell method. Through 
the EGO algorithm, the drag of the initial ship is fast and efficiently optimized and the 
corresponding optimal ship is obtained. To verify the optimal result, the optimal ship is 
compared in detail with the initial one in the aspects of body lines, pressure distribution of 
ship surface, wave elevation, etc. It turns out the methods here are well applied to the ship 
optimization problem. 

Keywords: drag performance; ship optimization design; extended FFD; EGO 

Introduction 

CFD is currently playing an increasingly important role in numerical prediction of ship 
hydrodynamic performance. The problem of long model test period and high cost is solved to 
a large extent. The ship hull optimization also began to leave the traditional design mode. A 
simulation-based design (SBD) mode emerged, that is, Numerical prediction based on CFD 
was used to evaluate the hydrodynamic performance, and the optimization algorithm was used 
to minimize the ship's hydrodynamic performance and improved ship hull lines. At present, a 
large number of scholars are studying such problems and have partly and successfully applied 
them to engineering practice. 
However, ship optimization design requires a large amount of numerical calculation, which 
greatly increases the time and cost of CFD calculation. It needs to be achieved by means of 
approximation and parallel techniques. There is no clear direct expression between the 
hydrodynamic performance of a ship and the deformation parameters of a ship. The 
approximation technique implicitly expresses the relationship between the design variables 
and the objective function by mathematical means to construct an approximate model (Wu J. 
W., 2017; Liu X. Y. 2017), so that there is no need to call the CFD prediction of the 
hydrodynamic performance in the optimization process. The calculation is directly invoked by 
the approximation model, which greatly reduces the optimization design time and calculation 
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cost. Then for only optimization according to the approximate model, there are the following 
problems: Firstly, the accuracy of the approximate model needs to be accurate enough before 
optimization, and enough sample points are needed, otherwise the result is unreliable and the 
optimization fails; at the same time, the obtained optimized solution needs to be calculated 
again by high-fidelity CFD method or model test to confirm. 
This paper adopts an efficient global optimization algorithm, also called the sequential global 
optimization algorithm based on approximation model. This method makes full use of the 
approximate model, and combines the estimation results of the existing approximate model 
with the uncertainty of the approximate model and the optimization algorithm. The high-
precision calculation of additional sample points is needed by the above method. It 
continuously improves the accuracy of the approximate model and continuously explores the 
optimal value. An EI criterion (Expected Improvement) was proposed by Donald R. Jones in 
1998. The sample points are needed by optimizing this criterion, which was successfully 
applied to the optimization of mathematical functions, especially high-dimensional functions. 
The convergence speed is much larger than many algorithms such as genetic algorithms. Later, 
more developments were made (Weihs. C, 2016) from the original single-objective 
optimization to multi-objective optimization (Seulgi, Y. I. 2014), and It began to be applied to 
engineering practice, including the design of airfoils, the volume of the oil pump and other 
optimization design problems (Jeong S, et al, 2015; Yi S, 2015) 
In addition to the need for better optimization algorithms, the transformation method for ship 
lines must be further studied. Free-form deformation is a good and mature method to modify 
ship lines and it is extended based on the FFD transformation method that has been developed. 
The object can be achieved bending deformation in the presence of continuity. The method is 
applied to hull form transformations effectively and efficiently especially for local shapes 
deformation such as bulbous bow and two-skeg stern. 
In the first half of this paper, the FFD method and EGO method will be briefly introduced. In 
the second of this paper, the methods will be applied to the optimization problems of ship 
design of KCS. 

FFD method 

Free-form deformation (FFD) method is a good choice to modify hull form locally. FFD 
method was first described by Thomas W. Sederberg and Scott R. Parry (1986) and was based 
on an earlier technique by Alan Barr (1984). Its basic idea of this method is embedding a ship 
or the region of the ship to be deformed within a parallelepipedical 3D lattice regularly 
subdivided. Then it can modify the surface shape of a ship by the following relationship.  

( ) ( ) ( ) '
, , , , ,

0 0 0

l m n

ffd i j j k i k i j k
i j k

X B s B t B u Q
= = =

=∑∑∑                                     (1) 

Wherein 
'
, ,i j kQ  is the coordinates of the control points on the lattice, while ffdX  is the 

coordinates of the points of the ship surface. B is Bernstein polynomial, l, m, n are the 
numbers of the control points along the x-axis, y-axis, z-axis direction, respectively. Through 
changing the movable number, direction and displacement of the control points, the different 
ship surfaces can be easily obtained. Figure 1 is a sketch of a ship's bulbous bow deformation 
through the FFD method. Given the control points’ rotating angle, the entire lattice is 
deformed, so that the bulbous bow is bent. 
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Figure 1 The application of the FFD method 

In the paper, two lattices (Fig. 2) are used to modify the shape of the ship's front half part, the 
small lattice to modify the shape of the bulbous bow including the length, width, and degree 
of curvature, and the large one to modify the fatness of the ship’s front half. A total of 7 
design variables related to the shape deformation are involved in the optimization problem. 
Then, 35 sample hulls are generated through design of experiments.  

 
Figure 2 Two lattices used by the FFD method 

Kriging Model 

Kriging model (Simpson et al., 1994, 2004) is developed from mining and geostatistical 
applications involving spatially and temporally correlated data. This model combines a global 
model and a local component: 

( ) ( ) ( )y x f x z x= +                                                                (2) 
where ( )y x is the unknown function of interest, ( )f x  is a known approximation function of x , 
and ( )z x  is the realization of a stochastic process with mean zero, variance 2σ , and non-zero 
covariance. With ( )f x  and ( )z x , the kriging model can build the surrogate model between the 
input variables and output variables. 
The kriging predictor is given by: 

( ) ( )T 1ˆ ˆˆ r R y fy xβ β−= + −
                                                          (3) 

where y  is an ns-dimensional vector that contains the sample values of the response; f  is a 
column vector of length sn  that is filled with ones when f  is taken as a constant; ( )Tr x  is the 
correlation vector of length sn  between an untried x  and the sampled data 
points ( ) ( ) ( ){ }1 2, , , snx x xK  and is expressed as: 

( ) ( )( ) ( )( ) ( )( ) T
1 2T , , , , , , ,r snx R x x R x x R x x =  K

                                                (4) 
Additionally, the Gaussian correlation function is employed in this work: 

2

1
( , ) exp

dvn
i j i j

k k k
k

R x x x xθ
=

 
= − − 

 
∑

                                                          (5) 
In equation (3), β̂  is estimated using equation (5): 

( ) 1T 1 T 1ˆ f f f yR Rβ
−− −=                                                                 (6) 

The estimate of the variance 2σ̂ , between the underlying global model β̂  and y  is estimated 
using equation (7):  

( ) ( )2 1ˆ ˆˆ
T

sy f R y f nσ β β− = − −                                                            (7) 
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where ( )f x  is assumed to be the constant β̂ . The maximum likelihood estimates for the kθ  in 
equation (5) used to fit a kriging model are obtained by solving equation (8): 

( ) ( )2

0

ˆmax ln ln R 2
k

k sn
θ

θ σ
>

 Φ = − +                                                     (8) 
where both 2σ̂  and R  are functions of kθ . While any value for the kθ  create an interpolative 
kriging model, the “best” kriging model is found by solving the k-dimensional unconstrained, 
nonlinear, optimization problem given by equation (8). 
the accuracy of the prediction value largely depends on the distance from sample points. 
Intuitively speaking, the closer point x to the sample point, the more accurate is the prediction 
ŷ . This intuition is expressed as 

( )
1 2

2 2 ' 1
' 1

(1 1 )ˆ 1
1 1

R rs x r R r
R

σ
−

−
−

 −
= − + 

 
                                                     (9) 

where ( )2s x  is the mean squared error of the predictor and it indicates the uncertainty at the 

estimation point. The root mean squared error (RSME) is expressed as 
2 ( )s s x=  . 

A kriging-based global efficient optimization algorithm 

Traditionally, once the surrogate model is constructed, the optimum point can be explored 
using an arbitrary optimizer on the model. However, it is possible to miss the global optimum 
because the approximation model includes uncertainty at the predicted point. 
In Fig. 3, the solid line is the real shape of objective function. Eight points are selected to 
construct the kriging model, which is shown as red points. The minimum point on the kriging 
model is located near x=16, whereas, the real global minimum of the objective function is 
situated near x=17. Searching for the global minimum using the present kriging model will 
not result in the real global minimum near x=17. For a robust search of the global optimum, 
both the predicted value by the kriging model and its uncertainty should be considered at the 
same time. 
 

 
Figure 3.  The Kriging model and the real function curve 

 
When Kriging model is built, the mean predicted value and the standard error of the kriging 
model at any point can be evaluated. Considering the uncertainty of the model, this concept is 
expressed in the criterion of EI. The EI of minimization problem can be calculated as 

[ ] [ ] [ ]min min minˆ ˆ ˆ( ) ( ) ( ) / ( ) /E I x f y f y s s f y sf= − Φ − + −                                    (10) 

Where minf  is the minimum value among n sampled values. Φ  and f are the standard 
distribution and normal density, respectively.  
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In fact, if we compute the derivative of EI as given in equation (9) with respect to ŷ  and s , 
we gets several terms that cancel, resulting in the simple following expressions: 

ˆ/ 0, / 0EI y EI s∂ ∂ < ∂ ∂ <                                                       (11) 

It turns out that EI is monotonic in ŷ  and in s . Thus, we see that the EI is larger the lower is 
ŷ  and the higher is s . By selecting the maximum EI point as additional sample point through 
DE algorithm mentioned above, robust exploration of the global optimum and improvement 
of the model can be achieved simultaneously. 
The overview over the whole efficient global optimization (EGO) procedure mentioned 
before is shown in Figure 4. First, the initial sample points should be chosen by experiment of 
design uniformly covering the whole design space. Secondly, an ordinary Kriging model is 
built and used to predict the objective for each design variable. Thirdly, the expected 
improvement (EI) balancing between regions of the low mean prediction and of high standard 
error is constructed to select the next point. The choice of the next sample point is the 
maximization of the EI value. Next, the objective function in the new point is calculated 
accurately and used to build a new surrogate model with the initial sample points, thus the 
next iteration is initiated. Finally, when the EI value is very small after   n iterations, i.e., 

( ) ( ) ( )( )max max minEI s y y< ∆ ⋅ −  , where s∆  is the relative stopping tolerance, or reach the 
maximization of iteration steps, the loop should be stopped. 

 
Figure 4.  The flow chart of efficient global optimization: on the left, the steps are briefly 

described; on the right, an example is given (predetermined design points as red dots, 
the added new points as green squares and the next new point as a blue triangle). 

 

Application of ship optimization design of KCS 

In this study, the EGO method was applied to ship hull form design and the optimization of 
the resistance performance in calm water. 

, 0.26obj wf R Fr= =                                                             (12) 

The design problem is to minimize the wave-making resistance of KCS at the design speed. 
The extended FFD method mentioned above was applied to modify ship hull form (Fig.5). 
The design variables are parameters closely related to ship hull form modification. The total 7 
design variables in Table 1 are used to define the geometry of ship hull form. The upper and 
lower bounds of each parameter are determined to avoid unrealistic ship hull geometry. 
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Figure 5. The variable region and the control points distributed on KCS hull by 

extended FFD method 

 

Table 1. The design variables and their ranges 

Design variables Deformation direction The bounds 

1# x [-0.008, 0.01] 

2# y [-0.01, 0.01] 

3# θ  [-40, 20] 

4# y [-0.02, 0.015] 

5# y [-0.015, 0.015] 

6# y [-0.015, 0.015] 

7# y [-0.01, 0.01] 

At the early stage of optimization design, 49 sample points are spread over the design space 
and selected by Optimal Latin Hypercube Sampling (OLHS) to obtain a kriging model (Park 
J. S., 1994). The number of sample points is very important to keep the kriging model 
accurate in the traditional optimization process. However, in the present kriging model, 
additional sample points will be added later in the region where the accuracy is not good 
enough, or the objective function value is lower based on EI evaluation. The wave-making 
resistance of 49 sample hull form and additional sample points are all evaluated using a 
potential flow theory, Nuemann-Michell method (Noblesse F., 2013; Wu, J. W., 2016). 

The summary of the parameters of EGO method is shown in Table 2. After efficient global 
optimization search, the total number of sample points reached 79, after adding 30 more 
sample points (in Fig.6). The objective function converges to the minimum value, 10.5629N, 
a larger reduction of about 25.13% than the initial value. We just use a PC to finish all the 
evaluations for about 1.89 hours.  

In order to verify the accuracy and efficiency of EGO, we use the traditional optimization 
method, which firstly enough points are used to construct a surrogate model with sufficient 
precision (90 sample points are used here), and then the genetic algorithm (GA) is applied to 
search the optimal value of the surrogate model (in Tab. 3). The optimal ship is obtained 
through more than 200 iterations, and the wave resistance value reaches 11.1037 N, which is 
reduced by 21.30%. And the design variables of the optimal hull forms based on two methods 
are shown in Fig. 7.  
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The comparison of Table 2 and Table 3 and Figure 6 clearly show the efficiency of the EGO 
method. It greatly reduces the cost of high-precision numerical calculations. It can be seen 
from Fig. 7 that the optimized ships obtained by the two methods are different. 

 

Table 2. The parameters of the EGO method 

The initial number of sample points 49 The additional number of sample points 30 

The number of iterations 30 Optimization time (h) 1.89 

 

Table 3. The parameters of the GA method 

The initial number of sample points 90 The number of populations 50 

The number of iterations 400 Optimization time (h) 3.12 

 

 
Figure 6. The total numbers of numerical evaluation using the EGO method (left) and 

the GA method (right) until convergence 

 

 
Figure 7. The values of design variables and the optimal solution of the objective 

function after optimization procedure 

The following figures depict the comparisons of body lines and shapes of the initial KCS and 
the optimal ship based on the two methods. The same changes are as following: first changes 
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have taken place in the waterline of the optimized ships, the waterline near the inlet has 
become fatter. In addition, the bilge of the optimal ship has become thinner, the bulbous bow 
has also become thinner and longer, and has slightly been flattened compared to the original 
ship. The different changes of the optimized hulls based on the two methods happens at the 
front shoulder of ships. The optimized ship based on EGO method has a large difference from 
the initial one, while the optimized ship based on GA has basically not changed. 

 

 
(a) EGO method 

 
(b) GA method  

 

Figure 8.  Comparisons of the body lines and shapes between the initial hull and  

the optimal one 

  

(a) EGO method (b) GA method 

Figure 9.  Comparison of free surface elevation between the initial hull and  

the optimal one 

 
Figure 9 is the wave profile of free surface of the two optimized ships. In contrast, both 
optimized hulls obtained by two methods generate lower wave than the initial one obviously, 
thus leads to the reduction of the wave-making resistance of the optimal hull. Also comparing 
the pressure distribution of the two ships in Fig. 10, the fore parts of the optimal hulls is with 
lower pressure than the initial one. Here we can conclude that the small variation of the front 
shoulder of the optimized ships has less effect on the improvement for the wave resistance of 
this ship. 
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(a) The initial hull 

 
(b) The optimized hull by EGO method 

 
(c) The optimized hull by GA method 

 

Figure 10.  Comparison of pressure distribution between the initial hull and  

the optimal one 

Conclusion and future work 

This paper presents a Kriging-based global optimization method, efficient global optimization 
(EGO), different from the ordinary optimization method. It combines the surrogate modeling 
with the optimization algorithm. By this method, not only the accuracy of surrogate model is 
continuously improved but also the solution of the optimization problem keeps searched in 
the iterative procedure. An FFD method for ship modification is also used to allow the 
geometry or a part of the geometry to be bent. The two methods are successfully applied to 
ship hull form optimization design. Based on the comparison of EGO method and the 
traditional optimization method, the results demonstrate the usability and efficiency of the 
EGO methods in ship hull form optimization design. In the future, it will be used to the more 
ship optimization problem, such as the ship hull form design to improve comprehensive 
hydrodynamic performance, based on entire CFD. 
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Abstract 
The aim of this work was the evaluation of combined effect of stress triaxiality and strain rate 
on the mechanical behavior of the alpha titanium alloys. Mechanical behaviour of titanium 
alloy Grade 6 (VT5-1 or Ti-5Al-22,5Sn) and Grade 2 (VT1-0) in a range of strain rates from 
0.001 to 1000 1/s and stress triaxiality (0.3–0.6) at room temperature was studied using an 
Instron VHS 40 / 50-20 servo-hydraulic test machine. Analysis of stress state and strain 
distribution in smooth and notched samples under tension was carried out by means of 
computer simulation and analytical relations. The Gurson-Tvergaard-Needleman model, 
complemented with phenomenological laws for voids nucleation, growth and coalescence, 
was adopted for describing the fracture of the alpha titanium alloys. It was shown that stress 
triaxiality is important for prediction of damage evolution and fracture of alpha titanium 
alloys at high strain rates. The constitutive equation and fracture models have been validated 
by simulating the tension tests. It was obtained that strain localization phenomena play a 
major role in the fracture process at lower triaxiality. It is found that the strain to fracture of 
alpha titanium alloy is strongly depended on the stress triaxiality and strain rate above 100 s-1. 
The strain to failure of alpha titanium alloys at room temperature decrease by 3.7 times with 
increasing stress triaxiality from 0.3 to 0.6 in wide range of strain rates. 
Keywords: Computer simulation, mechanical behavior, ductility, titanium alloys, high 
strain rate, stress triaxiality 
 
Introduction 

Polycrystalline alpha-titanium alloys belong to the isomechanical group of metal materials 
with hexagonal close packed (HCP) crystalline lattice. Materials belonging to the same 
mechanical group possess similarity of mechanical behavior in wide ranges of strain rates and 
temperature owing to similarity of mechanisms of plastic deformation and fracture. [1]. 
Generalization of data on the laws of deformation and fracture of alpha titanium alloys in a 
wide range of strain rates will allow developing a method for prediction of titanium structural 
elements under dynamic impacts [2]-[5]. It was shown that the ductility and strength of 
titanium alloys in a wide range of strain rates depends on the grain size and a grain size 
distribution [5]-[9]. There is evidence that the ductility and fracture of the hexagonal close 
packed polycrystalline metals and alloys is strongly dependent on the accumulated plastic 
strain and stress triaxiality [10[-[13]. The dimensionless stress triaxiality η, defined as the 
ratio between the hydrostatic stress and equivalent stress [10][11][14]. 
A significant distinction has been noted between the regimes of high and low stress triaxiality. 
High values of triaxiality (i.e., η > 1.5) may be achieved in local areas, such as at the ends of 
the cracks or in the center of a necking or notched specimen under tension. Low stress 
triaxiality takes place at surfaces and protruding corners, where the equivalent shear stress is 
high relative to the hydrostatic pressure [15]-[19]. At low stress triaxiality the fracture 
initiation is strongly inhibited. 
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 Several models were proposed for investigation of the effect of triaxiality on the fracture of 
polycrystalline metals and alloys [20]-[24]. Neilsen and Tvergaard [20][21] showed that 
ductile fracture can be described using the criterion, depending on the stress triaxiality and the 
Lode angle. Valoppi and others [11] used the phenomenological Johnson Cook hardening 
model and damage initiation criterion with an energy-based law describing the damage 
evolution in the finite element models for titanium alloy. It was shown, the Gurson–
Tvergaard–Needleman plasticity model can be complemented with phenomenological laws 
for void nucleation, growth and coalescence [10][21]. In this research we study the influence 
of different values of stress triaxiality (0.33< η < 0.6) on ductile fracture in a wide range of 
strain rates using experimental tests and numerical simulation. Four types of VT 5-1 (Ti-5Al-
22,5Sn) sheet samples were used in experiments on static and dynamic tension. 
 
1 Material and samples 
 

Sheets of alpha titanium alloys VT 5-1 (Grade 6) and VT1-0 (Grade 2) were studied under 
tension in a range of strain rates from 0.01 to 1000 s-1 at room temperature. The thickness of 
the sheet samples VT5-1 and VT1-0 was 1.15±0.05 mm, and 1.1±0.05 mm, respectively. 
Samples of alloys VT5-1 and VT1-0 had an average grain size of 40 μm and 30 μm, 
respectively. Samples characterized by different geometries were used for tensile test, as 
shown in Fig. 1(a).  

 
Figure 1.  Geometry of the samples used for the tensile and shear tests 

The samples were cut using electro erosion cutting method from a sheet of titanium alloy. The 
initial gauge length 0l  was equal to 24±0.1 mm. The cross-sectional area of the smooth flat 
samples was A0=9.3±0.05 mm2, and notch flat specimens had notch radiuses of R1=10 mm, 
R2 = 5 mm, R3=2 mm, respectively. The samples for shear test had distance between cuts δ 
~4.5 mm.  

The stress triaxiality η and Lode parameter L defined as [25]: 

η = ̶  p/σeq, L = (2 σII – σI – σIII)/(σI-σIII),    (1) 

where p is the pressure, σI, σII, σIII are first, second, and third invariants of the Cauchy stress 
tensor respectively, σeq = (3 σII)1/2 is the equivalent stress. 
The initial value of the stress triaxiality η calculated by the analytical formula in the plane 
stress state [14]:  

2(1 2 ) / (3 1 , ln[1 / (4 )]D D D D a Rη= + + + = + ,    (2) 

where a is the width of sample, R is the value of curvature radius. 
The initial value of the stress triaxiality has varied in the range 0.0–0.6 in experiments.  
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The stress triaxiality η will be slightly different from the initial value when the sample neck is 
formed. 

2 Quasistatic and dynamic tests 

The tests were carried out in a range of strain rates (0.001 ̶ 1000 s-1) at room temperature 
using the Instron test machine VHS 40/50-20 with a 50 kN load cell.  
The tensile force and displacement of the specimen were recorded at high temporal resolution 
up to complete fracture of the specimen. The constant tension velocities (20±0.01, 12±0.01, 
2.4±0.002, 0.4±0.001 m/s) were supported during tests.  
Tests were divided into three groups. First group is uniaxial tensile tests carried out on smooth 
specimens, characterized by positive values of both the stress triaxiality and Lode parameter. 
The second group is pure shear tests. The third group is uniaxial tensile tests carried out on 
notched specimens. Three  values of notch radius, 2 mm, 5 mm and 10 mm, were used in this 
study. 
 True strain and true stress at time moments of loading were determined by analytical 
relations [11]: 

  1 0ln(1 / )ε = + ∆true l l , 1 0 0( / )(1 / )σ = + ∆true F A l l ,    (3) 

where 1ε
true  is true strain, 1σ

true  is true stress, F is tensile force, A0 is  mean initial minimum 
cross sectional area of sheet sample, 0,∆l and l  are the elongation and the initial length of 
sample working part.  

True stresses and true strains were also determined by computer simulation of the 
specimen deformation process. The results of numerical simulation were used in which a 
good agreement was reached between the calculated and experimental values of the sample 
forces and displacements versus time. 

3 Computational model 

The computational model uses the theoretical basis of continuum damage mechanics [26]. 
Mechanical behaviour was described by a system of conservation equations (mass, 
momentum and energy), kinematic equation and the constitutive equation. Initial and 
boundary conditions were added to the system of equations. The boundary conditions 
correspond to the conditions of loading of the 3D body. Dog bone specimens were simulated 
under axial tension with a constant strain rate. The computer simulations were performed with 
the use of licensed LS DYNA software, and being a part of the package simulation of the 
dynamic loads of the package ANSYS WB 15.2. The calculations were carried out using 
solvers using finite-difference scheme of second order accuracy. The grid model of the 
samples used in tests is shown in Fig. 2.  

 
Figure 2. Grid models of flat samples 
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Boundary conditions corresponding to uniaxial tension of the sample at a constant strain rate 

have the form:  
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where 
jSiu | is the components of the particle velocity vector on the surface jS , 

0yv is the 

tensile velocity, ijσ  is the components of the stress tensor. 
The initial conditions correspond to the free stress state of the material in a uniform 
temperature field. 
The flow stress of alloys has been described using a modification of the Johnson-Cook model 
(5) and the Zerilli–Armstrong model (6) [2] [11][27] 

P n 1/2 m0
s eq g eq eq0

m 0

T T{A B( ) kd }[1 Cln( / )]{1 [ ] }
T T

− −
σ = + ε + + ε ε −

−
& & ,  (5) 

where A, B, C, n, m, k are constants of material,  dg  is the grain size, 1/2
eq ij ij[(2 / 3) ]ε = ε ε& && ,  

1
0 1.0s−ε =& ,  ( )

tP p p 1/2
eq ij ij0

[ 2 / 3 ] dtε = ε ε∫ & &   is the plastic strain intensity, T is the temperature, T0 is 

the room temperature, and Tm  is the melting temperature.  
Material constants of the equation (13) of alpha titanium alloys are given in Table 1. 

Table 1.  Material constants of modified Johnson-Cook model 

Coefficient A, GPa B, GPa n kg,  

GPa nm1/2 

C m 

at T≤Tβ 

Tm, K 

Titanium alloy 

VT1-0 0,244 0,86 0,475 6,2 0,027 0.7 1946 

VT5-1 0,760 0,86 0,5 6,2 0,027 0.64 1888 

Tβ is equal to 1313K and 1183 for VT5-1 and VT1-0, respectively. 
Updating of the constitutive equation of the Armstrong - Zerilli model can be written in the 
following form [27]:  

1np 1/2
s s0 5 eq hp g 2 3 4 eq eq0C ( ) k d C exp{ C T C T ln( / )}−σ =σ + ε + + − + ε ε& & .   (6) 

Material parameter s0 5 1 hp 2 3 4, C , n ,k , C , C , Cσ of alpha titanium alloys are given in Table 2. 

Table 2.  Material parameter of the Armstrong-Zerilli model 

Coefficient 0sσ , GPa khp,  

GPa nm1/2 

C2, GPa C3, K-1 C4 ,K-1 C5, 

GPa 

n1 

Titanium alloy 

VT1-0 (Grade 2) 0,138 6,2 0,1843 0,000877 0,0004 0.62 0.5 

VT5-1 (Grade 6) 0,41 6,2 0,1843 0,000877 0,0004 1.84 0.5 

Fig. 3 shows the calculated yield stress and experimental true stress versus true strain curves.  
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     Figure 3. Calculated stress versus strain and experimental true stress vs true strain 

curves of (a) VT1-0 and (b) VT5-1; Johnson-Cook (curves 1) and modified Zerilli-
Armstrong model prediction (curve 2) 

Curves 1 were calculated by Johnson-Cook constitutive equation (5) and curves 2 by 
modified Zerilli-Armstrong equation (6). Curves 3 are experimental data on VT1-0 (Fig3(a)) 
and VT5-1 titanium alloys (Fig 3(b)). Grain size was assumed ~30 μm for VT1-0 and 40 μm 
for VT5-1. Experimental and calculated yield stresses correspond to strain rate of 0.01 s-1. 

4 Damage model 

Ductile fracture is considered as a result of void nucleation, growth and coalescence under a 
triaxle stress states or shear localization at low stress triaxiality [10]. One of the most widely 
used damage models for ductile fracture was proposed by Gurson with subsequent 
development in the works of Tvergaard and Needleman [15][20][21]. This Gurson-Tvergaard-
Needleman (GTN) model [20][21] was used for analysis of stresses and strains in smooth and 
notched samples of sheet VT 5-1 under tension. The yield criterion has a form: 
 

2 2 * * 2
eq s 1 2 s 3( / ) 2q f cosh( q p / 2 ) 1 q (f ) 0σ σ + − σ − − = ,  (7) 

where σs is the yield stress, p is the pressure, q1, q2 and q3 are model parameters, f is the void 
volume fraction.  

The rate of void growth is obtained by assuming mass conservation and depends on the 
volume change part of the plastic strain.  
Consequently, there is no void growth in pure shear deformation. The void nucleation 
depends on the equivalent plastic strain ɛp, here a normal distribution A is used. 
A strong coupling between deformation and damage is introduced by a plastic potential 
function which is dependent on the void volume fraction f*: 
 

eq

nucl growth

p p 2
nucl N N N N

p
growth kk

f f f ,

f (f / s ) exp{ 0.5[ ) / s ] },

f (1 f ) ,

= +

= ε − ε − ε

= − ε

& & &

&

& &

   (8) 

where εN and sN are the average nucleation strain and the standard deviation respectively. The 
amount of nucleating voids is controlled by the parameter fN. 
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*
c

*
c F c F c c

f f if f f ;

f f (f f ) / (f f ) if f f ,

= ≤

= + − − >
     (9) 

where 2
F 1 1 3 3f (q q q ) / q ,= + − q1, q2, and q3 are constants of the model. 

The final stage in ductile fracture comprises in the voids coalescence into the fracture zone. 
This causes softening of the material and accelerated growth of the void fraction f* until the 
fracture void fraction fF is reached. At this moment the material is fractured.  

The model of ductile fracture requires knowledge of 9 parameters: three model parameters 
(q1, q2 and q3), the initial void fraction f0, three void nucleation parameters (εN, sN and fN), two 
failure parameters (fc and fF). The model parameters for titanium alloy VT 5-1 and VT1-0 
were determined by numerical simulation of experiments on the tensile samples in the 
velocity range from 20 to 0.4 m/s. Numerical values of model parameters were fitted  

Numerical values of model parameters are given in Table 3. The model was used for 
simulation samples under tension at constant velocity from 20 m/s to 0.4 m/s. 

Table 3. Dimensionless parameters for the GTN model for alpha titanium alloys 

Parameter  q1 q2 q3 f0 fN fc fF εN sN 
VT 5-1 (Grade 6) 1 0.7 1 0.00 0.156 0.117 0.26 0.05 0.1 
VT1-0 (Grade 2) 1.5 1 2.25 0.002 0.017 0.26 0.303 0.3 0.1 

5 Results and discussion  

The character of fracture of the samples at tensile velocities of 20 m / s, 12 m / s, 2.4 m / s, 
and 0.4 m / s can be seen in Fig. 4. The cracks position indicates that there is a very strong 
correlation between the localization of the plastic deformation and damage growth. 

(a) (b) 

     (c)  (d) 

     Figure 4.  Fractured smooth and notched samples of VT5-1 titanium alloy after 
tension at the velocity: (a) 20 m/s , (b) 12 m/s, (c) 2.4 m/s, (d) 0.4 m/s 
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Principal tensile stress, effective stress, effective plastic strain in the notched specimen of an 
alpha titanium alloy VT5-1 before crack initiation are shown in Fig. 5 (a), (b), (c), 
respectively. Effective plastic strain near crack is shown in Fig. 5(c, d).  

 
  (a)                     (b)                          (c)                     (d)                         (f)            (g) 

     Figure 5. (a) Effective stress, (b), (c), (d) effective plastic strain in the alpha titanium 
notched specimen under tension at 20 m/s; (f) stress triaxiality; (g) photo of fractured 

notched specimen 

For notched specimens under uniaxial tension damage can initiates at the outer surface of the 
specimen, and grows from the outer surface to the center of the specimen. The simulations 
demonstrate the important role of strain localization phenomena in the fracture processes. 
Figure 6 shows the calculated plastic strain in the necking zone before fracture. Two inclined 
stationary shear bands were formed in the necking zone. Fig. 5 and 6 showed the calculated 
configuration of cracks.  

 

(g) 
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     Figure 6. Damage growth and crack initiation in the alpha titanium smooth specimen 
under tension at 20 m/s; (g) photo of fractured specimen 

Calculated configurations have good agreement with experimental data (See Fig.5(a)). 
Verleysen showed that the phenomena of strain localization play a major role in the fracture 
process of alpha+beta titanium alloy (Ti6V4Al) at lower stress triaxiality [25]. The 
experimental and theoretical results obtained in this paper on alpha titanium alloys agree with 
the results for two-phase alpha + beta titanium alloys. Damage evolution in smooth specimen 
of alpha titanium alloy (VT5-1) under tension is shown in Fig.6.  
The growth of damage and the initiation of cracks in the smooth sample of alpha-titanium 
under tension at 20 m / s occur in the shear bands. Localized shear bands at the first stages of 
deformation are non-stationary (See Fig. 6(a,b)) and intersect at angles. Calculated 
configuration of cracks in the smooth and notched samples of alpha titanium alloys is in good 
agreement with the experimental data. 
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     Figure7.  Measured force versus time under tension smooth and notch samples (a) at 

20.0±0.01 m/s and (b) 2.4 m/s 

The force versus time at room temperature and tension velocity of 20 m/s and 2.4 m/s are 
shown in Fig. 7(a) (b), respectively. The shape of force versus time curves depends on the 
distance between the grips and the tensile speed. 
Using «fast jaw» grips on the Instron test machine VHS 40/50-20 during high-rate tests with 
different velocities of tension leads to the need to account for changes in the distance between 
the grips when determining the true stress and true strain curves. Oscillations of the force 
shown in Fig 7 (a) are caused by the reflection of the force pulses moved through the 
specimen. 

Therefore, the use of the analytical ratio (3) to analyze the results of tests at high tensile 
velocity leads to the need for averaging the data obtained. The true stress obtained from 
analytical relations (3) is underestimated relative to the values obtained by numerical 
simulation. The true stress versus true strain at room temperature and strain rate 834 s-1 (at the 
velocity 20 m/s) are shown in Fig. 8 (a). The introduction of the triaxiality effect in the strain 
hardening model is important for the prediction of damage evolution under deformation at 
high strain rates. Damage kinetics in alpha titanium alloys is connected with macroscale 
plastic instability. Strain to fracture at strain rates 833±5, 418 ±2, 100±1, 16.7±1 s-1 of smooth 
and notched samples are shown in Fig. 8(b). The strain to fracture of the alpha-titanium alloy 
is reduced simultaneously with the growth of the strain rate from 0.01 to ~1000 s-1 and also 
reduced with an increase in the stress triaxiality η in the range from 0.33 to 0.55.  
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     Figure 8.  (a) The true stress versus true strain of titanium VT 5-1 at room 
temperature: analytical curves (1), and (2); calculated curves (3), and (4); (b) strain to 

fracture samples under uniaxial tension at velocities 20, 12, 2.4, 0.4 m/s and at the initial 
stress triaxiality η:  0.3333, 0.4087, 0.4681, 0.5491; (c) stress triaxiality in the gauge 2 

(curve 1), equivalent plastic strain in gauges 2 and 3 (curves 2,3) 

The stress triaxiality at strain rate above 100 s-1 is strongly influenced on the plastic flow and 
fracture of alpha titanium alloy. Strain to failure of alpha titanium alloys at room temperature 
decrease by 3.7 times with increasing stress triaxiality from 0.3 to 0.6 at strain rates of 0.01-
1000 s-1. 
The results on the influence of stress triaxiality on the strain to fracture of the alpha titanium 
alloys obtained in this paper agree with the data of Bobbili [13]. 
The simulation results showed that stress triaxiality is changed in the necking zone under 
tension (see Fig.8(c)). The variation of η in the necking zone is caused by the shear stress 
relaxation at quasi -stationary shear bands formation. 
The use of a model combining the description of the plastic flow of origin and the growth of 
damage in the calculations made it possible to compare the description of the mechanical 
behavior of alpha-titanium alloys in the strain rate range from 0.001 to 1000 s-1 and different 
values of stress triaxiality (0.0< n < 0.6). 
 
Conclusions 
 
In this paper, mechanical behavior of titanium alloy Grade 6 (this is an analog of VT5-1 or Ti-
5Al-22,5Sn) and Grade 2 (VT1-0) was studied under tension in a wide range of strain rates 
(from 0.001 to 1000 1/s) and stress triaxiality (0.0–0.6) at room temperature. Smooth and 
notched specimens were tested at tension velocity from 0.04 m / s to 20 m/s using an Instron 
VHS 40 / 50-20 servo-hydraulic test machine.  
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Analysis of the experimental results is supported by finite element simulations. Detailed 
information, complementary to the test results, is obtained on the stress and strain distribution 
close to the fracture. A ductile fracture at high strain rates occurs in smooth and notched 
samples. 
A coupled elastic-plastic-damage model based on continuum damage theory used to simulate 
the mechanical behavior of alpha titanium alloys with HCP crystal structure.  
The Gurson-Tvergaard-Needleman damage model is adopted for alpha titanium alloys, 
complemented with phenomenological laws for void nucleation, growth and coalescence. 
The model can accurately predict both deformation and damage behaviors of alpha titanium 
alloys at strain rates from 0.001 to 1000 s-1 and stress triaxiality from 0.3 to 0.6.   
The obtained experimental data indicate that there is a very strong correlation between the 
characteristics of the plastic deformation and the rate of damage growth.  
The constitutive and failure model parameters can be determined on the base of tensile test 
results. The constitutive and fracture models have been validated by simulating the tension 
tests. 
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Abstract 
The aim of this work was the evaluation of temperature and strain rate on the mechanical 
behavior of the zirconium-niobium alloys. This paper presents results on modelling and 
theoretical prediction of mechanical and deformation properties of Zr-Nb in a wide range of 
strain rates and temperature. Mechanical behavior of Zr–1 % Nb was numerically simulated 
using Johnson–Cook, and Zerilli –Armstrong constitutive equations. Material parameters of 
these constitutive equations were determined for Zr–1 % Nb alloys (E110). The numerical 
results on dynamic and quasi-static deformation of Zr−1 % Nb alloy are good agreed with 
experimental data. Strain rate sensitivity of the yield stress of Zr–Nb alloys at fixed 
temperature depends on the concentration of Nb, and parameters of grain size distribution. It 
is shown that the resistance to plastic deformation of Zr–Nb alloys is different under 
compression and tension at high-strain rates.  
The results can be used in engineering analysis of designed technical systems for nuclear 
reactors. 

Keywords: Computer simulation, mechanical behavior, ductility, zirconium-niobium 
alloys, high strain rate, temperature 
Introduction 

Improvement of technology of fabrication of fuel claddings and some constructional elements 
of nuclear reactors is connected with computer simulation of mechanical properties and 
structural evolution of radiation-resistant alloys Zr–Nb [1]. In this regard, there is an 
increasing need to develop computational models of the mechanical behaviour of advanced 
Zr-Nb in loading conditions close to operating ones. The Zr–Nb has a unique complex of 
physical and mechanical properties and is considered as promising structural alloys for 
nuclear reactors of IV generation. Coarse grained (CG) and ultrafine grained (UFG) 
zirconium alloys with a concentration of Nb below 2.5 weight % and additionally doped with 
Mo, Fe, Cr for the stabilization of precipitations of beta-phase Zr were studied during last 
decade [2]-[4]. It is known that the formation of ultrafine-grained structures in the alloys of 
Zr–Nb not only improves the yield and strength of the alloy, but also prevents the formation 
of cracks at the mesoscopic level [5]-[6]. In this connection, the mechanical behavior of Zr–
Nb alloys was studied by numerical simulation method in the practically important 
temperature range from 297 K to 1243 K.  
 
1 Material and samples 
Mechanical behavior of ultrafine –grained (UFG) and coarse grained (CG) zirconium E110 
(Zr-1%Nb) alloy was studied under tension at room temperature. Ultrafine grained specimens 

ICCM2018, 6th-10th August 2018, Rome, Italy

558



of E110 alloy were produced by the severe plastic deformation method [7]. Sizes of 
specimens are shown in Table 1. 

Table 1. Sizes of specimens of E100 (Zr-1%Nb) alloy 

Coarse grained E110 alloy (dg
(*)≈ 55 μm) 

 
Designation Width of gage part of 

specimens (mm) 
 

Thickness of 
specimens (mm) 

Length of gage 
part of specimens 
(mm) 
 

19 8.9±0.01 0.88±0.01 20.3±0.01 
20 9.0±0.01 0.90±0.01 20.2±0.01 
21 9.0±0.01 0.90±0.01 20.4±0.01 
22 8.9±0.01 0.92±0.01 20.8±0.01 
23 8.9±0.01 0.87±0.01 20.7±0.01 
24 8.9±0.01 0.87±0.01 20.5±0.01 
25 9.0±0.01 0.90±0.01 20.5±0.01 

Ultrafine grained E110 (grain size dg≈ 0.5 μm) 
26 9.0±0.01 0.90±0.01 20.5±0.01 
27 9.0±0.01 0.90±0.01 20.3±0.01 
28 9.0±0.01 0.85±0.01 20.3±0.01 
29 8.9±0.01 0.90±0.01 20.5±0.01 
30 9.0±0.01 0.90±0.01 20.5±0.01 
31 9.0±0.01 0.90±0.01 20.5±0.01 
32 8.9±0.01 0.90±0.01 20.5±0.01 
33 8.9±0.01 0.90±0.01 20.3±0.01 
34 9.0±0.01 0.90±0.01 20.7±0.01 

         (*)dg is the grain size. 

2 Quasistatic and dynamic tests 

The tests were carried out at room temperature and strain rate 0.01 s-1 using the Instron test 
machine VHS 40/50-20 with a 50 kN load cell. The tensile force and displacement of the 
specimen were recorded at high temporal resolution up to complete fracture of the specimen. 
True strain and true stress at time moments of loading were determined by analytical relations 
[8]: 

  1 0ln(1 / )ε = + ∆true l l , 1 0 0( / )(1 / )σ = + ∆true F A l l ,    (1) 

where 1ε
true  is true strain, 1σ

true  is true stress, F is tensile force, A0 is  mean initial minimum 
cross sectional area of sheet sample, 0,∆l and l  are the elongation and the initial length of 
sample gage part.  
True stresses and true strains were also determined by computer simulation. 

3 Computational model 

The computational model is based on the theoretical basis of continuum damage mechanics 
[9]. Mechanical behaviour was described by a system of conservation equations (mass, 
momentum and energy), kinematic equation and the constitutive equation. Initial and 
boundary conditions were added to the system of equations. The boundary conditions 
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correspond to the conditions of loading of the 3D body. Dog bone shape specimens were 
simulated under axial tension with a constant strain rate. The computer simulations were 
performed with the use of licensed AUTODYN software, and being a part of the package 
simulation of the dynamic loads of the package ANSYS WB 14.5. The calculations were 
carried out using solvers using finite-difference scheme of second order accuracy. The grid 
model of the samples used in tests is shown in Fig. 1. 

 
Figure 1. Grid model of flat sample 

Boundary conditions corresponding to uniaxial tension of the sample at a constant strain rate 
have the form:  

1 3 1 3 1 3 2 4 5 6

(0)
1 1 2 2 2 3 3 ijS S S S S S S S S S

u 0 , u 0 ; u 0 , u V ; u 0 ,u 0; 0, (1)= = = = = = σ =
U U U  

where 
jSiu | are the components of the particle velocity vector on the surface jS , 

0yv is the 

tensile velocity, ijσ  is the components of the stress tensor. 
The initial conditions correspond to the free stress state of the material in a uniform 
temperature field. 

0 ij ij testt 0 t 0t 0 t 0
, 0, 0, T T= == =

ρ =ρ ε = σ = =
,   (2) 

where t is a time, ρ is a mass density, Ttest is the initial temperature of specimen. 

The flow stress of zirconium alloys under loading has been described using a modification of 
the Johnson-Cook model (3) and the Zerilli–Armstrong model (4) [8][10]. The flow stress of 
alloys has been described using a modification of the Johnson-Cook model (3) and the 
Zerilli–Armstrong model (4): 

P n 1/2 m0
s eq g eq eq0

m 0

T T{A B( ) kd }[1 Cln( / )]{1 [ ] }
T T

− −
σ = + ε + + ε ε −

−
& & ,  (3) 

where A, B, C, n, m, k are constants of material,  dg  is the grain size, 1/2
eq ij ij[(2 / 3) ]ε = ε ε& && ,  

1
0 1.0s−ε =& ,  ( )

tP p p 1/2
eq ij ij0

[ 2 / 3 ] dtε = ε ε∫ & &   is the plastic strain intensity, T is the temperature, T0 is 

the room temperature, and Tm  is the melting temperature.  
Material constants of alloy the equation (3) of E110 (Zr−1% Nb) are given in Table 1. 

Table 1.  Material constants of modified Johnson-Cook model forE100 (Zr-1%Nb) 

Coefficient A, 

GPa 

B, 

GPa 

n kg,  

GPa nm1/2 

C m Tm, 

K Zr-Nb alloy 

E110 0,290 0,386 0,11 368  for  

1.1 µm<dg<100 µm        
0,14 0.6  at T< 1070 K 

0.14 at T> 1070 K 
1946 

Tβ is equal to 1070 K for Zr-1%Nb. 
Updating of the constitutive equation of the Armstrong - Zerilli model can be written in the 
following form [10]:  
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1np 1/2
s s0 5 eq hp g 2 3 4 eq eq0C ( ) k d C exp{ C T C T ln( / )}−σ =σ + ε + + − + ε ε& & .  (4) 

where s0 5 1 hp 2 3 4, C , n ,k , C , C , Cσ  are material coefficients. 

Material coefficients of E110 (Zr−1% Nb) alloy are given in Table 2. 

Table 2.  Material parameter of the Armstrong-Zerilli model 

Coefficient 0sσ , 

GPa 

khp,  

GPa nm1/2 

C2,  

GPa 

C3,  

K-1 

C4 , 

K-1 

C5, 

GPa 

n1 

Zr−Nb alloy 

E110  

(Zr−1%Nb) 

0.110 

0.445 

368  for 1.1 µm<dg<100 µm 

40  for 0.08 µm<dg<1.1 µm 

1.015 

1.015 

8.77  

10-3 

3.95 

10-4 

4.05 

10-3 

0.19 

Results and discussion  

True stress versus true strain curves of E110 alloy are shown in Fig.2. The obtained data are 
in good agreement with the results [11]-[14]. 
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Figure 2. True stress versus true strain curves of ultrafine grained (curves 26-33) and 

coarse grained (curves 19-25) E100 (Zr-1%Nb) alloy under tension at 0.01 s-1 strain rate 
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Figure 3. Yield stress versus grain size of zirconium alloys; symbols are experimental 

data [6][11]-[14] 
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The dependence of the yield stress on the grain size of coarse grained Zr−1%Nb alloys can be 
described by the Hall-Petch relation 

1/2
s s0 hp gk d −σ =σ +

,    (5)
 

where σs is the yield strength, σs0  and khp are parameters of material. 
Parameters σs0 and khp of zirconium-niobium alloys is equal to σs0= 322 MPa, khp = 368 MPa 
µm½, when grain size is in the range 1.1 µm < dg < 100 µm. The values of σs0 and khp change 
to σs0 = 652 MPa, khp = 40 MPa·µm½ for alloys with grain size in the range of 0.08 µm < d < 
1.1 µm. These parameters were used for numerical simulation.  
Numerical values of σs0 and khp  depend on distribution of grain sizes [15]−[17]. 
Fig. 4(a) shows the calculated stress versus equivalent plastic strain curves for uniaxial 
tension of Zr−1%Nb−1%Sn alloy (E110) at strain rate of 10-3 s-1.  

  
(a)                                                       (b) 

Figure 4. (a) Stress versus plastic strain under uniaxial tension of Zr-1Nb-1Sn alloy at 
the strain rate of 10-3 s-1; (b) normalized yield strength versus normalized temperature 

of Zr-1%Nb alloy at strain rate 1 s-1 (b). Symbols are experimental data [18] 
 

Solid black curves indicate experimental true stress versus true strain [2]-[3]. Colored and 
dashed curves were obtained using equation (4) and (3), respectively. Results of simulation 
good agree with experimental data within temperature range from 297 K to 1173 K [2]-
[3][18][19]. The constitutive equation (4) describes the change of the strain hardening in the 
temperature range more adequately in comparison with the constitutive equation (3). 
The dependence of the normalized yield strength of alloy Zr−1% Nb under tension with a 
strain rate of 1 s-1 on the normalized temperature r mT = (T - T ) / (T T )− r  is shown in Fig. 4(b).  
The change of the curve slop σs/σs0 ( T

w) at T
w

 =0.44 (T= ~1070K) is the result of a phase 
transition in Zr–1% Nb alloys. Phase transition from alpha phase (HCP lattice) to the beta 
phase (BCC lattice) depends on concentration of niobium.  
Numerical means of m or C3, in constitutive equations (3) and (4) are changed if the 
temperature exceeds the temperature of beginning of phase transformations, α → β (~ 1070 
K). 
Fig. 5 shows calculated yield strength versus logarithm of normalized strain rate under tension 
of the Zr–Nb. The average grain size was 15 µm. Solid curves calculated at temperatures from 
295 K to 1273 K and strain rates from 10-3 s-1 to 102 s-1. The dashed curve calculated at the 
room temperature, and range of strain rates from 10-3 to 106 s-1. Experimental data [4][18]-
[19] are shown by filled symbols. Thus, it was shown that the dependence of the yield 
strength of the Zr–1%Nb alloy on the logarithm of normalized strain rate is close to linear in 
the temperature range from 297 K to 1273 K and strain rates from 10-3 to 102 s-1.  
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Figure 5. Normalized yield strength versus logarithm of normalized strain rate under 
tension for the samples of the Zr-1%Nb alloy; symbols are experimental data [4][18]-

[19] 

Both models (Zerilli–Armstrong and Johnson–Cook) allow obtaining satisfactory 
predictions of the yield stress under tension in the range of strain rates from 10-3 to ~103 s-1 
and temperature from 297 K to 1273 K. It was found, that it is necessary to change the 
numerical value of the coefficient с in the model of Johnson-Cook to obtain a satisfactory 
agreement of calculated yield strength of with experimental data [18]-[19]. Calculated stress – 
strain curves of Zr–1Nb under tension and compression and calculated stress versus 
equivalent plastic strain of UFG and CG Zr–1Nb is shown in Fig. 6 (a) and (b), respectively. 
Results of simulation is showed that the macroscopic flow stress of Zr–Nb alloys under 
dynamic compression and tension are various (See Fig.6(a)). This effect is caused by 
instabilities of plastic flow of Zr–1%Nb at the macro–and meso– scale levels under quasi-
static and dynamic loads.  

 

 
(a)                                                                            (b) 

Figure 6. (a) Calculated stress versus strain curves of Zr–1%Nb under tension and 
compression; (b) calculated stress versus equivalent plastic strain of UFG and CG  

Zr-1%Nb (b); solid curves are experimental data [5]; dashed curves are calculations by 
the Zerilli–Armstrong model 

ICCM2018, 6th-10th August 2018, Rome, Italy

563



Results of numerical simulation showed decreasing of the yield stress under shear bands 
origin. Calculated stress – strain curves for CG and UFG specimens of the alloy E110 (Zr–
1%Nb) at room temperature are shown in Figure 6 (b). The calculated yield stresses of 
ultrafine-grained Zr-1%Nb alloys are in good agreement with the experimental data due to 
using bilinear relation (5). 
 

Conclusions 

Mechanical behavior of ultrafine-grained and coarse grained Zr–Nb alloys was studied by 
experimental and computer simulation methods.  

Experimental true stress versus true strain curves of E110 (Zr-1%Nb) alloy were obtained at 
room temperature.  

Modified Zerilli–Armstrong and Johnson–Cook constitutive equations were used for 
numerical simulation of response of specimens under tension and compression. 

Modifications of both models allow obtaining satisfactory predictions of the yield stress under 
tension within the range of strain rates from 10-3 to ~103 s-1 and temperature from 297 K to 
1273 K.  

It was shown that the dependence of normalized yield strength of Zr-1%Nb on normalized 
temperature can be approximated by a bilinear relation. The bilinear relation is due to change 
of mechanical properties of alloy caused by phase transition α →β (T~ 1070 K) in Zr– 1%Nb 
alloys. 
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Abstract

In this manuscript, our principle aim is to present a new reconstruction of classical Chebyshev-
Halley scheme having optimal fourth and eighth-order convergence for all α unlike the earlier
studies. In addition, we analyze the local convergence of them by using supposition requiring
the first-order derivative of the involved function f and the Lipschitz conditions. The new
approach is not only the extension of earlier studies, but also formulates their theoretical radius
of convergence. Several numerical examples originated from real life problems demonstrate
that they are applicable to a broad range of scalar equations where previous studies cannot be
used. Finally, dynamic study of them also demonstrates that bigger and promising basins of
attractions belongs to our iteration functions.

Keywords: Nonlinear equations, Newton’s method, Complex dynamics, Chebyshev-Halley
method, local convergence analysis.
Introduction

Among the most harder and earlier issues of computational methods and numerical analysis are
concerning with the cost-effective and accurate simple zeros of function f(x) in a small number
of iterations with specific degree of accuracy (where f : D ⊂ R→ R is a univariate sufficiently
smooth function in the closed interval D). It is hard to find analytical methods in the available
literature for solving such type of problems. So, there is only one option left for us to find the
approximate solutions by using iterative procedures. One of the best and most famous iterative
procedure is the classical Newton’s method [30, 25]. Several higher-order reconstruction of
Newtons procedure have been constructed at the expense of some other values of function/s
and/or its derivative/s. We have a good number of cubically convergent iterative procedures,
(for the details please see [30]) and one of them is given as below:

xn+1 = xn −
[
1 + 1

2
Lf (xn)

1− αLf (xn)

]
f(xn)
f ′(xn) , α ∈ R, (1)

where Lf (xn) = f ′′(xn)f(xn)
{f ′(xn)}2 . This is a well-known family of Chebyshev-Halley iteration func-

tions [14]. We can easily obtain some popular iteration functions from this family. For example,
the classical Chebyshev’s method [30, 15], Halley’s method [30, 15] and super-Halley method
[30, 15] if we choose α = 0, α = 1

2 and α = 1, respectively. Regardless of cubic convergence,
the scheme (1) is consider less practical from a computational point of view because it is not an
easy task to find the second-order derivative of every problem.

This fact has motivated many scholars to turn towards the approach of multi-point iteration
functions. The principal objective of them is to produce second or higher-order derivative free
iteration functions with maximum convergence order by using certain values of function/s and
or its first-order derivative/s. In 1964, Traub [30] presented the analysis of multi-point iteration
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functions with their properties. Recently, Petković et al. [25] also revised and update the facts
about them.

Despite of going in to the detail of them, we have only focused on the higher-order and second
derivative free modifications of the family (1). According to our expertise, many researchers
from worldwide like, Kou and Li [18, 19], Kou [17], Chun [9], Amat et al. [1], Xiaojian [32]
and Arygros et al. [5], proposed higher-order modification of Chebyshev-Halley’s iteration
functions not using the values of second or higher-order derivative/s.

Recently, Li et al. [21], presented an improvement of Chebyshev-Halley iteration functions,
which is defined as follows:

yn = xn −
f(xn)
f ′(xn) ,

zn = xn −
(

1 + f(yn)
f(xn)− 2αf(yn)

)
f(xn)
f ′(xn) , α ∈ R

xn+1 = zn −
f(zn)

f ′(xn) + f ′′(xn)(zn − xn) ,

(2)

where f ′′(xn) = 2f(yn)f ′(xn)2

f(xn)2 . The above scheme has minimum fifth-order convergence and
further reaches at six for α = 1.

Moving ahead in this direction, Sharma [29], also constructed the following new modification
of the above scheme (2):

yn = xn −
f(xn)
f ′(xn) ,

zn = xn −
(

1 + f(yn)
f(xn)− 2αf(yn)

)
f(xn)
f ′(xn) , α ∈ R

xn+1 = zn −
f(zn)

f [zn, yn] + f [zn, yn, xn](zn − yn) + f [zn, yn, xn, xn](zn − yn)(zn − xn) .
(3)

This family (3) has minimum sixth-order convergence and further attains eighth for α = 1. So,
it means that this scheme has an optimal eighth-order convergence but only for α = 1.

Both of the above mentioned schemes namely, (2) and (3), using three values of the considered
function and one derivative of first-order at per step. But, none of them achieved an optimal
convergence for each α. No doubts, Sharma got a little success in this path but that one is
valid only for α = 1, not for other values. According to Kung-Traub conjecture, we can attain
maximum eighth-order convergence by using the same functional evaluations.

While keep all these things in our mind, we intend to propose a new powerful and an optimal
reconstruction of Chebyshev-Halley iteration functions of order four and eight. In addition, we
analyze the local convergence of them by using suppositions requiring first-order derivative of
the involved function f and the Lipschitz conditions. Moreover, we also present their theoretical
radius of convergence which provides guaranteed convergence of them. Further, we will give a
practical exhibition of our iteration functions to many real life situations and conclude that they
perform better than the earlier studies. Finally, the dynamical behavior of them also illustrate
the above consequences to a great extent.
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Construction of higher-order optimal schemes

First of all in this section, we propose a new reconstruction of fourth-order Chebyshev-Halley
methods, not requiring the computation of second-order derivative. Then, we extend the same
scheme for eighth-order convergence. For this purpose, we consider the well-known second
order Newton’s method [30], which is given by

yn = xn −
f(xn)
f ′(xn) . (4)

With the help of Taylor series, we will get the following expansions of functions f(yn) andf ′(yn)
about a point x = xn, as follow

f(yn) ≈ (yn − xn)2

2 f ′′(xn), (5)

and
f ′(yn) ≈ f ′(xn) + f ′′(xn)(yn − xn). (6)

By adding the expressions (5) and (6), we get

f(yn) + f ′(yn) ≈ (yn − xn)2

2 f ′′(xn) + f ′(xn) + f ′′(xn)(yn − xn), (7)

which further yields

f ′′(xn) ≈
2[f ′(xn)]2

(
f ′(xn)− f ′(yn)− f(yn)

)
f(xn)

(
2f ′(xn)− f(xn)

) . (8)

However, this new approximation for f ′′(xn) uses four functional evaluations, viz. f(xn),f ′(xn),
f(yn), f ′(yn). Therefore, in order to reduce the number of functional evaluations, we consider
an approximation similar to the King’s approximation [16], which is defined as follows

f ′(yn) = f ′(xn)
(

1 + β1v

1 + β2v

)
, (9)

where v = f(yn)
f(xn) and β1, β2 ∈ R .

Now, using the above expressions (8) and (9) in expression (1), we obtain a new reconstruction
of Chebyshev-Halley family

xn+1 = xn −
[
1 + 1

2
L∗f (xn)

1− αL∗f (xn)

]
f(xn)
f ′(xn) , α ∈ R, (10)

where L∗f (xn) = 2f(yn)[(β1 − β2)u−1 + β2v + 1](
f(xn)− 2f ′(xn)

)(
1 + β2v

) .
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In order to attain eighth-order convergence of the scheme (10), we rewrite in the following way:

yn =xn −
f(xn)
f ′(xn) ,

zn =xn −
[
1 + 1

2
L∗f (xn)

1− αL∗f (xn)

]
f(xn)
f ′(xn) , α ∈ R,

xn+1 =xn −
u
(
f(xn)− f(zn)

)
f(yn) + (xn − zn)(v − 1)f(xn)f(zn)

(2v − 1)(xn − zn)f ′(xn)f(zn) +
(
uf [xn, zn]− f(zn)

)
f(yn)

,

(11)

where u = f(xn)
f ′(xn) and v = f(yn)

f(xn) . The next theorem 1 indicates that under what choices on
disposable parameters in (10) and (11), the order of convergence will reach at four and eight,
respectively without using any more functional evaluations.

Theorem 1 Let f : D ⊂ R→ R has a simple zero ξ and is a sufficiently differentiable function
in the closed interval D containing ξ. We also assume that initial guess x = x0 is sufficiently
close to ξ. Then, the iterative schemes (10) and (11) have fourth and eighth-order convergence,
respectively when

β1 = 2(α− 2), β2 = 2(α− 1), (12)

where α ∈ R.

Proof: Let us assume that the error at nth iteration is en = xn− ξ. We expand f(xn) and f ′(xn)
around x = ξ with the help of Taylor’s series expansion. Then, we have

f(xn) = f ′(ξ)
 8∑
j=1

cje
j
n +O(e9

n)
 , (13)

and

f ′(xn) = f ′(ξ)
 8∑
j=1

jcje
j
n +O(e9

n)
 , (14)

where cn = 1
n!
f (n)(ξ)
f ′(ξ) , n = 2, 3, 4, . . . , 8.

By using the equations (13) and (14), we get

u = en − c2e
2
n + 2(c2

2 − c3)e3
n + (7c3c2 − 4c3

2 − 3c4)e4
n + (8c4

2 − 20c3c
2
2 + 10c4c2 + 6c2

3

− 4c5)e5
n +

(
52c3c

3
2 − 16c5

2 − 28c4c
2
2 + (13c5 − 33c2

3)c2 + 17c3c4 − 5c6
)
e6
n +O(e7

n).
(15)

By using the expression (15), we obtain

yn − ξ = c2e
2
n − 2(c2

2 − c3)e3
n + (4c3

2 − 7c3c2 + 3c4)e4
n + (4c5 − 8c4

2 + 20c3c
2
2 − 10c4c2 − 6c2

3)e5
n

+
(
16c5

2 − 52c3c
3
2 + 28c4c

2
2 + (33c2

3 − 13c5)c2 − 17c3c4 + 5c6
)
e6
n − 2

(
16c6

2 − 64c3c
4
2

+ 36c4c
3
2 + 9(7c2

3 − 2c5)c2
2 + (8c6 − 46c3c4)c2 − 9c3

3 + 6c2
4 + 11c3c5 − 3c7

)
e7
n +O(e8

n).
(16)
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We have the following expansion of f(yn) about a point x = ξ

f(yn) =f ′(ξ)
[
c2e

2
n + (2c3 − 2c2

2)e3
n + (5c3

2 − 7c3c2 + 3c4)e4 − 2(6c4
2 − 12c3c

2
2 + 5c4c2

+ 3c2
3 − 2c5)e5

n +
(
16c5

2 − 52c3c
3
2 + 28c4c

2
2 + (33c2

3 − 13c5)c2 − 17c3c4 + 5c6
)
e6
n

− 2
(
16c6

2 − 64c3c
4
2 + 36c4c

3
2 + 9(7c2

3 − 2c5)c2
2 − 9c3

3 + (8c6 − 46c3c4)c2 + 6c2
4

+ 11c3c5 − 3c7
)
e7
n +O(e8

n)
]
.

(17)
With the help of expression (13) and (17), we get

v = c2en + (2c3 − 3c2
2)e2

n + (8c3
2 − 10c3c2 + 3c4)e3

n + (37c3c
2
2 − 20c4

2 − 14c4c2 − 8c2
3 + 4c5)e4

n

+
(
48c5

2 − 118c3c
3
2 + 51c4c

2
2 + (55c2

3 − 18c5)c2 − 22c3c4 + 5c6
)
e5
n +

(
344c3c

4
2 − 112c6

2 − 163c4c
3
2

+ (65c5 − 252c2
3)c2

2 + 2(75c3c4 − 11c6)c2 + 26c3
3 − 15c2

4 − 28c3c5 + 6c7
)
e6
n +O(e7

n).
(18)

Using equations (13) – (18), we have

L∗f (xn) = −(β1 − β2)c2en + 1
2
(
2(β1 − β2)(β2 + 3)c2

2 + (−β1 + β2 − 2)c2 + 4(β2 − β1)c3
]
e2
n

+
5∑
r=0

Pre
r+3
n +O(e9

n),

(19)
where Pr = Pr(α, β1, β2, c2, c3, . . . , c8).
By inserting expressions (13) – (19) in the scheme (10), we obtain

en+1 = 1
2(2 + β1 − β2)c2e

2
n +

5∑
r=0

P̄re
r+3
n , (20)

where P̄r = P̄r(α, β1, β2, c2, c3, . . . , c8).
It is clear from the above expression (20) that we obtain at least third-order convergence, when
we choose

β2 = β1 + 2. (21)

Using the expression (21) in P0 = 0, we obtain the following expression

(4 + β1 − 2α)c2
2 = 0, (22)

which further yields
β1 = 2(α− 2). (23)

By substituting the expressions (21) and (23) in (10), we have

en+1 = c2[(α− 1)c2 + c2
2 − c3]e4

n +
5∑
r=2

P̄re
r+3
n +O(e9

n). (24)

Again by using the expressions (13) – (19) and (21) – (23) in (11), we obtain

zn − ξ = P̄1e
4
n + P̄2e

5
n + P̄3e

6
n + P̄4e

7
n + P̄5e

8
n +O(e9

n), (25)

where P̄1 = c2[(α−1)c2+c2
2−c3], P̄2 =

[
2(3−4α+α2)c3

2+ 1
2c

2
2(α+16c3−1)+c2{4(α−1)c3−
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2c4}−4c4
2−2c2

3

]
, P̄3 = 1

4

[
−8(7α2−19α+12)c4

2 +2c3
2(2α2−9α−60c3 +7)+c2

2

{
α+16(3α2−

11α+8)c3+48c4−1
}

+4c2
{

2(α−1)c3+6(α−1)c4+18c2
3−3c5

}
+4c3(4(α−1)c3−7c4)+40c5

2

]
,

etc.
We can obtain the following Taylor series expansion from f(zn) about the point ξ with the help
of expression (25)

f(zn) = f ′(ξ)
[
P̄1e

4
n + P̄2e

5
n + P̄3e

6
n + P̄4e

7
n +

(
P̄ 2

1 c2 + P̄5
)
e8
n +O(e9

n)
]
. (26)

By using the equations (13) – (19) and (21) – (23) and (26), we have

u
(
f(xn)− f(zn)

)
f(yn) + (xn − zn)(v − 1)f(xn)f(zn)

(2v − 1)(xn − zn)f ′(xn)f(zn) +
(
uf [xn, zn]− f(zn)

)
f(yn)

= en − c2(c3
2 − 2c3c2 + c4)P1e

8
n +O(e9

n),

(27)
Finally by substituting the above expression in scheme (11), we obtain

en+1 = c2
2

(
(α− 1)c2 + c2

2 − c3
)

(c3
2 − 2c2c3 + c4)e8

n +O(e9
n). (28)

This above expressions (24) and (28) reveal that new constructions of Chebyshev-Halley meth-
ods (10) and (11) reach optimal fourth and eighth-order convergence, respectively. This com-
pletes the proof. �

Local Convergence

The local convergence of method (10) was given using hypotheses up to the fourth derivative
of function f although only the first derivative appears in this method. The local convergence of
method (11) requires the usage of the eighth derivative. These hypotheses limit the applicability
of both methods. As a motivational example, define function f on R, D = [−5

2 ,
1
2 ] by

f(x) =
{
x3lnx2 + x5 − x4, x 6= 0
0, x = 0 .

Let us assume that our desired root is ξ = 1. Then, we have that

f ′(x) = 3x2lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 12xlnx2 + 20x3 − 12x2 + 10x

and
f ′′′(x) = 12lnx2 + 60x2 − 12x+ 22.

Then, obviously, function f ′′′(x) is unbounded on D. Hence, the results in [21, 29], cannot
apply to show the convergence of method (5) or its special cases requiring hypotheses on the
third derivative of function F or higher. Notice that, in-particular there is a plethora of iterative
methods for approximating solutions of nonlinear equations [1-32]. These results show that
if the initial point x0 is sufficiently close to the solution ξ, then the sequence {xn} converges
to ξ. But how close to the solution ξ the initial guess x0 should be? These local results give
no information on the radius of the convergence ball for the corresponding method. The same
technique can be used to other methods.
In this section, we present the local convergence analysis of method (5) using hypotheses only
on the first derivative function f and Lipschitz constants. Similarly, we can the study method
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(14). We expand the applicability of these methods in this way. Moreover, we provide com-
putable radius of convergence, error estimates on the distances |xn− ξ| and a uniqueness result.
Let L0 > 0, L > 0, M ≥ 1 and α, β1 β2 ∈ R be given constants. It is convenient for the local
convergence analysis that follows to introduce some functions and parameters. Define functions
g1, p and hp on the interval

[
0, 1

L0

)
, by

g1(t) = Lt

2(1− L0t)
,

p(t) =


(
L0 + 2|β2 − 2α|Mg1(t) + 2M

)
t+

(
|αβ2|+ |α+ β2|

)
M2g1(t)

1− L0
2 t

, if 2|β2 − 2α| > |β2|

(
L0 + 2(|β2|+ 2|α|)|Mg1(t) + 2M

)
t+

(
|αβ2|+ |α+ β2|

)
M2g1(t)

1− L0
2 t

, if 2|β2 − 2α| ≤ |β2|

hp(t) = p(t)− 1,

and parameter r1 by

r1 = 2
2L0 + L

.

Then, we have that r1 <
1
L0

and for each t ∈ [0, r1), 0 ≤ g1(t) < 1. Moreover, we have that

hp(0) = −1 and hp(t)→ +∞ as t→ 1−
L0

. It follows from the intermediate value theorem that

function hp has zeros in the interval
(
0, 1

L0

)
. Denote by rp the smallest such zero. Furthermore,

we also define the following functions g2 and h2 on the interval [0, rp), by

g2(t) = 1
2(1− L0t)

L+
4M3g1(t)

(
|β1 − β2|+ |β2|g1(t)t+ t

)
t

(1− L0
2 t)(1− p(t))

 t,
and

h2(t) = g2(t)− 1.

We get that h2(0) = −1 < 0 and h2(t) → +∞ as t → r−p . Let r2 be the smallest zero of
function h2 on the interval (0, rp).
Set

r = min{r1, r2}. (29)

Then, we have that
0 < r ≤ r1. (30)

and for each t ∈ [0, r),
0 ≤ g1(t) < 1, (31)

0 ≤ p(t) < 1, (32)

and
0 ≤ g2(t) < 1. (33)

Let U(γ, δ), Ū(γ, δ) denote, respectively for the open and closed balls in R, with center γ ∈ R,
and of radius δ > 0. Next, we present the local convergence analysis of method (4), (10) using
the preceding notation.

Theorem 2 Let f : D ⊂ R → R be a differentiable function. Suppose that there exist ξ ∈ D,
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L0 > 0, L > 0, M ≥ 1, α, β1, β2 ∈ R such that for each x, y ∈ D,

f(ξ) = 0, f ′(ξ)−1 ∈ L(R, R), (34)

|f ′(ξ)−1(f ′(x)− f ′(ξ)| ≤ L0|x− x0|. (35)

Let us assume that Ω0 = D ∩ U
(
ξ, 1

L0

)
.

|f ′(ξ)−1
(
f ′(x)− f ′(y)

)
| ≤ L|x− y|, foreach x, y ∈ Ω0, (36)

|f ′(ξ)−1f ′(x)| ≤M, foreach x ∈ Ω0, (37)

and
Ū(ξ, r) ⊂ D, (38)

hold, where the convergence radius r is defined by (29). Then, the sequence {xn} generated for
x0 ∈ U(ξ, r)− {ξ} by method (5) is well defined, remains in U(ξ, r) for each n = 0, 1, 2, . . .
and converges to ξ. Moreover, the following estimates hold

|yn − ξ| ≤ g1(|xn − ξ|)|xn − ξ| ≤ |xn − ξ| < r, (39)

and
|zn − ξ| ≤ g2(|xn − ξ|)|xn − ξ| < |xn − ξ|, (40)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

), the limit point ξ
is the only solution of equation f(x) = 0 in Ω1 = Ū(ξ, T ) ∩ D.

Proof: We shall show estimates (39)–(40) using mathematical induction. By hypotheses x0 ∈
U(ξ, r)− {ξ}, (29) and (35), we get

|f ′(ξ)−1(f ′(x0)− f ′(ξ))| ≤ L0|x0 − ξ| < L0r < 1. (41)

It follows from the (41) and the Banach Lemma on invertible functions [3, 4, 26] that f ′(x0) 6= 0
and

|f ′(x0)−1f ′(ξ)| ≤ 1
1− L0|x0 − ξ|

. (42)

Hence, y0 is well defined by the first sub-step of the method (5) for n = 0. Then, we have by
(29), (31), (36) and (42) that

|y0 − ξ| = |x0 − ξ − f ′(x0)−1f(x0)|

≤ |f ′(x0)−1f ′(ξ)||
∫ 1

0 f
′(ξ)−1

[
f ′(ξ + θ(x0 − ξ))− f ′(x0)

]
(x0 − ξ)dθ|

≤ L|x0 − ξ|2

2(1− L0|x0 − ξ|)
= g1(|x0 − ξ|)|x0 − ξ| < |x0 − ξ| < r,

(43)

which shows (39) for n = 0 and y0 ∈ U(ξ, r).
The fraction in (10) can be written for n = 0 as N0

D0
, where N0 = 2f(y0)[(β1 − β2)f ′(x0) +

βf(y0) + f(x0)] and D0 = 1
2f(x0)D1, D1 = 2f(x0) + 2(β2 − 2α)f(y0) − (α+β2)f(y0)f ′(x0)

f(x0) −
αβ2

[f(y0)]2
f(x0) − f

′(x0).
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We need to show that f(x0) 6= 0, f(x0) − 2f ′(x0) 6= 0, f(x0) + β2f(y0) 6= 0 and D1 6= 0 for
x0 6= ξ. Using (29), (34) and (35), we have that

|
(
f ′(ξ)(x0 − ξ)

)−1(
f(x0)− f(ξ)− f ′(ξ)(x0 − ξ)

)
| ≤ |x0 − ξ|−1L0

2 |x− ξ|
2 = L0

2 |x0 − ξ| < 1.
(44)

It follows from (44) that f(x0) 6= 0 and

|f ′(x0)−1f ′(ξ)| ≤ 1
|x0 − ξ|

(
1− L0

2 |x0 − ξ|
) . (45)

Then, by (29), (32), (35), (37), (43) and (45), we obtain for 2|β2− 2α| > |β2| and using the first
version of the function p in turn that∣∣∣∣∣f ′(ξ)−1

[
f ′(x0)− f ′(ξ) + αβ2[f(y0)]2

f(x0) + (α + β2)f(y0)f ′(x0)
f(x0) − 2f(x0)− 2(β2 − 2α)f(y0)

]∣∣∣∣∣
≤ L0|x0 − ξ|+

|αβ2|M2|y0 − ξ|
|x0 − ξ|

(
1− L0

2 |x0 − ξ|
) + |α + β2|M2|y0 − ξ|
|x0 − ξ|

(
1− L0

2 |x0 − ξ|
)

+ 2M |x0 − ξ|+ 2|β2 − 2α|M |y0 − ξ|

≤ L0|x0 − ξ|+
|αβ2|M2g1

(
|x0 − ξ|

)
1− L0

2 |x0 − ξ|
+
|α + β2|M2g1

(
|x0 − ξ|

)
1− L0

2 |x0 − ξ|
+ 2

[
M + |β2 − 2α|Mg1

(
|x0 − ξ|

)]
|x0 − ξ|

= p
(
|x0 − ξ|

)
< p(r) < 1.

(46)
Hence, we get that

|D−1
0 f ′(ξ)| ≤ 1

1− p
(
|x0 − ξ|

) . (47)

If we use 2|β2− 2α| ≤ |β2| then the term 2|β2− 2α| can be replaced by 2(|β2|+ 2|α|). For this
condition, we use the second version of the function p. Further, by using (45) and (47) we have
that

|D−1
1 f ′(ξ)| ≤ 2

|x0 − ξ|
(
1− L0

2 |x0 − ξ|
)(

1− p
(
|x0 − ξ|

)) . (48)

Hence, x1 is well defined by (10) for n = 0. We also notice from equation (46) which implies
that f(x0)− 2f ′(x0) 6= 0, f(x0) + β2f(y0) 6= 0. Further, we have

|f ′(ξ)−1
(
f ′(x0)−f ′(ξ)

)
− f(x0)

2 | ≤ L0|x0−ξ|+
M |x0 − ξ|

2 ≤ p(|x0−ξ|) < p(r) < 1, (49)

and
|
(
f ′(ξ)(x0 − ξ)

)−1(
(f(x0)− f(ξ)− f ′(ξ)(x0 − ξ)) + β2f(y0)

)
|

≤ |x0 − ξ|−1
(
L0

2 |x0 − ξ|2 + |β2|M |y0 − ξ|
)

≤ L0

2 |x0 − ξ|+M |β2|g1|
(
|x0 − ξ|

)
≤ p

(
|x0 − ξ|

)
< p(r) < 1,

(50)
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for p given by the first formula, if 2|β2−2α| > |β2| and from the second formula if 2|β2−2α| ≤
|β2|.
Now, we need to estimate the following

|N0| ≤ 2|f ′(ξ)−1f(y0)|
[
|β1 − β2|+ |β2||f ′(ξ)−1f(y0)|+ |f ′(ξ)−1f(x0)|

]
≤ 2M |y0 − ξ|

[
|β1 − β2|+ |β2|M |y0 − ξ|+M |x0 − ξ|

]
≤ 2Mg1

(
|x0 − ξ|

)
|x0 − ξ|

[
|β1 − β2|+ |β2|Mg1

(
|x0 − ξ|

)
|x0 − ξ|+M |x0 − ξ|

]
.

(51)

Therefore, by (10) (for n = 0), (30), (33), (37), (42), (43), (45), (47), (48), and (51) we get in
turn that

|x1 − ξ| ≤ |x0 − ξ − f ′(x0)−1f(x0)|+
2M3|y0 − ξ|

(
|β1 − β2|+ |β2||y0 − ξ|+ |x0 − ξ|

)
|x0 − ξ|

(1− L0|x0 − ξ|)
(
1− L0

2 |x0 − ξ|
)(

1− p(|x0 − ξ|)
)
|x0 − ξ|

≤
2M3g1

(
|x0 − ξ|

)[
|β1 − β2|+ |β2|g1

(
|x0 − ξ|

)
|x0 − ξ|+ |x0 − ξ|

]
|x0 − ξ|3

(1− L0|x0 − ξ|)
(
1− L0

2 |x0 − ξ|
)(

1− p(|x0 − ξ|)
)

+ L|x0 − ξ|2

2(1− L0|x0 − ξ|)
= g2

(
|x0 − ξ|

)
|x0 − ξ| < |x0 − ξ| < r,

(52)
which shows (40) for n = 0 and x1 ∈ U(ξ r). By simply replacing x0, y0 by xk, yk in the
preceding estimates we arrive at (39)–(40). Using the estimates ‖xk+1 − ξ‖ < ‖xk − ξ‖ < r,
we deduce that lim

k→∞
xk = ξ and xk+1 ∈ Ω1. Finally, to show the uniqueness part, let Q =∫ 1

0 f
′(y∗ + θ(ξ − y∗))dθ for some y∗ ∈ Ω1 with f(y∗) = 0. Using (35), we get that

‖f ′(ξ)−1(Q− f ′(ξ))‖ ≤ ‖
∫ 1

0 L0|y∗ + θ(ξ − y∗)− ξ‖dθ

≤
∫ 1

0 (1− t)‖y∗ − ξ‖dθ ≤ L0

2 T < 1.
(53)

It follows from (53) that Q is invertible. Then, in view of the identity 0 = f(ξ) − f(y∗) =
Q(ξ − y∗), we conclude that ξ = y∗. �
Remarks

(a) In view of (35) and the estimate

|f ′(ξ)−1f ′(x)| = |f ′(ξ)−1(f ′(x)− f ′(ξ)) + I|

≤ 1 + |f ′(ξ)−1(f ′(x)− f ′(ξ))|

≤ 1 + L0|x0 − ξ|

condition (37) can be dropped and M can be replaced by

M(t) = 1 + L0t

or by M(t) = M = 2, since t ∈ [0, 1
L0

).

(b) The results obtained here can be used for operators f satisfying the autonomous differen-
tial equation [3, 4] of the form

f ′(x) = P (f(x)),
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where P is a known continuous operator. Since f ′(ξ) = P (f(ξ)) = P (0), we can apply
the results without actually knowing the solution ξ. Let as an example f(x) = ex − 1.
Then, we can choose P (x) = x+ 1.

(c) The radius r1 was shown in [3, 4] to be the convergence radius for Newton’s method under
conditions (35) and (36). It follows from (31) and the definition of r1 that the convergence
radius r of the method (5) cannot be larger than the convergence radius r1 of the second
order Newton’s method. As already noted in r1 is at least as the convergence ball give by
Rheinboldt [28]

rR = 2
3L.

In particular, for L0 < L we have that

rR < r1

and
rR
r1
→ 1

3 as
L0

L
→ 0.

That is our convergence ball r1 is at most three times larger than Rheinboldt’s. The same
value for rR given by Traub [30].

Numerical experiments

In this section, we want to assert that our proposed an optimal family of Chebyshev Hal-
ley methods perform better than the families of Chebyshev-Halley methods proposed by Li et
al. (2014) and Sharma (2015). Some of the researchers who want to assert that their meth-
ods are superior than the other existing methods available in the literature. Generally, they
consider either some well-known or standard or self made test problem and then mold the ini-
tial approximation to assert that their methods are superior than other methods. Molding the
initial guess mean, let A researcher who wants to compare his/her method/methods with B’s
method/methods by considering a particular test problem with x0 as initial guess. Now, if A’s
method/methods does/do not perform better than B’s method/methods then A changes the ini-
tial guess and continue this process until he/she gets better results than B’s method/methods.
If A does not get success on that particular test problem on any initial guess then A consider
another test problem and continue the same process until A does not get success.

To halt this practice, we consider total six numerical examples out of them first two are chosen
from Li et al. [21], third and fourth from Sharma [29] with same initial guesses which are
mentioned in their papers. Further, fifth and six test examples are taken from Petkovı́c et al.
[25]. The details of chosen test problems or functions are available in the Table 1. Further, the
initial approximations and zeros of the corresponding test functions are also display in the same
table.

To check the effectiveness and validity of the theoretical results, we employ the new optimal
family of Chebyshev–Halley methods (11) (MCHM), with Chebyshev’s method (MCM) (α =
0), Halley’s method (MHM) (α = 1

2) and super-Halley method (MSHM) (α = 1). We shall
compare our schemes with a family of Chebyshev-Halley type methods that is very recently pro-
posed by Li et al. [21], out of them we shall pick their best methods (which are claimed by them
not by us) namely, Chebyshev’s method (LCM) (α = 0), Halley’s method (LHM) (α = 1

2)
and super-Halley method (LSHM) (α = 1). Finally, we shall also compare our schemes with
the improved Chebyshev-Halley methods which is developed by Sharma [29], between them
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we shall choose their best methods namely, (α = 0, α = 1
2 , α = 1) denoted by SCM, SHM,

and SSHM , respectively.

In the Table 2, we display the minimum number of iterations are required to get the desire ac-
curacy to the corresponding zeros of the functions f1(x)− f6(x) which are given in Table 1. In
addition, we also exhibit the absolute errors |xn+1 − xn| for first three consecutive approxima-
tions in this table. Further, the meaning of (Ae− h) is (A× 10−h). Furthermore, we also want
to demonstrate the theoretical order of convergence which is proved in section 3. Therefore, to
calculate the computational order of convergence, we use the following formula proposed by
[31], which is defined as follows

ρ ≈ ln |(xn+1 − ξ)/(xn − ξ)|
ln |(xn − ξ)/(xn−1 − ξ)|

.

But, this COC requires the exact root ξ and there are many practical situations where the exact
root is not known in advance. To overcome this problem, Grau-Sánchez et al. [13], given
another definition of COC, which is defined as follows

ρ ≈ ln |ěn+1/ěn|
ln |ěn/ěn−1|

, (54)

where ěn = xn − xn−1.
All computations have been performed by using the programming package Mathematica 9
with multiple precision arithmetic. We use ε = 10−300 as a tolerance error. The following stop-
ping criteria are chosen for computer programs:
(i)|xn+1 − xn| < ε and (ii)|f(xn+1)| < ε.
It is noteworthy from the table 2, that our proposed schemes perform better than the Li et al.
(2014) and Sharma (2015), when the accuracy is tested in the high precision digits. For better
comparison, we give a column by column comparison of different modifications of Chebyshev–
Halley methods, so that we can easily see the exact difference between the proposed modifica-
tions and existing modifications of Chebyshev–Halley methods. Further, the accuracy in nu-
merical values of approximations to the root by the proposed scheme is higher than the recently
improvement of Chebyshev–Halley methods given by Li et al. [21] and Sharma [29]. In gen-
eral, the our optimal family of Chebyshev-Halley methods (MCHM) is superior among all the
other proposed methods. This superiority is in accordance because it is an optimal modification
of Chebyshev-Halley methods according to Kung-Traub conjecture [20], which is discussed in
the previous section. The computational order of convergence (COC) and dynamic study of
these methods also confirmed the above conclusions to a great extent.

Now, we also demonstrate the theoretical results which we proposed in section 4, by the apply-
ing on some other numerical examples, which are defined as follows:

Example 1 Let f be a function defined on D = Ū(0, 1), which is given as follows

f7(x) = ex − 1. (55)

Then the first-derivative is f ′7(x) = ex. We get that L0 = e − 1 < L = e
1

e−1 , α = 1 M = 2,
β1 = 2(α − 2) and β2 = 2(α − 1). By substituting different values of parameters, we get
different radius of convergence which are display in the Table 3.
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Table 1: Test problems

f(x) Initial guess Root(ξ)

f1(x) = 10xe−x2 − 1; (see [21]) 1.7 1.67963061042845 . . .

f2(x) = (x+ 2)ex − 1; (see [21]) −0.5 −0.442854401002389 . . .

f3(x) = ex + 2−x + 2 cosx− 6; (see [29]) 3.5 1.82938360193385 . . .

f4(x) = (x− 2)(x10 + x+ 1)e−x−x; (see [29]) 2.5 2

f5(x) = ex2+7x−30 − 1; (see [25]) 3.3 3

f6(x) = (x− 2)2 − log x− 33x; (see [25]) 33 36.9894735829447 . . .

Example 2 Returning back to the motivation example at the introduction on this section, we
have L = L0 = 146.6629073, M = 2, β1 = 2(α − 2) and β2 = 2(α − 1). By substituting
different values of parameters, we get different radius of convergence which are display in the
Table 4.

Example 3 Continuous stirred tank reactor (CSTR)

Let us consider the isothermal continuous stirred tank reactor (CSTR). Components A and R
are fed to the reactor at rates of Q and q − Q, respectively. Then, we obtain the following
reaction scheme in the reactor ( for the details see [10]):

A+R→ B

B +R→ C

C +R→ D

C +R→ E

The problem was analyzed by Douglas [12] in order to design simple feedback control systems.
He presented the following expression for the transfer function of the reactor

KC
2.98(x+ 2.25)

(x+ 1.45)(x+ 2.85)2(x+ 4.35) = −1,

where KC is the gain of the proportional controller. The control system is stable for values of
KC that yields roots of the transfer function having negative real part. If we choose KC = 0 we
get the poles of the open-loop transfer function as roots of the nonlinear equation:

f8(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x+ 51.23266875. (56)

No doubts, the above function f1 has four zeros x∗ = −1.45,−2.85,−2.85,−4.35. However,
our required zero is x∗ = −4.35 for expression (57). Let us also consider D = [−4.5,−4].
Then, we obtain

L0 = L = 2.760568793, M = 2

Now, with the help of different values, we get different radius of convergence displayed in Table
5.
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Table 2: (Comparison of different multi-point methods )

f(x) LCM LHM LSHM SCM SHM SSHM MCM MHM MSHM

f1(x)

|x2 − x1| 1.4e−1 7.6e−1 5.9e−1 2.5e−1 1.9e−1 8.1e−1 6.3e−3 3.8e−3 3.2e−2

|x3 − x2| 4.2e−5 4.5e−2 4.2e−3 1.3e−4 1.3e−5 1.4e−10 8.1e−20 1.2e−22 2.9e−14

|x4 − x3| 5.7e−23 4.2e−8 4.2e−6 8.8e−24 2.3e−30 1.4e−80 5.7e−155 1.6e−178 1.1e−110

n 6 7 6 6 6 5 5 5 5

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f2(x)

|x2 − x1| 1.5e−2 1.1e+0 2.1e−1 1.1e−1 9.0e−2 4.8e−2 2.3e−2 2.3e−2 2.6e−2

|x3 − x2| 2.5e−7 2.0e−1 1.4e−2 8.0e−4 1.7e−5 9.0e−8 9.3e−11 1.2e−10 2.9e−10

|x4 − x3| 2.0e−31 1.1e+0 1.6e−9 1.1e−15 2.2e−20 2.7e−53 7.0e−78 7.3e−77 1.1e−73

n 96 6 6 6 6 5 5 5 5

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f3(x)

|x2 − x1| 8.9e−10 3.7e−14 5.4e−12 2.7e−10 6.4e−11 6.2e−15 8.8e−15 6.3e−15 3.9e−15

|x3 − x2| 7.3e−47 4.3e−49 1.4e−69 1.3e−57 5.6e−62 4.0e−115 9.2e−114 4.9e−115 7.2e−117

|x4 − x3| 2.7e−232 9.0e−244 3.9e−415 1.3e−341 2.5e−368 1.1e−916 1.4e−905 1.4e−916 8.8e−931

n 5 5 4 4 4 4 4 4 4

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f4(x)

|x2 − x1| 2.0e−7 8.7e−8 1.2e−9 2.7e−8 6.1e−9 2.4e−12 4.4e−13 1.4e−13 1.5e−13

|x3 − x2| 8.3e−35 7.2e−37 1.4e−55 2.7e−46 8.8e−51 2.3e−95 5.1e−102 1.3e−106 2.8e−106

|x4 − x3| 1.1e−171 2.7e−182 2.8e−331 2.5e−274 7.4e−302 1.6e−759 1.6e−813 9.0e−851 4.4e−848

n 5 5 4 5 4 4 4 4 4

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f5(x)

|x2 − x1| D 1.3e−2 1.1e+0 1.2e−1 1.2e−1 1.0e+0 3.6e−2 3.6e−2 3.7e−2

|x3 − x2| D 9.2e−3 2.9e−1 1.6e−2 8.7e−3 5.7e−4 1.9e−9 2.1e−9 3.1e−9

|x4 − x3| D 5.9e−3 2.3e−6 4.8e−7 4.8e−9 1.4e−21 5.6e−68 1.6e−67 5.2e−66

n D D 7 7 7 6 5 5 5

ρ NC 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f6(x)

|x2 − x1| 7.2e−4 1.2e−4 1.7e−6 7.2e−4 1.2e−4 1.7e−6 2.4e−6 9.3e−6 1.7e−6

|x3 − x2| 5.7e−26 2.8e−30 9.4e−47 7.8e−27 3.6e−32 7.7e−58 3.8e−47 1.1e−50 7.7e−58

|x4 − x3| 1.5e−136 2.3e−158 2.4e−288 1.3e−164 3.3e−197 1.4e−468 1.8e−381 3.1e−410 1.4e−468

n 5 5 5 5 5 4 4 4 4

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000
(D: stands for divergence. NC means no need to calculate.)
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Table 3: Behavior of scheme (10) on example (1)

α r1 r2 r = min{r1, r2} x0 |x2 − x1| |x3 − x2| |x4 − x3| ρ

α = 0 0.382692 0.066575 0.066575 0.65 3.4e(−6) 2.8e(−23) 1.3e(−91) 4.000
α = 1

2 0.382692 0.0877379 0.0877379 0.85 4.1e(−6) 2.3e(−23) 2.1e(−92) 4.000
α = 1 0.382692 0.0877468 0.0877468 0.86 2.2e(−6) 1.0e(−24) 4.2e(−98) 4.000

Table 4: Behavior of scheme (10) on example (2)

α r1 r2 r = min{r1, r2} x0 |x2 − x1| |x3 − x2| |x4 − x3| ρ

α = 0 0.00454557 0.00109685 0.00109685 1.0009 5.5e(−12) 7.4e(−45) 2.5e(−176) 4.000
α = 1

2 0.00454557 0.00167861 0.00167861 1.0011 1.9e(−11) 1.6e(−42) 7.6e(−167) 4.000
α = 1 0.00454557 0.00167861 0.00167861 1.0011 2.5e(−11) 7.0e(−42) 4.1e(−164) 4.000

Example 4 In the study of the multi-factor effect, the trajectory of an electron in the air gap
between two parallel plates is given by

x(t) =x0 +
(
v0 + e

E0

mω
sin(ωt0 + α)

)
(t− t0) + e

E0

mω2

(
cos(ωt+ α) + sin(ω + α)

)
,

(57)
where e and m are the charge and the mass of the electron at rest, x0 and v0 are the position and
velocity of the electron at time t0 and E0 sin(ωt+α) is the RF electric field between the plates.
We choose the particulars parameters in the expression (57) in order to deal with a simpler
expression, which is defined as follows:

f9(x) = x− 1
2 cos(x) + π

4 . (58)

The required zero of the above function α = −0.309093271541794952741986808924.

Then, we have
L0 = L = M = 1.523542095.

So, we obtain the different radius of convergence which are displayed in Table 6 by using the
above values.

Attractor basins in the complex plane

In this section, we present the dynamics of the proposed method based on visual display of
their basins of attraction when f(x) is a given fixed complex polynomial q(z). We further

Table 5: Behavior of scheme (10) on example (3)

α r1 r2 r = min{r1, r2} x0 |x2 − x1| |x3 − x2| |x4 − x3| ρ

α = 0 0.241496 0.0473699 0.0473699 −4.396 2.1e(−5) 1.1e(−18) 8.4e(−72) 4.000
α = 1

2 0.241496 0.0650116 0.0650116 −4.41 4.5e(−5) 1.9e(−17) 5.9e(−67) 4.000
α = 1 0.241496 0.0650156 0.0650156 −4.41 3.2e(−5) 3.6e(−18) 5.3e(−70) 4.000
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Table 6: Behavior of scheme (10) on example (4)

α r1 r2 r = min{r1, r2} x0 |x2 − x1| |x3 − x2| |x4 − x3| ρ

α = 0 0.437577 0.066575 0.066575 −0.374 1.2e(−6) 1.5e(−25) 3.1e(−101) 4.000
α = 1

2 0.437577 0.124466 0.124466 −0.419 4.1e(−6) 7.5e(−24) 8.3e(−95) 4.000
α = 1 0.382692 0.124493 0.124493 −0.419 1.9e(−6) 1.8e(−25) 1.4e(−101) 4.000

investigate some dynamical properties of the attained simple root finders in the complex plane
by analyzing the structure of their basins of attraction. It is known that the corresponding
fractal of an iterative root-finding method is a boundary set in the complex plane, which is
characterized by the iterative method applied to a fixed polynomial q(z) ∈ C, see e.g. [27, 24,
7, 6].

The aim herein is to use basin of attraction as another way for comparing the iterative methods.
Therefore, we here investigate the dynamics of the listed simple root finders in the complex
plane using basins of attraction which gives important information about convergence and sta-
bility of the method. To start with, let us recall some basic concepts which are related to basins
of attractions. To start with, let us recall some basic concepts which are related to basins of
attractions. Let g : C→ C be a rational map on the Riemann sphere. The orbit of a point z ∈ C
under g is defined

{z, g(z), g2(z), . . . , gn(z), . . . },

which consists of successive images of z by the rational map g. The dynamic behavior of
the orbit of a point of g would be characterize by its asymptotic behavior. We first introduce
some notions of a point in the orbit under g: a point z0 ∈ C is known as a fixed point of g, if
g(z0) = z0. In addition, z0 is known as a periodic point of period m > 1, if gm(z0) = z0, where
m is smallest such integer. Further, if z0 is a periodic point of period m then it is a fixed point
for gm. Moreover, there are mainly four types of fixed points of a map g, which are based on
the magnitude of the derivative. A fixed point z0 is known as:

If ξ is a root of f(x), then the basin of attraction of ξ, is the collection of those initial approxi-
mations x0 which converge to ξ. It is mathematically defined as follows:

B(ξ) = {z0 ∈ C : gn(z0)→ ξ as n→∞}.

Arthur Cayley was the first person who considered the concept of the basins of attraction for
Newton’s method in 1879. Initially, he considered this concept for the quadratic polynomial.
After some time, he also considered cubic polynomials, but was unable to find an obvious
division for the basins of attraction as he earlier defined for the quadratic equations. In the early
of 20th century, the French mathematicians Gaston Julia and Pierre Fatou started to understand
the nature of complex cubic polynomials. The Julia set of a nonlinear map g(z), called J(g), is
the closure of the set of its repelling fixed points and establishes the borders between the basins
of attraction. On the other hand, the complement of J(g) is known as the Fatou set F (g). In
simple words, the basins of attraction of any fixed point belongs to the Fatou set F (g) and the
boundaries of these basins of attraction belong to the Julia set J(g). For the details of these
concepts please see [11, 27, 24]. The aim herein is to use the basins of attraction as another way
for characterizing initial approximations converging to the desired root ξ for the listed iteration
algorithms. That is to say, the basins of attraction play a role representing a valuable dynamics

ICCM2018, 6th-10th August 2018, Rome, Italy

581



of the iteration schemes under consideration.

In order to achieve a vivid description from a dynamical point of view, we consider a rectan-
gle D = [−3, 3] × [−3, 3] ∈ C with a 400 × 400 grid, and we assign a color to each point
z0 ∈ D according to the simple root at which the corresponding iterative method starting from
z0 converges, and we mark the point as black if the method does not converge. In this section,
we consider the stopping criterion for convergence to be less than 10−4 wherein the maximum
number of full cycles for each method is considered to be 200. In this way, we distinguish the
attraction basins by their colors for different methods. For concrete examples of dynamics of the
listed methods behind the basins of attraction, we present several test problems described below.
Test problem 1. Let p1(z) = (z4+1), having simple zeros {−0.707107−0.707107i, −0.707107+
0.707107i, 0.707107 − 0.707107i, 0.707107 + 0.707107i}. It is straight forward to see from
Fig. 1 – 3 that our methods, namely MCM , MHM and MSHM are the best methods in
terms of less chaotic behavior to obtain the solutions. Further, our methods also have the largest
basins for the solution and is faster in comparison to all the mentioned methods.
Test problem 2. Let p2(z) = (z3 +2z), having simple zeros {0, −1.41421i, 1.41421i}. Based
on Fig. 4 – 6 , it is observe that our proposed methods namely, MCM , MHM and MSHM
are the best methods because they have larger and brighter basin of attraction in comparison to
the methods namely, LCM , LHM , LSHM , SCM , SHM and SSHM , respectively.

Figure 1: The methods LCM , LHM and LSHM , respectively for test problem 1.

Figure 2: The methods SCM , SHM and SSHM , respectively for test problem 1.
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Figure 3: The methods MCM , MHM and MSHM , respectively for test problem 1.

Figure 4: The methods LCM , LHM and LSHM , respectively for test problem 2.

Figure 5: The methods SCM , SHM and SSHM , respectively for test problem 2.
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Figure 6: The methods MCM , MHM and MSHM , respectively for test problem 2.

Conclusions

The present contribution of this study is not only to increase the order of convergence of
classical Chebyshev-Halley method. But, we also provide theoretical radius of convergence
which guaranteed for the convergence of iterative methods. In addition, our schemes (10) and
(11) can further produce many more new optimal methods of order four and eight, respectively
for each α. On the other hand, Sharma [29] and Li at al. [21] didn’t get guess in order to obtain
optimal methods for each α in their studies. On the accounts of results obtained in the Table 2,
it can be concluded that the proposed methods are highly efficient as compared to the existing
methods in term of computational efficiency and speed. We are claiming the superiority of our
methods because we compare them on the same test problems with same initial approximations
which are they taken in their papers (for detail please see Table 1). We also verify in section 4
that these methods converge to the required root even though the third derivative is not bounded.
Finally, the dynamical behaviors of our methods also demonstrate the superiority to the other
known methods in terms of larger and brighter basin of attraction and less chaotic.
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Abstract 
This study describes the development and validation of the Pro-industry Behavior scale, a 
quantitative 24-item scale that measures an Asian country university students’ behavior 
toward pro-industry. A total of 814 undergraduate engineering students completed the 
questionnaire. A pilot study (n= 154)  was examined factorial validity and reliability of 
questionnaire and study objects (n= 658) used confirmatory factor analysis. The Pro-industry 
Behavior Measure (PBM) has  three-factor model (Industry identity, Industry concern, and 
Industry regulator) was fit using maximum likelihood estimation (MLE). The Pro-Industry 
Behavior scale could be useful for understanding the ways in which students think about pro-
industry issues and could be used to investigate the relationship between pro-industry 
behavior and other variables. The applications of the PBM were discussed. 
Keywords: Pro-industry Behavior; Industry identity; Industry concern; Industry regulator  

Introduction 
In response to the rapidly growing global industry environment many call for changes in how 
individuals should deal with the industry 4.0. An important aspect of moving towards an 
industry sustainable development is to promote pro-industry behavior [1] [2] . Engineering 
students strengthen the practical skills is important who choose materials and compose ability 
of the industry practice course [3] [4]. In view of the practical needs, the engineering education 
curriculum content of the professional subjects is influenced by the industrial development 
trend. Engineering students’ industry professional competence and specialized learning 
mechanism of pro-industry behavior will be emphasized of industry identity, industry concern, 
and industry regulator [6] [7]. 

Engineering students face two challenges of pro-industry behavior, there are: 1. To understand 
the impact of the pro-industry behaviors on employment abilities and seeking job of the career 
development, as well as to the industry practice abilities and preparation of industry practice, is 
very important. 2. The digitalization of work is not just something that lies ahead; it has 
already changed work more and more over the last few years, e.g. making it more mobile[8] 
[9]. In view of the industry practical needs of the engineering education contents 
of Industry 4.0, the content of professional subjects is influenced by the industrial development 
trend, and the industry practice competence of engineering students. In the face of the industry 
change, the industry employment ability of engineering students is challenged [6] [10] [11].  
Students’ pro-industry behavior was conducted in the industry practice specialization process 
of cognitive process, not only to participate in the common industry-oriented learning 
behavior, but also to practice quite personal characteristics [12].  The pro-industry behavior 
process is cognitive adjustment that to use knowledge and main contributions of this study 
and to set up the industry learning. It is important to understand students’ views of pro-
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industry behavior and learning in the vocation and technology education of human cultivation 
and industry connotation. The review of the literature reveals that the research studies 
conducted in the context of pro-industry learning and applications have measured attitudes 
and behavior of students regarding industry identity, industry concern, and industry 
regulator[12] [13]. The purpose of the study was to develop a valid and reliable instrument to 
be used for measuring engineering students’ attitudes toward pro-industry behavior and its 
applications. With this instrument, it is believed that the gap in the professional literature 
indicated above will be partially met. 

Method 
A. Participants  
(1) Pilot study : A total of 154 students that mean age of the participants was 21.3 (SD = 
1.98) and there were 52 (33.8%) females in the sample.  
(2) The present study: The participants in this study were 658 students from 20 engineering 
institutes in Asian countries [17]. The sample consisted of 322 women (48.9%), with a mean 
age of participants of 22.3 years (SD = 2.17). All participants are volunteers and receive no 
monetary or in-kind rewards. Participants in this study did not participate in the pilot study 
and collected data from the study within three months of the pilot study.  

B. Measure 
The purpose of this study was to evaluate the 24-PBM factorial validity. All participants were 
volunteers and they were briefed on the purpose of this study and informed of their rights not 
to participate and withdraw from completing the questionnaire at any time during or after the 
data have been collected [18] [19]. Participants took about 20 min to complete the 
questionnaire. This study aimed to test and refine the 28 items. These items were presented 
using a 5-point Likert response scale with 1 = strongly disagree and 5 = strongly agree.  The 
principal component analysis with varimax-rotated see Table 1, and  results of confirmatory 
factor analysis see Table 2. 

 
Table 1 Principal component analysis with 
varimax-rotated 

 II IC IR H2 
II 1 .824 .232 .342 .887 
II 2 .798 .367 .268 .828 
II 3 .837 .355 .289 .845 
II 4 .842 .261 .389 .845 
II 5 .799 .249 .243 .839 
II 6 .812 .324 .317 .841 
II 7 .866 .341 .216 .857 
II 8 .872 .268 .311 .832 
IC 1 .235 .789 .276 .824 
IC 2 .341 .823 .312 .798 
IC 3 .267 .821 .226 .891 
IC 4 .289 .869 .317 .832 
IC 5 .311 .732 .238 .819 
IC 6 .243 .796 .326 .823 
IC 7 .327 .839 .325 .856 
IC 8 .345 .823 .210 .844 
IC 9 .354 .793 .297 .865 
IR 1 .288 .216 .863 .828 
IR 2 .419 .329 .782 .867 
IR 3 .234 .289 .808 .882 
IR 4 .278 .390 .833 .878 
IR 5 .342 .306 .842 .797 
IR 6 .387 .398 .794 .874 
IR 7 .279 .411 .789 .877 
Eighenvalue 6.872 7.694 3.498 - 
% of 
variance 

32.56 39.34 17.56 - 

 Table 2 Result of confirmatory factor analysis 
Item Understandardized 

esitmate 
Standardtized 
estimate 

t value R2 α 

Industry 
Identity  

    .921 

II 1 .984 .8783 65.783 .789  
II 2 .955 .874 48.327 .765  
II 3 .992 .891 34.461 .740  
II 4 1.137 .992 24.043 .987  
II 5 1.109 .993 23.093 .935  
II 6 1.056 .992 21.434 .972  
II 7 1.104 .984 22.319 .925  
II 8 1.108 .992 22.378 .943  
Industry 
Concern  

    .919 

IC 1 1.022 .973 27.389 .589  
IC 2 1.052 .983 26.359 .578  
IC 3 .993 .882 23.598 .542  
IC 4 1.018 .972 39.873 .923  
IC 5 1.361 .992 13.367 .962  
IC 6 1.388 .996 13.024 .938  
IC 7 1.403 .987 13.209 .942  
IC 8 1.387 .978 13.478 .956  
IC 9 1.484 .993 13.459 .971  
Industry 
Regulator 

    .934 

IR 1 .969 .895 78.256 .965  
IR 2 1.022 .984 89.356 .978  
IR 3 1.001 .985 70.984 .958  
IR 4 .992 .895 79.320 .978  
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explained 
Note. II=Industry identity; IC=Industry concern; 
IR=Industry regulator. All factor loadings=.74 or 
greater are underlined. H2=communality.  
 

IR 5 1.022 .921 78.934 .967  
IR 6 .982 .899 78.544 .958  
IR 7 .965 .917 76.953 .944  

 

Conclusion 
The purpose of this study was to test pro-industry awareness among engineering students 
using the newly developed Pro-industry Behavior Measure (PBM). The tool provides an 
alternative to existing measures where engineering students support industrial behavior, with 
a focus on student industry recognition, industry concerns and industry regulators' views on 
employment [20] [21]. The consisting of three factors, the PBM measures user perceptions of 
the industry, industry concerns, and industry regulators' views on using pro-business learning. 
Pro-business behavior measurement (PBM) is developed and validated through research using 
separate samples [22] [23]. 

In general, the validity of this study was found to support PBM as a measure of the utility of 
industrial students in supporting industry behavior. The results of the CFA show that the data 
for the third model is the best compared to the two alternative models and that these items 
have good normalized loading for the hypothetical underlying factors constructs, which are 
less highly correlated between them (see figure 1). These results provide evidence of the 
molecular structure of PBM and may be useful to educational researchers. A better 
understanding of students' understanding of the industry will increase their awareness of 
industry-related behaviors and will make teaching more meaningful in the field of education. 
Several researchers have demonstrated a positive relationship between student "pro-industry" 
awareness and their "pro-industry" behavior and career development. As part of supporting 
industries as part of teacher education, PBM allows researchers to measure and understand 
how users respond to instruction [23] [24]. In doing so, the usefulness of PBM can be 
expanded to further inform researchers about the factors that affect user behavior. Such future 
research may be based on user demographics, such as the level of industry development, the 
level of industry experience, and attitudes toward industrial learning. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 The PBM measures users’ perception 
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Abstract 

The lightweight of wheel hubs is very important for reducing the unsprung mass and critical 

to improve the vehicle dynamic and braking performance of vehicles, and hence the control 

stability and comfortability. However, many current experience-based lightweight designs of 

wheel hubs have shortcomings resulting in uneven distribution of materials in terms of 

mechanics principles. This work develops a new method that combines the reverse modeling 

with topological optimization techniques to obtain lightweight wheel hubs, based on the 

principles of mechanics. A reverse modeling technique is firstly used to scan and create the 

initial 3D geometry of the wheel hub with solid ribs. The finite element (FE) method is then 

used to perform stress analysis to find the maximum stress and its location of wheel hub under 

multiple conditions. The FE model is then divided into optimization region and unoptimized 

region: the former the interior portion, and the latter is the outer surface of the wheel hub. A 

topology optimization is next the conducted, leading to a wheel hub with hollow ribs: the 

interior material of the ribs of the wheel hub is automatically removed. Finally, the hollow 

wheel hub is reconstructed with wall thickness about 5mm, via again a reverse modeling 

technique. Our results show that the reconstructed model can reduce the mass of 12.7% 

compared to the pre-optimized model (from 11.26 kg to 9.83 kg). The present method of 

combined with reverse modeling and topology optimization can guarantee the optimal 

distribution of wheel hub material based on mechanics principle. It can be performed 

automatically and hence shorten the time for optimal lightweight designs to improve the 

performance of the many other existing structures and structure components. 

Keywords: Reverse modeling; hollow wheel hub; Finite element; Topology optimization; 

Lightweight structures. 

The 3D geometry model of the wheel hub 

Reverse modeling technique is used to create the 3D geometry of the  five-spoke aluminum 

alloy wheel hub of a selling SUV. The weight and size of wheel hub are 10.5 kg and 17×6.5 

inches, respectively. Current mainstream 3D handheld scanner was selected to scan the wheel 

hub due to that the size of the wheel hub is not very large and the appearance accuracy 

requirement is not high [5]. Creating the wheel hub model includes the following three main 

steps, shown as in Fig. 1. In the first step, the date acquisition is to scan the wheel hub with a 

hand-held laser scanner with an accuracy of 0.5 mm, thereby obtaining a reverse mesh as 

shown in Fig. 1 (a). In the second step, the reverse mesh editing is the optimization of the 

surface contour of the reverse mesh in the reverse software as shown in Fig. (b). In the last 

step, the 3D geometry model of the wheel hub available for topology optimization with in the 

solid modeling step is obtained based on the reverse mesh.  
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                  (a)                                                  (b)                                                 (c) 

Figure 1. Reverse modeling, (a) data acquisition, (b) reverse mesh editing, (c) solid 

modeling 

 

Numerical analysis of the wheel hub 

Aluminum alloy A356 material is selected for casting wheel hubs. The material parameters of 

the aluminum alloy A356 material are shown in Table 1. [2]. The finite element analysis 

model is assembled from a wheel hub model and a torque shaft as shown in Fig. 2 [6]. For the 

one part, the mass of wheel hub model can be calculated in Abaqus and it is 11.26 kg. Due to 

the modeling error in reverse modeling, the mass of the FE wheel hub model is not equal to 

that of the real wheel hub. For the other part, axle was modeled using the material parameters 

of Q235-B material, and according to the formula (1) the length of axle is 500mm. Load: The 

static Fi (i= 1,2,3,……24) was applied every 15°within 360°of the axle end, the static load 

Fi applied at the axle end is 5265N, the role of Fi points and directions as shown in Fig. 2. In 

order to simulate the actual operation of the wheel hub in a cycle when the load suffered. The 

bending moment of a single wheel in this cycle was provided by the automobile manufacturer 

for 2632Nm. In 错误!未找到引用源。, the axle length of the loading moment and it is 

500mm, and according to the formula (1): 

FL=M      (1) 

Boundary conditions: The six degrees of freedom of the rim based plane and the rim edge 

surface were constrained. as shown in the red area of 错误!未找到引用源。 [7]. 

Table 1. Material properties of A356 

Elasticity Modulus Poisson's ratio Density Yield stress Ultimate stress 

72.00GPa 0.33 2.67×10
3
 kg/m

3
 218.0MPa 283.0MPa 

The 10-node modified quadratic tetrahedron was applied to assembly model. This element 

type makes it easy to mesh complex contact-containing models. The elements number of the 

wheel hub FE model was169173. The node number of the wheel hub was 281034. The 

maximum stress position within wheel hub ratation could be obtained, and the maximum 

stress was 128.29MPa as shown in Fig. 4(a). Topology optimization will be based on this. 
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     Figure 2. Finite element model of wheel hub 

 

Structure optimization and Model reconstruction 

In this section, a model of hollow wheel hub was obtained by topology optimization 

technology. According to material mechanics, it could be known that the normal stress of a 

beam was proportional to the distance from the neutral layer as Eq. (2).  

 y/ρE=σ      (2) 

The surface material of the wheel hubs withstands most of the load on wheel hubs. The 

material of wheel hubs with less efficient can be removed. Variable density topology 

optimization was used to reduce the wheel hub material in Abaqus. The FE model is then 

divided into optimization region and unoptimized region: the former the interior portion, and 

the latter is the outer surface of the wheel hub. The design area allows to reduce the material 

during optimization and it was spokes of wheel as shown in Fig. 2. Cell density is design 

variable. The optimization objective function is set to minimize strain energy values. The 

purpose is to maximize the overall stiffness of the hub. The optimization Constraint is set to 

optimized volume ≤ 75% of the original volume. The method of freezing the surface load area 

can be chosen to preserve the material of the wheel hub surface. The load is a pressure of 1 Pa 

applied to the surface of the design area during optimization ( This stress generated by this 

pressure was 1×10
-6

 % of the maximum stress on the FE model ), so it could be neglected. 

The topology optimization would remove the material inside the wheel hub mesh model. The 

hollow structure could be obtained as shown in Fig. 3. 

The optimized mesh model was derived and reconstructed using the same method with the 

reverse modeling. A new weight of the hollow wheel hub can be obtained as 9.83 kg. The 

weight of optimized wheel hub is 12.7% (1.43 kg) less the original wheel hub model. The 

same finite element analysis was applied to the optimized model. The larger element can 

speed up computing, and the result as shown in Fig. 4(b), the maximum stress position had 

changed. It located in the area where spoke and rim connecting position, with a maximum 

stress of 130MPa. From the FE results, it can be seen that the wheel hub mass is significantly 

reduced while the maximum stress of the original wheel hub and the optimized wheel hub is 

almost the same. This result is satisfactory [8]. 
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                                        (a)                                                                (b) 

Figure 3. The optimized wheel hub model, (a) the optimized model is cut along the A-A section the, (b) 

radial sectional view of a hollow single-spoke. 

 

        
                                       (a)                                                                        (b) 

Figure 4. (a) Original wheel hub stress cloud. (b) Optimized wheel hub stress cloud 
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Abstract

This paper presents numerical solution to a shape identification problem to control temperature
distribution to a target distribution in sub-domains of unsteady heat convection fields. The
square error integral between the actual temperature distributions and the target temperature
distributions in the sub-domains during the specified period of time is used as the objective
functional. Shape gradient of the shape identification problem is derived theoretically using
the Lagrange multiplier method, adjoint variable method, and the formulae of the material
derivative. Reshaping is carried out by the traction method proposed as an approach to solv-
ing shape optimization problems. Numerical analyses program for the shape identification is
developed based on FreeFem++, and the validity of proposed method is confirmed by results
of 2D numerical analyses.

Keywords: Inverse problem, Shape identification, Optimum design, Flow control, Traction
method

Introduction

Shape design problems that improve the characteristics of heat transfer in thermal convection
fields are an important subject in engineering. A typical example of such a problem can be seen
in the design process used to create a heat exchanger. In this problem, the shape of the heat
exchanger is optimized to maximize the heat discharge on the sub-boundaries of the convection
field. Moreover, the problem of determining the boundary shape that can achieve the desired
state distribution function of temperature or flow velocity on specified sub-boundaries, or in
specified sub-domains, in a heat convection field is known as an inverse problem. If we regard
the inverse problem as designing the shape needed to minimize the integrated squared error
between the state distribution function of the actual temperature distribution and the target
distribution function, then it can be treated as one optimization problem. This study discusses
the solution of the inverse problem and the shape optimization problem with regard to the
shape design of the heat convection field domain.

The theory of shape optimization for incompressible viscous flow fields was initiated by Piron-
neau [Pironneau(1973; 1974; 1984)], who formulated a shape optimization problem for an iso-
lated body located in a uniform viscous flow field to minimize the drag power on this body. The
distributed shape sensitivity, which is called the shape gradient, was derived with respect to
the domain variation by means of an adjoint variable method based on optimal control theory.
The adjoint variable method introduces adjoint variables into variational forms of the govern-
ing equations as variational variables; it also determines the adjoint variables using adjoint
equations derived from criteria defining an optimality condition with respect to the domain
variation.
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Figure 1: Heat convection field

The present authors have proposed an approach for the shape optimization of such channels or
bodies based on a gradient method using the distributed shape sensitivity. In previous studies,
the present authors presented a numerical method for the minimization of the dissipation energy
of steady-state viscous flow fields [Katamine and Azegami(1995); Katamine et al.(2005)] and
extended this method to 3D problems [Katamine et al.(2009)]. Also, the present authors applied
this method to the shape optimization solution for the drag minimization and lift maximization
of an isolated body located in a uniform viscous flow field [Katamine and Matsui(2012)] and the
shape identification problem of flow velocity distribution prescribed problem in sub-domains of
steady-state viscous flow fields [Katamine and Kanai(2016)].

The present study describes the extension of this method for solving a shape identification
problem of unsteady forced heat convection fields to control temperature distribution to target
distribution in sub-domains of the fields. Reshaping is accomplished using the traction method
[Azegami el al.(1995; 1997); Azegami(2000)], which was proposed as a means of solving bound-
ary shape optimization problems of domains. In the traction method, domain variations that
minimize the objective functional are obtained as solutions of pseudo-linear elastic problems
for continua defined in the design domain. These continua are loaded with pseudo-distributed
traction in proportion to the shape gradient in the design domain.

In this study, the shape identification problem is formulated in the unsteady heat convection
fields. The square error integral between the actual temperature distributions and the target
temperature distributions in the sub-domains during the specified period of time is used as the
objective functional. Shape gradient of the shape identification problem is derived theoretically
using the Lagrange multiplier method, adjoint variable method, and the formulae of the ma-
terial derivative. Reshaping is carried out by the traction method proposed as an approach to
solving shape optimization problems. Numerical analyses program for the shape identification
is developed based on FreeFem++, and the validity of proposed method is confirmed by results
of 2D numerical analyses.

Governing equations for unsteady heat convection fields
Consider the unsteady heat convection field in the region Ω of Rd(d = 2, 3) in time interval
[0, T ]. Consider determining the flow velocity u(x⃗, t) = (ui(x⃗, t))i=1,d, pressure p(x⃗, t) and
temperature θ(x⃗, t) at x⃗ ∈ Ω and time t ∈ [0, T ]. The dimensionless forms of the Navier–Stokes
equation, continuity equation, and energy equation are the governing equations for unsteady
heat convection fields. They can be expressed as follows:

∂ui

∂t
+ ujui,j = −p,i +

1

Re
ui,jj, (x⃗, t) ∈ Ω× [0, T ], (1)

ui,i = 0, (x⃗, t) ∈ Ω× [0, T ], (2)

∂θ

∂t
+ ujθ,j =

1

RePr
θ,jj, (x⃗, t) ∈ Ω× [0, T ], (3)
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where the boundary Γ = ∂Ω = Γu ∪ Γσ = Γθ ∪ Γq ∪ Γh, are Figure 1. Tensors described in
this study use the Einstein summation convention and differentiation ( · ),i = ∂( · )/∂xi. The
boundary conditions and initial conditions are described below:

ui(x⃗, t) = ûi(x⃗, t), t ∈ [0, T ], x⃗ ∈ Γu, (4)

σi(x⃗, t) = σ̂i(x⃗, t) = (−pδij +
1

Re
ui,j)nj = 0, t ∈ [0, T ], x⃗ ∈ Γσ (5)

θ(x⃗, t) = θ̂(x⃗, t), t ∈ [0, T ], x⃗ ∈ Γθ, (6)

− 1

RePr
θ(x⃗, t),jnj = q̂(x⃗, t), t ∈ [0, T ], x⃗ ∈ Γq, (7)

− 1

RePr
θ(x⃗, t),jnj = ĥ(θ(x⃗, t)− θ̂f ), t ∈ [0, T ], x⃗ ∈ Γh, (8)

ui(x⃗, 0) = uiini
(x⃗), x⃗ ∈ Ω, (9)

p(x⃗, 0) = pini(x⃗), x⃗ ∈ Ω, (10)

θ(x⃗, 0) = θini(x⃗), x⃗ ∈ Ω. (11)

Here, q̂ represents the heat flux, ĥ represents the coefficient of heat transfer, θ̂f represents the
external temperature, δij represents the Kronecker delta, Re is the Reynolds number, and Pr

is Prandtl number. ˆ( · ) represents the known function on the boundary. n⃗ is an outward unit
normal vector to the boundary. Also, uiini

represents the initial flow velocity, pini represents
the initial pressure, and θini represents the initial temperature.

The weak forms of the respective governing equations (1)-(3) can be expressed with adjoint
flow velocity w(x⃗, t) = (wi(x⃗, t))i=1,d, adjoint pressure q(x⃗, t), and adjoint temperature ξ(x⃗, t)
as follows:∫ T

0

{
tV (u,t, w) + aV (u,w) + bV (u, u, w) + c(w, p)− l(w)

}
dt = 0, ∀w ∈ W, (12)∫ T

0

{
c(u, q)

}
dt = 0, ∀q ∈ Q, (13)∫ T

0

{
tH(θ,t, ξ) + aH(θ, ξ) + bH(u, θ, ξ) + fH

q (ξ) + fH
h (θ, ξ)− fH

hf (ξ)
}
dt = 0, ∀ξ ∈ Ξ.

(14)

Furthermore, tV (u,t, w), tH(θ,t, ξ), aV (u,w)，bV (v, u, w), c(w, p), l(w), aH(θ, ξ), bH(u, θ, ξ),
fH
q (ξ), fH

h (θ, ξ), and fH
hf (ξ) are defined as follows:

tV (u,t, w) =

∫
Ω

wi
∂ui

∂t
dx, tH(θ,t, ξ) =

∫
Ω

ξ
∂θ

∂t
dx,

aV (u,w) =

∫
Ω

1

Re
wi,jui,jdx, bV (v, u, w) =

∫
Ω

wivjui,jdx,

c(w, p) = −
∫
Ω

wi,ipdx, l(w) =

∫
Γσ

wiσ̂i dΓ,

aH(θ, ξ) =

∫
Ω

1

RePr
ξ,iθ,idx, bH(u, θ, ξ) =

∫
Ω

ξujθ,jdx, fH
q (ξ) =

∫
Γq

ξq̂ dΓ,

fH
h (θ, ξ) =

∫
Γh

ĥξθ dΓ, fH
hf (ξ) =

∫
Γh

ĥξθ̂f dΓ. (15)
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Here, ( · ),t expresses the time derivative of the function. The flow velocity u, its adjoint w, and
the other variables are considered to be elements of the following functional spaces:

U = {u(x⃗, t) ∈ H1(Ω× [0, T ]) | u satisfies (4) and (9)}, (16)

Q = {q(x⃗, t) ∈ L2(Ω× [0, T ]) (

∫
Ω

q dx = 0 (if measure(Γσ) = 0))}, (17)

Θ = {θ(x⃗, t) ∈ H1(Ω× [0, T ]) | θ satisfies (6) and (11)}, (18)

W = {wi(x⃗, t) ∈ H1(Ω× [0, T ]) | wi(x⃗, t) = 0, t ∈ [0, T ], x⃗ ∈ Γu, wi(x⃗, T ) = 0, x⃗ ∈ Ω},
(19)

Ξ = {ξ(x⃗, t) ∈ H1(Ω× [0, T ]) | ξ(x⃗, t) = 0, t ∈ [0, T ], x⃗ ∈ Γθ, ξ(x⃗, T ) = 0, x⃗ ∈ Ω}. (20)

Prescribing temperature in sub-domain in unsteady heat convection fields

In this section, the problem of minimizing the square integration errors between the actual
temperature θ|ΩD×[t1,t2] from time t = t1 ∈ [0, T ] to t = t2 ∈ [0, T ] and the target temperature
θD|ΩD×[t1,t2] in sub-domain ΩD ⊂ Ω is formulated. We assume t1 < t2. The domain transfor-

mation of this heat convection field region Ω is denoted by T⃗s, and the domain Ω is assumed to
vary to reach Ωs = T⃗s(Ω)[Azegami el al.(1995; 1997)]. For simplicity, we assume that the sub-

domains ΩD and Γσ are invariable, that is T⃗s(ΩD) = ΩD and T⃗s(Γσ) = Γσ or domain variation.
The square integration error problem for temperature distribution from time t = t1 to t = t2 is
formulated as follows:

Given Ω find Ωs that minimizes

∫ t2

t1

EΩD
(θ) dt subject to (12)− (14) and∫

Ω

dx ≤ βVM. (21)

where βV is a coefficient related to the initial domain measure M , and

EΩD
(θ) =

∫
ΩD

(θ − θD)
2 dx. (22)

The Lagrange function L(ui, p, θ, wi, q, ξ,Λ) for this problem is given as follows:

L =

∫ t2

t1

EΩD
(θ) dt

−
∫ T

0

{
tV (u,t, w) + aV (u,w) + bV (u, u, w) + c(w, p)− l(w)

}
dt−

∫ T

0

{
c(u, q)

}
dt

−
∫ T

0

{
tH(θ,t, ξ) + aH(θ, ξ) + bH(u, θ, ξ) + fH

q (ξ) + fH
h (θ, ξ)− fH

hf (ξ)
}
dt

+Λ(

∫
Ω

dx− βVM). (23)

where w ∈ W , q ∈ Q, and ξ ∈ Ξ were introduced as Lagrange multiplier functions or the
adjoint functions with respect to the weak forms. The non-negative real constant number Λ is
the Lagrange multiplier with respect to the volume constraint. The derivative of L with respect
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to domain variation is derived using the velocity field V⃗ (Ωs) = ∂T⃗s(Ω)/∂s = ∂T⃗s, /∂s(T⃗
−1
s (Ωs)),

as follows [Azegami el al.(1995; 1997)]:

L̇ = −
∫ T

0

{
tV (u,t, w

′) + aV (u,w′) + bV (u, u, w′) + c(w′, p)− l(w′) + c(u, q′)
}
dt

−
∫ T

0

{
tH(θ,t, ξ

′) + aH(θ, ξ′) + bH(u, θ, ξ′) + fH
q (ξ′) + fH

h (θ, ξ′)− fH
hf (ξ

′)
}
dt

−
∫ T

0

{
tV (u′

,t, w) + aV (u′, w) + bV (u′, u, w) + bV (u, u′, w) + c(u′, q) + bH(u′, θ, ξ) + c(w, p′)
}
dt

−
∫ T

0

{
tH(θ′,t, ξ) + aH(θ′, ξ) + bH(u, θ′, ξ) + fH

h (θ′, ξ)
}
dt+

∫ t2

t1

EΩD
(θ′) dt

+Λ̇

(∫
Ω

dx− βVM

)
+ lG(V⃗ ). (24)

Here, ( · )′ represents the derivative with respect to domain variation of the function fixed on
the spatial coordinates, and

lG(V⃗ ) =

∫
Γ

Gn⃗ · V⃗ dΓ, (25)

and assuming that the flow velocity satisfies ui = 0 at the design boundary,

G = G0 +G1Λ,

G0 =

∫ T

0

{
− 1

Re
wi,jui,j −

∂θ

∂t
ξ − 1

RePr
ξ,iθ,i

−∇n(ξq̂)− (ξq̂)κ−∇n(ĥξθ)− (ĥξθ)κ+∇n(ĥξθ̂f ) + (ĥξθ̂f )κ
}
dt

G1 = 1, (26)

where ∇n( · ) ≡ ∇( · ) · n⃗, and κ denotes the quantity (d − 1) times the mean curvature of
boundary, and ui, p, θ, wi, q, ξ, and Λ are determined by the following conditions:∫ T

0

{
tV (u,t, w

′) + aV (u,w′) + bV (u, u, w′) + c(w′, p)− l(w′) + c(u, q′)
}
dt = 0

∀w′ ∈ W, ∀q′ ∈ Q (27)∫ T

0

{
tH(θ,t, ξ

′) + aH(θ, ξ′) + bH(u, θ, ξ′) + fH
q (ξ′) + fH

h (θ, ξ′)− fH
hf (ξ

′)
}
dt = 0 ∀ξ′ ∈ Ξ

(28)∫ T

0

{
−tV (u′, w,t) + aV (u′, w) + bV (u′, u, w) + bV (u, u′, w) + c(u′, q)

+bH(u′, θ, ξ) + c(w, p′)
}
dt = 0 ∀u′ ∈ U, ∀p′ ∈ Q

(29)∫ T

0

{
−tH(θ′, ξ,t) + aH(θ′, ξ) + bH(u, θ′, ξ) + fH

h (θ′, ξ)
}
dt−

∫ t2

t1

EΩD
(θ′) dt = 0 ∀θ′ ∈ Θ

(30)

Λ ≥ 0,

∫
Ω

dx ≤ βVM, Λ(

∫
Ω

dx− βVM) = 0. (31)
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Figure 2: Numerical model: Branch channel, prescribing temperature distribution

(a) Mesh (b) Temperature

Figure 3: Numerical results: Mesh and temperature distribution at final time (t=400) for initial
shape

(a) Mesh (b) Temperature

Figure 4: Numerical results: Mesh and temperature distribution at final time (t=400) for the
identified shape

The derivative of the Lagrange function agrees with the derivative of the evaluation function,
establishing the following relationship:

L̇|ui,p,θ,wi,q,ξ,Λ = ĖΩD
|ui,p,θ,wi,q,ξ,Λ = lG(V⃗ ). (32)

Since Gn⃗ in equation (25) is a coefficient function of the velocity field V⃗ that provides minute
variations in the domain, Gn⃗ is referred to as a sensitivity function or shape gradient function.
Furthermore, the scalar function G is referred to as the shape gradient density function.

Equation (27) is a weak form of the Navier–Stokes equation and the continuity equation (28) is
a weak form of the energy equation in the state equation. Equation (29) is a weak form of the
Navier–Stokes equation and continuous state equation for the adjoint problem, equation (30)
is a weak form of the energy equation in the state equation for the adjoint problem, and (31)
is a constraint equation related to the Lagrange multiplier Λ.

The traction method can be applied if the shape gradient function can be evaluated by analyzing
ui, p, θ, wi, q, ξ, and Λ based on these equations.

Numerical results

A shape identification problem for prescribing the temperature distribution θ|ΩD×[t1,t2] in an
unsteady heat convection field was analyzed for the branch channel model shown in Fig.2.
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Figure 5: Numerical results: Temperature history in sub-domain ΩD1 and iterative history of
objective functional

The hot thermal fluid flows in from a boundary Γu and flows out from two boundaries Γσ.
The purpose of shape identification in this analysis is to unify the temperature distribution
history near two outlet boundaries Γσ during the specified period of time. The temperature
distribution history in sub-domain ΩD2 was set in the target distribution θD in Eq.(21), and
the shape identification problem that the temperature distribution history in sub-domain ΩD1

agrees with the temperature distribution history in sub-domain ΩD2 was analyzed.

The flow boundary conditions included Poiseuille flow on an inlet boundary Γu and a natural
boundary on two outlet boundaries Γσ. The temperature boundary conditions were as follows:
θ̂ = 1 on the inlet boundary Γθ, insulation boundary on the two outlet boundaries Γq, and
the wall boundaries were heat transfer boundaries Γh1 and Γh2, with a heat transfer coefficient
ĥ = 1, and an external temperature θ̂f = 0. The Reynolds number was Re=100 and the
Prandtl number was Pr= 100. The initial conditions of the entire domain were set to θini = 0
and uiini

= 0. The pressure was uniquely set to achieve an average of 0. The time was set to
t1 = 0 and t2 = T , and time integration was performed from t = 0 to t = T = 400 with a
∆t = 0.4 time increment. The two heat transfer boundaries Γh1 of BC and HA were considered
to be design boundaries Γdesign. Other boundaries were constrained with respect to domain
variation. The coefficient βV , which restrains the size of the domain, was set for βV = 1.
The heat transfer terms were not considered for the evaluation of the shape gradient density
function in Eq.(26).

In this numerical analysis, the flow field velocity u⃗, pressure p, temperature θ, adjoint flow
velocity w⃗, adjoint pressure q, adjoint temperature ξ, and shape updating analysis (velocity

field V⃗ ) were all performed using FreeFem++[Ootsuka and Takaishi (2014)], [Hect (2012)]. The
mesh and temperature θ at the end time t = T= 400 for the initial shape and the identified
shape are shown in Fig.3 and Fig.4, respectively. Figure 5(a) shows the temperature history in
the initial shape, a target temperature history, and the temperature history for the identified
shape in sub-domain ΩD1. Figure 5(b) shows the iterative history for the objective functional.
Based on a comparison between Fig.3 and Fig.4, it was observed that the position of branch
in the channel moved to upper part in the identified shape so that the temperature history
of the two outlet boundaries agreed. In fact, it was confirmed that the temperature history
in the sub-domain ΩD1 in the identification shape agreed with the target temperature history,
and the objective functional approached zero from the result of Fig.5. According to this basic
problem, the validity of the proposed method for the shape identification of the unsteady heat
convection fields was confirmed.
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Conclusions

In the present study, we formulated a shape identification problem in which the square error
integral between the actual temperature distributions and the target temperature distributions
on the prescribed sub-domains during the specified period of time on unsteady heat convection
fields is used as the objective functional. The shape gradient of the shape identification problem
was derived theoretically. The validity of the proposed method was confirmed based on the
results of a 2D numerical analysis. The present study was supported in part by The OGAWA
Science and Technology Foundation in Japan.
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ABSTRACT

This short work presents an assessment of the capabilities of a non-equilibrium flow model to

solve two-phase flows evolving spatial and temporal discontinuities. The model is based on

mixture parameters of state and feature the relative velocity resolution between the two phase

systems. It demonstrate an important link between mixture formulations and two-phase flow

thermal-hydraulics. Numerical simulations of the two-phase flows are performed using highly

accurate and efficient Godunov-type finitevolume solvers. The computational efficiency and

ability of both the model equations and the solvers are validated by test cases available in the

open literature.

Keywords: Two-phase flow, Non-equilibrium, Mixture model, Godunov methods, Simulation

Introduction and Equations

The various thermal-hydraulics two-phase flow models available in literature are mainly based

on either a mixture model, a volume of fluid model or a two-fluid model [3, 5]. The latter is

mostly employed in computer codes such as RELAP-5, TRACE and WAHA for the design and

safety assessment of nuclear reactors. See for example [7] and references therein. Within in-

dividual thermal-hydraulics phenomena where two-phase flow does occur the system of partial

differential equations (PDEs) describing such flows is a non-hyperbolic and cannot be written in

a conservative form. However, hyperbolicity property can be examined under certain physical

restrictions yet the system of equations remains non-conservative [3]. In addition to that, the

governing equations cannot handle the relative motion between the two phase system without

interphase exchange. Hyperbolic nature of two-phase flow equations is an advantageous prop-

erty since it allows discontinuities in the solutions related to nuclear thermal-hydraulic systems.

These solutions entails the use of different numerical methods of interest within the currently

used two-phase flow models context. In this paper, we present recent results of the application

of a hyperbolic and conservative system of PDEs to the simulation of thermal-hydraulic mix-

ture of gas and liquid phases [1, 6]. This system enables a fairly straightforward consideration

for the relative velocity between the different phases and able to capture shock and expansion

waves in two-phase mixture flows. The set of equations is based on three balance equations

for mixture mass (ρ), mixture momentum (ρu) and mixture energy (E) as well as a relative
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velocity (ur) balance law written in process without dissipation as [6]:

∂

∂t
(ρ) +

∂

∂x
(ρu) = 0, (1)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + P + ρc(1 − c)u2

r
) = 0, (2)

∂

∂t
(ur) +

∂

∂x

(

uur + (1 − 2c)
u2

r

2
+ ψ(P )

)

= 0, (3)

∂

∂t

(

ρE

)

+
∂

∂x

(

ρuE + Pu+ ρc(1 − c)ur

(

uur + (1 − 2c)
u2

r

2
+ ψ(P )

)

)

= 0, (4)

and supplemented by the following gas void fraction (α) and gas mass void fraction (c) balance

laws:

∂

∂t
(ρα) +

∂

∂x
(ρuα) = 0, (5)

∂

∂t
(ρc) +

∂

∂x
(ρuc+ ρc(1 − c)ur) = 0. (6)

Here P is the mixture pressure defined as

P = αP2 + (1 − α)P1,

where the relationship between the gas and liquid volumes is shown as follows

α+ (1 − α) = 1.

In addition to that, the ideal compressible equation of state is employed for the gas phase and

stiffened gas equation of state is used for the liquid phase. This mixture pressure along with

the two different equations of state defines the mixture equation of state. The function ψ(P )
is an expression that describes the relationship between the gas and liquid phases through the

momentum equations. This is given by

ψ(P ) = e2 +
P2

ρ2

− e1 −
P1

ρ1

,

where the indices 2 and 1 refer to the gas and liquid phases, respectively.

The properties of system (1)-(4) along with (5)-(6) were studied earlier (see, e.g. [6]). Hy-

perbolicity of the system of equations were also examined numerically over an entire range of

parameters typical of practical applications.

Godunov-Type Resolutions

Finite volume Godunov methods are used to discretise the model equations, (1) to (6), in the

form

U
n+1

i
= U

n

i
−

∆t

∆x

(

F
n

i+
1

2

− F
n

i−
1

2

)

, (7)
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where the interface fluxes, F
n

i+
1

2

and F
n

i−
1

2

, are calculated using approximate solution of the

following Riemann problem

∂U

∂t
+
∂F(U)

∂x
= 0, (8)

with the initial data defined as

U =











UL, x ≤ x0,

UR, x > x0,

where UL and UR represent the values of gas and liquid properties on a two-phase shock tube at

the left and at the right from an interface between the two states at x = x0. Godunov methods

of centred-type are considered for the resolution of equation (8). This is due to the large number

of unknown variables for the individual phases and the two-phase mixture. Further, the numer-

ical fluxes in (7) are approximated using the Slope-Limited Centered (SLIC) scheme where the

solution of the Riemann problem is fully numerical. The SLIC scheme is a second-order in time

and space and Total Variation Diminishing (TVD) using any limiter of interest. We refer the

reader to [4] for more details of this second-order scheme.

To demonstrate the capability of the equations of the mixture model, the SLIC scheme is em-

ployed for the resolution of a well-documented air-water shock-tube problem presented recently

in [2]. This problem deals with large physical variations between the two phases where discon-

tinuities appear clearly within thermal-hydraulics, in particular in many types of reactor cores.

A tube of 10m with a diaphragm in the middle which separate the following left and right states

are defined as follows at t = 5 ms, see [2]:

(

α, ρ2, u2, ρ1, u1

)

L
=
(

0.25, 57.941, 0.0, 1003.1, 0.0
)

if x ≤ x0,
(

α, ρ2, u2, ρ1, u1

)

R
=
(

0.1 , 25.527, 0.0, 999.85, 0.0
)

if x > x0.

Results are shown in figures 1 at t = 5 ms without any source terms consideration. The key

reason for employing no source terms effect in the current work is the mixture formulation of

the current model equations. Furthermore, unlike other work reported in literature, the results

presented in this work are based on compressible liquid where the gas is air. Interestingly, the

solution for both phases and mixture flow variables consists of a left rarefaction wave, a contact

discontinuity and a right shock wave. The simulation results shown in figure 1 are similar to

those presented in [2] except for the middle discontinuities. The relative velocity also is not

presented in [2].

Concluding Remarks

A non-equilibrium flow model based on mixture formulation has been proposed for the simu-

lation of two-phase flow thermal-hydraulics. The mixture model is successfully applied to the

simulations of a two-phase shock tube with large difference between the gas and liquid flows. It

is concluded that this mixture model is capable of solving such two-phase flows without differ-

ential closure laws or specific equations of state. The model also provide significant numerical

resolutions without any numerical conditions.
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Figure 1: Test 1: Air-water shock-tube problem of [2] at time t = 5 ms. The TVD SLIC

and first-order Lax-Friedrichs methods are compared with the reference solution results.

Coarse meshes, symbols, are provided on 100 cells and very fine meshes of 10000 cells for

the solid lines. The waves seen from left to right, repeated left rarefaction and repeated

right shock waves separated by a multiple contact discontinuity.
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Abstract 

Precast concrete moment-resisting frame with hybrid beam-column connections, which is 

featured by inelastic deformation induced by opening and closing of the interface between 

precast beam and column, is emphasized in recent years, since it is capable of sustaining 

design basis earthquake with tiny damage. To explore the opening and closing behavior of the 

interface of hybrid beam-column connection, a new multi-axial-spring model with only two 

gap elements whose position and capacity is determined by simple advance section analysis 

method is proposed. The new multi-axial-spring model, which is obviously with high 

computational efficiency, is able to tracking accurately the change of compressive zone height 

of the interface between precast beam and column and count in “beam elongation effects”. 

The proposed numerical model analysis results are in good agreement with the experimental 

results. 

Keywords: Hybrid beam-column connection, Multi-axial-spring model, Compressive zone height, 

Precast concrete frame. 

 

Introduction 

Compared with conventional monolithic concrete structures, precast concrete systems are 

advantageous in product quality, cost efficiency, and speed of construction. Precast concrete 

frame system with hybrid beam-column connections is widely used and commonly accepted 

in main design codes worldwide, for its capability of sustaining a design level earthquake 

with limited or negligible damage [1]. 

 

In precast frames with hybrid connections, the inelastic deformation demand is concentrated 

at and provided by opening and closing of the beam-column interface. A variety of numerical 

models, including macro-models, section analysis model, fiber model, lumped plasticity 

model, multi-axial-spring model and FEM model(Solid model), have been proposed to predict 

the behavior of hybrid connections with different level of complexity[1-4]. Fiber and lumped 

plasticity models are used widely with good accuracy and low computational cost, but for 

both models, it is difficult to simulation “beam elongation effect”. 

 

Multi-axial-spring model can be used to analyze the rocking behavior and capture the beam 

elongation effects, such an approach has been widely used to model the hybrid connections. 

In this model the joint itself was assumed to remain rigid, while beams and columns element 

are assumed to remain elastic. Inelastic action was supposed to concentrate in the grout(at the 

beam-column interface) and mild steel bars. Truss elements were used to model the 

reinforcing steel, while a prestressing element was used to prestress the joint together and 9 

gap elements, which are evenly spaced along the height of the interface grout and each with 

the same area of grout, were used over each side to represent the grout behavior. Further 
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details on the model as well as complete results on beam elongation effects from analytical 

investigations (using the computer program DRAIN-2DX) on multi-story frame systems can 

be found in Kim (2002) [5]. Carr, 2004 [6,7] has improved capabilities simulating the contact 

section interface with an increased number of gap elements. The gap elements is set up for 2 

to 10 contact points, which are not evenly spaced along the height of the interface grout and 

each with the different area of grout. Two different integration schemes, namely, Gauss 

quadrature and Lobatto integration, can be used to optimize the position of gap elements and 

calculate their weighting.  

 

In this paper, a new multi-axial-spring model with only two gap elements on half side of 

interface, which is obviously with better computational efficiency, is proposed and validated. 

Section analysis method is used to determine the distribution of the two gap elements and a 

representative area method is used to determine the mechanization property of the gap 

elements. In this investigation, the proposed model is used to simulate several tests including 

both hybrid connections and PPEFF beam-column connections [8]. Satisfactory agreement in 

aspects of overall mechanical property, mild reinforcement strain, prestressed tendon stress 

and compression center between the analytical and experimental results confirms the validity 

of the proposed model.  

 

1 Methodology 

1.1 Principle 

In case of the inelastic deformation of the connections induced by gap opening/closing of the 

contact interface the model should simulate accurately the local stress and strains in the 

contact area. The length of inner lever arm（distance from reinforcement to compression 

center）at the rocking section should be accurately simulated which is proportionate to the 

capacity of the rocking connection. With increase loading the neutral axis moves from infinity 

into the contact section and decreases in size with increasing gap opening, finally with the 

crushing of the edge concrete the compress zone increases in size. Figure 1 shows that two 

gap elements in compress area (model 2) can simulate the shift of the neutral axis more 

accurately than one gap element(model 1). In model 2, with suitable location and mechanical 

property gap elements, the simulate neutral axis firstly move from outside section into the 

section and the compress center move downward into the scope between F1 and F2, with the 

loading increasing the F1 begin to decline, the compress center begin to move upward (show 

in figure1c). 

   
a) Model 1(one spring for compress zone) 
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b) Model 2(two springs for compression zone) 

  
c) Position of compression center 

Figure 1  Shift of the compression center(numerical simulated) 

 

1.2 Distribution and mechanical property of the gap elements 

 

This paper proposes a new method to simulate the concrete in compressive zone with only 

two gap elements, and introduces the technique to determine the position and weighting of the 

two gap elements. To accurately simulated the shift of the neutral axis, the distribution of the 

gap elements is calculated by section analysis method [1]. We using the section analysis 

procedure proposed by reference [1] to simulated the contact interface of the beam column 

connection, and the position of the neutral axis and compression center can also be calculated 

(show in figure 2).  

 

If the calculated position of the lowest point of compression center is h1(from beam section 

edge), and the position of the neutral axis is h2 at maximum rotation. We set the position of 

gap element 1 at the position of  ℎ1 and the position of gap element 2 at the position of  

ℎ1 +
ℎ2−ℎ1

2
 (show in figure 2).  

 

The mechanical property for each gap element is derived from the mechanical property of the 

scope of concrete it represent. Details of the model will be introduced in section 2.2. 
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a) Section analysis results                             b)  Distribution of springs 

Figure 2 Determine of the position of gap elements 

1.3 Preliminary verification 

 

Numerical simulation was conducted using the model presented in section 1.1 and 1.2. The 

proposed numerical model was developed using the Open System for Earthquake Engineering 

Simulation (OpenSees) [9]. Figure [3] shows the comparison between the numerical 

simulation and test result(O-P-Z4) of NISTIR[10], where good agreement is observed both of 

skeleton curve and hysteretic curve which confirm the validity of the proposed model.  

 

Figure 3 Comparisons of hysteretic behavior between numerical simulation and test 

2 Experiment and numerical model 

2.1 Experiment 

Test were conducted on four specimens of PPEFF beam-column connections [8]: two exterior 

precast connections and two interior precast connections. The model is shown in Figure 4. 

Reinforcement information is in Table 1. Detailed information of the specimens are in 

reference [8]. Quasi-static tests were carried out to investigate the hysteretic behavior, 

stiffness, bearing capacity and deformation capacity of the beam-to-column dry connection 

assembled by post-tensioned tendons under slow reversed cycle loading. Experiment result 

shows PPEFF and hybrid beam-column connections is similarity in working and damage 

mechanism under low frequency cyclic loading, both of them is featured by inelastic 

deformation induced by opening and closing of the interface between precast beam and 

column, the PPEFF joint has slightly better performance [8]. 
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(a) Interior connection                                                (a) Exterior connection 

 

   

Figure 4   Connection specimens 

Table 1 Test specimens 

Connection 

type 

Specimen 

Name 
Slab steel 

Bending 

steel 

Shear 

steel 

Length of unbonded 

mild steel(mm) 

Unbonded 

PT 

Interior  

A2 12C6 3C22 -- 360 (inside column) 4Φs15.2 

A3 12C6 3C22 -- 
120 (outside column) 

（10% weakened） 
4Φs15.2 

Exterior  

B2 12C6 3C16 3C14 360 (inside column) 4Φs15.2 

B3 12C6 3C16 3C14 
120 (outside column) 

（10% weakened） 
4Φs15.2 

 

2.2  Numerical model 

 

The proposed numerical model was developed using OpenSees as shown in Figure 5.  
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a) Exterior Joint      

 
b) Interior Joint 

Figure 5 Numerical model 

(1) Zero length elements with compression-only material properties (gap elements) are 

adopted to simulate the opening/closing behavior of the contact interface. 

(2) Truss element with STEEL02[11] material (assigned initial strain), which takes isotropic 

hardening and Bauschinger effect into consideration, is used to simulate PT. 

(3) Distribution reinforcement in slab, energy dissipation mild-steel are all simulated by zero 

length elements using STEEL02 material. CONCRETE02[12] material is used to simulate the 

concrete, transverse confinement effect is accounted for using the Mander model [13]. The 

length of truss element in this model (𝐿𝑚𝑜𝑑𝑒𝑙) is different from the actual length of unbonded 

reinforcement in test ( 𝐿𝑠 ), so the material properties and area of the elements require 

modification [5] using Formula (1). 
                       𝐴1 = 𝐴0𝐿𝑚𝑜𝑑𝑒𝑙/𝐿𝑠，𝑓1 = 𝑓0𝐿𝑠/𝐿𝑚𝑜𝑑𝑒𝑙                                                      (1) 

Where  𝐴1 、𝑓1 are the area and yielding strength of the mild-steel in numerical model; 𝐴0, 𝑓0 

are in test. 

 (4) Vertical coupling restraint is applied to limit the shear slip between C5 and B5, neglecting 

shear slip between precast beam and column. 

(5) In the links of C2-B2 and C10-B10, two elements are used: one zero length element 

(assigned Concrete01 material with compression-only material properties) to simulate contact 

interface and one zero length element to simulate the behavior of rebar in slab. 

(6) Two zero length elements are used to model the compressive behavior of the contact 

interface and mild energy dissipation steel for C3-B3 and C11-B11 links. 

(7) Shear reinforcement in exterior connections is simulated by zero length element (assigned 

Hysteretic material) between C4 and B4. Noting that the bond length of shear reinforcement is 

15d (d is the diameter of rebar), which is shorter than the anchorage length, the force-
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displacement relation of zero length element is derived from bond-slip relation between 

concrete and rebar. 

F=πd*τ0*15d=15πd
2
*f(s)                                    （2） 

Where s stands for slip displacement, f(s) is the bond-slip relation between concrete and 

rebar[14]. 

(8) In the links of C6-B6, C14-B14, C7-B7 and C15-B15, zero length elements with 

compression-only material properties (gap elements) are used to simulated the contact 

interface. According to section analysis method, the minimum position of compression center 

is 56mm(take A3 for example), set gap element 1(Figure 6) at this position, which simulates 

the compressive zone with 112mm high at the bottom of the contact interface. (C6-B6, C14-

B14) is designed to simulate the rest concrete when scope of the compressive zone exceeds 

the representative scope of gap element 1. For A3 the position of gap element 2 is (188-

112)/2+112=150. Where 188mm is the calculated high of compression zone using section 

analysis method (show in figure 6). The mechanical property for C6-B6, C14-B14, C7-B7 and 

C15-B15 is derived from the mechanical property of the scope of representative concrete 

element with the length of h/3(the length of the plastic zone is h/3[15], where h is the beam 

section height). The length of truss element in this model (𝐿𝑐𝑚𝑜𝑑𝑒𝑙) is different from the actual 

length of plastic zone, so the material properties and area of gap elements require 

modification [5] using Formula (3). 

                                                𝐴𝑐 = 3𝐴𝑐0𝐿𝑐𝑚𝑜𝑑𝑒𝑙/ℎ，𝑓𝑐(𝜀) = 𝑓𝑐0(𝜀)ℎ/(3𝐿𝑐𝑚𝑜𝑑𝑒𝑙)                     (3) 

Where  𝐴𝑐 、𝑓𝑐(𝜀) are the area and constitutive relationship of the concrete material in 

numerical model; 𝐴𝑐0, 𝑓𝑐0(𝜀) are in test. 

      
a) Section analysis results           b)  Distribution of gap elements                     c) Plastic zone 

Figure 6  Position of the gap elements (C6-B6, C14-B14, C7-B7 and C15-B15)  

 

(9) Figure 7 shows that the position of gap elements linking C2-B2, C10-B10, C3-B3 and 

C11-B11. The mechanical property of the gap elements is derived from the mechanical 

property of the representative concrete. The rest scope of the interface is simulated by the gap 

elements linking C5-B5 and C13-B13. 

 

Figure 7  Position of the gap elements (C2-B2, C10-B10, C3-B3, C11-B11) 

ICCM2018, 6th-10th August 2018, Rome, Italy

614



3 Experimental validation 

3.1 Validation of skeleton curves 

 
a) A2                                                                                         b) A3 

 
 c) B2                                                                            d) B3  

Figure 8 Validation of the proposed model: skeleton curves 

Dissymmetry in the skeleton curves of exterior connections, due to asymmetrical 

reinforcement through the beam-column contact interface, can be recognized in figure 8. For 

interior connection, the summation of bending capacity contributed by contact interface in 

either side of the column is symmetry, resulting in symmetrical skeleton and hysteretic curves. 

The experimental and simulation results of B2 and B3 show that, the contact interface remains 

elastic before cracking and the section stiffness declines after cracking. Under positive 

loading (mild steel in tension), the cracking moment is small because the prestressing tendons 

are at the mid lower portion of beam section, and due to mild steel and distribution steel in the 

slab, gradual instead of sharp stiffness decrease is observed before yielding of mild steel. 

Under negative loading (mild steel in compression), however, the cracking moment at the 

interface is  larger and section stiffness decreases greatly as the neutral axis goes upward after 

cracking. 

 

Under positive loading, the mild steel go gradually from elastic state into yielding and 

hardening stage as the moment rising, until the exterior concrete in compressive zone reaches 

its ultimate strength. Afterwards, the concrete at the edge of the contact interface crushed and 

the compression center moved upward, leading to decent of the bearing capacity. Under 

negative loading, the bearing capacity of the connection kept increasing under large 

deformation as the prestress tendon remains elastic and the slight damage of the compressive 

concrete due to slab. The connection bearing capacity decreased slightly after crushing failure 

of concrete. 

 

3.2 Validation of hysteretic behavior 
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a) A2                                                                      b) A3 

 
c) B2                                                                       d) B3 

Figure 9 Validation of the proposed model: hysteretic behavior 

Figure 9 shows the comparisons between the numerical simulation and test results, where the 

self-centering behavior and energy dissipation behavior are accurately replicated, implying 

the  effectiveness of the proposed model for the behavior and mechanism of contact interface 

of the connections.  

 

3.3 Validation of the stress of PT 

Figure 10 shows the comparison of simulation and experimental results on stress of PT, where 

good agreement is observed. 
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Figure 10 Validation of the proposed model: stress of prestressed tendon 

 

3.4 Validation of the shift of compression center at contact interface 

To further testify the accuracy of this model, the positions of compression center in 

simulation and test are compared for A3 and B3. 

Using test data, including moment of the interface, stress of prestressed tendon and 

rotation of the interface, the position of compression center and stress of mild steel are 

calculated according to force equilibrium and moment equilibrium on the contact surface. The 

whole procedure can be summarized as follows. 

① Impose a rotation θ,  and get the moment 𝑀0 based on test results  

② Guess an initial neutral axis position c,  

Calculate ε𝑐 = 𝑓(𝑐) , Evaluate corresponding compression force C, and calculate the 

position of compression center. 

③ Calculate tensile force of prestressed tendon 𝐹𝑝  according to section rotation and 

measured  

④  Calculate tensile force of mild steel based on Section Equilibrium. 
𝐹𝑦 = 𝐹0 − 𝐹𝑝 

⑤  Evaluate moment capacity. 

𝑀 = 𝐹𝑦(𝐶0 + 𝐶𝑦) + 𝐹𝑝(𝐶0 + 𝐶𝑝) 

𝐶𝑦、𝐶𝑝 are the distances from the neutral axis to the mild steel and prestressed tendons, 

respectively. 

⑥ If M = M0 

   Yes, Go to Step 7 

   No, Revise neutral axis position and go to Step 2 

⑦  End 

    

Figure 11 Rotation of contact interface and stress of PT (A3 test) 
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Figure 12 Rotation of contact interface and stress of PT (B3 test) 

The shift of compression center calculated from the above procedure is shown in figure 13, 

using the test data in figure 11 and 12. The simulated compression center using proposed 

model is also given in figure 13 , which shows good agreement of the simulation and test 

results.  

    

A3                                                             B3 

Figure 13 Comparison of compression center position between simulation and test 

4 Study of gap elements distribution  

Spieth 2004 proposed a multi-spring contact element using Lobatto Integration and Gauss 

integration to calculate the position of the springs and their weighting.  In this paper the effect 

of different distribution of the springs is investigated. Figure 14 and 15 shows the simulation 

results by the models using Lobatto integration, Gauss integration and the proposed method in 

this paper to calculate the position of the gap elements (gap element 1 and 2 in figure 6) and 

their weighting(show in Table 2). Figure 16-18 show comparison of  PT stress, steel stress 

and compression center position between proposed model and the model using Gauss 

integration. 

Table 2 Position and weighting of the compression gap elements using numerical integration 

Spring 

Proposed model

（A3） 

Proposed model

（B3） 
Lobatto integration Gauss integration 

Positi

on 
weighting Position weighting Position weighting Position weighting 

1 0.33 0.34 0.44 0.23 0.447 0.83 0.34 0.65 

2 0.75 0.50 0.78 0.44 1 0.17 0.86 0.35 
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A3                                                              B3 

Figure 14 Comparison of the hysteretic behavior of A3(Beam end loading) and B3 

 

Figure 15 Comparison of the skeleton curves 

   
A3                                                               B3 

Figure 16 Comparison of stress of prestressed tendon of A3 and B3  

 
A3                                              B3 

Figure 17 Comparison of steel stress of A3 and B3 
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A3                                                              B3 

 Figure 18 Comparison of compression center of A3 and B3 

The method proposed in this paper to determine the position and weight of gap elements takes 

into consideration the variation of compressive zone, calculated from section analysis 

procedure,  caused by prestressed tendon’s area and stress state, area of mild steel, geometry 

of the contact section, etc. Gauss integration and Lobatto integration, which merely calculates 

the position and weight of integration point mathematically but without clear physical 

significance, however, diverges from the actual situation and the simulation results are 

inferior to that of the proposed method. 

5 Conclusions 

Based on the comparison of the presented analysis and tests results, conclusions are drawn as 

follows: 

 

(1) The new multi-axial-spring model, which is obviously with higher computational 

efficiency, is able to tracking accurately the change of compressive zone height of the 

interface between precast beam and column and count in “beam elongation effects”.  
 

(2) The new multi-axial-spring model is validated by several low-cycle loading tests including 

both hybrid connections and PPEFF beam-column connections and satisfactory agreements in 

aspects of skeleton curve, hysteretic curve, prestressed tendon stress and compression center 

are obtained between the analytical and experimental results. 

 

(3) The new multi-axial-spring model is obviously with better computational efficiency than 

previous multi-spring models using Lobatto Integration and Gauss Integration since the new 

one is more accurate with the same number gap elements. 
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Abstract 

Atherosclerotic plaque progression may be associated with morphological and mechanical 

factors. Plaque morphological information on IVUS and OCT images could complement each 

other and provide for more accurate plaque morphology. Fluid-structure interaction (FSI) 

models combining intravascular ultrasound (IVUS) and optical coherence tomography (OCT) 

were constructed to obtain mechanical risk factors. Accuracy and completeness of imaging and 

advanced modeling lead to accurate plaque progression predictions. 

In vivo IVUS and OCT coronary plaque data at baseline and follow-up were acquired from left 

circumflex coronary and right coronary artery of one patient. Co-registration and segmentation 

of baseline and follow-up IVUS and OCT images were performed by experts. Baseline and 

follow-up 3D FSI models based on IVUS and OCT were constructed to obtain plaque stress, 

strain and flow shear stress for plaque progression prediction. Nine factors including 6 

morphological factors and 3 mechanical factors were selected for each slice. Plaque area 

increase (PAI) and plaque burden increase (PBI) were chosen to measure plaque progression. 

All possible combinations of nine factors were fed to a generalized linear mixed model for PAI 

and PBI prediction and quantification of their prediction accuracies.  

Prediction accuracy is defined as the sum of sensitivity and specificity. The optimized predictor 

combining 9 factors gave the best prediction for PAI with accuracy=1.7087 (sensitivity: 0.8679; 

specificity: 0.8408). Plaque wall strain (PWSn) was the best single-factor predictor for PAI 

with accuracy=1.5918 (sensitivity: 0.7143; specificity 0.8776). A combination of average cap 

thickness, calcification area, plaque area, plaque wall stress and plaque wall strain gave the best 

prediction for PBI with accuracy=1.8698 (sensitivity: 0.8892; specificity: 0.9806).  PWSn was 

the best single-factor predictor with accuracy=1.8461 (sensitivity: 0.8784; specificity 0.9677). 

Combining morphological and mechanical risk factors may lead to more accurate progression 

prediction, compared to the predictions using single factors. IVUS+OCT formed basis for 

accurate data for morphological and mechanical factors.   

 

Keywords:  Vulnerable plaque; OCT; IVUS; plaque progression; patient-specific FSI model. 
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1. Introduction 

Atherosclerotic plaque progression and rupture may be associated with complicated factors 

including plaque morphology, material properties, mechanical factors, cell and genomic 

activities, etc. [1-2]. In original study for plaque progression, research groups performed large-

scale studies based on histologic sections from autopsy to investigate plaque remodeling and 

vulnerability [3-5].  For in vivo studies, Mintz et al., Nakamura et al. and among others used 

medical imaging such as intravascular ultrasound (IVUS) and angiography and indicated that 

plaque area and lumen cross-sectional area were closely related to plaque progression [6-8]. 

The limitation of these earlier research is that it only gave one-time plaque data and did not 

reflect plaque progression. Follow-up studies with advanced medical images can better track 

the plaque progression. Several research groups used plaque area and plaque burden as the 

measurement of plaque progression respectively, and investigated the correlation between 

plaque progression and wall shear stress (WSS) from follow-up data [9-11]. Plaque progression 

is influenced by the interaction of various morphological factors and mechanical factors 

including structural and flow conditions, and its mechanism has not been fully understood 

[2,12]. Wang et al. used fluid-structure interaction (FSI) models with follow-up VH-IVUS data 

and showed that the combination of morphological and biomechanical factors could improve 

prediction accuracy, compared to predictions using only morphological features [13].  

In recent years, Optical Coherence Tomography (OCT) with high resolution (15-20 µm) 

gradually became a powerful tool in identifying thin fibrous cap (cap thickness < 65 μm), 

inflammation and calcification [14-16]. Uemura et al. used 7-month follow-up OCT data from 

53 patients to study the relation between morphological characteristics and plaque progression, 

and found a high correlation between thin-cap fibroatheroma and subsequent luminal 

progression [17]. One limitation of OCT is its limited penetration: OCT cannot “see” through 

the whole vessel wall.  Plaque morphological information on IVUS and OCT images could 

complement each other and provide more complete and accurate plaque morphology, especially 

more accurate fibrous cap thickness measurements [18]. Since accurate cap thickness and 

stress/strain quantifications are of fundamental importance for vulnerable plaque research, Guo 

et al. proposed a modeling method to combine IVUS and OCT for more accurate patient-

specific coronary morphology and stress/strain calculations [19]. This IVUS+OCT-based 

modeling approach may provide the basis leading to better plaque stress/strain calculations and 

progression and vulnerability predictions.  

In this paper, patient follow-up IVUS and OCT data were acquired and FSI models were 

constructed to better quantify human coronary atherosclerotic plaque morphology (especially 

cap thickness) and plaque stress/strain conditions. Nine selected plaque morphological and 

mechanical factors and all possible combination were used into generalized linear mixed 

models (GLMM) to predict plaque progression measured by plaque area increase (PAI) and 

plaque burden increase (PBI).  

 

2. Data, Models and Methods 

2.1 IVUS and OCT data acquisition and image processing 

Baseline and one-time follow-up in vivo IVUS/OCT/Angiography data were acquired from two 

arteries (left circumflex coronary artery and right coronary artery) of one participant (female, 

80 age) at Emory University with informed content obtained. IVUS catheterization (Boston 

Scientific/SCIMED Corp.) was performed with an automatic pullback speed of 0.5mm/s. 

Following IVUS image acquisition, OCT catheterization (St. Jude, Minnesota, MN) was also 

performed with an automatic pullback speed of 20mm/s. The IVUS/OCT/Angiography data at 

baseline (Time 1, T1) and follow-up (Time 2, T2) were acquired uniformly according to the 

above descriptions. As IVUS and OCT images at T1 and T2 were recorded using different 
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catheter in four pullbacks, they must be registered both longitudinally and circumferentially in 

order to be used for modeling. Co-registration and segmentation of paired IVUS and OCT were 

performed by experts.  Paired IVUS and OCT were merged to obtained IVUS+OCT slices, with 

IVUS providing whole vessel (lumen and out-boundary) contours, and OCT provide more 

accurate cap thickness and plaque component contours. All image slices were segmented into 

3 plaque tissue types: Fibrotic plus Fibro-fatty, Necrotic core, and Dense Calcium.  

2.2 The 3D FSI model and Mooney-Rivlin model for material properties 

Aortic pressure (136/88 mmHg) obtained by catheter were used as inlet pressure conditions. 

The modeling procedures, assumptions, governing equations and boundary conditions for the 

3D FSI model can be found in our previous publication [20]. Atherosclerotic vessels were stiffer 

than healthy vessels, axial shrinkage was set at 5% in our models. The anisotropic Mooney-

Rivlin model was used for the vessel tissue. Its strain energy density function is: 

W=c1(I1 –3) + c2(I2 –3) + D1 [ exp(D2 (I1 –3)) –1]+(K1/K2) {exp[K2(I4-1)2]-1},               (1) 
21

21 2 1I , I [I ],ii ij ijC C C                                                                    (2) 

where I1 and I2 are the first and second invariants of right Cauchy-Green deformation tensor C 

defined as C=[Cij] = X
T
X, X=[Xij] = [∂xi/∂aj], (xi) is current position, (ai) is original 

position, I4 = Cij(nc)i(nc)j, nc is the unit vector in the circumferential direction of the vessel, c1, 

c2, D1, D2, K1 and K2 are material parameters [20,21] whose values were determined using in 

vivo IVUS data [22]: c1=-262.6 kPa, c2=22.9, D1=125.9 kPa, D2=2, K1=7.19 kPa, K2=23.5. 

Plaque components were assumed isotropic and the isotropic Mooney-Rivlin material 

model was used to describe their material properties. 

Wiso=c1(I1 –3) + c2(I2 –3) + D1 [ exp(D2 (I1 –3)) –1],                                                       (3) 

The material parameters: Lipid: c1=0.5 kPa, c2=0, D1=0.5 kPa, D2=1.5. Calcification: c1=92 

kPa, c2=0, D1=36 kPa and D2=2 [22]. The models were solved by a commercial finite element 

software ADINA (Adina R & D, Watertown, MA, USA) following established procedures [20].  

2.3 Data Extraction and Plaque Measurements 

The contours segmented from IVUS+OCT slices were used to make FSI models and obtain 

morphological and mechanical measurements for analysis. Each slice contained 100 evenly-

spaced nodal points taken on the lumen, each lumen nodal point was connected to a 

corresponding point on vessel out-boundary. If the connecting line pass through lipid region, 

the distance between lumen nodal point and first time the line meets the lipid is defined cap 

thickness. The average of cap thickness from one slice was defined as average cap thickness 

(Ave. CT). The area of lipid or calcification (denoted as Ca) in slice was recorded as lipid or 

Ca area. The area in lumen contour was denoted lumen area (LA). The area between lumen and 

out-boundary was defined as plaque area (PA). The plaque burden (PB) was defined as the ratio 

of PA to the sum of PA and LA. Plaque wall stress (PWS) and plaque wall strain (PWSn), WSS 

were extracted from 3D FSI model solution at 100 lumen nodal points of all slices. Therefor, 

morphological and mechanical factors uesd in this study included  Ave. CT, lipid/Ca area, LA, 

PA and PB. WSS, PWS and PWSn.  

2.4 Plaque Progression Classification and Prediction 

For all paired slices, plaque area increase (PAI) and plaque burden increase (PBI) from T1 to 

T2 were selected to measure plaque progression: 

Plaque Area Increase (PAI) = (PA at T2) - (PA at T1).                                                    (4) 

Plaque Burden Increase (PBI) = (PB at T2) - (PB at T1).                                                 (5) 

In this work, plaque progression was classified into two types in this work. For a given slice, if 

PAI > 0, then this slice was labeled 1. If PAI ≤ 0, this slice was labeled -1. Slice labeling for 

PBI was done in the same way as PAI. Generalized linear mixed models (GLMM) were used 
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to calculate the predictive sensitivity and specificity of all possible combinations of the 9 risk 

factors (predictors) and find the best combination for plaque progression prediction. Details 

about GLMM can be found in [23]. A five-fold cross-validation procedure was employed in all 

105 slices from two arteries for training and testing sets. For the reliability of results, 100 times 

repeated experiment were performed. Prediction accuracy is defined as the sum of sensitivity 

and specificity (Sen+Spe). The receiver operating characteristic curve (ROC) and the area under 

of the ROC curve were also given to compare the prediction accuracy. 

 

3. Results 

3.1 Plaque progression prediction using one single risk factor 

For the nine morphological and mechanical factors, each factor was tested to find the best single 

risk factor for plaque progression prediction. Prediction results from different single factor and 

plaque progression measurement were compared. According to the sum of sensitivity and 

specificity, the best five single risk factors for PAI and PBI are showed in Table 1.  PWSn was 

the best predictor for both PAI and PBI. The sum of sensitivity and specificity are 1.5918 and 

1.8461 respectively. The ROC curves of PWSn using PAI and PBI were shown in Figure 1. 

The AUC values were 0.8126 and 0.9529, respectively.  

 

Table 1. Prediction sensitivity and specificity using one single factor using PAI and PBI. 

 Predictors ProbCutoffs Sensitivity Specificity Sen+Spe AUC 

PAI 

PWSn 0.5110 0.7143 0.8776 1.5918 0.8126 

PWS 0.5042 0.6679 0.7592 1.4270 0.7477 

Ca Area 0.4988 0.4964 0.9184 1.4148 0.6874 

Ave. CT 0.4606 0.5786 0.7306 1.3092 0.6379 

LA 0.4974 0.5679 0.6939 1.2617 0.6336 

PBI 

PWSn 0.8304 0.8784 0.9677 1.8461 0.9529 

LA 0.8049 0.6432 0.9935 1.6368 0.8022 

Lipid Area 0.6345 0.7108 0.9032 1.6140 0.8168 

PB 0.7487 0.6838 0.9032 1.5870 0.7606 

FSS 0.7656 0.6811 0.9032 1.5843 0.7840 

 

Figure 1. ROC curve and AUC value using PWSn to predict PAI and PBI. 
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3.2 Plaque progression prediction using combination of risk factors   

Table 2 gives two best combinations of nine eight risk factors with PAI and PBI. Using PAI as 

the measure of plaque progression, the combination of Lipid area, Ave. CT, Ca area, LA, PA, 

PB, PWS, PWSn, and FSS showed the best prediction accuracy (Sen+Spe: 1.7087). Using PBI 

as the measure of plaque progression, the combination of Ave. CT, Ca area, PA, PWS, and 

PWSn gave the best prediction accuracy (Sen+Spe: 1.8698). The ROC curves of best 

combination using PAI and PBI were shown in Figure 2. The AUC values of best combination 

were 0.8632 and 0.9584, respectively. 

 

Table 2. Prediction sensitivity and specificity using one single factor using PAI and PBI. 

 Predictors ProbCutoffs Sensitivity Specificity Sen+Spe AUC 

PAI 

Lipid Area+Ave. CT 

+Ca Area+LA+PA+PB 

+PWS+PWSn+FSS 

0.3051 0.8679 0.8408 1.7087 0.8632 

Lipid Area+Ca Area 

+PA+PB+PWSn 
0.3941 0.8857 0.8082 1.6939 0.9215 

PBI 

Ave. CT+Ca Area+PA 

+PWS+PWSn 
0.8629 0.8892 0.9806 1.8698 0.9584 

Ave. CT+CaArea 

+PWSn+FSS 
0.8373 0.8784 0.9871 1.8655 0.9522 

 

 
Figure 2. ROC curve and AUC value using best combination of factors to predict PAI and PBI. 

 

4. Discussion 

4.1 Significance of combining OCT and IVUS. 

The accurate plaque progression prediction depends on accurate simulation, while accurate 

model depends on high resolution of medical imaging. Imaging resolution has been a major 

limitation for vulnerable plaque research since the introduction of medical imaging. The 

resolution for IVUS (100-150 μm) or MRI (300 μm) which is not enough to identify vulnerable 
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plaques with thin cap thickness < 65 micron. The combination of OCT and IVUS could possess 

the capabilities of detecting thin fibrous cap and penetrating vessel thickness. OCT+IVUS is 

able to provide more accurate cap thickness information to promote both the morphological and 

mechanical analyses in vulnerable plaque research.  

4.2 Significance of combining mechanical and morphological risk factors for plaque 

progression prediction. 

Most plaque progression research group paid attention to morphological factors and flow shear 

stress and seldom considered structural plaque stress and strain [9,10].  While it is well accepted 

that mechanical forces play an important role in plaque progression, research work based on 

patient follow-up data demonstrating that is rare.  In fact, plaque mechanical state is affected 

by both fluid and structure forces.  Tang’s group used FSI models and patient follow-up data to 

investigate the influence of structural stress/strain for plaque vulnerability and progression [2]. 

By using OCT and IVUS data with follow-up, we constructed coronary plaque FSI models with 

cycle bending and perform progression prediction using nine morphological and mechanical 

risk factors. Our pilot study indicated that combining morphological and mechanical factors 

could give better predictions.  

 

4.3 Limitations 

One major limitation of this study is lack of histology data as the golden standard. Manual 

segmentation results based on IVUS and OCT images were considered as the alternative to the 

golden standard. Another limitation is the small sample size of OCT image studied. Large-scale 

studies with more OCT image are needed to validate and improve the significance of prediction 

method. 

 

5. Conclusion. 

Combining morphological and mechanical risk factors may lead to more accurate progression 

prediction, compared to the predictions using single factors. IVUS+OCT formed basis for 

accurate data for morphological and mechanical factors. 
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Abstract 

With the deep development and utilization of underground space, complex underground 

structures represented by multi-story subway station structure are constantly emerging. The 

damage of DAIKAI subway station during the 1995 Kobe earthquake indicates that 

underground structures may be seriously damaged under strong earthquake. Based on the 

probability density evolution method (PDEM), this paper studies the failure mode of a multi-

story subway station structure under rare earthquake from the perspective of stochastic 

analysis, and gives the vulnerable spot of the multi-story subway station structure. It is found 

that the story drift of the four story of the structure does not exceed the elastic-plastic limit, 

but the failure probability of most structure components is more than 0.5. The vulnerable 

spots of the multi-story subway stations structure are mainly including the central columns, 

plates in middle stories, top plates, joints of bottom plate and sidewall. Failure of the internal 

components, such as central columns and plates in middle stories, are mainly bending failure, 

while failure of the outer frame components, such as the top and bottom plates and side walls, 

are mainly shear failure. In addition, the failure modes of multi-story subway stations can be 

roughly divided into four types. In the failure mode type I and II, most of failure appears at 

both vertical and horizontal components, while in the failure mode type III and IV most of 

failure occurs at horizontal components.   

Keywords: Multi-story subway station, Probability density evolution method, Stochastic 

earthquake motion, Vulnerable spot, Failure mode 

 

1 Introduction 

With the deep development and utilization of underground space, complex underground 

structures represented by multi-story subway station structure are constantly emerging. 

During the 1995 Hanshin earthquake, the DAIKAI subway station was badly damaged [1][2], 

which led to the intensive research of seismic performance of subway station structures [3][4]. 

 

Compared with the typical single-story or two-story subway station, the structure of multi-

story subway station structure is more complex, which causes the vulnerable spots and failure 

mode of the structure not easy to be undetected. However, up to now, most scholars have 

adopted deterministic methods, such as numerical dynamic time history analysis method [5][6] 

and model test method [7] under one or several given ground motions as well as Pushover 

analysis method [8][9], to explore the seismic responses and vulnerable spots of the structure 

without reasonable consideration of the randomness of the ground motion. 
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In order to fully understand the weak link of subway station structure under earthquake and 

based on the probability density evolution method (PDEM) and the thought of equivalent 

extreme event, the seismic reliability of a multi-story subway station structure under random 

earthquake is studied in this paper by using deformation and component strength as 

evaluation indexes. The main failure mode types of the multi-story subway stations structure 

under stochastic earthquake motion are summarized.  

 

2 Project background 

 

 

Figure 1.  Standard cross section of the subway station, dimensions in mm 

The multi-story subway station analyzed in this paper is a four-story three-span island station 

which located in Shanghai, China. Fig. 1 gives the standard cross section size of the station 

structure. The width and height of the standard section of the station is 23.6m and 29.1m, 

respectively, and the buried depth of the roof is 3.2m. The station is constructed by cut and 

cover method, and the diaphragm wall is used in the enclosure structure. The inner lining wall 

is connected to the diaphragm wall through the embedded parts, so that both of them bear 

forces together and form the side wall. The longitudinal distance between central columns is 

8m. The cross section size of the column in B1 and B2 story is 1.1m long and 0.7m wide, and 

the size of the column in the B3 and B4 story is 1.4m and long 0.7m wide. According to 

“Chinese Code for Seismic Design of Urban Rail Transit Structures” [10], the shear wave 

velocity of the soil is 150m/s. 
 

3 Numerical model 

The dynamic analysis model of soil structure interaction (SSI) is established in the finite 

element code ABAQUS [11]. Mohr-Coulomb constitutive model with Rayleigh damping is 

applied to the soil. The Poisson's ratio of soil is 0.3, and the internal friction angle and 

cohesion are 15˚ and 20kPa, respectively. 

 

Beam element (B21) is chosen for the structure. Central columns are made of C45 concrete 

[12], whose elastic modulus, tensile and compression strength are 33.5GPa, 2.51 and 29.6 

MPa, respectively. Other parts of the structure were made of C35 concrete, whose parameters 

are 31.5GPa, 2.20 and 23.4 MPa, respectively. Poisson’s ratio of both C35 and C45 concrete 

ICCM2018, 6th-10th August 2018, Rome, Italy

630



is 0.2. The concrete damaged plasticity model is adopted to better simulate the dynamic 

response of the structure. The calculation of damage parameters has been done in previous 

studies [8][9]. Idealized elastic-plastic model was selected for rebar. Rebar used in central 

columns and other parts were HRB400 and HRB335, respectively. And the yield strength of 

HRB400 and HRB335 is 400MPa and 335MPa, respectively. The soil-structure interaction is 

defined by the Coulomb friction law. The coefficient of friction is assumed to be 0.4, which is 

equivalent to the friction angle of 22˚. 

 

The size of the structure is determined by the axis of the standard cross section shown in Fig. 

1. In this paper, the single side width of the soil mass is 250m, which is more than 3 times the 

structural width specified in “Chinese Code for Seismic Design of Buildings” [13]. The depth 

of soil is 85m. The infinite element boundary is adopted as the lateral soil boundary to reduce 

the boundary effect [11]. The established numerical model is shown in Fig. 2. 

 

 

Figure 2.  Numerical model of the underground subway station with surrounding soils 

 

4 Process of PDEM 

4.1 Numerical analysis process of PDEM 

 

 

Figure 3.  Basic steps of PDEM 

ICCM2018, 6th-10th August 2018, Rome, Italy

631



The probability density evolution method is proposed by Li and Chen [14] based on the 

principle of probability conservation. After more than ten years of development, a relatively 

complete system of PDEM has been formed. The following is a brief introduction to the 

specific steps of probability density evolution analysis of structural random response. For 

more detailed contents of the method, please refer to the references [15]. 

 

The basic steps of stochastic response analysis of structures using PDEM are shown in Fig. 3, 

which are mainly divided into four steps. First are the discretization of probability space and 

the determination of the probability. Select a discrete set of representative points  

( 1,2, , )q selq n   in the random parameter space  , where seln  represents the total number 

of the points. At the same time, according to the principle of selecting points, the probability 

of each representative point is determined. In this paper, we mainly study the vulnerable spots 

and failure mode of the structure under stochastic earthquake motion, which means the 

randomness comes from the input earthquake motion. Thus, in this paper, seln  represents the 

number of stochastic earthquake motion samples. 

 

The second step is to solve the deterministic dynamic system. For every representative 

point q , carry out deterministic analysis on the dynamical system and then get the partial 

derivative of the concerned physical quantity to time ( , )Z  q t ( 1,2, , )selq n . The deterministic 

method used in this paper is the dynamic time history analysis method, that is, each stochastic 

earthquake motion sample is taken as input, the dynamic time history analysis of the structure 

is carried out to obtain the partial derivative of the concerned physical quantity to time, such 

as structural deformation and internal forces. 

 

The third step is to solve the probability density evolution equation. The generalized 

probability density evolution equation can be expressed as Eq. (1). 

 
( , , ) ( , , )

( , ) 0ZZ Zp z t p z t
t

t z

 
  

 
 

                                       (1) 

 

For each selected representative point ( 1,2, , )q selq n  , introduce ( , )Z  q t into Eq. (1) and 

solve the equation under the corresponding initial conditions and boundary conditions using 

the finite difference method. Denote the solution as ( , , ) Z qp z t . In this chapter, we use the 

finite difference method of Total Variation Diminishing (TVD) to solve the generalized 

probability density evolution equation. 

 

The last step is to obtain the final solution through summation. Synthesize the solutions in 

previous step to obtain the numerical solution of PDEM equation, which is expressed as Eq. 

(2). 

 

1
( , ) ( , , )seln

Z Z qq
p z t p z t

                                               (2) 

 

4.2 Generation of stochastic earthquake motions 

In the numerical solution process of PDEM, the stochastic process of earthquake motion 

needs to be discrete in the probability space, and a certain number of stochastic earthquake 

motion samples are obtained. At present, among the various simulation methods of stochastic 

process, the spectral representation method, which is formally proposed by Shinozuka [16], 
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has been improved after more than 40 years of development. However, in order to ensure the 

appropriate accuracy, this method often requires a lot of random variables and a large amount 

of computation. In this paper, Spectral representation - Random function method proposed by 

Liu et al. [17] is used to simulate the random process of ground motion. This method reduces 

the number of random variables to 1-2. 254 representative points are selected in the 

probability space of the basic random variable space  , and 254 earthquake motion samples 

are generated for the dynamic time history analysis of the numerical model. According to 

“Chinese Code for Seismic Design of Buildings” [13], the station site classification is IV and 

the seismic fortification intensity is 7 (PGA of rare earthquake equals to 0.22g). The relevant 

parameters for generating the ground motion samples are determined according to “Chinese 

Code for Seismic Design of Buildings” [13]. Fig. 4 gives 3 typical ground motion samples. 

 

 

Figure 4.  Typical acceleration time history samples 

 

5 Result analysis 

5.1 Structural reliability evaluation based on story drift 

When evaluating the seismic performance of subway station structure, the maximum response 

value is often concerned. Therefore, based on PDEM and the equivalent extreme event 

thought, the corresponding equivalent extremum events are constructed from the deformation 

index to calculate the seismic reliability of the multi-story subway station structure under 

stochastic earthquake motion. 

 

 

Figure 5.  CDF of the extreme value of story drift 

The story drift is an important index for evaluating the seismic performance of the structure 

from the point of view of deformation. Fig. 5 shows the cumulative probability distribution of 

story drift of four stories. “Chinese Code for Seismic Design of Buildings” [13] stipulates that 
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the elastic limit of story drift of the underground structure is 1/550, and the elastoplastic limit 

of story drift is 1/250. The story drift less than 1/550 indicates that the structure has no 

damage or slight damage without repair; the story drift beyond the elastic limit means that the 

structural damage needs to be repaired, and the story drift over the elastoplastic limit means 

that the structural damage is serious. It can be obtained from Fig. 5 that the structure 

reliability of B1-B4 story is 0.739, 0.724, 0.641, 0.588, respectively, according to the elastic 

limit of story drift; and the reliability of the B1-B4 story is all 1 according to the elastoplastic 

limit. It can be seen that the reliability of the B1-B4 story decreases from top to bottom, 

indicating that the reliability of the structure decreases gradually along the soil depth. On the 

one hand, because of the load transfer, the axial pressure of the deep column increases 

obviously [18]; on the other hand, the depth increase makes the soil and water pressure of the 

deep side wall increase, which has a negative effect on the structure safety. In general, when 

the story drift is used as the deformation index to evaluate the structural reliability, the story 

drifts of four stories are less than the elastoplastic limit of story drift. This indicates that, the 

four stories of the structure are in two stages of slight damage and moderate damage, and 

there is no serious damage under the earthquake motion intensity of PGA=0.22g.  

 

5.2 Failure probability analysis of structural components 

The failure probability of structural components is calculated by strength index of 

components. According to the deterministic dynamic time history analysis, the internal force 

extremums of the component ends of the structure under 254 stochastic earthquake motions 

are obtained. Combined with the idea of equivalent extreme event, probability density 

evolution analysis is carried out, and the probability distribution of extreme value of internal 

force is obtained. The internal force bearing capacity (bending capacity and shear capacity) of 

the component can be used as a conservative limit of strength index, which is calculated 

according to “Chinese Code for Design of Concrete Structure” [12]. 

 

 

Figure 6.  Failure probability of different positions (a) bending failure; (b) shear failure 

Fig. 6 (a) (b) gives the failure probability of component ends according to the limit values of 

bending capacity and shear capacity. From Fig. 6 (a), it can be seen that the bending failure 
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probability of the vast majority of internal components, including the columns and plates in 

middle stories, is all more than 0.5, which indicates that these internal components have great 

possibility of bending failure under the earthquake motion intensity of PGA=0.22g. However, 

the bending failure probability of outer frame components such as top and bottom plates, side 

walls is very close to 0 except for the joint of bottom plate and sidewall. This is because, in 

order to bear the peripheral water and soil pressure, the size and stiffness of outer frame 

components is obviously larger than the internal components of the structure, which makes 

the bending deformation of the end of the internal components increase, thus the bending 

moment may exceed the bending capacity. In addition, we can see from Fig. 6 (a) that the side 

span of plates in middle stories is the largest failure probability component, and the failure 

probability of the component ends is all more than 0.95. From Fig. 6 (b), it can be seen that 

the components whose shear failure probability greater than 0 are mainly the outer frame 

components, such as side walls, top and bottom plates, and the failure probability of the 

internal components is all equals to 0, which means that the shear failure will only occur in 

the outer frame. This is because the structure depth of the multi-story subway station is much 

larger than the ordinary subway station, the water and soil pressure on the outer frame is 

obviously increased, so the outer frame of the structure is more prone to shear failure. From 

the perspective of components failure probability, the vulnerable spots of the multi-story 

subway station structure are mainly the columns (especially in bottom story), plates in middle 

stories, top plates, and joints of bottom plate and side wall. In general, although it can be seen 

from Fig. 5 that the story drifts do not exceed than the elastoplastic limit, but most of the 

components of the structure may exceed the limit of bearing capacity. Therefore, the limit of 

the story drifts of underground structure in “Chinese Code for Seismic Design of Buildings” 

[13] may need further study. 

 

5.3 Analysis of structural failure modes 

Four types of failure modes can be obtained after sorting out the failure components 

according to the analysis of 254 stochastic earthquake motion cases. Fig. 7 shows the failure 

location of four types of failure modes, and Table 1 gives the number of cases corresponding 

to each failure mode type and failure components. In Fig. 7, red points indicate bending 

failure, blue points indicate shear failure, and purple points indicate bending shear failure. 

 

 

Figure 7.  Classification of structural failure modes 

From Table 1, we can see that the I-IV failure modes contain 123, 84, 37, and 10 cases, 

accounting for 48.4%, 33.1%, 14.6%, and 3.9% of the total cases respectively. In the four type 
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of failure modes, type I has the largest number of failure components. As shown in Fig. 7 (a), 

bending failure occurs at almost all the end of columns and plates in middle stories, and shear 

failure and bending shear failure occur respectively at the end of the top plates and the joints 

of bottom plate and sidewall. From Fig. 7 (b), it can be seen that compared with failure mode 

type I, failure components in type II do not include middle span of the plates in middle stories. 

From Fig. 7 (c), it can be seen that compared with failure mode type I, failure components in 

type III do not include columns in the middle stories. Type IV is one of the four failure modes 

with the least failure components. As shown in Fig. 7 (d), the failure components in type IV 

mainly include the side span plates in middle story, top plates, joints of bottom plate and 

sidewall, central columns in bottom story. In general, in the failure mode type I and II, most 

of failure appears at both vertical and horizontal components, while in the failure mode type 

III and IV most of failure occurs at horizontal components. The number of failure components 

and the number of the corresponding cases all decrease from the type I to type IV, which 

indicates that the structure tends to appear failure of most components under the rare 

earthquake intensity of 7 seismic fortification intensity.  

 

Table 1. Classification and description of failure modes 

Failure mode 

types 

Failure location description Total 

cases 

I Plates in middle story; top plates; joints of bottom plate and 

sidewall; central columns in most stories 

123 

II Side span plates in middle story; top plates; joints of bottom plate 

and sidewall; central columns in most stories 

84 

III Plates in middle story; top plates; joints of bottom plate and 

sidewall; central columns in bottom story 

37 

IV Side span plates in middle story; top plates; joints of bottom plate 

and sidewall; central columns in bottom story 

10 

 

6 Conclusions 

Based on PDEM and finite element elastoplastic dynamic time history analysis, the seismic 

reliability of a multi-story subway station structure under stochastic earthquake motion is 

studied in the presented paper with the evaluation index of story drift and component strength. 

The vulnerable spots and main failure modes are analyzed and summarized. The main 

conclusions are as follows: 

(1) Story drifts do not exceed than the elastoplastic limit, but most of the components of the 

structure may exceed the limit of bearing capacity, which means limit of the story drifts of 

underground structure in “Chinese Code for Seismic Design of Buildings” [13] may need 

further study. 

(2) From the perspective of failure probability of structural components, the vulnerable spots 

of the multi-story subway station structure are mainly the columns (especially in bottom 

story), plates in middle stories, top plates, joints of bottom plate and sidewall.  

(3) Failure of the internal components, such as central columns and plates in middle stories, 

are mainly bending failure, while failure of the outer frame components, such as the top and 

bottom plates and side walls, are mainly shear failure. 

(4) The failure modes of the multi-story subway station structure can be roughly divided into 

four types. The number of failure components and the number of the corresponding cases all 

decrease from the type I to type IV. In the failure mode type I and II, most of failure appears 
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at both vertical and horizontal components, while in the failure mode type III and IV most of 

failure occurs at horizontal components.  
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Abstract 

Computational fluid dynamic (CFD) simulations by solving Reynolds-averaged Naviers-
Stokes (RANS) equations with a SST two-equation model using OpenFOAM codes are 
performed. The difference of hydrodynamic forces between the single-rudder and the parallel 
twin rudders of NACA0012 blades are examined from 5o to 25o angle of attack. It is found 
that the interaction between the twin rudders becomes strong as the angle of attack increases. 
Lately, the impact of the distance between the two rudders on the hydrodynamic forces at 15o 
angle of attack is studied for the parallel twin rudders. It is noticed that the interaction 
between the twin rudders becomes weak with the lateral spacing increasing, and the lift to 
drag ratio of the twin rudders monotonously decreases with the lateral spacing. Finally, the 
effectiveness of the stopping performance of the twin rudders at the different lateral spacing is 
analyzed. As a result, the drag reaches the largest value as the lateral spacing equals to 1.3c. 
 

Keywords: twin rudders, computational fluid dynamics, hydrodynamic characteristics, RANS 

 
Introduction 

The performance of ship rudders depends on the rudder hydrodynamic characteristics, and the 
rudder forces and moments are determined by the rudder area, angle of attach and incident 
flow velocity. In practical, the rudder area is sometimes limited due to shallow water. As a 
solution to solve such a problem, a twin-rudder configuration is commonly regarded. 
 
By far, quite a few studies have been done for twin rudders, and hydrodynamic forces of twin 
rudders are mostly calculated by adding the corrected lift and drag profiles of the single 
rudder. Practically, the hydrodynamic characteristics of each rudder in twin rudders are 
interacted by each other such that the pressure profiles and the ambient flow of each rudder all 
vary and differ from those of the single rudder. Therefore, the hydrodynamic forces cannot be 
approximated as a duplication of the single rudder. The interaction between rudders is 
necessary to be taken into account when calculating hydrodynamic forces of the twin rudders. 
 
For single-propeller twin-rudder ships, the asymmetrical behaviors would occur as the inflow 
is not parallel to ship’s centerline. Hamamoto and Enomoto[1] analytically and experimentally 
investigated the forces on a couple of rudders and the interaction between both rudders 
steered with rudder angle. Nagarajan et al.[2] measured the rudder’s axial force of a single-
propeller twin-rudder ship, they proposed a prediction method to estimate the engine power of 
a ship installed with a special high lift twin-rudder system. The inflow characteristics to each 
one of the rudders of single-propeller twin-rudder system were investigated by Kang et al.[3]. 

ICCM2018, 6th-10th August 2018, Rome, Italy

638



They proposed a method called “virtual zero rudder angle” arrangement to prevent 
asymmetric maneuvering characteristic of the ship, which were proved to be effective to 
improve ship’s propulsion performance.  
 
Maneuverability and hydrodynamics of a twin-propeller twin-rudder ship were investigated 
by Yoshimura and Sakurai[4]. They found that hydrodynamic characteristics of a twin-
propeller twin-rudder are not so much different from those of a single-propeller single-rudder 
ship. Yoo et al.[5] studied the maneuvering characteristics of a twin propeller/twin rudder ship 
during berthing and unberthing, and noticed that the tangential force acting on the rudder 
should be considered separately and that the bank suction effect between the hull and the quay 
developed an additional force. Khanfir et al.[6] proposed a mathematical model for 
maneuverability and estimation of hydrodynamic coefficients of twin-propeller twin-rudder 
ship. Lately, captive model tests as well as free-running tests with a single-propeller twin-
rudder ship and a twin-propeller twin-rudder ship were carried out by them[7] to evaluate the 
effect of drift angle on the rudder forces and some peculiar phenomena concerning rudder 
normal force for twin-rudder ships.  
 
As theoretical researches, Shcherbakov[8] carried out a twin-rudder performance test for 
NACA 0018 in a water channel at 4Re 1.5 10= ×  using PIV technique. The effect of the 
distance between two rudders on the hydrodynamics was examined, and the optimum distance 
was eventually determined. Liu and Hekkenberg[9] implemented RANS simulations to present 
an initial study of the hydrodynamic characteristics of twin rudders at small attach angles. 
 
A twin-rudder ship may help reduce the stopping distance by setting the two rudders outwards 
at 75o (called clam shell angles). Compared to a conventional reverse engine stopping, a twin-
rudder at 75o may reduce the stopping distance by 50%[10]. Hamamoto and Enomoto proposed 
analytical formulas of the ship speed drop and calculated the stopping time, the stopping 
distance as a ship stops at the clam shell angles. Hasegawa et al.[11] carried out stopping test 
for a large vessel installed with a mariner type super VecTwin rudder. They simplified the 
complicated flow around the rudders to model the flow speed around the rudders and 
analyzed the outward rudder angles.  
 
Although a few researches were carried out to investigate the maneuverability of some twin-
rudder ships, the complicated flow around the rudders and the hydrodynamic characteristics 
are still paid little attention. In order to obtain accurate hydrodynamic coefficients of twin-
rudder, computational fluid dynamic (CFD) simulations by solving Reynolds-averaged 
Naviers-Stokes (RANS) equations using a finite volume method with a shear-stress transport 
(SST) k ω−  two-equation turbulence model in OpenFOAM are implemented to capture the 
complicated flow field in this study. The study puts a focus on the effect of the lateral spacing 
(the distance between the twin-rudder blades) on the hydrodynamic coefficients and on the 
drag coefficients at the clam shell angle. 
 

Methodology 

Flow model 

The flow around the rudders are governed by the Reynolds-averaged equations for 
conservation of continuity and Navier-Stokes equations 
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Where i, j = 1, 2. ' '
i ju u  represents the Reynolds stress component, which is to be expressed in 

terms of a turbulent viscosity, Tν  and the mean flow gradients using Boussinesq 
approximation, 
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where k is the turbulent kinetic energy and ijδ  is the Kronecker delta. 
 
To solve the turbulent viscosity Tν , a SST k ω−  two-equation model proposed by Menter[12] 

are used in this study. The two-equation model is given by the following 
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where k is the turbulence kinetic energy,  ω  represents the specific dissipation rate and 

T
kρµ
ω

= . For more details and the model coefficients, see Menter’s paper[12]. 

 

Simulation procedure and problem setup 

The Reynolds-averaged equations for conservation of mass and momentum are discretized 
with a finite volume method, and solved by a PISO solver of OpenFOAM, in conjunction 
with a SST k ω−  two-equation model. 

 
Figure 1. Parallel twin-rudder system of NACA0012 and twin rudders at a clam shell 

angle. 
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Figure 2. Structured mesh sketch at 15o angle of attack with 195472 elements and 

194094 nodes for d=1.0c. 
 

In this study, two NACA0012 blades are selected as the targeted parallel twin-rudder system 
(Figure 1). The computational domain includes a half circular of a radius of 20c (20 times 
rudder chord) and a 40 40c c×  rectangular (Figure 2). The size of the computational domain is 
sufficient to neglect the far-field effects. 
 
Body-fitted, structured O-meshes for the computational domain are computed by ICEM CFD. A 
sketch of the mesh for a case with the lateral spacing 1.0d c=  is illustrated in Fig. 2. For all 
simulations, the size of the elements near the blades is set such that the dimensionless off-wall 
distance y+ is smaller than 1, where y+ is defined as /y u yτ ν+ = , uτ denotes the friction velocity near 
the blade, and y denotes the normal distance from the blade. 
 

Result and discussion 

 
Liu and Hekkenberg[9] performed an initial study of the hydrodynamic characteristics of twin 
rudders, and analyzed the variation of the hydrodynamic coefficients with the attack angles. 
The present study extends Liu’s work and examines the effect of the lateral spacing between 
the two rudders on the hydrodynamic coefficients. The discussion as follows contains the 
effect of angle of attack, the lateral spacing on the hydrodynamic coefficients of the parallel 
rudders, and the effect of the lateral spacing on the drag coefficients of the rudders at the clam 
shell angles. 
 

Difference between single-rudder and twin-rudder 

 
The first set of cases start with the twin rudders with 1.0c lateral spacing. Figure 3 shows the 
drag coefficients of the single-rudder and the twin rudders versus angle of attack. It can be 
seen that the drag coefficients of both system increases with the attack angle increasing. The 
drag coefficients of the twin rudders over all the attack angles are larger than those of the 
single rudder. It is noticed that rudder 1 causes the similar drag to the single rudder, while that 
the drag of rudder 2 decrease much due to the hydrodynamic interaction between the two 
rudders. 
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Figure 3 Drag coefficients versus angle of attack. 

 
Figure 4 shows the lift coefficients of the single-rudder and the twin rudders versus angle of 
attack. For both systems, the lift coefficients reach the highest value at 15o. And the twin-
rudde  give rise to much larger lift coefficients than the sinlge rudder. For the lift of the two 
rudders, it is noticed that rudder 2 causes the larger value than rudder 1 as the attack angle 
increases, and that the total lift is not just twice the lift of the single rudder, which is because 
that the hydrodynamic interaction of the two rudders becomes strong when the attack angle 
increase. 
 

 
Figure 4 Lift coefficients versus angle of attack. 

 
Figure 5 shows the ratio of the lift to the drag of the single-rudder and the twin rudders versus 
angle of attack . It can be seen that, for NACA0012, the value of the lift to drag ratio 
decreases with the angle of attack increasing for both systems. And it is found that the lift to 
drag ratio of the twin rudders is much better than the single rudder, which implies that the 
twin rudders can be used to improve the hydrodynamic performance when the single rudder is 
limited. 
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Figure 5 Lift to drag ratios versus angle of attack. 

 
When performing the simulation of the flow around the rudders, it is found that the drag and 
lift coefficients of the two rudders start vibrating periodically (Figure 6) as the angle of attack 
is larger than 15o. While, at all angles of attack, the drag and lift coefficients of the single 
rudder normally converge to a stable value. This is possiblly because that the flow interaction 
between the two rudders leads to more unstable vortices downstream so that the pressrue 
downstream of the rudders becomes periodically unstable. 
 

 

 
Figure 5 Evolution of the drag and lift coefficients of the two rudders. 

 

ICCM2018, 6th-10th August 2018, Rome, Italy

643



Impact of the lateral spacing on the hydrodynamics 

 
The distance between the two rudder blades (d, lateral distance) is one of the most imoportant 
factors which directly affects the flow interaction between the twin rudders. As rudders are 
mostly performed at small angles of attack within 15 degrees of course keeping and initial 
turning, here the twin rudders with the different lateral spacing at 15o angle of attack are 
considered. Figure 6 shows the velocity and static pressure contours around the twin rudders 
of the cases with the different lateral spacing. It can be seen from the velocity contours that 
the small distance causes an velocity increase between the two rudders as d=0.6c, such that 
the velocity at the leading edge of rudder 2 decreases and the vortex downstream of rudder 2 
declines. As the lateral spacing increases, the interaction between the two rudders becomes 
relatively weak. Therefore the flow around the two rudders approaches to be similar. 
Similarly, the same phenomena occrues to the static pressure aroun the two rudders. 
 
d=06.c 

 
d=1.0c 

 
d=1.4c 

 
Figure 6. Velocity and static pressure contours of the cases with the different lateral 

spacing. 
 
Figure 7 shows the evolution of the drag coefficient of the twin rudders at 15o  versus the 
lateral spacing. It is noticed that the drag of rudder 1 dominates between the two rudders, and 
its value increases as the lateral spacing increases. The drag of rudder 2 is relatively smaller 
than that of rudder 1 and reaches the smallest value at d=1.2c. The total drag of the twin 
rudders increase with the lateral spacing increasing. 
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Figure 7. Drag coefficients of the twin rudders versus the lateral spacing. 

 
Figure 8 shows the variation of the lift coefficients of the twin rudders at 15o versus the lateral 
spacing. Instead, for the lift, rudder 2 give rise to the larger values than rudder 1. As the 
lateral spacing increases, the lift of rudder 1 increases and the lift of rudder 2 decreases. The 
total lift coefficients of the twin rudders reaches the highest value at d=1.0c. Additionally, it 
is noticed that the value of the lift coefficients of the two rudders approaches to each other as 
the lateral spacing is 1.4, and the total lift is approximate to twice the lift of the single rudder, 
which indicates that the effect of the interaction between the two rudders on the lift 
coefficients becomes weak when the lateral spacing is large. 
 

 
Figure 8. Lift coefficients of the twin rudders versus the lateral spacing. 

 
The profile of the lift to drag ratio versus the lateral spacing is shown in Figure 9. It is clear 
that the lift to drag ratio of the twin rudders at 15o monotonously decreases with the lateral 
spacing increasing. According to the variation of the lift to drag ratio, it is suggested to have a 
reasonably small lateral spacing for a high lift to drag ratio in practical. 
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Figure 9. Lift to drag ratios of the twin rudders versus the lateral spacing. 

 
For more details, the static pressure coefficients around the rudders are shown in Figure 10. It 
is shown that, for d=0.6c, the pressures in the front of the rudders are quite close, while the 
ones in the back of rudder 1 is much smaller than those in the back of rudder 2, which is due 
to the strong interaction between the two rudders.  For d=1.0c, the pressure around the two 
rudders are still much different, which means that the interaction still makes much sense. As 
the lateral spacing approaches to 1.4c, the difference of the pressure around the two rudders 
becomes small, which agrees to a statement that the interaction weakens as the lateral spacing 
increases. 
 

 
Figure 10. Static pressure coefficients around the rudders with the different lateral 

spacing. 
 

Impact of the lateral spacing on stopping performance 

 
As the rudders are stimultaneously set at a clam shell angle (75o outward) for a stopping 
performanc, the gap between the leading edge of the twin rudders, which is determined by the 
lateral spacing, may affect the drag of the rudders as well as the stopping distance. Here flow 
around the twin rudders with the different lateral spacing at a clam shell angle are simulated. 
Figure 11 shows the flow and static pressure contours for d=0.6c, 1.0c and 1.4c. It is noticed 
that the flow field downstream of the rudders are not symmetrical. For d=0.6c and 1.0c, the 
flow cross the gap with high velocity travels downwards downstream of the rudders, which 
causes that the pressure downstream of rudder 1 is larger than that dwonstream of rudder 2. 
As d=1.4c, the flow cross the gap travels upwards downstream of the rudders, namely, the 
pressure downstream of rudder 1 is smaller than that downstream of rudder 2. The flow cross 
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the gap would instantaneously vibrate. The asymmetry of the flow downstream of the rudders 
is likely due to the limitation of the numerical method used in the present study.  
 
d=0.6c 

 
d=1.0c 

 
d=1.4c 

 
Figure 11. Flow and static pressure contours around the twin rudders with the different 

lateral spacing at a clam shell angle. 
 
To exmine the stopping performance of the twin rudders with the different lateral spacing, the 
drag coefficients of the twin rudders at a clam shell angle are tested. Figure 12 shows the 
variation of the drag coefficients of the twin rudders at outward versus the lateral spacing. It 
can be seen that the drag coefficients of the two rudders are different due to the flow 
asymmetry downstream of the rudders. The drag of rudder 1 is smaller than that of rudder 2, 
which agrees to the statement about pressure distribution addressed above. The drag of rudder 
1 slowly increases as d increases, and reaches to the largest value at d=1.3c. Instead the drag 
of rudde 2 deccrease as d increases, and reaches to the lowest point at d=1.3c.  The drags of 
the two rudders approaches to each other at d =1.4c. This is because that a larger gap between 
the leading edge weaken the interaction of the flow downstream. The value of the total drags 
of the twin rudders are almost twice that of the single rudder, which indicates that the twin 
rudders makes better sense than the single rudder during the stopping performance. It is 
shown that the variation of the total drag with the lateral spacing is small. It reaches the 
largest value at d=1.3c, and decreases as d is larger than 1.3. 
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Figure 12. Drag coefficients of the twin rudders at a clam shell angle versus the lateral 

spacing. 

Conclusions 

Computational fluid dynamic simulations of the twin rudders are performed by solving 
Reynolds-averaged Navier-Stokes equations with a SST k ω− two-equation model using 
OpenFOAM codes. The difference of hydrodynamic forces between the single-rudder and the 
parallel twin rudders of NACA0012 blades are examined from 5o to 25o angle of attack. The 
impact of the distance between the two rudders on the hydrodynamic forces at 15o angle of 
attack is studied for the parallel twin rudders. Finally the effectiveness of the stopping 
performance of the twin rudders at the different lateral spacing is analyzed. According to the 
results and discussions, conclusions of the present study can be summarized as follows 
 
(1) The hydrodynamic forces of the twin rudders at all tested angles of attack are larger than 

those of the single rudder. The interaction between the twin rudders becomes strong as the 
angle of attack increases.  
 

(2) The interaction between the twin rudders becomes weak with the lateral spacing 
increasing. The drag of the twin rudders increases with the lateral spacing increasing. The 
lift reaches the largest value at d=1.0c. And the lift to drag ratio monotonously decreases 
with the lateral spacing. 
 

(3) The total drag of the twin rudders is almost close to twice that of the single rudder. The 
drag slowly increases with the lateral spacing, and decreases as the lateral spacing is larger 
than 1.3c. 
 

This study present some limited results due to the limitation of the numerical method used. To 
obtain more accurate flow data around the twin rudders, it is requested to use a transient 
solver or a large eddy simulation, which would be the further research of the authors. 
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Abstract 

A simplified method for calculating the seismic responses of the shaft is proposed in this paper. 

First, based on the theory of Winkler elastic foundation beam, the urban shaft is simplified as a 

vertical beam. Secondly, the horizontal soil reaction and vertical shear tractions between the 

shaft circumference and the surrounding soils are considered through horizontal springs and 

rotating springs on the sidewall of the shaft. The translation and rocking motion of the shaft are 

considered through horizontal springs and rotating springs at the bottom of the shaft. Then, the 

dynamic analysis model of the shafts under seismic motion is established, and the control 

equation of the dynamic response of the shaft in frequency domain is deduced. Finally, the 

analytical solution of the steady state response of the shaft is obtained. Considering the 

randomness of the earthquake motion, this method can get the shaft responses under different 

ground motions efficiently. At the same time, the influence of ground motion frequency on the 

dynamic response of shaft can be observed. 

Keywords: Shaft, Winkler model, Seismic responses, Random 

1. Introduction 

As a subsidiary structure connecting the ground and underground structures, the vertical shaft 

has been widely constructed in the areas of underground transportation system, power system 

and utility tunnel system. At present, round and square are mainly cross section shape of 

existing shafts, which are usually of small cross-section and shallow depth within 40 meters. 

With the exploitation and utilization of deep underground space in urban cities, large-depth 

(more than 40 meters) shafts are now widely used in deep urban drainage systems. Such as the 

Metropolitan Area Outer Underground Discharge Channel in Tokyo and the Deep Storage and 

Drainage Pipe System in Shanghai. Round is the mainly cross section shape of the deep shaft. 

The dynamic responses of the shafts are being studied. 

In order to know the shaft dynamic responses, there are about two methods to calculate the 

dynamic responses: the quasi-static method and the three dimensional dynamic time history 

analysis method. In the quasi-static methods the shafts are usually treated as a vertical beam 
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embedded in the soil [1]-[3]. In the dynamic time history analysis the results are more accurate. 

The main differences between the two methods is that the quasi-static method could not 

considering the shaft responses at every moment under the excitation of the earthquake motion, 

while the numerical methods such as three dimensional finite element dynamic time history 

analysis method and so on are usually with low computational efficiency and could not explain 

the dynamic responses from the perspective of mechanical mechanism for engineering design. 

Due to the uncertainty and complexity of the earthquake motion, the ground motion is a 

complicated time process which should be carefully considered when implementing the shaft 

seismic design. Therefore it is essential to propose a simplified method which can not only 

capture the dynamic responses of the shafts but also can calculate efficiently. 

In this paper, a dynamic winkle beam physical model for the shaft is purposed and established 

with considering the horizontal reaction and vertical shear tractions from the surrounding soil 

and horizontal traction springs and rotating springs at the bottom of the shaft for the kinematic 

motion based on the existing quasit-static method. The dynamic equilibrium equation of the 

shaft is derived and the analytic solution of the kinematic equilibrium is solved and presented 

in frequency domain. The dynamic responses of the shafts under stochastic earthquakes 

excitation in time domain would be obtained efficiently through the FFT and iFFT with this 

simplified method. 

2. Physical model 

In the physical model of quasi-static method [3], horizontal reactions and vertical shear tractions 

distributed along the shaft wall are represent by the horizontal spring and the rotation spring. In 

order to reflect the translation motion and rotational motion, the shear spring and rotation spring 

are stetted at the shaft bottom.  

Gerolymos and Gazetas [4]-[6] purposed a winkle four spring model for lateral response of 

rigid caisson foundations in liner soil. Due to the structural and functional characteristics of the 

caisson foundation, the caissons are usually simplified as a rigid body due to its great structural 

stiffness relative to the surrounding soil, while the pile foundations are usually simplified as a 

beam due to the small structural stiffness relative to the surrounding soil. There are many 

differences between the caisson foundation and the deep shaft, especially the structural stiffness, 

the underground deep shafts are hollow structures while the caisson foundations are solid one. 

Chen and Zhang [7] and Mayoral [8] concluded that the large-depth shaft dynamic responses 

in soft soil approximately like a rigid body with translation motion, rotational motion and small 

bending deformation. Considering the structural and functional characteristic of the shaft and 

effect of the soil-structure relative stiffness on the dynamic responses of the underground 

structure. Finally, the shaft is simplified as a beam. In this paper the simplified dynamic analysis 

method for the shaft is proposed with four springs and dashpots and the shaft is simplified a 

beam, as shown in Fig. 1 

A circle in plain shaft embedded in homogeneous isotropic and viscoelastic soil was illustrated 

in Fig. 1. The assumption of model are as follows: the shaft is assumed to be with uniform wall 

thickness and the shaft with linear deformation under the seismic motion; the shaft is perfectly 
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glued to the surrounding soils, indicating that there is no slippage or separation along the shaft-

soil interface.  

The parameters of the shaft are as follows: the shaft depth is L, the external diameter is D, the 

inner diameter is d, the Young’s modulus is E, and the density is ρ. The parameters of the soil 

are as follows: the Young’s modulus is Es , the shear modulus is Gs , the density is ρs, the shear 

wave velocity is Vs. The four-spring coefficients purposed by Gazetas [9] is adopted for 

simulating the soil-caisson interaction here and will be introduced in the next session. The 

distributed lateral springs kx and dashpots cx and rotation springs kθ and dashpots cθ are the 

simplified horizontal soil reactions and vertical shear tractions, while the shear translation 

spring kbx and dashpot cbx and base rotation spring kbθ and dashpot cbθ are the simplified 

horizontal shearing force and the moment produced by the base of the shaft.  

 

Figure 1. Schematic diagram of shaft under vertically incident S waves 

3. Explicit representation of the model 

3.1 Shaft kinematic responses equation 

In order to establish the differential equation of the shaft kinematic responses, a shaft element 

is chosen from the physical model in Fig. 1. Fig. 2 illustrates the state of the beam element in a 

viscoelastic soil under the seismic loads. The main loads in horizontal direction are inertia force, 

the soil reaction force and the shear forces from the connecting shaft elements. The main 

moment loads are inertia moment, the moment form the soil vertical tractions, the soil reaction 

moment and the moment from the connecting shaft elements. 

ICCM2018, 6th-10th August 2018, Rome, Italy

652



 

Figure 2. Schematic diagram of force acting on the shaft element under seismic motion 

According to the dynamic equilibrium of the transverse forces and the dynamic moment 

equilibrium with respect to the central point O of the shaft element. The two differential 

governing equations for the shaft kinematic responses element in time domain can be expressed 

as 
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where m is the mass of the shaft per length. J is the moment of inertia of the shaft per length. u 

(z, t) is the displacement of the shaft central. dz is the length of the shaft element. uff is the 

displacement of the free field along the depth The formulate of uff in frequency domain can be 

expressed as 
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where uff0 is the displacement of the soil surface. w is the circular frequency. z is the vertical 

coordinate starting from the top central of the shaft. θff is the rotation angle of the free field. The 

formulate of θff in frequency domain can be expressed as 
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The bending moment M at the shaft cross section can be expressed as 
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where I is the area moment of inertia of the shaft cross section. Q is the shear force at the shaft 

cross section 
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θis the rotation angle of the shaft along the shaft depth 

 
du

dz
    (7) 

Submitting Eq. (1) in Eq. (2), one obtains the final dynamic equilibrium equation of the shaft 

element in frequency domain 
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For express simplification, then name the equation coefficients as Ac, Bc, Cc and Dc. 
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Then the dynamic equilibrium Eq. (8) could be simplified as 
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The analytic solution the Eq. (8) in frequency domain can be expressed as 
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Where C1, C2, C3 and C4 are the four underdetermined parameters, which can be obtained 

through the boundary conditions. The parameters of r can be obtained as 
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The coefficients of the specific solution Ec can be expressed as 
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The boundary condition about the shaft top is free at the shaft head and constraint at the bottom, 

then the boundary conditions can be formulated as follows 
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Submitting the Eq. (14) into the Eq. (17) and (18), then the four undetermined parameters C1, 

C2, C3 and C4 can be obtained by the matric as follows 
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Finally, according to the Eqs. (5), (6), (7) and (14), the rotation angle, the bending moment and 

the shear force of the shaft along the depth in frequency domain can be obtained as follows 
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3.2 Spring and dashpot coefficients 

The four spring and dashpot coefficients are adopted from the coefficients which are proposed 

by Gazetas [9] and Gerolymos [6] and revised by Zhong [10]. They have done the calibration 

of the spring and dashpot coefficients with Novak, Varun and Wolf and verified that the 

coefficients perform well. This coefficients are related with the soil parameters and geometric 

parameters of shaft. The expression of the lateral horizontal spring coefficients kx is as follows 
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where Itw is the horizontal embedment factor of a cylindrical shaft, χewb is the dynamic 

coefficient. 
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The expression of the lateral horizontal dashpot coefficients cx is as follows 
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The expression of the lateral rotation spring coefficients kθ is as follows 
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where Гw is the rocking embedment factor of a cylindrical shaft. 
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The expression of the lateral rotation dashpot coefficients cθ is as follows 
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The expression of the base shear spring coefficient kbx is as follows 
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The expression of the base shear dashpot coefficient cbx is as follows 
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The expression of the base shear spring coefficient kbθ is as follows 
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The expression of the base rotation dashpot coefficient cbθ is as follows 
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4. Solution technique 

Inspect from the above analytical equations, the input parameters uff0 should be in frequency 

domain. In order to know the transient seismic responses of the shaft, the input parameters uff0 

should be transformed into frequency domain which can be achieved by conducting FFT and 

the analytical results u and so on should be transformed into time domain which can be achieved 

by conducting iFFT. There are total three steps to obtain the dynamic responses of the shaft. 

The flowchart of the solve procedure is shown in Fig. 3. 

The first step is to transform the time history of the input ground motion uff0 into frequency 

domain through the FFT method. The ground motion uff0 in frequency domain will be obtained 

with the corresponding frequency w. From the matric Eq. (19) the coefficients C1, C2, C3 and 

C4 can be obtained under the corresponding frequency w. 

The second step is to obtain the shaft dynamic responses along the depth, such as: shaft 

displacement, rotational angle, bending moment and shear force in frequency domain through 

the Eq. (14), (20), (21) and (22). At the same time, the influence of ground motion frequency 

on the dynamic response of shaft can be observed. 

The third step is to transform the shaft’s frequency domain dynamic response parameters into 

time domain by implementing iFFT. 

Repeat the above operations, then the shaft dynamic responses under stochastic earthquakes 

can be achieved with this simplified method. All this procedures can be implemented by 

MATLAB software efficiently.  
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Figure 3. Flowchart of the solve procedure 

5. Conclusion 

Based on the theory of dynamic Winkle beam on elastic foundation, the shaft dynamic model 

is proposed and the closed-form solution for the dynamic responses of the shaft is established 

in frequency domain with explicit expression. A simplified model for calculating the seismic 

responses of the shaft under stochastic earthquakes is proposed and established. The seismic 

responses of shaft under stochastic earthquakes would be easily solved with the FFT and iFFT 

method between the frequency domain and the time domain. The simplified dynamic Winkle 

beam model could capture and properly reflect the shaft’s dynamic kinematic responses, 

translation, rotational motion and bending curve along the depth with low computational cost 

compared with the three dimensional dynamic time history analysis.  
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Abstract 

Cardiac pacing has been an effective treatment in the management of patients with 

bradyarrhythmia and tachyarrhythmia. Different pacemaker location has different responses, 

and pacemaker effectiveness to each individual can also be different. A novel image-based 

ventricle animal modeling approach was proposed to optimize ventricular pacemaker site for 

better cardiac outcome.  One health female adult pig weight 42.5kg was used to make pacing 

animal model with different ventricle pacing locations. Pig health status was assessed before 

undergoing experimental procedures. Ventricle surface electric signal, blood pressure and 

echo image were acquired 15 minutes after the pacemaker was implanted.  Echo-based left 

ventricle (LV) fluid-structure interaction (FSI) models were constructed to perform ventricle 

function analysis and investigate impact of pacemaker location on cardiac outcome.  The 

nonlinear Mooney-Rivlin model was used for ventricle tissue material model. With the 

measured electric signal map from the pig associated with the actual pacemaker site, electric 

potential conduction of myocardium was modeled by material stiffening and softening in our 

model, with stiffening simulating contraction and softening simulating relaxation. Material 

stiffness parameters were adjusted in a cardiac cycle to match Echo-measured LV 

deformation and volume variations.  Mapping between material stiffness and ventricle electric 

signal was quantified using data measured from the animal with pacemaker applied. Ventricle 

model without pacemaker and three ventricle models with the following pacemaker locations 

were simulated: right ventricular apex (RVA), posterior interventricular septum (PIVS) and 

right ventricular outflow tract (RVOT). Data for ventricle volume change, ejection fraction, 

stress and strain, flow velocity and shear stress data were collected for comparisons. Our 

results demonstrating that PIVS pacing model had higher peak flow velocity and stress/strain.  

It indicated PIVS pacemaker site may be the best location.  This modeling approach could be 

used as “virtual surgery” to try various pacemaker locations and avoid risky and dangerous 

surgical experiments on real patients. 

Keywords: Fluid-structure interaction model, pacemaker electrical conduction, Fluid dynamic, 

ventricle material properties, ventricle mechanics. 

Introduction 

In recent decades, rapid development of cardiac pacing has become the only effective 

treatment for slow cardiac arrhythmia. According to some statistics, between 1993 and 2009, 

2.9 million patients received permanent pacemakers in the United States [1]. China Ministry 
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of Health Online Registration indicated that pacemaker implants were placed in 70,000 

patients in 2016, and the number has been increasing year by year [2]. Right ventricular apex 

(RVA) has been the conventional location for pacemaker lead placement. However, RVA 

pacing is associated with abnormal myocardial contractile pattern, hemodynamic disorder, 

and histologic remodeling [3]. The review by Tops et al. provided a contemporary overview 

of the available evidence on the detrimental effects of RVA pacing [4]. So optimization of 

right ventricular pacing site becomes an important object of pacing electrophysiology. In 

recent years, the concept of physiological pacing has been proposed in the field of 

electrophysiological, and the study of the selection of pacing sites has received great attention 

[2] [5]-[6]. Singh et al. assessed left ventricular (LV) function and dyssynchrony in patients 

with right ventricle outflow tract (RVOT) pacing and conventional RVA pacing using 

equilibrium radionuclide angiography.  Their results indicated RVOT pacing may lead to 

better preservation of LV function on longer follow-up [7]. Kronborg et al. showed that His or 

para-His pacing preserves LV ejection fraction and mechanical synchrony compared with 

right ventricular (RV) septal pacing in patient with atrioventricular block and may be a future 

pacing strategy to prevent pacing-induced heart failure in selected pacemaker patients [8]. 

Here His indicates His bundle which is a collection of heart muscle cells specialized for 

electrical conduction. As part of the electrical conduction system of the heart, it transmits the 

electrical impulses from the atrioventricular node (located between the atria and the ventricles) 

to the point of the apex of the fascicular branches via the bundle branches. Sharma et al. 

assessed the safety, feasibility, and success rates of His-bundle pacing in unselected patients 

without the use of a mapping catheter or a backup RV lead as compared to RVA pacing [9]. 

Zanon et al. systematically investigated the hemodynamic benefit of multipoint pacing 

performed at many pacing sites per heart and related hemodynamic effect to both LV 

electrical delay and the reduction in QRS duration [10]. 

Recent advances in computational modeling, methods and computer technology have made it 

possible for computer-simulated procedures to be used in clinical decision-making for 

diseased hearts. In our previous studies, we introduced patient-specific cardiac magnetic 

resonance (CMR)-based LV/RV models with fluid-structure interactions (FSI) with various 

surgical design and potential applications [11]-[14].  Echo-based 3D LV FSI models were 

introduced to perform ventricle mechanical analysis and investigate flow behaviors [15].  

This paper will integrate echocardiography images, propagating dynamic electric potential on 

ventricle surface induced by pacemaker, and computational models with fluid-structure 

interactions to perform myocardial function and intra-cardiac flow assessment. The models 

will be used to evaluate and optimize pacemaker location. 

Methods 

3D echo data acquisition 

The animal study was conducted at the First Affiliated Hospital of Nanjing Medical 

University, Nanjing, China. A health female adult pig weight 42.5kg was intubated and 

mechanically ventilated.  Anesthesia was maintained using isoflurane.  The pig was placed on 

an operating table in the semi-left lateral position with upright tilt, suitable for 

echocardiographic examination. Electric potential data recording and image acquisition were 

started 15 minutes after different pacemaker was implanted. Pacemaker locations included 

RVA, posterior interventricular septum (PIVS) and RVOT. Standard echocardiograms were 

obtained using an ultrasound machine (E9, GE Mechanical Systems, Milwaukee, Wisconsin) 

with a 3V probe. Electrophysiological recorder records body surface 12-lead 

electrocardiogram and intracardiac electrogram. Meantime, the pressure gauge catheter was 
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connected to the Medtronic Lifpark12 monitor. The left ventricular pressure curve was 

measured before and during the time period when the pacemaker was implanted. Table 1 

gives basic information including ventricular pacing location, pressure and volume data. 

Table 1. Ventricular pacing location and volume data 

 

Pacemaker 

location  
Non-pacemaker RVA RVOT PIVS 

Pressure 

(mmHg) 

Min= 

9 

Max= 

102 

Min= 

10 

Max= 

119 

Min= 

8 

Max= 

90 

Min= 

7 

Max= 

83 

Echo Vol 

(ml) 

Min= 

25 

Max= 

54 

Min= 

27 

Max= 

55 

Min= 

26 

Max= 

50 

Min= 

19 

Max= 

44 

Echo EF 

(%) 
53.70 50.91 48.00 56.82 

Model Vol 

(ml) 

Min= 

24.96 

Max= 

54.01 

Min= 

27.07 

Max= 

54.96 

Min= 

26.05 

Max= 

50.16 

Min= 

18.98 

Max= 

44.02 

Model EF 

(%) 
53.79 50.75 48.07 56.88 

The fluid-structure interaction model of LV 

Blood flow in the left ventricle was assumed to be laminar, Newtonian, viscous and 

incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) 

formulation were used as the governing equations. When the inlet or outlet were closed, flow 

velocity was set to zero and pressure was left unspecified. When the inlet or outlet was open, 

flow velocity was left unspecified and pressure was prescribed. No-slip boundary conditions 

and natural force boundary conditions were specified at all interfaces to couple fluid and 

structure models together [11][16]. Standard governing equations and boundary conditions for 

the LV model were given: 

ρ(∂u/∂t + ((u – ug) ) u ) = - p + 2u ,                                              (1) 

u = 0,                                        (2) 

u |= ∂x/∂t ,                             (3) 

P|inlet = pin(t),  ∂u/∂n|inlet = 0, u|outlet = 0, (filling phase),                                 (4) 

P|outlet = pout(t), ∂u/∂n|outlet = 0, u|inlet=0, (ejection phase),                         (5) 

σij  nj  |out_wall =0,                                                              (6) 

σr
ij  n

r
j  |interface = σs

ij  n
s
j|interface ,                                                           (7) 

where u and p are flow velocity and pressure, ug is mesh velocity, μ is the viscosity of blood. 

 stands for LV inner wall, f●,j stands for derivative of f with respect to the jth variable (or 

time t), σr and σs are fluid and structure stress tensors, and nr and ns are their outward normal 

directions, respectively. 

The ventricle material tissue was assumed to be hyperelastic, anisotropic, homogeneous and 

nearly-incompressible. The governing equations for the LV structure model were:  

     
, , , , 1,2,3; sum over ,i t t i j jv i j j                                 (8) 

                             , , , ,( ) 2, , , 1,2,3,i j i j j i i jv v v v i j     
                                           

(9) 

where  is the stress tensor,  is the strain tensor, v is displacement, and  is material density. 

The normal stress was assumed to be zero on the outer (epicardial) LV surface and equal to 

the normal stress imposed by fluid forces on the inner (endocardial) LV surface as specified 

by Eq.(7). 
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The nonlinear Mooney-Rivlin model was used to describe the nonlinear anisotropic material 

properties. The strain energy function for the anisotropic modified Mooney-Rivlin model is 

given: 
2

1 1 2 2 1 2 1 1 2 2 4W=c (I -3)+c (I -3)+D [exp(D (I -3))-1]+(K K )exp[K (I -1) -1],
                

(10) 

where I1 and I2 are the first and second strain invariants given by, 

      
21

21 ii 2 1 ij ij 4 ij f i f jI C , I [I C C ], I C ( ) ( )    n n                             (11) 

C =[Cij] = X
T
X is the right Cauchy-Green deformation tensor, X=[Xij] = [∂xi/∂aj], (xi) is the 

current position, (ai) is the original position, nf is the fiber direction, ci,  Di and Ki are material 

parameters chosen to match experimental measurements [12][15]. With parameters properly 

chosen, it was shown that stress-strain curves derived from Eq. (10) agreed very well with the 

stress-strain curves from the anisotropic (transversely isotropic) strain-energy function with 

respect to the local fiber direction given in McCulloch et al.[14]: 

              

C
W (e 1),

2

Q                                                     (12) 

       
2 2 2 2 2 2 2 2 2

1 2 3( ) ( ),ff cc rr cr rc fc cf fr rfQ b E b E E E E b E E E E        
                                     

(13)
 

where Eff is fiber strain, Ecc is cross-fiber in-plane strain, Err is radial strain, and Ecr, Efr and Efc 

are the shear components in their respective coordinate planes, C, b1, b2, and b3 are parameters 

to be chosen to fit experimental data. For simplicity, we set b1=0.8552, b2=1.7005, b3=0.7742 

in Eq. (12) so that we can have a single parameter C for comparison.  The least-squares 

method was used to find the equivalent Young’s moduli (YM) for the material curves for easy 

comparison. 

As patient-specific fiber orientation data was not available from these patients, we chose to 

construct a two-layer LV model and set fiber orientation angles using fiber angles given in 

Axel [15].  Fiber orientation angles were set at -60 degree and 80 degree for epicardium (outer 

layer) and endocardium (inner layer), respectively. Fiber orientation can be adjusted when 

patient-specific data becomes available [11].   

A pre-shrink process and geometry-fitting technique for mesh generation  

Under in vivo condition, ventricles are pressurized and the zero-stress ventricular geometries 

are not known.  In our model construction process, a pre-shrink process was applied to in vivo 

end-systolic ventricular geometries to generate the starting shape for the computational 

simulation [15]. A geometry-fitting mesh generation technique was also used to generate 

mesh for our models [13].  Mesh analysis was performed by decreasing mesh size by 10% (in 

each dimension) until solution differences were less than 2%.  The mesh was then chosen for 

our simulations. 

Solution methods and Data collection for Statistical analysis 

The Echo-based anisotropic LV models were constructed for the three patients and the models 

were solved by ADINA (ADINA R&D, Watertown, MA, USA) using unstructured finite 

elements and the Newton-Raphson iteration method. The “Re-Start” feature in ADINA was 

used to adjust material parameters at each numerical time step to implement the potential 

conduction of myocardium. Flow velocity and stress/strain distributions were obtained for 

analysis. Because stress and strain are tensors, for simplicity, maximum principal stress 

(Stress-P1) and strain (Strain-P1) were used and referred to as stress and strain in this paper.  

Results and Discussion 

It is common to use selected cut-surfaces and critical time points (begin-filling, peak velocity 

during filling, begin-ejection, peak velocity during ejection, etc.) to demonstrate and compare 
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solution behaviors.  For our modeling set-up, the time points for begin-filling and end-

ejection are connection points of systole and diastole phases.  The same is true for end-filling 

and before-ejection time points. This explanation should be helpful to understand why we 

mainly used end-filling and end-ejection in our comparative analyses.   

Table 2 gives the maximum velocity values over the whole LV flow domain and the average 

flow shear stress (FSS) on LV inner surface at selected time points from the four models 

studied. Using the No-Pacemaker (NP) model as baseline, at the peak of filling, velocity 

magnitude for RVA and PIVS pacing models were 7% and 33% higher than that of the NP, 

respectively. Velocity magnitude for RVOT pacing model was 5% lower than that of the NP 

model.  At the peak of ejection, velocity magnitude for RVA and PIVS pacing models were 

29% and 45% higher than that of the NP model, while velocity magnitude for RVOT pacing 

model was 24% lower than that of the NP model. 

Table 2. Velocity and flow shear stress (FSS) of pacing models 

 

 Begin-filling  Peak of filling  Begin-ejection Peak of ejection  

 Velocity 

(cm/s) 

FSS 

(dyn/cm2) 

Velocity 

(cm/s) 

FSS 

(dyn/cm2) 

Velocity 

(cm/s) 

FSS 

(dyn/cm2) 

Velocity 

(cm/s) 

FSS 

(dyn/cm2) 

NP 17.60 0.2142 109.9 1.359 39.87 1.096 183.1 1.970 

RVA 26.20 0.7010 117.5 1.771 52.41 1.159 235.8 3.205 

RVOT 19.08 0.2531 104.9 1.331 32.96 0.7831 139.9 1.616 

PIVS 24.67 0.2981 146.5 1.738 44.45 1.573 266.0 3.866 

Ventricle stress and strain are good measure about how hard ventricle muscle is working.  It is 

of interest to calculate LV stress/strain conditions for comparisons. Comparison of average 

stress and strain values on LV inner contours of four models were given in Table 3. Using NP 

model as baseline, at the peak of filling, stress of RVA model was 9% higher than that of NP 

model. Stress of RVOT and PIVS models were 19% and 5% lower than that of NP model, 

respectively. Meanwhile, strain of RVA and RVOT models were 4% and 5% lower than that 

of NP model, respectively. Strain of PIVS model was 11% higher than that of NP model. At 

the peak of ejection, stress of RVA, RVOT and PIVS models were 36%, 34% and 120% 

higher than that of NP model, respectively. Moreover, strain of RVA pacing model was close 

to NP model, while strain of RVOT and PIVS pacing models were 11% and 47% higher than 

that of NP model, respectively. 

Table 3. Stress and Strain comparison of pacing models 

 

 Begin-filling  Peak of filling  Begin-ejection Peak of ejection  

 Stress 
(kPa) 

Strain Stress 
(kPa) 

Strain Stress 
(kPa) 

Strain Stress 
(kPa) 

Strain 

NP 2.779 0.0882 81.21 0.5756 135.9 0.6979 23.46 0.4214 

RVA 3.604 0.0897 88.31 0.5506 153.5 0.6709 31.90 0.4181 

RVOT 2.371 0.0779 65.70 0.5482 114.3 0.6691 31.52 0.4670 

PIVS 2.270 0.1062 76.78 0.6394 135.2 0.7713 51.56 0.6204 
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Conclusions 

Correct ventricle flow characteristics and stress/strain calculations are of fundamental 

importance for many cardiovascular research where mechanical forces play a role in disease 

initiation, progression and treatment strategy selections. Ventricle remodeling, disease 

development, tissue regeneration, patient recovery after surgery and many other cell 

biological activities are closely associated with ventricle mechanical conditions.  FSI models 

provide complete mechanical analysis including both flow forces and structural stress/strain 

conditions and fluid structure interaction. The existence of alternatives to existing leads and 

pacing methods may permit improvement in long-term outcomes with chronic pacemaker 

therapy while also making therapies such as synchronous pacing available to a wider array of 

patients with clinical situations. Direct comparison studies between pacing options will be 

needed to better understand the electromechanical associations and how these correlate with 

long-term morbidity, mortality, and quality of life. Studies concentrating on the therapeutic 

benefits of existing experimental therapies will also allow for the development of parameters 

that may permit correlation of findings during acute animal studies with long-term clinical 

outcomes.  Further research needs to be done into options for alternative pacing methods, 

such as RVOT pacing, PVIS pacing, and how they correlate with long-term clinical outcomes. 

Lack of in vivo data and model construction cost are also considerations. Data from the 

literature or from ex vivo experiments have to be used to complete the computational models.   

We are in need of patient-specific data such as fiber orientation, sarcomere length contraction 

rate, regional material properties, etc. 
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Abstract 
Confinement is a well-known structural application since ancient times. Its early applications 
involved mainly masonry elements or structures, however in recent times a lot of research has 
been performed experimentally on confinement of concrete columns, either cylindrical or 
prismatic. Only recently the research differentiated the behavior of plain concrete from 
reinforced concrete, and the number of available confinement models increased rapidly. 
Predictive models are usually quite different in nature; earlier developments involved sound 
mechanically based approaches, based on classical failure criteria, while moving from those 
outcomes, proposals deviated on best fitting and empirical approaches, up to recent neural 
network approaches. In this framework, even if masonry confinement was the pioneer 
application, masonry confinement modelling has been usually borrowed from concrete 
confinement, which was vastly tested in the last decades. 

However concrete and masonry have some crucial differences in their behavior, mainly 
related to their nature. Masonry is characterized by non-isotropic and non-linear behavior also 
for reduced strain levels. The behavior can vary significantly from masonry to masonry 
depending on its composition, i.e. the type and aggregation of the artificial or natural resistant 
elements and the type of mortar. Under uniaxial loading, masonry material exhibits a brittle 
behavior characterized by tensile strength far lower than compressive strength. If this is 
similar to concrete, the variability of the ratios between tensile and compressive behavior is 
notably wider for masonry. In fact ordinary concrete performance can be usually fully defined 
by the cylindrical compressive strength, as it is the only parameter used to individuate the 
confinement performance of concrete after the lateral confining pressure is known. 

Authors are working on theoretical modelling of masonry confinement aiming at include 
other features characterizing the masonry behavior on a solid mechanics base (e.g. recently 
CNR guidelines added empirically the specific weight of masonry as an index for the 
confinement efficiency). In the present work, a failure criterion is considered containing the 
mean, or hydrostatic stress, able to promote the difference between compressive and tensile 
strength. This criterion is defined in the principal stress field and the mean stress (or first 
invariant) is crucial to the failure in brittle and compacting porous materials. Criteria of this 
kind are particularly useful not only to introduce non-uniform stress states, as those developed 
in non-axisymmetric confined elements, but also to be implemented in finite elements 
applications. 

The validity of the adopted failure criterion has been checked against actively confined clay 
brick masonry experimentally tested under accurately known lateral pressure levels. 

 

Keywords: Clay Brick masonry, Confinement, Failure criterion, Triaxial Hoek cell 
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Introduction 

The confinement is the application of a wrapping around an object with the aim of limiting or 
preventing the lateral deformations and the failure. In the construction industry, the 
application of confinement is used both to confine individual structural elements either entire 
buildings or parts of them. Since ancient times the confinement was well-known and adopted 
in various fields, for instance for the vaults, the columns and the domes. 
The research on the physical-mechanical characterization of materials has led to the evolution 
of the confinement techniques, refining methodologies and sizing. The basic idea is that, by 
increasing the lateral compression in an axially loaded element, a three-dimensional stress 
state is obtained, beneficial in terms of the ultimate load, as it is well known from the 
application of the classical failure criteria to the building materials.  
Despite masonry confinement applications have been among the first to be developed, the 
wider part of confinement research of the last decades was focused on ordinary concrete 
elements. The two materials share the quasi-brittle nature and the relevant difference between 
compressive and tensile strength. However concrete and masonry have some crucial 
differences in their behavior, mainly related to their nature. The behavior can vary 
significantly from masonry to masonry depending on its composition. Masonry is 
characterized by non-isotropic behavior due to the type and aggregation of the bricks/blocks 
and the type of mortar/joints. Confinement also has unquestionable advantages in the case 
where the heterogeneity of the materials (such as in masonry with alternating mortar and 
bricks) induces tensile stresses in one of the components. 
Outlining the differences between masonry and concrete is out of the scope of this work, 
however the recent trend to extend confinement models developed for concrete to the case of 
masonry elements imposes a careful re-evaluation of the theoretical bases. 

Confinement modelling 

First models proposed at the beginning of last century were based on solid mechanics, e.g. 
one of the pioneers was by Richart et al. [1] dating back to 1929 for concrete confinement. Its 
form was quite simple as it provided a linear formulation between masonry confined 
compressive strength, fmcd, and lateral pressure, fl, respectively, normalized with respect to 
masonry unconfined compressive strength, fmd and proportional to a coefficient k’: 

 1 'mcd l

md md

f fk
f f

= + ⋅      (1) 

Further models followed on an empirical base, assuming the following format: 

 1
b

mcd l

md md

f fa
f f

 
= +  

 
     (2) 

and the coefficients (or sometimes functions) a and b were repeatedly calibrated based on 
regression analyses, hence aiming at best fitting the experimental available data on masonry 
confinement. In these processes, two different uncertainties combine together: (i) the 
variability of masonry performance, hence a simple format involving only the compressive 
(unconfined) strength is weak; (ii) the former tests (on concrete only) involved passive 
confinement by means of steel jackets, hence the lateral pressure, et least close to the peak, 
was simply related to the (constant) yielding stress value of the steel material, however 
hundreds of further tests were based on fiber reinforced plastics (FRP) confinement. Such a 
confining material has a linear elastic behavior up to failure, so that the lateral pressure is 
continuously variable, and depends on the compatibility with lateral deformability of the 
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confined member. Assuming the ultimate stress of FRP as the relevant value to estimate the 
lateral pressure has been demonstrated to be non-conservative and many reasons for this were 
provided [2][3]. 
Furthermore many tests are conducted on non-axisymmetric elements, so that the confining 
pressure is not uniform and the correlation between lateral pressure and increase of 
compressive strength is even more complicated. Conventional approaches, like as parabolas 
and volumetric efficiency factors, have been provided (e.g. [4]), as long as more refined 
approaches taking into account the pointwise variability of lateral pressures not equal even in 
two orthogonal directions in the plane of the cross section [5][6]. 
To solve some of the issues remarked previously (i.e. on effective lateral pressure and cross 
sectional shape effect), in this work focus is made on circular masonry elements and for the 
validation, actively loaded cylindrical masonry specimens tested in triaxial compression 
device (Hoek cell) only were considered [7]. 
It is remarked that the extension of concrete models to masonry is weak because there are 
many differences between the two materials and the main intent is to avoid experimentally 
calibrated models, that do not reflect the intrinsic variability in masonry performance (apart 
providing a calibrated model for each masonry type), but to provide solid mechanic based 
models that can be implemented satisfactorily in Finite Element Models (FEMs), too, and 
allows to account also for non-uniform lateral pressures. Such models are necessarily multi-
parameters. For instance CNR DT200R1 [8] suggests that the effects of lateral pressure on 
masonry confinement are proportional to the mass-density of the masonry, in the sense that 
heavier masonry has higher increases of compressive strength from the same amount of lateral 
pressure. This means that a in equation (2), according to [8], is proportional to the masonry 
mass density expressed in ton/m3. In this way the model is based on two parameters: 
unconfined compressive strength and mass density of masonry. Similarly, another two-
parameters model was proposed [9], derived from the Mohr Coulomb failure criterion, 
including friction angle, Φ, and cohesion, c, to characterize different masonry materials (e.g. 
compared to [8], it is expected that two masonries having the same mass density, behaves 
differently according to other mechanical parameters). In that model [9], two independent 
parameters, out of the three (i.e. fmcd, Φ and c), are used, e.g. k’ in equation (1) is (fmd/2c)2. 
However the definition of friction angle and cohesion for masonry is not always 
straightforward. 
Recently some of the authors proposed [10] to extend the ultimate strength surface, based on 
five parameters, proposed by Argyris et al. [11] to masonry. This surface was previously 
adopted by Mander et al. [12] to calibrate their well-known solid mechanic based model for 
concrete confinement (and inserted also in international Codes, e.g. ACI440.2R-02 [13]). 
Despite its derivation is based on five parameters, the final form and coefficients, in 
particular, depend implicitly on the input parameters depicting the masonry behavior; the 
approach should be repeated for each masonry to provide the relevant confinement models. 
For instance the confinement equation proposed in ref [10] for clay brick masonry is as 
follows: 

 1.07 2.07 1 7.56 2mcd l l

md md md

f f f
f f f

= − + + −      (3) 

To have a more flexible, solid mechanic based model, authors propose the following explicit 
two-parameter approach, based on the general failure surface developed by Stassi for hollow 
cylinders and hollow spheres [14]. 

ICCM2018, 6th-10th August 2018, Rome, Italy

670



Proposed two-parameters confinement model 

Stassi [14] proposed a failure surface of general character that may be adopted for both soft 
and hard materials. The failure surface is expressed by the following equation: 

 2 1'J Iα β+ ⋅ =      (4) 

as a linear combination of first and second stress invariants, I1 and J’2, respectively. The 
mean, or hydrostatic stress (i.e. I1), is able to promote the difference between compressive, 
fmd, and tensile, ftd, strength and it is crucial to the failure in brittle and compacting porous 
materials. The parameters α and β have been related to fmd, and tensile, ftd, strengths (i.e. the 
failure surface passes through uniaxial strength points). Normalizing the principal stresses σ1, 
σ2, σ3 (compression is positive) with respect to fmd and introducing the ratio ρt=ftd/fmd, the 
failure surface, F=0, becomes: 

 

( )1 2 3 1 2 3

2 2 2

1 2 3 1 2 2 3 1 3
2 2 2

, , 1

0

t
md md md md md md

t
md md md md md md

F
f f f f f f

f f f f f f

σ σ σ σ σ σρ

σ σ σ σ σ σ σ σ σ ρ

   
= − + + +   

   
      
 + + + − − − − =     
       

     (5) 

The three-dimensional failure surface is plotted in Figure 1, assuming ρt changing from 0 to 1 
with a step of 0.2. Equation (5) becomes a particular case, in fact it is the Von Mises failure 
criterion, when ρt=1. 
 

 
Figure 1.  3D failure surface assuming ρt changing from 0 to 1 with a step of 0.2 
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This failure surface was first used for finite element modelling of masonry structures by 
Sparacio and Russo Spena in 1980 [15], however it is still particularly suitable to derive a 
confinement model both accounting for uniform and non-uniform biaxial lateral confining 
pressure. 
In the same format of previous equations for confinement modelling, the following positions 
can be assumed: axial stress σ1=fmcd and lateral stresses σ2=σ3=fl. Equation (5) of the failure 
surface can be then solved with these assumptions, yielding to 

 ( )
21 1 3 1

2 2
mcd t t l l

t
md md md

f f f
f f f

ρ ρ ρ− + = + + − + 
 

     (6) 

hence an explicit two-parameter model, in terms of fmd and the ratio ρt=ftd/fmd is provided. 
The proposed confinement model, based on equation (6) is plotted in Figure 2, assuming ρt 
changing from 0 to 1 with a step of 0.1. It is worth noting that, according to the proposed 
model, the lower is the ratio between tensile and compressive strength and the higher is the 
confinement effectiveness, i.e. given a lateral pressure, the increase of compressive strength is 
higher. 
 

 
Figure 2.  Proposed confinement model assuming ρt changing from 0 to 1 with 0.1 step 

 

Experimental validation 

The proposed confinement model provided by equation (6) is dependent on the two 
parameters fmd and ρt. The model is validated by means of comparison with experimental 
tests, where the two parameters are required, i.e. knowledge on compressive and tensile 
strengths. To reduce uncertainties related to the (lateral) confining pressure estimation, in 
particular those related with the linear elastic confining materials, like as FRP substituting the 
traditional steel hoops, an experimental program on cylindrical columns of 54 mm in diameter 
and 85 mm high, with 0.25 cm thick joints was considered [7]. 
The short dimensions of specimens are due to confine them actively by means of a triaxial 
compression device (Hoek cell) and reproduce a 1:4 scaled masonry column (however it 
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cannot be excluded that some size effect occurred). Three unconfined specimens were tested 
to assess the compressive strength and fmd=13.58 MPa with a CoV=6.22 %. Afterwards ten 
specimens were subjected to a uniform stress, ranging from 0.4 to 7 MPa, by a hydraulic 
pressure generator applied to the lateral surface of cylindrical specimens contained in a rubber 
tube. 
Unfortunately nothing is said on the tensile strength of the masonry apart that the lime mortar 
was made of one portion of cement, one portion of hydrated lime, eight portions of sand, and 
two portions of water. In this case, on safe side, a ρt =0.1 has been assumed and the ten 
experimental results have been plotted as red squares to be compared with the confinement 
solid curve in figure 3. The comparison allows to satisfactorily validate the proposed 
confinement model, even if supplementary results are required to further validate the model, 
however usual experimental tests available in scientific literature, with confinement made by 
FRP, add the aforementioned uncertainties on the effective confining pressure fl and 
eventually the cross sectional shape effects. 
 

 
Figure 3.  Experimental [7] validation of the proposed confinement model: Eq. 6 with 
ρt=0.1 

Conclusions 

Confinement of masonry is derived for similarity from concrete confinement, however many 
differences between the two materials can be outlined, as long as the parameters required to 
describe their behavior. Concrete confinement models are usually one-parameter models, as 
the knowledge of concrete behavior is usually comprehensive once given its cylindrical 
compressive strength; conversely masonry should be usually described by means of more 
parameters. Some attempts have been made to base the masonry confinement models on solid 
mechanics, hence to include as much information as possible on the masonry behavior. 
In the present case, focus is made on two parameters, in particular tensile and compressive 
strengths, to characterize the masonry. A failure surface of general character is adopted as a 
linear combination of first and second stress invariants. The first invariant promotes the 
difference between compressive and tensile strength and is crucial to depict the failure in 
brittle and compacting porous materials. This confinement model adds up to few other 
models, mainly empirical in nature, relating the uniform lateral pressure to the increase of 
masonry compressive strength, however its nature allows to use its underlying failure 
criterion in FEM (hence including naturally the effects of confinement) and to evaluate 
confinement configurations where the confining stress is not uniform (hence in the case of 

ICCM2018, 6th-10th August 2018, Rome, Italy

673



prismatic, non-circular elements). The proposed confinement model has been validated 
against few experimental tests, however there is lack of tests where the lateral pressure is 
known with reasonable accuracy without introducing further uncertainties on the effective 
confining pressure, commonly found in usual FRP confined tests.  
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Abstract 

In the paper, the smoothed finite element method (S-FEM) based on linear triangular elements 

is used to solve 2D solid contact problems of functionally graded materials. Both conforming 

and non-conforming contacts algorithms are developed using modified Coulomb friction 

contact models including tangential strength and normal adhesion. Based on smoothed 

Galerkin weak form, the system stiffness matrices are created using the formulation 

procedures of edge-based S-FEM (ES-FEM) and node-based S-FEM (NS-FEM), and the 

contact interface equations are discretized by contact point-pairs. Then these discretized 

system equations are converted into a form of linear complementarity problems (LCP), which 

can be further solved efficiently using the Lemke method. The singular value decomposition 

method is used to deal with the singularity of stiffness matrix in the procedure constructing 

the standard LCP, which can greatly improve the stability and accuracy of the numerical 

results. Numerical examples are presented to investigate the effects of functionally graded 

materials and comparisons have been made with analytical solutions and the standard FEM. 

The numerical results demonstrate that the strain energy solution of ES-FEM has higher 

convergence rate and accuracy compared with that of NS-FEM and FEM for functionally 

graded materials. 

 

Key words: Smoothed finite element method; Contact problem; Linear complementarity 

problem; Strain energy; Functionally graded material 

1. Introduction 

Contact problems play an important role in many fields such as mechanical, civil engineering 

[1] and medicine. In fact, the use of functional graded materials (FGM) may become a critical 

issue for developing advanced lightweight structures, which meets the stringent requirements 

of high-tech fields. In many practical problems, the material of contact problems appears 

some particular physical properties changing with dimensions. For example, biological 

functionally gradient materials can be applied in medicine to achieve biological permanent 

repair and reconstruction of human hard tissue [4]. Therefore, it is necessary to study the 

contact problems of functionally graded materials.  

 

Compared with solid mechanics, the geometric and material are discontinue at the contact 

interface, which made it difficult to solve by the analytical method, so the numerical methods 

are needed. In this work, we study the contact problems with functionally graded materials 

using the S-FEM. Based on smoothed Galerkin weak form, the system stiffness matrices are 
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created using the formulation procedures of edge-based S-FEM (ES-FEM) and node-based 

S-FEM (NS-FEM), and the contact interface equations are discretized by contact point-pairs. 

However, the singularity of the system stiffness matrices makes the traditional solver for 

linear system of equation failed. We introduced the singular value decomposition method for 

solving linear system equations with singular system stiffness matrices. Through numerical 

simulations, it is demonstrated that the present algorithm is accurate and efficient for the 

contact problems of functionally graded materials.  

2. Problem statement 

2.1 Boundary value equations with contact 

( )i

u

Body i

( )i

 ( )i

c

 

Figure 1. Configuration of the i th contact body 

For solid body i  as shown in Figure 1, the incremental forms from time t  to t t  of its 

static equilibrium equation, the constitutive equation and compatibility equation, the 

displacement increment, traction increment and contact traction increment boundary 

conditions are described, respectively, as follows 
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(1)  

2.2 Modeling of contact interfaces  

By using the slack vectors of residual strength and contact gap from Kuhn-Tucker conditions, 

we get the conformability equations as following [3]:  

ˆˆ ˆˆ 0

ˆˆ ˆ 0

ˆ ˆ ˆ ˆ0, 0, 0

g

  

 

  T

M τ k λ

M g

λ δ λ

c +





 (2)  
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3. Smoothed Galerkin weak form 

Based on the smoothing operator, we have the following smoothed Galerkin weak form with 

contact boundary: 
( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( ) 0,

i
c

i i
c

i i
t c

N
i T i i i T i

c c

c

i T i i T i T i

d d

d d

 

 

 


 

 

    

 

 

D u

u t u τ

  b

 (3)  

4. Discretized form for equation 

The physical properties of functional graded materials (FGM) change with dimensions. For 

example, the Young's modulus is not constant, so that the material constant matrix is different 

for each smoothing domain. For each edge-based smoothing domain, using the material 

constant of the midpoint of the edge to represent the material constant of the smoothing 

domain. Similarly, for each node-based smoothing domain, using the material constant of the 

node to represent the material constant of the smoothing domain. For 2D contact problem of 

FGM, the material constant matrix D  can be written as: 

( , ) , ,ijc x y x y   D  
(4)  

where 
ijc  is the material constant, which change with dimensions. 

Based on smoothed Galerkin weak form, the system stiffness matrices are created using the 

formulation procedures of edge-based S-FEM (ES-FEM) and node-based S-FEM (NS-FEM), 

and the contact interface equations are discretized by contact point-pairs. Then we get the 

following equations: 

0, 0, 0  

c c t

g t

T

KU - Cτ = F

-M τ + λ = k + M τ

M δ - GU = G

λ δ λ δ

 

            

 

(5)  

 

From the Eq. (5) we have the following standard LCP, which can be very readily solved using 

the Lemke method. 

0, 0, 0

 


  
T

λ Mδ q

λ δ λ δ

 

(6)  

The contact tractions and the displacement of the entire domain can be calculated using: 

1( )   -1

g t
τ K M δ G GK F

 
(7)  

1( ) U K F C
 

(8)  

where  1 1 1,       
c g c t c t

M M K M q M K G GK F k M τ  , 1K GK C . 

Note that the stiffness matrix K  in Eq. (5) may be singular, because some contact bodies 

may be suspended namely without displacement boundaries or constraints for rigid body 

movement. Assume that the i th body is suspended, and then its stiffness matrix ( )i
K  may 

be singular for static analysis. Based on singular value decomposition method, the m m  
real matrix K  can be written as follows:  
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 T
K UΣV  (9)  

where U  is an m m  orthogonal matrix,   is a m m  rectangular diagonal matrix with 

non-negative real numbers on the diagonal, V  is an m m  orthogonal matrix and  T
V  is 

the transpose of V . The diagonal entries i  of   are known as the singular values of K . 

Then the inverse of the stiffness matrix K  can be written as 

1 1  T
K VΣ U  (10)  

5. Numerical example 

In this section, a flat punch on an elastic foundation subjected to a uniform load as shown in 

Figure 2. The material parameters of flat punch and foundation are 

0 1Mpa, 1 , 1.6 , 2 , 1.6p w m h w H w W w     . 

 

0p

W

H

punch

y

h

x

foundation

w

 

 

 

 

 

 

(a) (b) 

Figure 2. A flat punch on an elastic foundation subjected to a uniform load: (a) its half model with 

symmetric conditions imposed on the left; (b) discretized mesh model 

5.1 Convergence of strain energy 

The Young's modulus and Poisson ratio of the punch and foundation are 1GpapE  ,

10MpafE   and 0.3p f   . We use six different mesh models to discretize the problem 

domain listed in Table 1, and the convergence of strain energy is obtained as shown in Figure 

3.  
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Table 1  The number of nodes, T3 elements and the density of boundary nodes for flat punch  

No. M1 M2 M3 M4 M5 M6 Ref. 

Nodes 153 264 544 2046 5508 12312 48622 

T3 elements  240 440 960 3840 10600 24000 48000 

Boundary nodes 

density 
0.2 0.15 0.1 0.05 0.03 0.02 0.01 

 

(a) 

 

(b) 

Figure 3. Using different methods for flat punch on an elastic foundation: (a) convergence of strain 

energy;(b) convergence ratios of relative error of strain energy 

From Figure 3 (a), it is obviously observed that the solution of the NS-FEM model converges 

from above to the reference solution, while the ES-FEM model converges from below to the 

reference solution with the increase of nodal degree of freedom. Moreover, the strain energy 

solutions obtained by NS-FEM and ES-FEM models converge linearly with the characteristic 

length of the mesh, shown in Figure 3 (b). The convergence rate of ES-FEM is larger than 

that of NS-FEM and FEM-Tr3, which is about 20% higher than that of FEM-T3. The 

numerical results demonstrate that strain energy solutions of ES-FEM have higher 

convergence rate and accuracy compared with that of NS-FEM and FEM. 

5.2 Influence of functionally graded materials 

Let the Poisson ratio 0.3p f   , 0E  and RE  represent the Young's modulus at the center 

of the foundation and at the right respectively and 0/Rr E E , 0 10MpaE  . Let pE  

represent the Young's modulus of the punch and 0 100pE E   . Young modulus of 

foundation is defined as follows:    0 0 /f RE x E E E x W   . In the work, let 

0.5,1, 2, 5,10r  , we study the effect on the trend of normal contact traction with different r  

based on ES-FEM. 
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Figure 4. Normalized normal contact traction ˆ
n  in contact zone with different ratio r  for flat 

punch on an elastic foundation 

The Figure 4 shows that on the contact region from 0 to 0.6m, as r  is increasing, the normal 

contact traction decreases. However, as the contact position is approaching to the right end of 

the punch, the contact traction increases with singularity. Furthermore, with the decreases of 

r  the singularity of the right end decreases and the toughness of the elastic foundation can be 

maintained. The numerical example illustrates that the contact problems based on ES-FEM 

can be well solved for functional graded materials. 

Conclusion 

In the paper, we put forward conforming and non-conforming contacts algorithms using 

modified Coulomb friction contact models. Then according to S-FEM theory and contact 

point-pairs, discretized system equations are set up. Next, we use singular value 

decomposition method to solve the singularity of the stiffness matrix, through which the 

contact problems based on S-FEM can be well solved for functional graded materials. 

Through the intensive numerical simulations, we find that the presented algorithm is accurate 

and efficient for the contact problems of functionally graded materials.  
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Abstract 
In this paper, inverse determination of the absorption coefficient in spot laser welding by 
using a sequential method is presented. The advantages of this method are that the functional 
form for the unknown absorption coefficient is not necessary to preselect and nonlinear least-
square do not need in the algorithm. Two examples have been fulfilled to demonstrate the 
proposed method. The obtained results can be concluded that the proposed method is an 
accurate and stable method to inversely determine the absorption coefficient in the spot laser 
welding. 
Keywords: Inverse Problem, Absorption Coefficient, Spot Laser Welding. 
 
Introduction 
In recent years, the rapid development of the laser welding technology has gradually replaced 
the traditional welding techniques. Comparing the conventional welding process, laser 
welding was used widely because of its good behaviors such as high efficiency, narrow heat 
affected zone (HAZ), and high welding speed. Thus, the applications of laser welding have 
been broadened in modern industries including the aerospace and automotive industries, the 
microelectronics industry and the medical instrument industry nowadays [1, 2]. 
As shown in the literature, the absorption coefficient is an important factor in laser welding 
processing. The absorption coefficient depends on optical material properties, laser 
wavelength, surface temperature, and surface condition [3, 4]. Nevertheless, numerous studies 
in laser welding-related problems were assumed that the absorption coefficient is constant [5-
7]. The effect of the absorption coefficient on the weld pool shape and on the temperature 
distribution was investigated by Bannour et al. [8]. The results showed that the peak 
temperature reaches 1250K for using the constant absorption coefficient and 1300k for the 
case of the temperature-dependent absorption coefficient. Furthermore, the results in Bannour 
et al. [8] also evidenced that the molten pool formation and temperature distribution 
significantly influenced by the absorption coefficient comparing with other parameters such 
as heat capacity, density and shielding gas. In other words, the use of appropriate absorption 
coefficients is significant in solving laser welding-related problems, especially the transient 
laser welding-related problems like spot laser welding and segment laser welding. 
In fact, the direct measurement of the absorption coefficient during the laser welding process 
is not easy. As results, the inverse method is one of the good way to measure this coefficient. 
Sun et al. [9] used the direct sensitivity coefficient method to inversely estimate the 
absorptivity by implementing a two-dimensional quasi-static IHCP in laser hardening process. 
Chen et al. [10] proposed a hybrid technique of the Laplace transform and finite-difference 
methods to estimate the absorptivity in the laser surface heating process. Wang et al. [11] 
estimated the surface absorption coefficient in the laser surface hardening by using the 
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conjugate gradient method with the temperature-dependent thermal properties. However, 
these studies only deal with in the laser surface hardening in which the maximum temperature 
of the substrate is less than melting temperature. Thus, this result is no longer correct when 
the temperature field in the substrate reaches and exceeds the melting temperature in the 
welding process because the phase change of the laser welding process was not considered in 
the work. Furthermore, as our knowledge, only a few published papers implement and 
propose an effective method to determine the absorption coefficient in the spot laser welding 
until now. 
In this paper, a robust and stable method is presented to determine the absorption coefficient 
in the spot laser welding process. In the proposed method, a modified Newton-Raphson 
method combined with the concept of the future time is used to solve the problem step by step 
[12-14]. The estimation of absorption coefficient in spot laser welding process at each time 
step consists of two phases: the process of direct analysis and the process of inverse analysis. 
In the process of direct analysis, the absorption coefficient and the boundary conditions are 
assumed as specified values and then the temperature field is solved by finite element method 
[15]. In finite element method, the effective heat capacity method [16, 17] are applied to take 
the latent heat into account due to the phase change in laser welding. Solution from this 
process are inputted to the sensitivity analysis and integrated with the measured temperature 
at the sensor’s position. Thus, a set of nonlinear equations is formulated for the process of the 
inverse estimation. In the process of inverse analysis, an iterative method is used to guide the 
exploring points systematically to obtain the unknown variables. Then, the intermediate 
values are substituted for the unknown variables for the following analysis. That way, several 
iterations are performed to achieve the undetermined parameters. The advantage of this 
inverse method does not adopt the nonlinear least-squares error to formulate the inverse 
problem, but it is implemented a direct comparison between the measured temperature and the 
computed melting temperature. 
 
Problem Statement 
Considering the three-dimensional cylindrical workpiece, its top surface is heated by an 
incident laser beam with the laser beam radius of br . The rest of workpiece surface is cover 
by an adiabatic material to avoid the energy lost to the surroundings. The thermocouple is 
embedded inside the workpiece to capture the temperature history (as Figure 1).  

 
Figure 1: The model of spot laser welding. 

The aim of this work is to propose the efficient method to estimate inversely the absortion 
coefficient in the spot laser welding. To simplify, the heat conduction-based method for this 
welding problem is thus considered. Due to the symmetry of cylindrical workpiece, the 
governing equation of transient heat conduction in two-dimensional cylindrical coordinates is 
given by: 
 1 1( ) ( ) ( ) ( )T T Tk T r k T r T C T

r r r r z z t
r∂ ∂ ∂ ∂ ∂   + =   ∂ ∂ ∂ ∂ ∂   

  in Ω ,       0 ft t≤ ≤  (1) 

adiabatic layer 

Sensors  Γs  Ω 

r  
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s( ) ( )  at  Γ

( ) 0 at otherwise surfaces

Tk T q r
z
Tk T
n

∂
− =

∂
∂

− =
∂

,     0 ft t≤ ≤  (2) 

 
0T

r
∂

=
∂

 at z-axis (3) 

 
0( , z,0)T r T=  (4) 

where, k(T), C(T) , ( )Tr are respectively the thermal conductivity, heat capacity, and density; 
( , , )T r z t is the temperature field; 0T is the initial temperature; ( )q r is the laser heat flux; n is 

the normal vector. In this work, the heat source model proposed by Friedman [18] is 
considered and it can expressed as following:  
 2

2 2

3 . 3( ) exp
b b

P rq r
r r
η

p
 −

=  
   

(5) 

where, P is the laser power;  η is the absorption coefficient, br is the effective radius of laser 
beam. 
When the absorption coefficient, the boundary conditions and other input parameters are 
known, the temperature distribution in the domain can be solved numerically by the finite 
element method [15]. Furthermore, the effective heat capacity method is considered in the 
finite element method to take account of the latent heat of the phase change in laser welding 
[16, 17].  
The inverse problem is to estimate the absorption coefficient in the process of spot laser 
welding when the temperature history is measured at mx x= . Thus, a sequential method is 
proposed in the next section. 
 
Methodology 
The proposed method consists of the forward problem, the sensitivity problem, the 
operational algorithm, and the stopping criterion. The direct problem is implemented to obtain 
the temperature field, and the sensitivity problem is utilized to find out the search step in the 
inverse problem. Next, the operational algorithm is used to satisfy the process of the inverse 
analysis when the solution of both direct and sensitivity problems is available. Finally, the 
stopping criterion is shown to decide the termination of the iterative process. 
 
Forward problem 
The proposed method is based on a sequential algorithm in which the inverse solution is 
solved at each time step. Accordingly, Eqs. (1-4) are restricted to only one temporal step and 
the transient problem at mt t=  is governed by the equations as follows: 
 ( ) ( ) ( ) ( )1 1 . .m m m

m m m m
T T Tk T r k T r T C T

r r r r z z t
r∂ ∂ ∂∂ ∂   + =   ∂ ∂ ∂ ∂ ∂   

   in Ω , mt t=  (6) 

 
s( ) ( )  at  Γ

( ) 0 at otherwise surfaces

m
m m

m
m

Tk T q r
z

Tk T
n

∂
− =

∂
∂

− =
∂

, mt t=  (7) 

 
0mT

r
∂

=
∂

   at z-axis (8) 

 
1 1( , z, )m mT r t T− −=  (9) 
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2 2

ˆ3 . 3( ) expm
m

b b

P rq r
r r
η

p
 −

=  
 

 (10) 

 
where, ˆmη is the unknown absorption coefficient at mt t= .  
In the present work, the proposed method formulates the problem from the difference between 
the calculated temperature and the one measured directly. As well, instead of the optimization 
algorithm, the equation solver solves the inverse problem. 
When the estimation is at mt t= , the estimated condition from 1t t=  to 1mt t −= has been 
evaluated, and the problem is to estimate the laser heat flux at mt t= . In order to guarantee the 
stability of estimated results in the inverse algorithm, several future values of the estimation 
are temporally assumed to be constant or linear relation in the subsequent procedure [19]. 
Then, the unknown conditions are presented as follows: 
 

1ˆ ˆ ˆ ˆ( 1)( )q q q q
m r m m mη η ξ τ η η+ −= + − −  (11) 

where, τ is the number of the future time; ξ=0 is constant relation and ξ=1 is linear 
combination. 
The forward problem, Eqs. (6-10) are solved in τ  steps (from mt t= to mt t τ+= )  and the 
undetermined absorption coefficient are set by Eq. (11). 
 
Sensitivity problem 
In the proposed method, a modified Newton-Raphson method is adapted to solve the inverse 
problem in which the sensitivity analysis is necessary to achieve the search step in each 
iteration. The derivative ˆ/ mη∂ ∂  is taken at both sides of Eqs. (6-10). Furthermore, because of 
the small number of future time step and the small temporal increment, we can assume that 
the thermal properties at the estimating step mt  are constant. Then, we have: 
 ( ) ( ) ( ) ( )1 1m m m

m m m m
X X Xk T r k T r T C T

r r r r z z t
r∂ ∂ ∂∂ ∂   + =   ∂ ∂ ∂ ∂ ∂   

 (12) 
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ˆ

m m
m

m

X q rk T
z η

∂ ∂
− =

∂ ∂
 (13) 

 
0X

r
∂

=
∂

 (14) 

 
1 1( , z, ) 0m mX r t X− −= =  (15) 

Eqs. (12-15) describe the mathematical equations for sensitivity coefficient, Xm, which can be 
explicitly solved. These equations are the linear equations and the dependent variable, Xm, 
with respect to independent variables, x, y, z and t. Therefore, the sensitive solution can be 
obtained directly through by the finite element method. 
 
Modified Newton-Raphson method 
A modified Newton-Raphson method [14] is necessary in the proposed method to deal with 
the inverse problem with solving a set of nonlinear equations. This set of nonlinear equations 
is directly formulated the problem from the comparison between the computed temperature 
and the preselected temperature at the measurement locations. Therefore, the measured 
temperature j

measY  and the calculated temperature j
cY  are evaluated first. Then estimation of 

the absorption coefficient, ˆmη , at each time step can be recast as the solution of a set of 
nonlinear equations: 

ICCM2018, 6th-10th August 2018, Rome, Italy

684



 0j j
c measY Y= − =Y  (16) 

 
where, , 1,...,j m m m τ= + +  is the number of equations which is equal to the number of the 
future times τ .  
The derivative of Y  with respect to ˆmη is solved through Eqs. (12-15) and can be expressed as 
following: 
 

ˆmη
∂

=
YX  (17) 

where, X  is the sensitivity matrix 
With the starting 0ˆmη and the above derivations from Eq. (17), we have the following equation: 
 1 1ˆ ˆk k k

m mη η+ += + ∆  (18) 

where, k∆ is a linear least-squares solution for a set of over-determined linear equations and it 
can be derived as following: 
 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )k T k k T k k
m m m mη η η η

−
 ∆ = −  X X X Y  (19) 

The preceding derivation is applied at each time step. This method can be carried out in the 
multi-sensor’s measurement. Under this condition, the number of elements in Eq. (16) is 
based on the number of future time step and the number of measured positions. 
 
The stopping criteria 
The modified Newton-Raphson method (Eqs. (16-19)) is used to determine the unknown 
value of the absorption coefficient at the m-th time step, ˆmη . The step size k∆  goes from ˆk

mη  
to 1ˆk

mη
+ , and it is determined from Eq. (19). Once k∆  has been calculated, the iterative to 

determine 1ˆk
mη
+ is executed until the stopping criterion is satisfied. 

The discrepancy principle [20] is widely used to evaluate the value of the stopping criterion in 
the inverse technique. Nevertheless, the convergence of the inverse solution is not guaranteed 
by the stopping criterion created by the discrepancy principle. Therefore, two criteria 
proposed by Frank and Wolfe [21] are chosen to assure the convergence and to stop iteration: 
 1 1ˆ ˆ ˆ/k k k

m m mη η η δ+ +− ≤  (20) 
 ( ) ( ) ( )1 1ˆ ˆ ˆ/k k k

m m mη η η ε+ +− ≤S S S  (21) 
where  
 ( ) 21

1

ˆ
r

k i i
m c meas

i
Y Yη +

=

 = − ∑S  (22) 

where, ε  and δ  are small positive value known as the convergence tolerances. 
 
Computational algorithm 
 We choose the number of the future time, r, the mesh configuration of the problem 
domain, and the temporal size, t∆  first. Given overall convergence tolerance ε  and δ , and 
the initial guess 0ˆmη . The value of ˆk

mη  is known at the k-th iteration. 
Step 1: Let j = m and 1(r, , )jT z t − is known. 

 Step 2: Collect the measured temperature, j
measY . 

 Step 3: Calculate the sensitivity matrix, X , by Eqs. (12-15). 
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 Step 4: Solve the direct problem by Eqs. (6-10), and then obtain the calculated 
temperature j

cΦ . 
 Step 5: Construct Y  by j

measY  and j
cY . 

 Step 6: Knowing Y  and X , determine the step size k∆ by Eq. (19). 
 Step 7: Knowing k∆ and ˆk

mη , calculate 1ˆk
mη
+  through Eq. (18). 

 Step 9: Terminate the iteration if the stopping criterion (Eqs. (20-21)) is satisfied. 
Otherwise, return to step 5. 
 Step 10: Stop the process if the final time step is attached. Otherwise, let j=m+1 return 
to step 2. 
 
Results and Discussion 
Two simples are presented to demonstrate that the proposed method can estimate accurately 
the absorption coefficient in spot laser welding. In two examples, the cylindrical substrate has 
the height of 5[ ]H mm= and the diameter of 20[ ]d mm= . The material used for these 
examples is commercial AISI304 which thermal properties are temperature-dependent and are 
taken from Sabarikanth [22]. The latent heat of fusion is 272[kJ/kg]L = , and the melting 
temperature range is from solidus temperature 1673[K]sT =  to liquidus temperature 

1773[K]lT = . A thermocouple is located at (0, 1[mm])mx − . In addition, the measured 
temperature is generated from Eqs. (1-4) when the input parameters are preselected and it is 
presumed to have measurement errors. In other work, the random errors of measurement are 
added to the exact temperature. It can be achieved in the following equation: 

 meas exactT T λs= +  (23) 
where, exactT is the exact temperature, measT is the measured temperature, λ is random numbers 
calculated by the IMSL subroutine DRNNOR [23] and chosen over the range 

2.576 2.756λ− ≤ ≤ , which presents the 99% confidence bond for the measured temperature. 
The mesh in all cases is fine at the incident laser beam with 52.10x −∆ ≈ [mm] and is coarse at 
away with 31.5.10x −∆ ≈ [mm] (as Figure 2). As well, the time increment is 0.02[ ]t s∆ = . 

 
Figure 2: The mesh configuration 

To investigate the deviation of the estimated results from the exact solution, the relative 
average error for the estimated solutions is defined as following: 
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where, f is the estimated results with measurement errors, f̂ is the exact results, and tN  is 
the number of the temporal step. It is declared that a smaller value of µ  indicates a better 
estimation and vice versa. 
Example 1: A constant absorption coefficient of 0.3 is assumed in this example. The 
workpiece is initially at a uniform temperature T0 = 27[0C], and then is heated by a laser beam 
with its effective radius of rb=0.63[mm] and power of P=400[W]. In general, the laser heat 
source can be obtained as follows: 
 

( ) ( )
2

2 23 3

3 400 0.3 3( ) exp
0.63.10 0.63.10

m
rq r

p − −

 × × − =
 
 

 (25) 

The estimated results of the absorption coefficient in the case of measurement error-free are 
shown in Figure 3 and Figure 4 shown the exact and computed temperature at the sensor 
position ( (0, 1[mm])mx − ). As shown, when 0s = , these estimated results are an excellent 
approximation of the exact solution for both constant and linear type of future time. 
In the case of the measurement errors, the estimated results largely diverge from the exact 
solution (as Figure 4). Table 1 illustrates the relative average errors of the estimated results 
when the measurement errors are included. In general, the relative average errors are small in 
all cases. As shown in Table 1, even though the large measurement error of 1.5s = , this value 
for the constant type of future time is 0.01. Furthermore, the relative average errors reduce 
with the increase of the number of future time step and the decrease of the measurement error. 
For example, the relative average error moderates from 0.0053 to 0.0022 about 58% as the 
number of future time steps increase from 2τ =  to 4τ =  for the linear type of future time and 
reduces from 0.01 to 0.0066 about 66% as the measurement error decrease from 1.5s =  to 

1s = for the constant assumption of future time.  
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Figure 3: Estimated absorption coefficient in example 1 with 2r =  and 0s = with two 

function kinds of future time 
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Figure 4: The temperature distribution at the sensor position with 2r =  and 0s = with 

two function kinds of future time 
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Figure 5: Estimated absorption coefficient in the example 1 with 2τ =  and 1.5s = with 

two function kinds of future time 
Additionally, the effect of the function type of future time on the estimated results is 
compared. As mentioned above, two kinds of future time description are considered in this 
work. One is constant type and the other is linear type. The results showed that the accuracy 
of estimated results for linear function of the future time is better than that for the constant 
function of the future time (Table 1). The estimated absorption coefficients with 2τ =  and 

1.5s = for both constant and linear functions of future time are shown in Figure 5. The results 
in this profile show that the estimated results for the linear combination of future time can 
close to the exact solution compared with that for the constant type of future time. In other 
words, the linear function of future time decreases the relative average error effectively (as 
Table 1). 
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Table 1: Relative average errors of example 1 

Cases Future time step  
 τ =2 τ =4 
Linear   
s=1 0.0053 0.0022 
s=1.5 0.008 0.0033 
Constant   
s=1 0.0066 0.0041 
s=1.5 0.01 0.0044 

 
Example 2: In this example, the time variation of the absorption coefficient  

is assumed as follows: 

 1( ) 0.3(1 6.5 10 exp( (t 2) / 0.75)tη −= − × − −  (26) 
The estimated results of the absorption coefficient in the example 2 are shown in Figure 6. 
Once again, Figure 6 shows that the estimated results have good approximation in the case of 
measurement free-error.  
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Figure 6: Estimation of laser heat flux in example 2 with 2τ =  and 0s = with two 

function kinds of future time 

Figure 7 and Figure 8 illustrate the estimated results with the measurement errors for the 
linear assumption of the future time in the cases of 2τ = and 4τ = , respectively. From Figure 
7 and Figure 8, in general, the estimated results have a good approximation to the exact 
solution with the measurement errors included.  
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Figure 7: Estimated absorption coefficient in the example 2 with the measurement 

errors for the linear assumption of future time and τ =2. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5

exact
s=0.5
s=1
s=1.5

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
, η

 

Time, t[s]  
Figure 8: Estimated absorption coefficient in the example 2 with the measurement 

errors for the linear assumption of future time and τ =4. 

Table 2 presents the relative average errors with the different measurement errors and future 
time steps in the example 2. Table 2 shows that the relative average errors reduce as the 
measurement errors decrease. It can be noted that, in example 2, the relative average errors do 
not reduce when the number of the future time step increase. This phenomena is called the 
“leading error” as has been described by Lin [24, 25]. It appears in these results because of the 
temporary assumption in the constant and linear types of future time in Eq. (11), as these 
assumptions might not exactly match the form of unknown absorption coefficient. 
Furthermore, with the form of undetermined absorption coefficient in the example 2, the 
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linear combination of future time has a better approximation than the constant assumption of 
future time. Thus, the relative averages errors for the linear combination of future time is less 
than that for the constant assumption of future time (as Table 2). In general, the relative 
averages errors in all cases are small. This implies that the proposed method estimates 
accurately the absorption coefficient in the spot laser welding. 

Table 2: Relative average errors of example 2 
Cases Future time step  
 τ =2 τ =4 
Linear   
s=0.5 0.0042 0.0061 
s=1 0.0065 0.0072 
s=1.5 0.0089 0.0094 
Constant   
s=0.5 0.0071 0.0121 
s=1 0.0102 0.0134 
s=1.5 0.0133 0.0148 

From the results and discussion above, it can be declared that the proposed method is an 
effective and stable method to estimate the absorption coefficient in the spot laser welding.  
 
Conclusion 
In this paper, the estimation of the absorption coefficient in the spot laser welding was present 
by using a sequential method. As well, the inverse solution at each time step is solved by a 
modified Newton-Raphson method. The advantage of this proposed method is that the 
nonlinear least-squares error is not adopted to formulate the inverse problem, but it is 
implemented a direct comparison of the measured and calculated temperature. In addition, the 
special characteristics of this method are that preselected functional form for the unknown 
absorption coefficient is not necessary. Two examples have been fulfilled to demonstrate the 
proposed method. The accuracy of the estimated results with the different measurement errors 
and number of future time steps is investigated. The results show that the accuracy of the 
estimated results increases when the measurement error decreases and the number of future 
time step increases. Additionally, two kinds of function of future time are also discussed. In 
two examples, the results showed that the estimated results with the linear relation of future 
time is more accurate than that with constant type of future time. In conclusion, from the 
results in the examples, it can be concluded that the proposed method is an accurate and stable 
method to determine the absorption coefficient in the spot laser welding. 
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Abstract 

We illustrate an original method for the limit analysis of masonry structures modeled as 

assemblies of dry rigid blocks with Coulomb-type (non-associative) contact interface laws. 

The method resorts to a fictitious system characterized by cohesive-type contact interface 

laws that depend on the axial forces of the real block system. Two theorems establish the 

connection between the collapse state of the real (frictional) block assembly and that of the 

fictitious one. Hence, an alternative problem of mathematical programming is presented to 

evaluate the minimum collapse load multiplier. According to the proposed formulation, the 

complementarity condition is not introduced as constraint but is obtained as Karush-Khun-

Tucker condition. Several numerical results concerning with masonry arches, portals and 

panels are provided to illustrate the application of the proposed approach, which is also 

validated through the comparison with some existing methods. 

Keywords: Masonry structure; Friction; Limit analysis; Mathematical programming. 

 

Introduction 

Limit analysis provides an effective framework to study collapse load and failure mechanisms 

of the structures. Among the potential applications, those pertaining to block assemblies in 

presence of friction at the contact surfaces have received several attentions in the last decades 

because of the relevant practical implications. For instance, the collapse load estimation of 

rigid block systems interacting through frictional interfaces is of particular importance for the 

assessment of masonry structures. In this field, Baggio and Trovalusci [1] studied the limit 

analysis of no-tension and frictional three-dimensional discrete systems. In their study, the 

solution of the nonlinear programming problem is obtained by solving a preliminary linear 

programming problem that corresponds to a linearized limit analysis with dilatancy at the 

interfaces. Ferris and Tin-Loi [2] calculated the collapse loads of discrete rigid block systems 

with frictional contact interfaces by formulating a special constrained optimization problem 

and proposed an algorithm based on the relaxation of the complementarity constraint for its 

solution. The relaxation parameter is progressively reduced to zero through a succession of 

nonlinear sub-problems. Orduña and Lourenço [3] presented a model for the limit analysis of 

three-dimensional block assemblages interacting through frictional interfaces and included a 

proposal to take into account torsional failure modes. The model also accounted for limited 

compressive stresses at the interfaces. Gilbert and co-workers [4] illustrated an iterative 

procedure based on the successive solution of linear programming sub-problems. The method 

presented by these authors assumes fictitious values of cohesion and negative angles of 

friction, which are progressively relaxed toward zero. A finite-element-based approach has 
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been described by Mihai [5] for the limit analysis of planar systems formed by linear elastic 

bodies in non-penetrative contact with Coulomb friction.  

In the present contribution, we illustrate a new method for the limit analysis of discrete 

systems formed by dry rigid blocks characterized by Coulomb-type (non-associative) contact 

interface laws [6]. The proposed method resorts to a discrete system with fictitious cohesive-

type contact interface laws depending on the axial forces of the real block system. Once the 

connection between the collapse state of the fictitious block assembly and that of the real one 

is demonstrated, a new formulation of the mathematical programming problem intended to 

estimate the collapse load is proposed. In particular, the minimum collapse multiplier is here 

obtained by solving a nonlinear mathematical programming problem where the constraints 

include: (i) equilibrium conditions, (ii) kinematic conditions, and (iii) a further condition 

imposing that the collapse multiplier is kinematically admissible for the fictitious system with 

cohesive-type contact laws. In doing so, the classical complementarity condition is not 

introduced as constraint but is obtained as Karush-Khun-Tucker condition. 

Proposed method for the limit analysis of masonry structures 

An assembly of dry nb blocks is considered. The constituent blocks are rigid and are allowed 

to slide over each other. Moreover, a Coulomb model is assumed to represent the frictional 

contact at the interfaces of the blocks. Contact forces and moments for the jth constituent 

block are defined as shown in Fig. 1.  

 

 
 

Figure 1. Contact forces and moments 
 

The well-known equilibrium equations for the blocks are the following: 
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where j=1,…,nb, 0

j
f  is the jth constant force vector acting on the jth block, 

j

f  is the jth base 

external force vector amplified by the load multiplier α. Moreover, Nk are the normal contact 

forces, Vk are the shear contact forces, Mk are the contact bending moments (nk, tk and k are 

unit vectors). The kth resultant internal force or moment is applied on xck, which is the kth 

contact interface point (with k=1,…,nc) belonging to the boundary ∂B
j
 of the jth block whose 
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center of mass is denoted as j

Gx . Based on Eq. (1), the equilibrium of the structure can be 

expressed as follows [2]: 

    0 0f f     A s f f As f 0 ,     (2) 

where  f  and f0 are the vectors collecting the jth forces 
j

f  and 
0

j
f , respectively, whereas sf 

is the vector of the contact forces (internal forces and reactions). It is also introduced a vector 

s that includes the contact forces vector sf and the load multiplier α, namely 
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The following conditions must be fulfilled for such system at each contact interface: 
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where μ is the static friction coefficient and dk>0 is the maximum eccentricity of the resultant 

contact force at the kth contact surface. The conditions in Eq. (4) imply that the axial contact 

forces Nk must be negative or null.  

It is now considered a fictitious (conjugate) block assembly, identical to the real one presented 

before but characterized by cohesive-type contact interface laws. The cohesive strengths in 

such fictitious system are taken equal to −μsN, thus depending on the axial contact forces Nk of 

the real system. Henceforth, S will denote the set that collects the statically admissible 

equilibrium states of the real block assembly whereas K will identify the set of the 

kinematically admissible displacement fields. The following theorems proved in Ref. [6] 

establish the connection between the collapse state of the real block system and that of the 

fictitious one: 

 given any collapse state of the frictional block assembly, the collapse load multiplier 

αc is always equal to the collapse load multiplier αas(sN) of the block assembly with 

fictitious associative-type contact interface laws; 

 given any statically admissible equilibrium state s of the frictional block assembly, if 

the load multiplier α is equal to any kinematically admissible load multiplier 

 K=(u,ξ,sN) of the fictitious system, then s is a collapse state and (u,ξ)K is a 

collapse displacement field of the real system (u collects displacements and rotations 

of the blocks with respect to their centroids j

Gx  whereas ξ collects relative 

displacements and rotations between the blocks).   

Therefore, it is concluded that α=αas(s) if and only if s identifies a collapse state. Hence, the 

minimum collapse load multiplier αc for the frictional (real) block assembly can be 

determined by solving the following mathematical programming problem  [6]: 
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where Nμ=[μI μI 0 0]
T
. Equation (5) provides an original approach for the limit analysis of 

frictional block assemblies. By solving the mathematical programming problem in Eq. (5), the 

minimum collapse load multiplier and the corresponding failure mode can be estimated. As 

far as the resolution technique is concerned, it is important to highlight that the admissible 

domain is not convex because of the last condition in Eq. (5). As a consequence, multiple 

local optima might exist and numerical resolution technique with global search capability is 

needed. In this work, the mathematical programming problem in Eq. (5) is solved by means of 

a genetic algorithm. 

Numerical applications 

An arch structure and two portals are first examined in order to illustrate the application of the 

proposed method. The jth base external force vector and the jth constant force vector are 

       00 0 ,  0 0
T Tj jj jW W   f f ,     (6) 

respectively, where W
j
 is the weight of the jth block. The weight per unit of volume of the 

blocks is 1.0 whereas the friction coefficient is 0.5. A unit-width slice of the structures is 

analyzed. Geometry and collapse mechanisms are shown in Figs. 2-4.  

 

 
Figure 2. Geometry of the arch (left) and its collapse mechanism (right) 

 

 
Figure 3. Geometry of the portal with constant thickness (left) and its collapse 

mechanism (right) 
 

As shown in Fig. 2, the collapse of the masonry arch is based on a hinging-dominated 

mechanism (the corresponding collapse load multiplier is 0.63425). By counting the blocks 

from the left, the first hinge occurs at the intrados of the arch, between the third and the fourth 
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voussoirs. The second hinge takes place at the extrados of the arch, between the eighth and 

the ninth blocks. Finally, a third hinge occurs at the right impost of the arch, and it is placed 

on the intrados. The left impost also slides along its base and moves toward the outside. 

Combined sliding and hinging collapse modes occur for the two masonry portals, as shown in 

Fig. 3 and Fig. 4 (the corresponding collapse load multipliers are 0.20628 and 0.30148, 

respectively). In both failure mechanisms, a hinge occurs at the base of the left pier, thus 

causing its counterclockwise rotation. Another hinge takes place on the intrados of the arches. 

The sliding collapse mode involves the keystone of the arches and some voussoirs adjacent to 

it. 

 

 
Figure 4. Geometry of the portal with large columns formed by a single block (left) and 

its collapse mechanism (right) 
 

Two masonry panels are finally considered in order to demonstrate the correctness of the 

proposed method by comparing the corresponding collapse load multipliers with those 

estimated by Ferris and Tin-Loi [2], Gilbert et al. [4] and Mihai [5]. These examples are 

concerned with free standing walls supported on a rigid horizontal plane and subjected to in-

plane forces applied to the centroid of each block. The full block size is 4×1.75 whereas the 

half block size is 2×1.75. The friction coefficient is 0.65. Each full block is subjected to a 

vertical body force (oriented downwards), which is calculated by assuming a weight equal to 

1.0. Moreover, each full block is subjected to a unit horizontal live load (directed from left to 

right). One panel is formed by nb=33 blocks whereas the second panel is formed by nb=55 

blocks. The collapse mechanisms of the examined panels are shown in Fig. 5. The 

corresponding collapse load multipliers are listed in Tab. 1, together with reference solutions 

reported in some existing studies. This comparison substantiates the correctness of the 

proposed approach. 

 

Table 1. Collapse load multipliers of the considered walls 

Wall Ref. [2] Ref. [4] Ref. [5] 
Proposed 

approach 

nb=33 0.63898 0.63982 0.63945 0.63911 

nb=55 0.55742 0.56262 0.55751 0.55749 
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Figure 5. Collapse mechanisms of the considered walls 

 

Conclusions 

In the present work, we have illustrated an original strategy to address the limit analysis of 

frictional block assemblies by means of fictitious associative-type interfacial laws. Once the 

connection between the collapse state of the fictitious system and that of the real one has been 

highlighted, an original mathematical programming problem has been presented to estimate 

collapse load multiplier and failure mechanism. Herein, the introduction of the 

complementarity condition as constraint is not required because it is obtained as Karush-

Khun-Tucker condition. Several numerical applications concerning with the limit analysis of 

masonry structures have been also included in order to demonstrate the application of the 

proposed approach and its correctness.  
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Abstract 

Molecular dynamics simulations were carried out to investigate the initiation mechanism of 
the plastic deformation in nanocrystalline material. A polycrystalline model consisting of four 
grains each of which had nano-meter order size was prepared. All atoms were arranged on the 
face-centered cubic lattice and rotated around the [001] axis keeping the (001) face on the x-y 
plane. The rotation angles were set different in every grain so that the grain boundaries were 
formed. Then an external compressive load was imposed at a constant rate until a plastic 
deformation was observed apparently. Several models were prepared by varying the 
combination of the crystal orientations of the grains, and the change in the configuration of 
atoms and variation of the stress as well as their dependency on the model were investigated. 
Common to all models, the stress increased monotonously in the early stage, when the atomic 
configuration sustains the initial state. Then an abrupt drop in stress was observed. At this 
moment, linear or planar defects were generated, and the initiation sites were inferred on the 
grain boundaries. It also revealed that a plateau was observed around the stress peak when a 
linear defect was generated, while the peak was sharp when a planar defect was generated.  

Keywords: Molecular dynamics, Plastic deformation, Dislocation, Yielding, Computer simulation  

 

Introduction 

Microstructure of a metallic material strongly affects the macroscopic properties of the 
material, and, for instance, the strength of polycrystalline material increases as the grain size 
becomes smaller. Therefore, great efforts have been devoted to refining the crystal grains, and 
several types of methods, such as equal-channel angular pressing (ECAP), accumulative roll 
bonding (ARB), and asymmetric rolling methods, have been successfully developed [1-3]. As 
a result of this kind of severe plastic deformation (SPD) processes, the grain size of the 
material falls in the submicron order, and such materials are generally termed nanocrystals. 
The mechanical behaviors of these materials show a characteristic tendency due to relatively 
higher occupancy of the grain-boundary area, and especially the plastic behavior is 
significantly affected. To clarify the deformation mechanism in nanocrystalline materials, an 
atomistic investigation is necessary, and the molecular dynamics (MD) simulation is a quite 
effective tool for this purpose. To date, various kinds of simulations have been demonstrated, 
including generation of dislocation, restructuring and migration of grain boundaries, 
interaction between dislocation and grain boundaries, as well as grain refining or coarsening 
due to mechanical loading or thermal activation [4-6]. The author also has demonstrated 
various simulations on the plasticity including grain-boundary migration [7], deformation of 
polycrystalline shape-memory alloy [8], and transformation-induced plasticity [9]. However, 
comprehensive understanding and construction of unified theory on the nano-scale 
deformation are still difficult due to the complexity of the nanocrystalline material. For 
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example, in relatively large scale, the grain boundary energy is often represented as a function 
of the misorientation angle, but the grain-boundary energy is actually different if the atomistic 
structure is different even though the misorientation angle is the same. Therefore, a systematic 
investigation using a simple model, instead of realistic large model, is considered effective to 
achieve the goal. The author has demonstrated MD simulations on a severe tensile or 
compressive deformation process of a polycrystalline material. In our previous report [10-12], 
change in microstructure was focused, and the grain refinement was successfully observed. In 
this study, the focus is concentrated on the initiation of the plastic deformation based on a 
similar polycrystalline model. Defects in a grain as well as their initiation and motion were 
made visible using the potential energy so that plastic behavior is clearly shown.  

Fundamental Equations 

Classical molecular dynamics method is applied in this study. The fundamental equation is 
the following.  

   ||
,11

ij

ij
ij

j
ij

i
i

i
i dr

d
mm r

r
ffFr f

−=== ∑                                                         (1) 

Here, ri and mi are the position vector and the mass of the i-th atom, and Fi is the force acting 
on the i-th atom. In addition, Fi is assumed to be represented by the summation of the two-
body interatomic force fij and the force is represented by a two-body interatomic potential 
energy f. As a representative form for a face-centered-cubic (fcc) crystal, the following 
Lennard-Jones-type function is applied.  

   ( )612 )/()/(4 rRrRD −=f                                                             (2) 

Here, D and R are the material parameters in the dimension of energy and length, respectively, 
while they are diminished in a non-dimensional form. In this paper, all physical parameters 
and variables are represented in the dimensionless values.    

Simulation Model  

Figure 1 represents the simulation model. Two types of nanocrystalline models consisting of 
four grains are prepared. A pair of grains is arranged perpendicular to the external load in 
Type A, while they are arranged parallel to the load in Type B. Periodic boundary conditions 
are imposed in the all directions; accordingly, Grain 3 separated in Fig. 1 is actually a single 
grain domain. The thickness of the model is five unit cells without any grain boundary. The 
atoms are set on the lattice points of the fcc structure so that the (001) plane is on the x-y 

 
                           (a) Model A                  (b) Model B         (c) Atomic configuration 
 

Fig. 1.Illustration of the simulation model.  
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plane and the [100] direction to be the x axis. Then the crystal is rotated around the z-axis, 
where the rotation angles θk of the k-th grain are set distinctively.  

Simulation Conditions  

The combination of the rotation angles of the four 
grains is set variously, and the three cases shown 
in Table 1 are presented in this paper. Each 
simulation model is identified by the symbol 
combined with the type of grain arrangement, A 
or B; e.g. Model Az1. Fig. 1 (c) represents the 
initial configuration of atoms for Model Az1, where short lines drawn in every grain show the 
[100] orientation. A significant irregularity is induced at the grain-boundary area by this 
operation, and the 15000 time-steps are devoted for relaxation of the arrangement. Then an 
external compression is imposed by reducing the length in the y-direction Ly of the model at a 
constant rate. Then the average normal components of the stress in the lateral directions, x and 
z, are kept constant at zero by adjusting the edge length Lx and Lz. The compression rate is set 
as ∆Ly = 1.0 per 8000 time steps (Ly is approximately 73.0 for all models).  

Simulation Results --- Model Az1 

Simulation result for Model Az1 is shown in Fig. 2, which represents the variation of 
configuration of atoms during compressive deformation process. The color indicates the 
potential energy of each atom, where red and blue represent the maximum and minimum 
values, respectively, and the intermediate colors are continuously allocated. Accordingly, 
grain boundaries are depicted in green or yellow.   
 
Figure 2(a) exhibits the configuration of atoms at the beginning of loading after relaxation. 
Every grain maintains the original shape of square, though the top-right grain boundary 
between Grains 3 and 4 is rather curved. Overall, no specific change in grain arrangement and 

Table 1. Rotation angles in each grain. 
Grain No

Model ID 1 2 3 4
z1
z2
z3

0 30 -10 -20
0 -20 30 -10
0 -10 -20 30

 

 
 

Fig. 2. Variation of the configuration of atoms for Model Az1. The color 
indicates the potential energy of each atom.  
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crystal structure is observed until the 49000th time step, while slight variations are observed 
in the grain boundaries. Subsequently, an apparent change is observed at the 51000th time 
step, as shown in Fig. 2(e): an area depicted in dense blue color appears around the top-right 
area. This is caused by the change in the crystal orientation in the depth direction; the [001] 
direction completely accorded with the z-axis originally, but the orientation shifted slightly 
and the atoms in the depth direction become visible. It is also notable that this area is centered 
at a grain boundary, and spread across two grains. This area extends quickly over Grains 3 
and 4. A new dense-blue area is also generated in Grain 1 by the 53000th time step. 
Subsequently, similar change appeared in Grain 2, and finally a series of the change complete 
by the 57000th time step.  
 
To see the phenomena occurring more clearly, only the atoms at unstable state are made 
visible and displayed at short intervals between the 49000 and 55000th time steps in Fig. 3. 
Values in the potential energy are taken as the indicator of the instability, and the threshold 
value is chosen as -7.8. Most unstable atoms are located on the grain boundaries except for 

 
 

Fig. 3. Variation of atomic configuration in the duration of initiation of the 
plastic deformation for Model Az1.  Only the atoms having potential 
energy valued higher than a certain threshold, here f = -7.8.  
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Fig. 4. Variation of stress in the y direction for Model Az1.  (a) Overall view 
from the beginning of loading and until the end of yielding. (b) 
Magnified view around the yielding.  
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several atoms scattered inner grains at the 49000th and 49800th time steps. Then a linear 
defect appears in the top-center grain (Grain 3) at the 50600th time step, and the defect spread 
in Grain 3. Compared with Fig. 2 (e) and Figs. 3 (c) and (d), the apparent linear defect in Fig. 
3 corresponds to the boundary of the dense-blue area in Fig. 2, and actually the defect is 
planer one. In addition, the origin of the defect is the right-bottom corner of the grain, or the 
triple junction of the grains, and the transformed area spread in Grain 3. Then the transformed 
area crosses over the grain boundary and extended in Grain 4.  
 
The variation in the compressive stress is shown in Fig. 4. The stress increases monotonously 
as compressive load is imposed from the 15000th time step. Then the stress decreases 
abruptly at the 50000th time step. The peak point is very sharp, but the decrease is not 
momentary; it takes about 5000 time steps until the stress reaches the bottom. The initiation of 
the defects was determined from Fig. 3 to be the 50000th time step, which clearly corresponds 
to the peak in Fig. 4. Additionally, it is also confirmed that the duration of the expansion of 
the deformed area corresponds well to the duration of the stress decrease, from the 50000th to 
55000th time step. Therefore, it can be considered that yielding occurred in this duration.  

Simulation Results --- Other Cases 

Simulation results for all cases are shown in Fig. 5. Variations in the stress show similar 
tendency; the stress increases monotonously and decreases drastically at around the 50000th 
time step. The peak values in stress are different for every case; minimum s = 2.5 for Model 
Bz1, and maximum s = 3.1 for Model Az3. The reduction depth and duration spent for the 
stress drop are approximately the same. An overall tendency that Models A exhibits higher 
peak than Models B can be seen, though more data is necessary for draw a conclusion. 
Another interesting feature is that some cases, for example Models Az2 and Bz1, show some 
plateau duration around the peak. Figure 5 (b) shows the configuration of unstable atoms just 
after the stress peak for some typical cases. Common to Models Az2 and Bz1 both of which 
exhibit a plateau around the stress peak, a straight line defect is generated, as shown in Figs 
5(b)(i) and (iii). In other cases for which a sharp peak is observed, in contrast, a 

 
                                           (a)                                                             (b)  

Fig. 5. Variation in stress for all models (a), and the configuration of 
unstable atoms around the initiation of the plastic deformation for 
some typical cases (b). 
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transformation domain surrounded by curved defects are generated, as shown in Figs 5(b)(ii) 
and (iv) for Az3 and Bz2 as well as Fig. 3(c) for Az1. These defects correspond to planer 
defects as can be seen in Fig. 2(e). The cause of generation of different type of defects, linear 
or planar ones, is inferred to be the structure of grain boundary, since the origins of both types 
of defects are considered to be on the grain boundaries. Additionally, the crystal orientation of 
the grains in which linear defects are generated, i.e. Grain 2 in Model Az2 and Grain 4 in 
Model Bz1, is commonly -20 deg., as listed in Table 1. The orientation with respect to the 
external load is also one of the key factors dominating the behavior, which will be discussed 
in our future work in detail.  

Conclusion  

Molecular dynamics simulations were carried out to investigate the initiation mechanism of 
plastic deformation in a nanocrystalline material. Two types of simple models having four 
grains with different arrangements were prepared, and a uniaxial compression was imposed. 
Simulations were carried out varying the combination of the crystal orientations of every 
grain. As a result, the following results were obtained. Common to all models, the stress 
increased monotonously, when the grain sustains the initial configuration. Then, an abrupt 
drop in stress was observed. At this moment, a linear or planar defect was generated, and this 
is considered the initiation of the plastic deformation. The defects spread in a certain time 
duration, which is considered as yielding. Further investigation is still required for clarifying 
the mechanism in more detail. Full three-dimensional model is necessary to simulate slip 
phenomena on the (111) plane. Application of more precise inter-atomic potential is required 
not only for quantitative evaluation but also for distinguishing some more delicate mechanism. 
However, it revealed that fundamental insights can be derived using the present model, and 
further investigation is now in progress.   
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Abstract 

In this paper, a linearized inverse scattering technique with the aid of the convolution quadrature 

time-domain boundary element method (CQBEM) has been developed for the reconstruction 

of a delamination in carbon fiber reinforced plastic (CFRP) with anisotropic property. The 

CQBEM is utilized to obtain scattered wave data from a delamination in CFRP. The wave forms 

obtained by the CQBEM are adequately treated to implement the shape reconstruction of a 

delamination in CFRP. The Kirchhoff approximation is applied to the unknown delamination 

opening displacement. A far-field approximation of the 2-D fundamental solution in frequency-

domain for general anisotropic elastodynamics is used for the proposed inverse scattering 

formulation. Numerical examples for a delamination in various types of CFRPs are shown to 

verify the proposed method.   

 

Keywords: Time-domain BEM, inverse scattering analysis, anisotropic elastodynamics, 

carbon FRP  

 

Introduction 

Some anisotropic materials have attracted lots of interest in the fields of the mechanical and 

civil engineering in recent years. The carbon fiber reinforced plastic (CFRP) is known as one 

of the typical anisotropic materials, and is generally used as a material of construction for 

bridges and aircrafts, because the FRP has the characteristics of high tension strength, corrosive 

resistance and light weight. The ultrasonic non-destructive testing is most widely used in order 

to provide evidence of safety for structural materials. The exact identification of position, size, 

and shape of a defect in materials is an important factor for structural monitoring and health 

diagnostics. Defect shape reconstruction methods for materials have been developed by several 

researchers since several years ago [1][2]. The inverse scattering is an effective defect shape 

reconstruction method, and has been applied to many engineering problems [3][4][5]. However, 

no numerical example using the inverse scattering method can be seen for the reconstruction of 

a defect in CFRP with the anisotropic property. The acoustic anisotropic property makes it 

difficult for the nondestructive engineers to evaluate a defect. Therefore, in this study, an 

inverse scattering technique is developed for a defect shape reconstruction for CFRP with 

anisotropic property. The pure SH wave mode is only considered in this study for simplicity. 

The convolution quadrature time-domain boundary element method (CQBEM) [6][7][8][9] is 

utilized to obtain the scattered wave data from a delamination in a CFRP, which is required for 

the implementation of the inverse scattering formulation. The proposed inverse scattering 

formulation is achieved in the frequency-domain. Therefore, the scattered wave data in 

frequency-domain are calculated by using the Fourier transform of those in time-domain 
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obtained by CQBEM. In the following sections, the problem statement and proposed inverse 

scattering formulation are discussed. Some numerical results for the shape reconstruction of a 

delamination in various types of CFRPs are presented. Finally, some comments and our future 

research plans are remarked. 

Problem statement  

The proposed 2-D inverse scattering formulation using pure SH wave is based on the Kirchhoff 

approximation [10]. Some important equations for the study on this inverse scattering for a 

delamination in CFRP are shown in this section, because of the page limitation. In this research, 

we assume that the pure SH wave is generated by the interaction between the incident wave 

𝑢3
in(𝒙, 𝑡) and a delamination 𝑆 in CFRP, as shown in Fig.1, namely, the elastic waves generated 

in CFRP can be decomposed into the pure SH wave and in-plane wave modes. The equation of 

motion and constitutive equation at the position 𝒙 and time 𝑡 for the anisotropic elastodynamics 

are defined as follows: 

 

𝜌𝑢𝑖̈ (𝒙, 𝑡) = 𝜎𝑖𝑗,𝑗(𝒙, 𝑡)  (1) 

𝜎𝑖𝑗(𝒙, 𝑡) = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙(𝒙, 𝑡)  (2) 

 

where 𝜎𝑖𝑗 is the stress, 𝜌 is the density of CFRP, 𝑢𝑖(𝒙, 𝑡) is the displacement, ( ),𝑖 is the partial 

derivative with respect to 𝜕/𝜕𝑥𝑖, and ( ̇ ) is the time derivative. In addition, 𝐶𝑖𝑗𝑘𝑙 is the elastic 

constant. The fourth order elastic constant 𝐶𝑖𝑗𝑘𝑙 is related to the Voigt notation elastic constant 

𝐶𝐼𝐽(𝑖, 𝑗 = 1,… ,6) [10] expressed by 

 

𝐼={
  𝑖                  ∶ 𝑖 = 𝑗

9 − (𝑖 + 𝑗)  ∶ 𝑖 ≠ 𝑗
 ,    𝐽={

  𝑘                  ∶ 𝑘 = 𝑙
9 − (𝑘 + 𝑙)  ∶ 𝑘 ≠ 𝑙

.  
 

(3) 

 

2-D inverse scattering formulation using pure SH wave 

The delamination must be carefully taken into consideration during CFRPs in-service period.           

In the frequency domain, the boundary integral equation for the scattered wave 𝑢3
𝑠𝑐(𝒙, 𝜔) with 

the time-harmonic frequency 𝜔 in infinite domain 𝐷, as shown in Fig.1, can be written as 

follows: 

 

Figure 1 Analysis model. 
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𝑢3
𝑠𝑐(𝒙,𝜔) = −∫ 𝐶3𝛼3𝛽𝑒𝛼(𝒚)

𝜕𝑈33(𝒙, 𝒚,𝜔)

𝜕𝑦𝛽
[𝑢3(𝒚,𝜔)]𝑑𝑆𝑦

𝑆

 
 

(4) 

 

where [𝑢]3 and 𝑒𝛼 show the delamination opening displacement for anti-plane direction and 

the unit normal vector with respect to the outer normal direction on 𝒚, respectively. In addition, 

𝑈33(𝒙, 𝒚, 𝜔)  denotes the traction fundamental solution for 2-D anti-plane anisotropic 

elastodynamics in frequency-domain. The fundamental solution 𝑈33(𝒙, 𝒚, 𝜔), derived by Wang 

and Achenbach [12], is given as follows: 

 

𝑈33(𝒙, 𝒚, 𝜔) =
1

8𝜋2
∫

1

𝜌𝑐2(𝒏)|𝒏|=1

𝜙(𝑘(𝒏)|𝒏 ⋅ (𝒙 − 𝒚)|)𝑑𝒏 
 

(5) 

 

where 𝑐(𝒏) is the phase velocity with respect to the direction 𝒏 over the unit sphere and 𝑘 is 

the wave number defined by 𝑘(𝒏) = 𝜔/𝑐(𝒏). The fundamental solution 𝑈33(𝒙, 𝒚, 𝜔) involves 

the numerical integration over the unit circle with respect to |𝒏| = 1. The function 𝜙(𝜉) is 

defined by 

  

𝜙(𝜉) = 𝑖𝜋𝑒𝑖𝜉 − 2{cos(𝜉) ci(𝜉) + sin(𝜉) si(𝜉)}. 
 

(6) 

 

In eq. (6), the functions si(ξ) and ci(ξ) are Sine and Cosine integrals, respectively, which are 

defined as follows: 

 

si(ξ) = −∫
sin(𝑠)

𝑠

∞

ξ

𝑑𝑠 , ci(ξ) = −∫
cos(𝑠)

𝑠

∞

ξ

𝑑𝑠. 

 

(7) 

 

The numerical evaluation of the integration over the unit sphere in eq. (5) is very time-

consuming. Therefore, a far-field approximation is introduced to decrease the required 

computational time. In addition, the use of a far-field approximation allows us to achieve the 

inverse scattering formulation. If the observation point 𝒙 is far enough from the source point 𝒚, 

the fundamental solution 𝑈33(𝒙, 𝒚, 𝜔)  can be approximated by using the stationary phase 

method as follows: 

 

𝑈33(𝒙, 𝒚, 𝜔) =
𝑖

𝐶44
√

1

8𝜋𝑘0|𝒙||𝑓′′(𝜑𝑠)|
𝑆2(𝜑𝑠) 

            ⋅ exp [𝑖𝑘0(|𝒙| − �̂� ⋅ 𝒚)𝑓(𝜑
𝑠) + 𝑖

𝜋

4
sgn{𝑓′′(𝜑𝑠)}] 

 

(8) 

 

where  �̂� is the unit vector of 𝒙 and 𝑘0 is given by 𝑘0 = 𝜔/𝑐0. 𝑐0 is given by 𝑐0 = √𝐶44/𝜌. 𝜑𝑠 
and 𝜓  satisfy 𝑓′(𝜑𝑠) = 0  and (cos𝜓, sin𝜓) = (𝒙 − 𝒚)/|𝒙 − 𝒚| , respectively. In addition, 

𝑆(𝜑) = 𝑐0/𝑐(𝜑) and, 𝑓(𝜑) = 𝑆(𝜑)cos (𝜑 − 𝜓). The symbol “sgn” shows the sign function.  

Equation (8) is the far-field approximation of the fundamental solution 𝑈33(𝒙, 𝒚, 𝜔) . 

Substituting eq. (8) into eq. (4), we can obtain 
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𝑢3
𝑠𝑐(𝒙,𝜔) = −

𝑓(𝜑𝑠)

𝐶44
√

𝑘0
8𝜋|𝒙||𝑓′′(𝜑𝑠)|

𝑆2(𝜑𝑠) 

 ⋅ exp [𝑖𝑘0|𝒙|𝑓(𝜑
𝑠) + 𝑖

𝜋

4
sgn{𝑓′′(𝜑𝑠)}] 

    ⋅ ∫ 𝑒𝛼(𝒚)
𝑆

exp{−𝑖𝑘0𝑓(𝜑
𝑠)�̂� ⋅ 𝒚} [𝑢3(𝒚,𝜔)]𝑑𝑆𝑦. 

 

(9) 

In eq. (9), the delamination opening displacement [𝑢3(𝒚,𝜔)]  is unknown. Therefore, 

[𝑢3(𝒚,𝜔)] can be approximated by using the Kirchhoff approximation, which approximates 

the unknown delamination opening displacement as the sum of the incident wave 𝑢3
𝑖𝑛(𝒙,𝜔) and 

the reflected wave from the delamination. In addition, the singular function 𝛾(𝒚), which has 

the characteristic of 

 

∫ 𝛾(𝒚)𝑑𝑉𝑦 =
𝐷

∫ 𝑑𝑆𝑦
𝑆

, 

 

(10) 

 

is considered. Applying the Kirchhoff approximation to eq. (9), and using both Gauss’s 

divergence theorem and the singular function 𝛾(𝒚) defined in eq. (10) yield the following 

equation: 

 

𝑢3
𝑠𝑐(𝒙,𝜔) =

𝑖𝑓(𝜑𝑠)𝐹(𝜔)

𝐶44
√

𝑘0
2𝜋|𝒙||𝑓′′(𝜑𝑠)|

𝐶3𝛼3𝛽�̂�𝛽𝑆
2(𝜑𝑠)(𝑘0𝑓(𝜑

𝑠)�̂�𝛼 − 𝑘�̂�𝛼
𝑖𝑛) 

 ⋅ exp [𝑖𝑘0|𝒙|𝑓(𝜑
𝑠) + 𝑖

𝜋

4
sgn{𝑓′′(𝜑𝑠)}] 

  ⋅ ∫ 𝛾(𝒚)
𝐷

exp [−𝑖{𝑘0𝑓(𝜑
𝑠)�̂� − 𝑘�̂�𝑖𝑛} ⋅ 𝒚]𝑑𝑉𝑦 

 

(11) 

 

where �̂�in denotes the propagation vector of the incident wave. In eq. (11), the Ricker wavelet 

[13] is considered as the incident wave 𝑢3
𝑖𝑛(𝒙,𝜔). The Ricker wave in frequency-domain, 𝐹(𝜔), 

is defined by 

 

𝐹(ω) = −
√2𝜋𝜔2exp (𝑖𝜔𝑡𝑠)

2exp (𝜔2/𝜔𝑝2)𝜔𝑝
3  

 

(12) 

 

where 𝜔𝑝 and 𝑡𝑠 show the peak frequency and peak location of the Ricker wavelet, respectively. 

In eq. (11), the singular function 𝛾(𝒚) is the Fourier transform with respect to 𝐾 = 𝑘0𝑓(𝜑
𝑠)�̂� −

𝑘�̂�in. Therefore, the singular function 𝛾(𝒚), which shows the delamination surface, can be 

obtained by the inverse Fourier transform as follows: 

 

𝛾(𝒚) = −𝑖𝐶44∫ ∫ [
𝑓(𝜑𝑠)

𝑐0
−
1

𝑐
cos(𝜓 − 𝜓𝑖𝑛)]

∞

0

2𝜋

0

 

    ⋅
𝑢3
𝑠𝑐(𝒙,𝜔)

𝐹(𝜔)𝐶3𝛼3𝛽�̂�𝛽𝑆2(𝜑𝑠)(𝑘0𝑓(𝜑𝑠)�̂�𝛼 − 𝑘�̂�𝛼
𝑖𝑛)

 

 

(13) 
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                         ⋅ √
𝑘0|𝒙||𝑓′′(𝜑𝑠)|

8𝜋3
exp [−𝑖𝑘0|𝒙|𝑓(𝜑

𝑠) − 𝑖
𝜋

4
sgn{𝑓′′(𝜑𝑠)}] 

    ∙ exp [𝑖{𝑘0𝑓(𝜑
𝑠)�̂� ⋅ 𝒚 − 𝑘�̂�in ⋅ 𝒚}]𝑑𝜔𝑑𝜓 

 

where 𝜓𝑖𝑛  is the incident wave angle. The shape reconstruction of the delamination is 

implemented by the calculation of the right-hand side of eq. (13). 

 

Numerical results 

In this section, some numerical results for the shape reconstruction of a delamination in two 

types of CFRPs are demonstrated by using the proposed method. The two types of CFRPs are 

unidirectional and quasi-isotropic CFRPs. The elastic constants of them are given in the 

normalized form by 𝐶44 as follows: 

 

Figure 2 Group velocity curves for (a) unidirectional CFRP (b) quasi-isotropic CFRP. 

 

Figure 3 Forward and inverse scattering analysis models (a) downward and (b) upward incidences. 
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𝐶𝛼𝛽

𝐶44
=

(

 
 
 

45.914 1.829 41.874 0 0 0
3.977 1.829 0 0 0

45.914 0 0 0
1.0 0 0

sym. 2.02 0

1.0)

 
 
 

  (unidirectional CFRP) 

 

 

(14) 

𝑪𝜶𝜷

𝑪𝟒𝟒
=

(

 
 
 

9.63 0.77 4.0 0 0 0
2.54 0.77 0 0 0

9.63 0 0 0
1.0 0 0

sym. 3.24 0

1.0)

 
 
 

 (quasi-isotropic CFRP)  

(15) 

 

Figure 2(a) and (b) show the group velocity curves for unidirectional CFRP and quasi-isotropic 

CFRP, respectively. As shown in Fig.2, three distinct waves, the qP wave (longitudinal wave), 

and qS1 and qS2 waves (shear waves), exist in each CFRP. In addition, the qP wave, which is 

faster than qS1 and qS2 waves, are observed. The velocity of the qP wave for the horizontal 

direction is faster than that for the vertical direction, due to the anisotropic property. In this 

analysis, the qS2 wave, which is called pure SH wave, is used to reconstruct a delamination in 

CFRPs. The scattered wave data 𝑢3
𝑠𝑐(𝒙, 𝜔) of eq. (13) can be calculated by using the Fourier 

transform of 𝑢3
𝑠𝑐(𝒙, 𝑡) obtained by the CQBEM.  

Forward analysis results obtained by CQBEM 

The results for 2-D elastic wave scattering by a delamination with the length 2𝑎 in CFRPs are 

demonstrated in this section. Figure 3 shows the forward analysis model and the scattered waves 

𝑢3
𝑠𝑐(𝒙,𝜔) at several receiver points, which are away from the center of the delamination by 

12𝑎, are calculated with the aid of the CQBEM. In this analysis, two cases which are downward 

and upward incidences for the delamination, as shown in Fig.3(a) and (b), respectively, are 

considered. The delamination is discretized by the piecewise constant boundary elements and 

the number of boundary elements 𝑀  is given by 𝑀 = 20 . The time increment 𝑐0𝑡/𝑎 , the 

number of total time steps 𝑁, and the central frequency of the Ricker wavelet 𝜔𝑝 are given by 

Figure 4 Scattered wave forms 𝒖𝟑
𝒔𝒄(𝒙, 𝒕) obtained by CQBEM for the case of (a) unidirectional CFRP 

(b) quasi-isotropic CFRP. 
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𝑐0𝑡/𝑎 = 0.02, 𝑁 = 2048, and 𝜔𝑝 = 𝜋, respectively. Figure 4(a) and (b) show time variation 

of scattered wave forms at the receiver points, (𝑟, 𝜃) = (12𝑎, 𝜃 = 3° + 18°𝑛 (𝑛 = 0,… ,9)) in  

Fig.3(a). The unidirectional and quasi-isotropic CFRPs whose elastic constants are given in 

eq.(14) and (15) are considered for Fig.4(a) and (b), respectively. The time-domain transformed 

wave for the Ricker wave defined in eq. (12) is considered for this analysis. We can see that the 

scattered waves 𝑢3
𝑠𝑐(𝒙, 𝑡) arrive at different times for each receiver point, as shown in Fig.4, 

due to the anisotropic property of CFRPs. The shapes of the group velocity curves for both 

CFRPs are elliptical, which are shown by blue lines in Fig.2, and the group velocity of qS2 

(pure SH wave) for horizontal direction is faster than that for vertical one. These scattered wave 

forms 𝑢3
𝑠𝑐(𝒙, 𝑡) can be used for the following inverse scattering analysis. 

Inverse scattering analysis results 

The shape reconstruction results by the proposed method are demonstrated in this section. As 

mentioned before, the scattered wave forms 𝑢3
𝑠𝑐(𝒙, 𝑡) in time-domain can be obtained by using 

the CQBEM. However, scattered wave forms 𝑢3
𝑠𝑐(𝒙, 𝜔) in frequency-domain are required for 

the computation of right-hand side of eq. (13). The scattered wave forms 𝑢3
𝑠𝑐(𝒙,𝜔)  in 

frequency-domain are calculated by using the Fourier transform of those 𝑢3
𝑠𝑐(𝒙, 𝑡) in time-

domain in this research. Figure 5(a) and (b) show the results for the shape reconstruction of the 

delamination in unidirectional and quasi-isotropic CFRPs, respectively. The singular function 

𝛾(𝒚)/𝛾𝑚𝑎𝑥, 𝛾𝑚𝑎𝑥 is the maximum value of 𝛾, is plotted around the delamination. The central 

straight black line in Fig.5 denotes the actual delamination shape and position. The scattered 

wave forms 𝑢3
𝑠𝑐(𝒙, 𝑡) at the receiver points (𝑟, 𝜃) = (12𝑎, 𝜃 = 3° + 18°𝑛 (𝑛 = 0,… ,9)) for 

the downward incidence and (𝑟, 𝜃) = (12𝑎, 𝜃 = 183° + 18°𝑛 (𝑛 = 0,… ,9))  for upward 

incidence, as shown in Fig.3 (a) and (b), respectively, are used for this inverse scattering 

analysis for the delamination. We can see that the singular function  𝛾(𝒚)/𝛾𝑚𝑎𝑥 shows large 

values around the delamination in Fig.5. Therefore, our proposed inverse scattering technique 

has the potential to realize the identification of an unknown delamination in various types of 

CFRP with anisotropic property.    

 

 

 

 

Figure 5 Shape reconstruction results using the proposed inverse scattering technique 

for the delamination in (a) unidirectional CFRP (b) quasi-isotropic CFRP. 
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Conclusions 

In this study, the inverse scattering technique for the reconstruction of a delamination in CFRP 

was proposed. The mathematical formulation for the proposed technique was derived, and 

tested numerically to verify the proposed method by solving the fundamental inverse scattering 

problem for the delamination in various types of CFRPs. In this study, only the pure SH wave 

(qS2 wave) was used for the reconstruction of the delamination in CFRPs. Therefore, in the 

future, we will try to implement the shape reconstruction using the qP wave. In addition, the 

extension to 3-D problem is also our next challenge. 
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Abstract 

This paper presents a mobile-processed virtual reality (VR) tsunami simulator, which could 

help people evacuate in the event of a powerful tsunami in the future. The explicit moving 

particle simulation (E-MPS) method is developed for a tsunami simulation, and the results are 

demonstrated on the proposed VR with the help of Unity, an open-source software product for 

VR visualization using a head-mounted display. The experience of the developed VR system 

might be also helpful for training related to tsunami disaster preparation. 

Keywords: Tsunami simulation, Virtual reality, Unity, Particle method  

 

Introduction 

The Great East Japan Earthquake, which occurred on March 11, 2011, inflicted serious damage 

on civil structures in northeastern Japan. In particular, the tsunami generated by the earthquake 

caused heavy damage not only to civil structures but also to the Japanese economy. Since this 

heavy disaster, several measures have been taken to prevent tsunami disasters, such as the one 

that followed the Nankai Trough Earthquake, which may occur in the future. Evacuation 

training and drawing-up hazard maps for tsunamis are important measures. However, residents 

are likely to forget what they have learned about tsunami disaster prevention. Therefore, it is 

necessary to take additional measures to raise citizens’ awareness of tsunami disaster prevention.  

 

Recently, virtual reality (VR) technology has been developed and is attracting attention in many 

engineering fields. Virtual reality is a computer-generated scenario that simulates an experience 

in a VR space. The advantage of VR is its ability to take us to places we have never been before 

and experience things that we could not otherwise experience with any sense of realism. In 

general, we cannot experience a tsunami many times in our life. Consequently, we sometimes 

fail to remember past catastrophic natural disasters, such as earthquakes and tsunamis. 

Therefore, the application of VR to tsunami disaster preparation may help residents create 

memories of catastrophic tsunami disasters, such as the incident that occurred on March 11, 

2011. The key to increasing the effect of a VR system for tsunami disaster preparation is to 

reproduce realistic tsunami behaviors in a VR space. Innovative numerical simulation tools are 

helpful in reproducing such realistic tsunami disasters in a VR space. Motohashi et al. [1] used 

an open-source software program to estimate the hydraulic force exerted on a bridge by a 

tsunami. Flouri et al. [2] implemented a simulation of earthquake-generated tsunamis using a 

finite difference computational model. Wei et al. [3] calculated the hydraulic force of a tsunami 

using smoothed particle hydrodynamics (SPH), which is one of the particle methods. That 

particle method is known as a powerful numerical technique and does not require computational 

meshes, such as the ones used in the finite element method (FEM) [4] and boundary element 

method (BEM) [5][6][7]. Moreover, a particle method can easily handle the large deformation 
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of continuum bodies. As mentioned here, the particle method [8] has many advantages for fluid 

analysis. 

 

Therefore, in this research, the explicit-moving particle simulation (E-MPS) [9][10], which is 

one of the particle methods, is developed and integrated into a VR system to create a tsunami 

disaster experience. A smartphone is used for high portability and usability of the developed 

VR system. Unity, which is an open-source software product for VR experience development, 

is utilized to visualize the numerical results obtained by the E-MPS and construct the VR space 

of the developed system. The following text explains the E-MPS formulation. Then, the VR 

visualization obtained with Unity is discussed. Finally, the developed VR system for tsunami 

disaster preparation is demonstrated, and some comments on our future research works are 

provided.    

E-MPS formulation  

In this research, the continuity and Navier Stokes equations at time 𝑡 are solved using the E-

MPS. The continuity and Navier Stokes equations are defined as 

 
𝐷𝜌

𝐷𝑡
+ 𝜌∇ ⋅ 𝒖 = 0 

(1) 

𝐷𝒖

𝐷𝑡
= −

1

𝜌
∇𝑃 + 𝜈∇2𝒖 + 𝒈 (2) 

 

where 𝜌 is the density, 𝒖 is the fluid velocity, and 𝑃 is the fluid pressure. Moreover, 𝜈 is the 

kinematic viscosity and 𝒈 is the acceleration of gravity. The continuity and Navier Stokes 

equations defined in Eqs. (1) and (2), respectively, are calculated as  

 

〈∇𝑃〉𝑖 =
𝑑

𝑛𝑔𝑟𝑎𝑑
0 ∑ [

(𝑃𝑗 + 𝑃𝑖)(𝒓𝑗 − 𝒓𝑖)

|𝒓𝑗 − 𝒓𝑖|
2 𝜔𝑔𝑟𝑎𝑑(|𝒓𝑗 − 𝒓𝑖|)]

𝑗≠𝑖

 
 

(3) 

〈𝛻2𝒖〉𝑖 =
2𝑑

𝜆0𝑛0
∑[(𝒖𝑗 − 𝒖𝑖)𝜔(|𝒓𝑗 − 𝒓𝑖|)]

𝑗≠𝑖

 
 

(4) 

 

where 𝑑 and 𝜆0 represent the number of space dimensions and correction parameters used in 

the particle method, respectively. In addition, 𝒓 is the position vector of the particle. Note that 

the subscript 𝑖 (or 𝑗) indicates the parameter of the 𝑖 (or 𝑗)-th particle. Meanwhile, 𝜔(|𝒓|) and 

𝑛0 indicate the weight function and initial value of the particle number density, respectively. 

The subscript “𝑔𝑟𝑎𝑑 ” represents the calculation term for gradient. The weight functions 

𝜔𝑔𝑟𝑎𝑑(𝑟) and 𝜔(𝑟) are defined as follows: 

 

𝜔𝑔𝑟𝑎𝑑(𝑟) = {

𝑟𝑒

𝑟
−

𝑟

𝑟𝑒
  (𝑟 < 𝑟𝑒)

     0      (𝑟 ≥ 𝑟𝑒)
, 

 

(5) 

𝜔(𝑟) = {

𝑟𝑒

𝑟
+

𝑟

𝑟𝑒
− 2  (𝑟 < 𝑟𝑒)

      0                (𝑟 ≥ 𝑟𝑒)
 

 

(6) 
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In Eqs. (5) and (6), 𝑟 is the distance between particles and 𝑟𝑒 is the influence radius of a particle. 

The parameters 𝑛𝑔𝑟𝑎𝑑
0  and 𝑛0 are defined as follows: 

𝑛𝑔𝑟𝑎𝑑
0 = ∑ 𝜔𝑔𝑟𝑎𝑑(|𝒓𝑗 − 𝒓𝑖|)

𝑗≠𝑖

 
 

(7) 

𝑛0 = ∑ 𝜔

𝑗≠𝑖

(|𝒓𝑗 − 𝒓𝑖|). (8) 

 

The Navier Stokes equation (2) can be calculated using Eqs. (3) and (4) [8]. However, in this 

study, the left-hand side of Eq. (2) can be calculated by the explicit Euler method in the E-MPS 

algorithm using the intermediate velocity 𝒖𝑖
∗ as  

 

𝐷𝒖

𝐷𝑡
=

𝒖𝑖
𝑘+1 − 𝒖𝑖

𝑘

Δ𝑡
=

𝒖𝑖
∗ − 𝒖𝑖

𝑘

Δ𝑡
+

𝒖𝑖
𝑘+1 − 𝒖𝑖

∗

Δ𝑡
 (9) 

 

where 𝒖𝑖
𝑘  denotes the particle velocity of particle 𝑖  at the k-th time step. In addition, Δ𝑡 

represents the time increment. The superscript * denotes the physical quantity at the 

intermediate time step. The intermediate particle velocity 𝑢𝑖
∗ can be calculated as follows: 

 

𝒖𝑖
∗ = 𝒖𝑖

𝑘 + (𝜈〈∇2𝒖〉𝑖
𝑘 + 𝒈)Δ𝑡. 

 

(10) 

 

Moreover, the particle position 𝒓𝑖
∗ at the intermediate step can be obtained as follows: 

 

𝒓𝑖
∗ = 𝒓𝑖

𝑘 + 𝒖𝑖
∗Δ𝑡. (11) 

 

The particle velocity 𝒖𝑖
𝑘+1 and position 𝒓𝑖

𝑘+1 can be calculated using Eq. (9) as  

 

𝒖𝑖
𝑘+1 = 𝒖𝑖

∗ −
Δ𝑡

𝜌𝑖
0

〈∇𝑃〉𝑖
𝑘+1 

 

(12) 

𝒓𝑖
𝑘+1 = 𝒓𝑖

∗ + (𝒖𝑖
𝑘+1 − 𝒖𝑖

∗)Δ𝑡 (13) 

 

where 𝜌0 is the initial density of the fluid. In the conventional MPS, Poisson’s equation for the 

pressure obtained by Eq. (12) can be solved implicitly to obtain the pressure 𝑃𝑘+1. However, 

in the E-MPS, the pressure 𝑃𝑘+1 can be evaluated as a function of density, as follows: 

 

𝑃𝑘+1 = {
𝑐2(𝜌∗ − 𝜌0) (𝜌∗ > 𝜌0)

      0                (𝜌∗  ≤ 𝜌0)
 

 

(14) 
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where 𝑐 is the speed of sound. The density 𝜌∗ in the intermediate step can be calculated by 

assuming that  𝜌∗ is proportional to the sum of the weight function 𝜔, as follows: 
 

 

𝜌∗ =
𝜌0

𝑛0
∑ 𝑤(|𝒓𝑗

∗ − 𝒓𝑖
∗|).

𝑗≠𝑖

  

(15) 

 

In Eq. (14), the speed of sound 𝑐 is given by 𝑐 = 𝑢𝑚𝑎𝑥/0.2, where 𝑢𝑚𝑎𝑥 is a predicted value of 

the maximum fluid velocity. 

VR visualization using Unity 

The tsunami run-up behavior can be calculated using the E-MPS, as explained in the previous 

section. Therefore, in this section, we briefly describe how to integrate the numerical results 

obtained by the E-MPS into a VR space. Although there are several kinds of VR systems, a 

mobile VR head-mounted display (HMD), which uses a smartphone for the display, is 

considered in this research, as shown in Fig.1. A VR system with a large-scale screen for 

Figure 1. VR system using smartphone and remote controller. 

 

 
 

Figure 2. Flowchart of creating the “.apk file” required for the proposed VR system. 
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tsunami simulation was developed by Kawabe et al. [11]. In addition, Tanaka et al. [12] 

proposed a tsunami virtual reality system using a head-mounted display connected to a high-

performance notebook PC with a graphics-processing unit (GPU). However, their proposed 

system requires expensive high-performance equipment. Such systems are not suitable for 

allowing many people to experience a VR system in different places at the same time. For that 

reason, a VR system using a smartphone, which can easily and inexpensively provide a virtual 

tsunami experience, was constructed in this research.  

 

Hereafter, a brief description of the VR system construction procedure is provided. The 

procedure used Maya [13] and Unity [14], which are the 3D computer software product with 

powerful modeling and widespread use as free VR development platform, respectively. In this 

research, first, a tsunami simulation using the E-MPS was implemented as the scenario that the 

VR user experiences. In general, the numerical results are output as a binary or text file. 

However, these file extensions are not suitable for Unity. Therefore, the output files are 

transformed by Maya into files with the extension “.dae”, which are compatible with Unity. In 

this process, the particle data, which show the tsunami behavior, are obtained by the E-MPS 

and are transformed into polygon data. At that time, some models used in the E-MPS analysis, 

such as buildings, grounds, and timbers are rendered for a more realistic visualization. The 

setting of the camera, movement operation using the remote controller, and collision detection 

for walls, buildings, and trees, are also performed using Unity. This setting is implemented 

through the C#-like script programming in Unity. Finally, a file with the Android application 

extension, “.apk” is built and copied to a smartphone that is inserted into the VR glasses, as 

shown in Fig.1. The flowchart of these operation procedures can be seen in Fig.2. Obviously, 

this developed VR system is economical and does not need a high-performance PC and large 

screen, except for the workstation used in the particle simulation. Therefore, this system is 

suitable for disaster preparation training, such as in a situation in which the instructor has a 

large number of trainees for tsunami evacuation drills.  

 

VR demonstration results 

The VR demonstration results can be seen in this section. The E-MPS was applied to the 

tsunami simulation, whose model is illustrated in Fig.3(a). The scenario in this simulation is 

that of a virtual urban area with some buildings, which is hit by a tsunami. In general, the 

numerical models for particle methods are represented as an assembly of particles. Therefore, 

the fluid, riverbed, and buildings are represented by particles, as shown in the figure. The virtual 

walls are set with reflected boundary conditions for front and back, as shown in the same figure, 

 
Figure 3. Visualization results for tsunami simulation. An example of (a) particle data used in this 

analysis and (b) visualization of the numerical result with the aid of Maya. 
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to prevent the fluid from spreading widely in the VR space. The walls and buildings are treated 

as wall particles. In this analysis, the density of the fluid 𝜌 (or 𝜌0), speed of sound 𝑐, gravity 

𝒈 , and time step size Δ𝑡  are set as 𝜌 (or 𝜌0) = 1000kg/m3 , 𝑐 = 100.0m/s , 𝒈 =
(0.0, −9.8m/s2, 0.0), and Δ𝑡 = 1.0 × 10−2s, respectively. In addition, the kinematic viscosity 

𝜈  and number of the space dimension 𝑑  are given by 𝜈 = 1.301 × 10−2m2/s  and 𝑑 = 3 , 

respectively. The particle data obtained by the E-MPS are transformed into polygon data and 

visualized by Maya, as explained in the previous section. Figure 3(b) shows an example of the 

visualized E-MPS numerical result obtained using Maya. Note that the trees in that figure are 

not considered in this numerical analysis model. In fact, the trees are simply located in the VR 

space to enhance the realism of the simulation in the steps of the Maya-visualization. The 

realistic visualization of this simulation was achieved with the aid of Maya. All of the static 

images for each time step, as shown in Fig.3(b), are prepared for the VR demonstration with a 

smartphone. These static images are gathered in Unity. Then, the Android application with the 

extension “.apk” is built and the resulting file is copied to the smartphone, which is inserted 

into the VR glasses. 

 

Figure 4 shows an example of the VR demonstration results, which were obtained using Unity, 

according to the flowchart in Fig.2. Figure 4(a) and (b) show the stereo rendering images for 

the left and right eyes, respectively, through the VR glasses. In Fig.4(a), a VR user sees the 

tsunami approaching from behind the building. In Fig.4(b), the VR user is swallowed by the 

tsunami. From Fig.4, someone using the developed VR system using a smartphone can feel the 

velocity and height of the tsunami approaching, something that cannot be readily experienced 

in the real world. For example, a big tsunami such as the one observed after the Great East 

Japan Earthquake of March 11, 2011 occurs only once every several hundred years. Therefore, 

it was concluded that the developed VR system for experiencing a tsunami may be helpful as a 

method for tsunami disaster preparation drills.    

 

Conclusion 

In this study, a tsunami simulation was implemented using the E-MPS, which is one of the 

particle methods. The particle data obtained from the E-MPS were transformed into polygon 

data using Maya, and realistic static images were created. These static images were gathered, 

and the VR application was built using Unity. The VR demonstration results with a smartphone 

device installed (containing the developed VR application) were shown to prove that it worked 

 
 Figure 4. VR demonstration results at selected time steps:(a) a VR  user can see the tsunami behind 

the building; (b) a VR user is swallowed by the tsunami. 
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properly. In the future, this developed VR system will be used for tsunami disaster preparation 

drills.  
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Abstract 

Linear tetrahedral elements with four nodes (Te4) are currently the simplest and most widely 

used in finite element (FE) developed for solving 3D mechanics problems. However, the 

standard Te4 elements cannot be used to simulate accurately the 3D problems with curved 

boundaries, because of the flat surfaces of the standard Te4 elements. In this paper, we 

develop a set of new elements having curved surfaces to simulate the curved boundaries, by 

adding nodes to the standard Te4 elements. These novel elements include five-noded, six-

noded, and seven-noded tetrahedron elements (Te5, Te6, and Te7). Based on the Te4 FE 

mesh, a hybrid mesh can be conveniently built for 3D problems with curved boundaries, in 

which the standard Te4 elements are used for the interior, and Te5, Te6, and Te7 elements are 

used for the curved boundaries. Compared with the standard FEM with Te4 elements, our 

mixing mesh can significantly improve the accuracy of the solution at the curved boundaries. 

Several solid mechanics problems are studied using hybrid meshes to validate the 

effectiveness of the present new elements.  

Keywords: finite element method; curved boundaries; five-noded, six-noded, seven-

noded tetrahedron element 

 

Introduction 

Common three-dimensional element of FEM is linear tetrahedral element with four nodes 

(Te4), which can automatically generate for complex geometries [1]. Due to its high 

efficiency, robustness and adaptability for complex geometries, the Te4 element is the most 

commonly used for general solid mechanics problems. However, the accuracy of FEMs using 

Te4 elements is poor in terms of stress, especially at the curved boundaries. Tetrahedral 

elements with ten nodes (Te10) [2], wedge elements with six nodes (W6) and hexahedron 

elements with eight nodes (H8) are proposed for this problem to obtain higher accuracy, but 

the computational cost is too large. Considering the above characteristics of the Te4, the Te10 

and the higher order element, we propose a hybrid class of multi-node tetrahedral elements.     

 

For the 3D problem domain with curved surfaces, some of the edges of tetrahedron boundary 

elements locate on the curved boundaries. If the edge is on the curved boundaries, we use a 

curved edge instead of the straight edge used in the standard Te4 element. Then we add a new 

node in the middle point of the curved edge to accurately simulate the changing trend. We 

analyze the type of the boundary elements, and put forward three kinds of new tetrahedron 

elements which are five-noded, six-noded and seven-noded tetrahedron (Te5, Te6, and Te7) 

elements. 
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The shape functions of the Te5, Te6 and Te7 elements for FEM 

Then we construct the shape functions for the Te5, Te6 and Te7 elements. Figure 1(a) is a Te5 

element that one additional node was added on the middle node of the curved edge. By using 

shape functions of the four-noded triangular (Tr4) element which can be found in [3], we can 

construct the shape function of a standard five-noded tetrahedron element in the natural 

system, which can be seen in Figure 1(b). 

 

 

(a) (b) 

Figure 1. (a) The five-noded tetrahedron element; (b) the five-noded tetrahedron 

element in natural system. 

For any triangular 
1 2 3    paralleled to the triangular 123 , the displacement can be 

approximated using  
4

4

1
i i

Tr

i

u u 


  (1) 

where the shape function of the Tr4 ,
1 2 3   , can be written as 
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(2) 

Invoking the simple fact that 

3 51 2 4 44 4

4 1 4 2 4 3 4 5

1
l ll l

l l l l

  


  

   

     , (3) 

where i jl   is the distance between two points i and j. So we have the relationships as listed: 
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i iu u u i       

 4 11 ; 4
i iu u u i        

(4) 

Therefore, the displacement in the standard five-noded tetrahedron element can be evaluated 

using the following formulation 
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(5) 

Substitute Eq.(2) into the above equation, the shape functions  1,2,3,4,5iN i   of the 

standard Te5 element can be formulated as  
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. (6) 

where the parameters  0,1  ,  0,1  ,  0,1  . 

 

Figure 2(a) is a Te6 element that two additional nodes were added on the middle node of each 

curved edge. 

 

 

(a) (b) 

Figure 2.  (a) The six-node tetrahedron element; (b) the standard six-node 

tetrahedron element in the natural system. 

Similarly, the shape functions  1,2,3,4,5,6iN i   of the standard Te6 element, which can be 

seen in Figure 2(b), can be formulated as  
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(7) 

where the parameters  0,1  ,  0,1  ,  0,1  . 

 

Figure 3(a) is a Te7 element that three additional nodes were added on the middle node of 

each curved edge. 

 

 

(a) (b) 

Figure 3.  (a) The seven-node tetrahedron element; (b) the standard seven-node 

tetrahedron element in the natural system. 

Similarly, the shape functions  1, 2,3, 4,5,6,7iN i   of the Te7 element, which can be seen in 

Figure 3(b), can be formulated as  
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where the parameters  0,1  ,  0,1  ,  0,1  . 
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Numerical simulation 

The domain of the hollow sphere is defined as Ω = B(0, 2)/B(0, 1.0), which the origin O(0, 0, 

0), inner radius a = 1.0m, and outer radius b = 2.0m. The hollow sphere is subjected to an 

internal pressure P=1 N/m
2
 on the inner spherical surface. Because of the symmetric 

characteristics of the problem, only one-eighth of hollow sphere needs to be modeled as 

shown in Figure 1, and symmetric conditions are imposed on the symmetric planes. 

 

Figure 1.  one-eighth of hollow sphere discretized using Te4 elements 

 

Table1. Relative errors in displacement component u of the added nodes in the curved 

edges for the inner surface 

Mesh 62 nodes 371 nodes 770 nodes 1482 nodes 

FEM-Te4 0.2429 0.0532 0.0331 0.0140 

FEM-HM 0.1796 0.0361 0.0246 0.0086 

 

We use FEM-Te4 to represent the finite element method using Te4 elements and FEM-HM to 

represent the finite element method using a hybrid mesh with Te4, Te5, Te6 and Te7 elements. 

Table1 gives the relative errors in displacement component u of the added nodes in the curved 

edges for the inner surfaces using different elements and mesh sizes. The results show that the 

hybrid mesh with Te4, Te5, Te6 and Te7 elements can improve the accuracy of the 

displacement result on the curved boundaries, compared to the mesh with Te4 elements. 

 

Figure 2 shows relative errors in radial stress r  of Point A (marked in Figure 1) against 

mesh sizes using different elements, which obtains the maximum radial stress easily observed 

in the analytical solution. It is clearly seen that the hybrid mesh with Te4, Te5, Te6 and Te7 

elements stands out in the radial stress, compared the mesh with Te4 elements. 

 

ICCM2018, 6th-10th August 2018, Rome, Italy

725



Figure 2. Relative errors of the radial stress of Point A against mesh sizes using 

different elements for 3D Lame problem. 

Conclusions 

In this paper, we present a novel hybrid mesh using Te5, Te6, and Te7 elements to accurately 

approximate the curved boundaries of problem domains. The hybrid mesh not only remains 

the advantages of the linear tetrahedral element, but also greatly improves the accuracy of the 

stress solution. Based on the shape functions of the standard Tr4 element, the standard Tr5 

element and the standard Tr7 element, we formulate the shape functions for Te5, Te6, and 

Te7 elements separately. Through intensive numerical examples, it is concluded that our 

novel hybrid mesh with the multi-node tetrahedral element can simulate the curved 

boundaries efficiently and accurately. 
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Materials and Methods 

In this work, we reinforced a thermoplastic polymer and a thermoset polymer separately with 
continuous flax fibre reinforcement . For the thermoplastic, Polypropylene (PP) (Moplen 
RP241G, Lyondell Basell, New Zealand) was obtained in the form of 0.38 mm and 0.6 mm 
sheets. Prime 20 LV, Gurit, New Zealand was used for the thermoset composites. The matrix 
polymers properties are listed in Table 1. Unidirectional flax fibre fabric (Belgian flax, linum 
usitassimum) of areal density 190 g/m2 was obtained from Libeco, Belgium. 

Glass/epoxy composites were also manufactured and tested to validate some of the numerical 
models. Glass unidirectional (UD) fabric of areal density 250 g/m2 obtained from Gurit, New 
Zealand was used to manufacture these composite panels. 

Table 1. Properties of the matrix polymers. 
 

Material Property Value 

PP Density 0.9 g/cm3 
 

Tensile modulus, E 1.1 GPa 
 

Yield strength, σy 10 MPa 

Epoxy (Prime 20 LV) Density 1.089 g/cm3 
 

Tensile modulus, E 3.2 GPa 
 

Yield strength, σy 73 MPa 

Manufacture 

Flax/PP panels of two volume fractions, 0.22 and 0.41 were manufactured using a 100 tonne 
press. PP sheets and layers of flax fabric were assembled and compacted in a die which was 
pre-heated to 190 °C. A pressure of 0.5 MPa was applied for 10 minutes initially, which was 
then increased to 0.94 MPa over 5 minutes. The die was then cooled to 100 ○C, maintaining 
the pressure at 0.94 MPa. 

The vacuum-assisted resin transfer moulding (VARTM) process was used to manufacture the 
flax/epoxy panels of two different volume fractions, 0.41 and 0.51, and glass/epoxy panels of 
volume fraction 0.51. The mould was heated prior to placing the fabric inside. On completing 
injection, the mould was heated to 60○C to ensure complete curing of the resin. 

For further details of both manufacturing processes, the authors’ earlier paper can be referred 
to [35]. Designations have been assigned to the composite materials for ease of reference. The 
flax/PP composites with 0.22 and 0.41 volume fractions will be referred to as FLPP22 and 
FLPP41 respectively. Similarly, the flax/epoxy systems composites with 0.41 and 0.51 
volume fractions will be referred to as FLEP41 and FLEP51 respectively, and the glass/epoxy 
system as GLEP51. 

Mechanical tests and analysis 

Three-point bending tests were performed to study the macroscale behaviour of the composite 
materials, following the ASTM D790 standard. Rectangular specimens 84 mm long by 16 
mm wide for three-point bend (flexural) tests were extracted from the panels produced. As per 
the ASTM D790 standard, the strain rate applied to flexure specimens was decided based on 
initial testing done on a sacrificial specimen. The support span and strain rates for all material 
systems were calculated from the dimensions of this specimen, as per the procedure specified 
in the standard, and these values are listed in Table 2. 
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Table 2. Parameters used for three point bend/flexure tests on composite specimens 

Material 
system 

Vf Designation Support span 
[mm] 

Strain rate 
[mm/min] 

Flax/PP 0.22 FLPP22 47.85 1.315 

Flax/PP 0.41 FLPP41 47.85 1.315 

Flax/epoxy 0.41 FLEP41 63.74 1.737 

Flax/epoxy 0.51 FLEP51 63.74 1.750 

Glass/epoxy 0.51 GLEP51 63.64 1.728 
 

As part of a previous study [35], we also characterized mechanical properties at the 
microscale. The strength of flax fibres under tension was determined using single fibre tensile 
tests (SFTTs) performed according to the ASTM C1557 standard, with specimens of four 
different gauge lengths of 10, 15, 20 and 25 mm being tested. The normal strength of the 
interface between fibres and matrix polymer was also studied for flax/PP and flax/epoxy using 
the microbond technique. Transverse tensile strength of composites was determined following 
the ASTM D3039 standard to estimate the shear strength of the fibre-matrix interface. 

Macroscale properties 

Tensile testing of rectangular specimens was performed using a 30 kN Instron 5567 UTM 
with a video extensometer to measure strain. As per the ASTM D3039 standard, testing was 
performed at a crosshead rate of 2 mm/min. Compressive tests were performed either using 
the Instron 5567 UTM or a 100 kN Instron UTM depending on the final load required for the 
material system. The ASTM D6641 standard using a combined loading fixture was employed, 
and the test was performed at a crosshead speed of 1.3 mm/min. Rail shear specimens were 
tested as per the ASTM D4255 standard. Composite specimens were also tested in flexure by 
performing three-point bending tests following the ASTM D790 standard. 

Fabric geometry characterization 

A Leica MZ16 microscope with a maximum magnification of 220x was used for optical 
microscopy measurements. Various optical measurements, such as the centre-to-centre 
distance between individual warp yarns and individual weft yarns, were performed on the 
fabrics. These parameters are required for the modelling of the yarn paths, crossovers and 
spacings, which constitute the architecture of the fabric. For the warp yarns, the distributions 
of yarn heights and yarn widths were measured for suitability of fitting to normal, log-normal 
and Gumbel distributions. The fabric geometry distributions were applied to construct the 
geometric model of the flax fabric using varying yarn geometries [36]. 

Numerical Modelling 

The approach taken to implement the multiscale coupling for this study is illustrated in the 
flowchart (Figure 2), including the models involved and the exchange of information between 
them. 
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Microstructure RVE FE models 

In a previous study [36], we established a methodology to estimate the damage evolution 
behaviour in flax/PP and flax/epoxy systems using numerical representative volume element 
(RVE) models of flax yarns impregnated with either PP or epoxy. The damage rules obtained 
from these models were then combined with meso-FE models [37], which would then be able 
to provide the macroscale models with a damage response given the deformation gradient. 
The meso-FE models in this case had discrete representation of the fabric geometry in the flax 
fabric composites. These are the models referred to as “Microstructure RVE FE models” in 
Figure 2. The damage rules which were estimated flax/PP and flax/epoxy systems are as in 
Table 3. 

Table 3. Polynomial fit parameters for numerical damage evolution 

Material 
system 

Initial 
strain 

a0 a1 a2 a3 

Flax/PP      

d11 0.0 0.0466 -11.326 6899.025 -177591.065 

d22 0.002 0.1594 -84.802 21261.602 -1007230.523 

d33 0.002 0.1594 -83.350 20546.880 -986335.330 

d12 0.002 0.1592 -84.657 21233.65 -1005611.546 

d13 0.0 0.04 -0.581 5227.291 -111522.741 

d23 0.002 0.1594 -84.807 21262.992 -1007340.688 

Flax/epoxy      

d11 0.008 3.950 -1148.067 104071.570 2752583.210 

d22 0.0065 0.0627 -14.474 670.675 18751.528 

d33 0.0065 0.0672 -15.484 731.900 17979.630 

d12 0.0065 0.072 -13.301 207.513 41757.377 

d13 0.01 2.644 -578.704 39704.457 -803754.974 

d23 0.0065 0.091 -21.596 1217.099 5652.155 
 

An example of flax composite geometry in the RVEs is shown in Figure 4. From the 
compacted geometry representing stacks of flax fabrics (Figure 4), FE models were generated 
with elements filling in spaces between the fabric layers to represent the polymer resin 
(Figure 4). 

 

ICCM2018, 6th-10th August 2018, Rome, Italy

732



Figur

Multisca

The co
method 
term “no
numeric

In the 
integrat
the AB
DFGRD
using eq

where X
configu
imposed
boundar
The RV
values i
damage
integrat
microsc

re 4. Illustr

ale coupling

oupling of 
[31] becau
on-intrusive
cal solver co

method, th
tion point in
AQUS UM

D1. The RV
quations of 

X and x are 
urations, res
d on the bo
ry nodes, d

VE model w
in the RVE.
e rules (Ta
tion point in
copic meshe

(a) 

ation of (a)

g 

scales was
se it is re
e” indicates
ode itself. 

he macrosc
n the eleme

MAT user s
VE model 
the form 

the position
pectively, a
oundary no

due to which
was then so
 The damag

able 3). Th
n the macr
es is illustra

) section of 
fab

s performed
elatively ea
s that the m

opic mode
ents, the ma
subroutine, 
displaceme

[X – x] =

ns of a poi
and I is the
des of the 
h displacem
olved, follo
ge in the RV
e average 
oscale mod
ted in Figur

 

f compacted
bric compo

d using a 
asy to imp
method doe

l is solved
acroscopic 
the deform

ents were c

= [Fmacro - I]

int in the R
e identity m

RVE mode
ments only n
owed by vo
VE was set 

values we
del. The flo
re 5. 

d fabric geo
site 

coupled c
lement, an
s not requi

d first, and
deformation

mation grad
calculated fr

].[x] 

RVE model 
matrix. Perio
els. Pilot no
needed to b
olume-avera
by using th
ere then u
ow of data 

(b) 

ometry and

omputation
nd is also 
re access/m

d for each 
n gradient F
dient is stor
from the de

in the defo
odic bounda
odes were u
be specified
aging of the
e numerical

updated in 
between th

d (b) RVE o

nal homoge
non-intrusi

modification

iteration a
Fmacro is obta
red in the 
eformation 

formed and 
ary conditio
used to con

d at the pilo
he stress or 
lly estimate
the corres

he macrosco

 

of flax 

enization 
ive. The 
ns to the 

and each 
ained. In 
variable 
gradient 

(1)

original 
ons were 
ntrol the 
ot nodes. 

damage 
ed strain-
sponding 
opic and 

ICCM2018, 6th-10th August 2018, Rome, Italy

733



Figur

 

The ma
FE mod
modelle
lower sc

Results

A hiera
micro-s
properti
distribu
properti
properti
used to 

Fabric g

The me
distribu
mean w
was fou
mm (wi
For the 
high on 
which w

re 5. Flowch

acroscopic m
dels represe
ed as rectan
cale models

s and Discu

archical app
cale, linkin
ies into a l

utions, and 
ies were th
ies of the i
model the f

geometry ch

easurements
utions in Fig
when a warp 
und that the 
ithin the sam
glass fabric

n average. T
were spaced

hart of step

meshes used
enting the th
ngular block
s were comp

ussion 

proach was
ng them to a
arger scale 
compared 

hen used in
nterface. T
failure of m

haracteriza

s of the c
gure 6. Con
 yarn passe
average dis

me crossove
c, the glass t

The tows we
d 37 mm apa

ps involved
Sm

d as part of
hree-point b

ks with isotr
prised of the

s applied, w
analytical or

model. Fib
to predictio

n simulatio
he properti

matrix-impre

tion 

ross-section
cerning the
s over a we
stance from 
er), while th
tows were c

ere bound by
art. 

 

d in the com
mit et al. [3

f the multis
bending tes
ropic materi
e meso-FE 

which inclu
r numerical 
bre propert
ons using 

ons of the 
ies of the fi
egnated flax

ns of flax 
e flax fabric
ft yarn or v

m the edge of
he correspo
closely spac
y polyethyl

mputational
31] 

cale couplin
st (Figure 3
ial propertie
RVE model

udes obtain
models, an

ties were de
the classica
microbond 

fibre and th
x yarns. 

fibres and
cs, the term 
ice-versa. O
f one warp f

onding value
ced, and we
lene yarns 0

l homogeni

ng in this w
3). The com
es in these. 
ls. 

ing materia
nd then feed
etermined f
al laminate

test perfor
he interface 

d flax yarn
“crossover”

On observat
flax yarn to
e for weft y
re 2.08 mm

0.3 mm wid

ization sche

work were f
mposite beam

The micros

al propertie
ding the mic
first, fit to 
e theory. T
rmed to de
were subs

ns are indic
r” will from
tion of the f
o the next w
yarns was 2

m wide and 0
de and 0.2 m

 

eme of 

from the 
ms were 
scopic or 

es at the 
cro-scale 
Weibull 

The fibre 
etermine 
equently 

cated as 
m now on 
fabrics, it 

was 0.005 
2.85 mm. 
0.24 mm 

mm high, 

ICCM2018, 6th-10th August 2018, Rome, Italy

734



Fig

Multisca

The sim
experim
failure m
numeric
than the
early, w
tests. Th
fibres in
could c
microm
part of a

The pre
value. T
Both th
experim
predicte
MPa, w
lower th
was onl

gure 6. Dist

ale model r

mulation res
mental data 
matched clo
cal damage 
e average ex
with the fail
he higher f
n the yarn h
confirm the

mechanics is
another rese

ediction for 
The failure s
he stress a

mental value
ed strength 

while for the
han the test 
ly 7.4% low

tributions o

results 

sults, presen
for all fou

osely with t
rule applied

xperimental
lure strain o
failure strai
helix, and o
e occurren

s not a focu
earch work.

FLPP41 w
strain of 0.0
and strain 
es for the 
was 236.36

e FLEP51 m
average of 

wer than the 

of fibre and

nted in Fig
ur systems. 
those obtain
d, the predi
l value of 1
of 0.028 be
in in the te
of the cellul
nce of such
us of this th

as at a valu
027 was aga

behaviour
flax/epoxy

6 MPa, 11.
model, the s
323.4 MPa
test average

d yarn geom

gure 7, disp
For the fl

ned from th
cted failure
12.40 MPa

eing less tha
st specimen
lose microfi
h a proces

hesis, and is

ue of 115.78
ain lower th
rs predictio
y systems. 
.2% lower 
strength wa
a. The corres
e strain of 0

metries, fro

play reasona
lax/PP syste
he tests. Fo
e was at 103
. However, 
an half the 
ns could be

fibrils in the
ss. Howev
s something

8 MPa, whi
han the aver
ons were m
In the case
than the ex

as predicted 
sponding fa
0.030. 

om optical m

ably good a
ems, the pr
r the FLPP

3.10 MPa, w
the failure 
average str

e due to the
e fibres. Fra
er, fractogr
g that could

ich is 7.7% 
age strain o
much close
e of the F
xperimental 

to be 299.1
ailure strain 

 

measureme

agreement 
redicted str

P22 model, 
which is 8.3

does seem 
rain of 0.06
e unwindin
actographic 
graphic ana
d be investi

 lower than
of 0.050 in t
er to the 

FLEP41 mo
l average of
14 MPa, on
prediction 

ents 

with the 
resses at 
with the 
% lower 
to occur 

60 in the 
ng of the 

analysis 
alysis of 
igated as 

n the test 
the tests. 
average 

odel, the 
f 296.40 
nly 7.5% 
of 0.032 

ICCM2018, 6th-10th August 2018, Rome, Italy

735



Figur

Validat

The mu
flax com
systems
has bee
fibre vo
before a

Impregn

Using a
rules fo
were co
values o
and glas

 L

 L

 T

 T

 

The stre
evolutio
calculat
curves t
4. 

 
 
 

re 7. Result

tion with E

ultiscale mod
mposite syst
s, the entire 
en repeated 
olume fracti
and subjecte

nated yarn R

a similar me
r fabric com

onstructed a
of strain wi
ss fabric. Th

Longitudina

Longitudina

Transverse 

Transverse 

Shear streng

ength used 
on from te
ted, and bes
thus obtaine

 
(a) 

 

(c) 

ts from mu
FLPP22, 

xperiments

delling fram
tems studie
set of expe
for a glass

ion of 0.51 
ed to three-p

RVE and da

ethod as des
mposite syst
and samples
ith respect t
he strength 

al tensile str

al compress

tensile stren

compressiv

gth = 100 M

to calculate
ensile and 
st-fits for th
ed for the e

ltiscale sim
(b) FLPP4

s 

mework her
d. To ascer
riments and

s/epoxy mat
were manu
point bendin

amage rule

scribed in o
tems, discre

s cut out to 
to strain va
values used

rength = 20

sive strength

ngth = 80 M

ve strength =

MPa 

e the yield s
compressiv

heir evolutio
evolution of

 

mulations of
41, (c) FLEP

re was demo
rtain the app
d simulation
aterial system
ufactured us
ng tests. 

our previous
ete models 
identify RV

alues expect
d for the gla

000 MPa 

h = 1000 M

MPa 

= 250 MPa

strain for ep
ve loading 
on obtained
f damage in

f three-poin
P41 and (d

onstrated to
plicability o
ns leading u
m (GLEP5
ing resin tra

s paper [36]
of glass tow

VEs. Damag
ted at the p
ass fabric we

MPa 

poxy was 7
of the gl

d by curve-
n the glass e

(b) 
 

(d) 

nt bending 
d) FLEP51 

yield good
of this metho
up to the mu
1). Glass/ep
ansfer moul

 to establish
ws impregna
ge was calc
lastic yield 
ere [38]: 

3 MPa (Tab
lass/epoxy 
fitting. The

elements are

behaviour

d results for 
od to other 

ultiscale sim
poxy panel
lding, as m

h damage e
ated by epo

culated base
d point of th

ble 1). The 
RVE mod

e parameter
e specified 

 

r of (a) 

the four 
material 

mulations 
s with a 
entioned 

evolution 
oxy resin 
ed on the 
he epoxy 

damage 
del were 
s for the 
in Table 

ICCM2018, 6th-10th August 2018, Rome, Italy

736



Tab

Multisca

A meso
utilized 
paramet
geometr

 

A mode
the init
coupled
GLEP5
glass/ep
behavio

ble 4. Polyn

Dam
varia

Tens

d1

d2

d3

d1

d1

d2

Compr

d1

d2

d3

d1

d1

d2

ale three-po

o-FE model
to constru

ters obtaine
ries used in 

Figur

el representi
ial elastic 

d multiscale
1 models. 

poxy using 
our predicte

nomial fit p

mage 
able 

sile 
 

1 

22 

3 

2 

3 

23 

essive 
 

1 

22 

3 

2 

3 

23 

oint bending

l was cons
uct meso-FE
ed for the 
generating 

 
(a) 

re 8. Glass 

ing the thre
stiffness of

e studies we
The bendi
FORTRAN

ed by the m

arameters 
imp

Start 
strain 

 

0.005 -1

0.005 -1

0.005 -1

0.002 0

0.002 0

0.002 0
 

0.0 0

0.0 0

0.0 0

0.0 0

0.0 0

0.0 -0

g 

tructed for 
E models f
glass fabr
the meso-F

fabric stac

e-point ben
f the glass/
ere undertak
ing model 
N code and
model was 

for numeri
pregnated y

a0 a1

 

1.386 365.7

1.080 284.0

1.077 283.1

0.149 -81.4

0.153 -86.1

0.148 -83.3
 

0.043 -39.3

0.106 -5.2

0.105 -3.46

0.110 -5.38

0.038 -40.3

0.009 25.6

the GLEP
for the flax
ric. The un
FE models a

ck (a) befor

nding of glas
/epoxy com
ken to simu

was coupl
d the UMA

close to t

ical damag
yarn 

 a2

 

707 -19,101

011 -14,59

139 -14,553

43 19,771

178 20,474

358 18,810
 

310 3,324.

13 1,040.

60 1,163.

82 1,074.

331 3,855.

22 -2,732

P51 system 
x-based sy
ncompacted
are shown in

re and (b) a

ss/epoxy sp
mposite set 
ulate the thr
led with th
AT interfac
the experim

ge evolution

 

1.067 333

7.98 248,

3.156 247

1.52 -865

4.23 -904

0.508 -796
 

354 1,196

962 956,

322 908,

801 988,

576 1,052

.963 1,046

using the 
stems [37], 

d and comp
n Figure 8. 

(b) 

after compa

pecimens wa
to 42.58 G

ree-point be
he meso-FE
e in ABAQ

mental resul

n of glass/ep

a3 

3,478.08 

,129.125 

7,367.21 

5,447.951 

4,093.44 

6,770.62 

6,582.368 

,921.524 

,359.764 

,028.244 

2,958.606 

6,119.704 

same meth
and the g

pacted glas

action 

as construct
GPa. Subse
ending beha
E RVE mo
QUS. The 
lts in term

poxy 

hodology 
geometry 
ss fabric 

 

ted, with 
equently, 
aviour of 
odel for 
bending 
s of the 

ICCM2018, 6th-10th August 2018, Rome, Italy

737



stiffness
predicte

Figur

Conclu

A coupl
behavio
Two sca
specime
discrete
in the l
numeric
the ben
between

Validati
paramet
evolutio
techniqu
The stif
and the 
glass/ep

Finite e
models)
using fl
systems
were o
impregn
damage
approac

The pre
modelli
techniqu

s behaviour
ed at 898.26

e 9. Stress-
b

sions 

led multisca
our of flax/P
ales were c
en. The coup
e representa
lower scale
cally from t
ding behav
n 7.5-11.2%

ion studies
ters for a gl
on laws we
ue was then
ffness and s
predicted f

poxy three-p

element mo
) can be use
lax fibre-ba
s by combin
obtained by
nated yarn g
e evolution 
ch in this wo

esent work e
ng of natur
ue was imp

r and the f
6 MPa, whic

-strain resp
behaviour 

ale homoge
PP and flax/
onsidered, o
pled micros

ations of the
 models w
the fibre and
viour of the 
% lower than

 for the te
lass/epoxy 
ere obtaine
n applied to
strength beh
failure stren
point bendin

dels contai
ed to predic
ased compo
ning the fabr
y construct
geometry. E
laws can be
ork. 

establishes t
ral fibre-bas
plemented to

failure stren
ch is only 12

ponse from 
of GLEP51

enization tec
/epoxy fabri
one of whic
scopic mesh
e fabric geo
as impleme
d interface p
composites

n the test av

echnique w
composite, 

ed for the 
o the glass/e
haviours w
gth was onl
ng specimen

ning discre
ct the tensile
osites. This 
ric geometr
ting FE m

Equipped wi
e obtained 

the reliabili
sed compos
o establish 

ngth value, 
2.6% lower

the multis
1, compare

chnique wa
ic composit
ch was an F
hes or lower
ometry. The
ented using
properties. 
s. The resu

verage value

were also p
combined 
glass/epoxy

epoxy syste
were reasona

ly 12.6% lo
ns. 

ete represen
e failure of 
was demon

ry with the s
models from
ith the fibre
for any fibr

ity in applyi
sites. To do 
its capabili

as shown 
r than the te

cale simula
ed to bendin

as implemen
tes using AB
FE represen
r scale mod
 failure of t

g strain-dam
The implem

ults obtained
es. 

performed, 
with flexur
y system. 
em, as perfo
ably close t
ower than th

ntations of t
natural fibr
nstrated for
strain-dama
m cuboid 
e, interface a
re-polymer 

ing numeric
so, a coup

ty to predic

in Figure 
st average o

ation of thr
ng test data

nted to anal
BAQUS an
tation of a t
els were FE
the impregn

mage evolut
mentation w
d for the fa

using geom
e test data. 
The couple

ormed for th
to those of 
he experime

the fabric g
re composit
r four flax/p
age evolutio

samples e
and matrix p
combinatio

cal damage 
led multisca
ct the mech

9. The fail
of 1028.17 M

 

ree-point be
a 

lyze the me
nd FORTRA
three-point 

E models co
nated yarn e
tion laws e

was used to 
ailure streng

metry and 
Numerical 

ed homoge
he flax com
the test spe

ental averag

geometry (m
tes, as demo
/polymer co
on rules. The
extracted fr
polymer pr

on by follow

rules for m
ale homoge

hanical beha

lure was 
MPa. 

ending 

echanical 
AN code. 

bending 
ontaining 
elements 
stimated 
simulate 
gth were 

material 
damage 

enization 
mposites. 
ecimens, 

ge for the 

meso-FE 
onstrated 
omposite 
ese rules 
rom the 
operties, 
wing the 

multiscale 
enisation 
aviour of 

ICCM2018, 6th-10th August 2018, Rome, Italy

738



natural fibre thermoplastic and thermoset composite materials. This has been demonstrated by 
applying the multiscale model to the bending analysis two flax/PP and two flax/epoxy 
composite systems, with reasonably accurate results obtained. The multiscale framework was 
two-scale, consisting of a homogenised material model at the highest level coupled with a 
microstructure model. A validation study was performed to establish the reliability of the 
same framework using a glass/epoxy composite material system, which was also able to 
predict the composite failure with good accuracy. Overall, these sets of results establish the 
confidence in the potential of this multiscale framework implementation in relation to its 
applicability for different composite material systems. 

Acknowledgements 

The authors would like to thank the Ministry of Business, Innovation and Employment, New 
Zealand, for the funding provided to support this project through grant no. 3625485 titled 
“Sustainable Composites”. The authors also wish to acknowledge the contribution of NeSI 
high-performance computing facilities to the results of this research. 

References  

 
[1] Matzenmiller, A., Lubliner, J., and Taylor, R.L. (1995) A constitutive model for anisotropic damage in 

fiber-composites, Mechanics of Materials  20 (2), 125-152. 
[2] Nairn, J.A. (2000)  2.12 - Matrix Microcracking in Composites, Comprehensive Composite Materials. 403-

432. 
[3] Talreja, R. (1985) A Continuum Mechanics Characterization of Damage in Composite Materials, 

Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences  399 (1817), 195 -216. 
[4] LLorca, J., Gonzalez, C., Molina-Aldareguia, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., 

Sadaba, S., Munoz, R., and Canal, L.P. (2011) Multiscale Modeling of Composite Materials: a Roadmap 
Towards Virtual Testing, Advanced Materials. 

[5] Nguyen, B.N., Bapanapalli, S.K., Holbery, J.D., Smith, M.T., Kunc, V., Frame, B.J., Phelps, J.H., and 
Tucker, C.L. (2008) Fiber Length and Orientation in Long-Fiber Injection-Molded Thermoplastics - Part I: 
Modeling of Microstructure and Elastic Properties, Journal of Composite Materials  42 (10), 1003-1029. 

[6] Xiao, Q.Z., and Karihaloo, B.L. (2010)  Two-scale asymptotic homogenisation-based finite element 
analysis of composite materials, Multiscale Modeling in Solid Mechanics: Computational Approaches. 43-
100. 

[7] Llorca, J., González, C., and Segurado, J. (2007)  Finite element and homogenisation modelling of 
materials, Multiscale materials modelling. 121-147. 

[8] Smit, R.J.M., Toughness of Heterogeneous Polymeric Systems : A Modeling Approach,  Eindhoven 
Technical University, 1998. 

[9] Noor, A.K. (1986) Global-local methodologies and their application to nonlinear analysis, Finite Elements 
in Analysis and Design  2 (4), 333-346. 

[10] Whitcomb, J.D. (1991) Iterative global/local finite element analysis, Computers & Structures  40 (4), 1027-
1031. 

[11] Fish, J., Belsky, V., and Pandheeradi, M. (1996) Composite grid method for hybrid systems, Computer 
Methods in Applied Mechanics and Engineering  135 (3\textendash4), 307-325. 

[12] Haidar, K., Dubé, J.F., and Pijaudier-Cabot, G. (2003) Modelling crack propagation in concrete structures 
with a two scale approach, International Journal for Numerical and Analytical Methods in Geomechanics  
27 (13), 1187-1205. 

[13] Mote, C.D. (1971) Global-local finite element, International Journal for Numerical Methods in 
Engineering  3 (4), 565-574. 

[14] McCormick, S., and Thomas, J. (1986) The fast adaptive composite grid (FAC) method for elliptic 
equations, Mathematics of Computation  46 (174), 439-456. 

[15] Fish, J., Suvorov, A., and Belsky, V. (1997) Hierarchical composite grid method for global-local analysis 
of laminated composite shells, Applied Numerical Mathematics  23 (2), 241-258. 

[16] Fish, J., Shek, K., Pandheeradi, M., and Shephard, M.S. (1997) Computational plasticity for composite 
structures based on mathematical homogenization: Theory and practice, Computer Methods in Applied 
Mechanics and Engineering  148 (1-2), 53-73. 

ICCM2018, 6th-10th August 2018, Rome, Italy

739



[17] Feyel, F., and Chaboche, J.-L. (2000) FE2 multiscale approach for modelling the elastoviscoplastic 
behaviour of long fibre SiC/Ti composite materials, Computer Methods in Applied Mechanics and 
Engineering  183 (3-4), 309-330. 

[18] Peng, X., and Cao, J. (2002) A dual homogenization and finite element approach for material 
characterization of textile composites, Composites Part B: Engineering  33 (1), 45-56. 

[19] Fang, Z., Sun, W., and Tzeng, J.T. (2004) Asymptotic Homogenization and Numerical Implementation to 
Predict the Effective Mechanical Properties for Electromagnetic Composite Conductor, Journal of 
Composite Materials  38 (16), 1371-1385. 

[20] Ghosh, S., and Mukhopadhyay, S.N. (1993) A material based finite element analysis of heterogeneous 
media involving Dirichlet tessellations, Computer Methods in Applied Mechanics and Engineering  104 
(2), 211-247. 

[21] Sanchez-Palencia, E. (1987)  General introduction to asymptotic methods, Lecture Notes in Physics. 121-
136. 

[22] Bramble, J.H., and Pasciak, J.E. (1990) A domain decomposition technique for Stokes problems, Applied 
Numerical Mathematics  6 (4), 251-261. 

[23] Farhat, C., Wilson, E., and Powell, G. (1987) Solution of finite element systems on concurrent processing 
computers, Engineering with Computers  2 (3), 157-165. 

[24] Borgers, C. (1989) The Neumann-Dirichlet domain decomposition method with inexact solvers on the 
subdomains, Numerische Mathematik  55 (2), 123-136. 

[25] Toselli, A., and Widlund, O. (2005) Domain decomposition methods: algorithms and theory,    Springer. 
[26] Ladeveze, P., Loiseau, O., and Dureisseix, D. (2001) A micro-macro and parallel computational strategy 

for highly heterogeneous structures, International Journal for Numerical Methods in Engineering  52 (1-2), 
121-138. 

[27] Boso, D.P., Lefik, M., and Schrefler, B.A. (2006) Homogenisation methods for the thermo-mechanical 
analysis of Nb3Sn strand, Cryogenics  46 (7-8), 569-580. 

[28] Renard J, M.M. (1987) Etude de l'initiation de l'endommagement dans la matrice d'un materiau composite 
par une methode d'homogenisation, Aerosp Sci Technol  6, 37-51. 

[29] Kouznetsova, V., Geers, M.G.D., and Brekelmans, W.A.M. (2010)  Computational homogenization for 
non-linear heterogeneous solids, Multiscale Modeling in Solid Mechanics: Computational Approaches. 1-
42. 

[30] Carvelli, V., and Poggi, C. (2001) A homogenization procedure for the numerical analysis of woven fabric 
composites, Composites Part A: Applied Science and Manufacturing  32 (10), 1425-1432. 

[31] Smit, R.J.M., Brekelmans, W.A.M., and Meijer, H.E.H. (1998) Prediction of the mechanical behavior of 
nonlinear heterogeneous systems by multi-level finite element modeling, Computer Methods in Applied 
Mechanics and Engineering  155 (1-2), 181-192. 

[32] Bismarck, A., Baltazar-Y-Jimenez, A., and Sarikakis, K. (2006) Green Composites as Panacea? Socio-
Economic Aspects of Green Materials, Environment, Development and Sustainability  8 (3), 445-463. 

[33] Suddell, B.C., and Evans, W.J. (2005)  Natural Fiber Composites in Automotive Applications in Natural 
Fibers in Biopolymers & Their BioComposites, Natural Fibers, Biopolymers, and Biocomposites. 231-259. 

[34] Commission, E.   
[35] Panamoottil, S.M., Das, R., and Jayaraman, K. (2016) Towards a multiscale model for flax composites 

from behaviour of fibre and fibre/polymer interface, Journal of Composite Materials. 
[36] Panamoottil, S.M., Das, R., and Jayaraman, K. (2016) Experimentally quantified and computational 

anisotropic damage rules for flax fabric composites, International Jounal of Damage Mechanics. 
[37] Lomov, S.V., Ivanov, D.S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., and Hirosawa, S. (2007) 

Meso-FE modelling of textile composites: Road map, data flow and algorithms, Composites Science and 
Technology  67 (9), 1870-1891. 

[38] Gan, J.M., Modelling the initiation and evolution of damage within GFRP by including real geometric 
variability. 18th International Conference on Composite Materials,  21-28 August, Jeju Island, Korea, 
2011.     

 

ICCM2018, 6th-10th August 2018, Rome, Italy

740



Cosmotic, Aquatic. 

Exploring the Potential of Computational Design in the Preservation of 

Aquatic ecotones. 

 
Aya mohanna 

Department of Architecture and Project, La Sapienza University of Rome, Italy. 

Author: aya.mohanna@uniroma1.it 

Abstract 

This paper looks at the possible role of computational design ecologically in the fight against 

the loss of the aquatic Ecotone. As climate change keeps altering all the natural aspects of our 

planet, and as our kind continues to sabotage its ecologies, coral reefs come in focus. 

Aquatically, coral reefs count as a fertile zone for biodiversity. Usually being the Ecotone 

between land and sea, these barriers host many species and riches. However, due to the 

excessive abuse caused by human activity be it world-wide pollution or direct human contact, 

these reefs are constantly bleaching and breaking. In 2016, the Architecture Association 

gathered a group of international architecture students and professionals in a visiting school in 

Jordan titled “Hyperbolic Reefs” looking at the possibility of recruiting new computational 

methods to preserve and possibly regenerate the Ecotone. It was considered that new 

simulation techniques along with parametric design could contribute into the assessment and 

prevention of the catastrophic results. 

 

The two-week event was divided into chapters and was initiated by a series of lectures and 

discussions conducted by worldwide leading architects and experts who presented an 

important material to build upon. Then, the participants underwent a site visit to the coral reef 

of Al-Aqaba, collecting data, samples and media and recording insights and local testimonies. 

The third step of the experience was to assimilate the material and data and discuss openly the 

ways that computation could lead to a better coral life. Several software and tools were 

assigned to produce a design that would help attenuate the compromise of the coral reef 

through computation. An archive of data was produced and exhibited to the public. 

 

The results of this brief exercise was a number of suggestions and future aspirations triggered 

solely towards revitalizing the Ecotone. Issues such as the abundance of irresponsible 

snorkeling and diving, many governments’ indifferent policies towards the coral reefs, global 

warming, climate change, coral bleaching and aquatic architecture were confronted through 

parametric projects ranging from purely architectural to abstract human capsules. 

Computational tools allowed the reproduction of the whole system digitally, the precise 

tracing of the corals’ patterns, dimensions and colors, simulation software predicted the role 

of light and heat in certain zones, and parametric programs provided an incomparable 

flexibility in the designing process, going completely in sync with the fragile and intricate 

aspect of a coral unit. 3D printing was also an integral factor in the presentation and study of 

the presented models. 

 

This study’s scope was to expand the use of computation in a theoretical way to reach new 

and creative prospects, and to raise awareness to the situation of the coral reef and the risks 

facing its degradation. 

ICCM2018, 6th-10th August 2018, Rome, Italy

741



Keywords: Computation, Artificial reefs, Performance Architecture, Aquatic, Coral 

resilience, Regeneration, Detoxification. 

Introduction 

The discussion of coral reefs has been repeatedly cast on an international level in the recent 

decade. Following the repercussions of El Niño and what it caused of coral bleaching 

worldwide, the attention was then moved to the global threat to coral reefs due to human 

activities. Coral reefs maintain an integral importance environmentally and economically for 

bearing the richest ecosystems worldwide and for their role in several fields in human activity. 

However, due to continuously increasing climate issues along with many other damaging 

factors, phenomena of bleaching and coral mortality have been widespread globally. Events 

of skeletal destruction and loss of coral reefs are compromising the rich Ecotone and 

endangering the local species. This was confronted by relatively scarce attention and weak 

policies to fight against the menacing situation. 

 

On an international scale, some countries are starting to look into alternative solutions to 

preserve the coral diversity and help save the inhabiting species under danger. This comes in 

both direct and indirect ways; such as enclosed protected zones and the implementation of 

complex structures on the shallow end of the sea called artificial reefs. These reefs are 

executed in many ways and forms and with a wide spectrum of materials and theoretically 

offer an alternative skeletal structure to corals and their dwelling species. Applications of 

these artificial installations are still very minimal and preliminary with small effect on a 

macro scale, but they offer an assuring start to the regeneration process. 

 

On a more promising scope, scientists have noted the existence of coral zones and societies 

that have been naturally fighting off bleaching and resisting the toxic environment that would 

otherwise contaminate the reef. This led to the extensive study of the potential factors that 

would enforce the corals and make them resilient to bleaching elements. These factors range 

from naturally intrinsic factors to extrinsic factors related to the surroundings of the zone or 

the external effects of the undamaged area. A list of key components was produced to better 

understand the dynamic of corals and how they manage to self-preserve. 

 

This paper suggests the idea of implementing the resilience factors of corals and their 

preserving environments in the production of artificial coral reefs, in a way that would take 

the idea to an advanced level and to further expect a better outcome of these structures, 

instead of their current state as discarded non-degradable materials in the ocean. The use of 

computation is thus suggested and encouraged, due to its rising importance and convincing 

effects on an architectural platform. Computation will function here on many steps of the 

design, from conceptualization to implementation with the use of software that will generate 

possible solutions, tools that will simulate natural elements and therefore grade the spatial 

performances of the volumes and programs that will chronologically predict the aspect of the 

skeletal structure. All these steps will be showcased in a case study underwent by a group of 

design students and young professionals in 2016 that put computation into testing in order to 

come out with potential designs for the artificial reef of Al Aqaba, Jordan. 

 

This paper will showcase therefore the big potential computation has in the synthesis of 

natural factors in the architectural design of artificial reefs with an amplified performance. 
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Aquatic Ecotones 

Aside from their striking vista and attractive features, coral reefs are the bearers of the richest 

ecosystems on earth. These structures that are situated between the shore and the ocean, are 

very important for the sustainability of our environment and life. On a natural level, they 

house a great variety of species and aquatic animals and form the architectural skeleton for 

their habitat and their first defense from direct exposition to the natural dangers from both the 

shore and the deeper side of the ocean. Coral reef importance lies in the fact that it’s the 

natural Ecotone between land and sea; it thrives with very few nutrients, it protects the shore 

and the frontier cities from possible tsunamis and mega-waves, and forms a rich environment 

for developing businesses such as fishing and local craft-making. Also, with the fast rise of 

the tourism business as an important pole of world economy, coral reefs have become an 

essential attraction for divers and tourists around the world. Along with the traditional 

benefits, corals are recently being tested and used for medicine production after the decline of 

antibiotics due to the secretion of self-defensive chemicals by corals. [2] 

 

Unfortunately however, human activity has seriously damaged a considerable part of this 

natural asset; the pacific aside, 70% of total coral reefs are endangered. The main components 

that jeopardize corals are those that cause pollution and disease to the ecosystem. This 

includes mainly over-fishing, unstudied tourism, shore constructions which lead to 

sedimentation and coral suffocation, freshwater flooding and more. However, the main 

precursor of coral damage nowadays is climate change and its symptoms such as increased 

hear, changing water levels, changing percentages of carbon which affects the algae-coral 

balance, and severe exposition to UV light and chemicals. [1] 

 

Ultimately, the most affected areas under high risk of climate change are regionally the 

southeastern Asian reefs, the Caribbean and the Indian Ocean. Other regions with 

considerable threat are the Middle East and some zones in the Atlantic and the Pacific. The 

most damaged areas are namely the shores of Indonesia and Australia, with small to no 

protection of the reefs. Today, protected areas are spreading; however, the serious effort of 

enclosing and shielding the reefs from the elements is still preliminary and falsified. Over 

56% of the coral reefs are under low to high threat of damage and bleaching, and face life-

threatening risks. 

 

If not promptly healed, the bleached corals due to hazardous components never regain their 

health and color and face unavoidable mortality. In a span of 2 years after, dead corals 

decompose and the skeletal scene of the once diverse coral reef is drastically changed. Coral 

reduction compromises the ecosystem; the absence of architectural complexity for the 

dwelling of species will finally limit their survival chances and larvae cultures will reign the 

shallow waters. Additionally, the nearby towns will lose a critical aspect of their economical 

state and will be exposed to serious threats from mega-waves and deep water predators. [8] 

Artificial Reefs, Current State and Potential 

In order to tackle the menacing factors that cause coral mortality, nations worldwide have 

been seeking methods and policies to help regenerate and revitalize the aquatic Ecotone. 

Some interventions include the enclosure and the shielding of the coral zones from direct 

contact, making them inaccessible to tourists, fishermen and other elements. Other countries 

are taking it a step ahead and are attempting to quicken the regeneration process of the 

damaged ecosystem by the implementation of artificial reefs.  
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Basically, they’re the addition of particular structures and volumes with features close to coral 

skeletons in hopes to encourage the regeneration of the area and to quicken the rehabilitation 

process of the corals [4]. As a spectrum of used materials, artificial reefs are often non-

degradable structures made out of concrete, castoff tires, discarded automobiles, and 

shipwrecks. Less often, plastic, PVC, metal and ropes are installed. The main issues when 

setting an artificial reef are its environmental effects and expected performance; materials 

should not produce any chemicals, should not decompose, and assigned forms for the new 

host structure should be complex, void from the inside, with a certain amount of complexity 

in its entrances in a capsule-like volume [5].  

 

International laws have been put together to guide the execution of artificial reefs, but it still 

faces issues of corruption, lack of effective management, and the results for these structures 

are still quite minimal. Studies suggest a need for alternative artificial reefs, ones that would 

be less superficial and that would look into depth at the performance of the potential solutions 

[5]. These solutions would take into consideration the repetitive contact of human elements 

and limit it, while understanding completely the nature of the local species and their 

specificity in order to better produce a unique and positive result. This would change 

drastically the reality of artificial reefs that would therefore be offered as an efficient solution 

to coral mortality. In order to understand the specificity of corals and what harms them, a 

thorough study on coral weakness and defense mechanisms should be underwent. 

Resilience in Corals 

Despite the global devastation of the state of coral reefs, experts have noted a repetitive 

pattern of resilience in some zones that would otherwise be affected. A detailed and close 

study to the main influences behind the defiance to bleaching in these small localities helped 

gather a series of factors, intrinsic and extrinsic, that helped the corals thrive under 

compromising conditions. A study gathered the case studies and organized a set of 

circumstances in which corals are less affected by means of pollution and disease. 

 

This list includes factors that naturally attenuate bleaching precursors such as UV light 

exposure, light deficiency, water warming, and varying water levels for long spans of time. 

The defense mechanisms tackling light exposure were selectively, the existence of a natural 

shading structure on the beach, cloudy regions and generally turbid waters. Those that tackled 

warmer waters however were areas with exceptionally strong currents and channels, areas 

exposed to water upwelling, brief exposure to air, the interchanging stream of water that 

would flush toxins out, and generally colder regions. As to intrinsic factors, corals that were 

repetitively exposed to changing temperature for short spans of time and that get exposed 

often to air and interchanging water levels have learned to overcome these factors and grew 

unaffected by them on the long term [1]. 

 

This study could lead into a design that would revitalize the coral reefs. A structure could 

ecologically and sustainably reinforce the resilience of corals and help them fight against the 

elements. Just like detoxification architecture that is aiming to reintegrate nature with the 

urban landscape through effective biomorphic structure [6], this policy could be extended to 

sub-aquatic structure that would “renaturalize” the damaged areas and tackle the menacing 

damage done by tourists, climate change and other causes mentioned above. Examples of 

detoxification architecture in packed cities have proved that an efficient choice of materials 

and policies along with good management could help in mending the damage done by humans, 

leaving the rigid forms and presenting a new experimental spirit [6].  
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A synthesis is thus proposed, to take the artificial reef domain a step forward, forming 

structural hubs in the shallow waters that would both have the shielding features of artificial 

installations and train the damaged corals for a better defense mechanism and a stronger 

resistance on an extended time span. This would help reintegrate the species with the existing 

corals and potentially help the regeneration of these corals which will subsequently restore the 

ecosystem and quicken the healing process of the region.  

 

Establishing quite a design and form would require advanced technologies and techniques, for 

this matter is very fragile and trial and error are not an option in many cases. This promotes 

the need of new ways of design that would optimize the performance of the forms and 

generate a series of solutions that are in grade of testing before implementing them on site. 

Computational Possibilities in the Regeneration of Corals 

This employs the idea of a structure that would use the analogy of corals in order to come up 

with the solution. Going from the bottom up, studying the specificities of the corals and their 

construction, extracting every detail concerning patterns, textures, skeletons and internal 

spaces. 

 

A call for an experimental design in a fragile nature also requires the employment of 

techniques that would generate parametric shapes following biomimetic principles of design. 

Understanding biomimetic design is to understand the way biological elements function; a 

heterogeneous structure at best, multilayered and offering a differentiation of scale and shape, 

biological elements are a set of composite materials that could be translated into high-end 

materials in execution, heavily hierarchal and marked by their multilevel structure ranging 

from Nano to Macro, suggesting fractal design and parametric analogy [9]. 

 

Fortunately, computation offers the biggest chance of the best solution due to the tools it 

offers through the whole designing process. In fact, computational architecture has been on 

the rise recently and has produced a collection of experimental outcomes that otherwise would 

not be executable by traditional design techniques. The rising wave has been present in 

difference phases of the design process from conceptualization to solution generation up until 

performance testing. It is helping redefine some once concrete norms and notions of spaces, 

culture, human dynamic and environment. Faced with a challenge to create a both 

aesthetically pleasing structure and one that is also high in performance, computation comes 

in handy in offering a variety of solutions and the ability to test each of these solutions’ 

performance and efficiency [6][8]. In our case of advanced artificial reef design, the set of 

characteristics and leading factors are human-decided. However, the outcome is ought to be a 

production of a computational model to be tested depending on the context. 

 

The scope of this process is to extract the biggest number of solutions and proposals by using 

parametric design and fractal digital productions and then employ other computational tools 

to extract knowledge from these outcomes. A main benefit of this method, aside from the 

possibility to explore many designs choices, is to allow the designer to review the possible 

configurations in an early stage of the design. Afterwards, computation would go hand in 

hand with the design process to get to a concrete point following the abstract phase; genetic 

algorithms could be installed, and additional software could mimic the natural surroundings 

of the project and allow a systematic prediction of the parametric design’s performance [8]. 

This process follows four phases described below. 
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At first, computation allows the extraction of preliminary data such as environment and other 

information provided by the designer. This allows the virtual recreation of the current state of 

the project and allows the withdrawal of some complex natural volumes otherwise impossible 

to regenerate. 

 

Secondly, a list of criteria is offered to the software and an extensive search in volumes and 

parameters allows the origination of parameterized attributes that would offer a unique set of 

projects with experimental volumes and diverse aesthetics. The third step then follows; a step 

both personal and technical: it involves the subjective selection of the designer for the more 

aesthetically pleasing designs and then involves simulation and virtual reality prediction to 

assess the expected performance of each and every configuration offered. 

 

The last step would be to run a processing tool equipped with the right parameters and 

equations that would deduce the future aspect of the artificial reef after the colonisation of 

corals in a specified time frame, something otherwise unfeasible without the available 

computational apparatus. 

Application 

To showcase this analogy in a practical frame, this chapter will present the proceedings of the 

2016 AA visiting school in Jordan, under the title Hyperbolic Reefs, which looked closely into 

addressing the issue discussed in this paper [10]. 

 

The beginning of the summit included a basic briefing of the programs and digital instruments 

to use in the workshop; including Autodesk 123 Catch for 3D scanning and shape extraction, 

Rhinoceros for modeling, along with grasshopper (parametric design plugin) and beehive, 

Autodesk Maya for simulation and selection, Processing for the chronological review of the 

chosen attributes and lastly Keyshot for virtual representation and rendering. 

 

The figures provided below showcase a collection of works produced by the participants of 

the visiting school that are clear images of the design process [10]. 

 

 
Figure 1. Example of the preliminary scanning and reproduction of a coral unit. 

 

Figure 1 shows the computational regeneration of a skeletal coral structure. 123 Catch was 

used to trace the voids, protruding branches, shadows and texture of the coral and to map it 

digitally. 
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Figure 2.  Phase 1: Primary generation of a virtual biomimetic version of the coral. 
 

 
Figure 3.  Phase 2: Extracting the coral’s modular unit and experimenting with potential 

generations. 
 

The first phase involved the selection of a primary coral unit that is believed to be persistent 

and resilient in shape and texture in the studied area. The next step was to scan and regenerate 

the architectural structure of the species and model it in different ways in order to create an 

archive of potential generic volumes and shapes for further study. (Figure 2) 

 

Following the first phase, it was possible to excerpt the founding unit of the volume and to 

experience with it, creating sets of fractal repetitions of the same nucleus and producing 

potential versions of possible applications to the intended project. This resulted in a wide and 

diverse collection of choices and shapes that challenged the designers in their quest towards 

an optimized and positively performing outcome. (Figure 3) 

 

In the work presented in this chapter, the group’s concept was to create an artificial reef that 

would fragment the experience between user and coral, shielding the indigenous species from 

direct contact and extreme UV light, while visually exposing the tourists to the coral through 

an inter-system hub, one that would double the notion of the Ecotone it being from shore to 

sea, and from water to air. 

 

This required undergoing a simulation effort to understand the required volumetric 

composition following the wanted facilities and to include corals in the colder areas and the 

ones less exposed to solar radiations and warmer water. Figure 4 shows the application of this 

simulation on the most efficient volume retrieved. 

 

Figure 5 showcases the intervention that was applied using beehive and rhinoceros to 

attenuate the opacity of the chosen shape and to allow a better performance to the complex. It 

studies openings for human facilities and coral capsules. The resulting interference was the 

application of a porous structure that would diffuse natural light and wind. 
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Figure 4.  Phase 3: Solar Radiation, Temperature Simulation and Water level diagrams 

on a selected attribute for performance review 

 

 
Figure 5.  Phase 3: Porosity study following radiation diagrams to amplify the internal 

performance. 

 
Figure 6.  Phase 4: Simulation of growth patterns in Corals. 

 

Following the generated new shape that was now equipped with openings, it was time to 

predict the growth patterns that would affect the general shape of the structure in a given time 

frame. The results were generated using Processing and were then showcased in the final 

outcome. (Figure 6) 
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Figure 7.  Spatial distribution in the new proposed artificial hub. 

 

Figure 7 clarifies how space is recruited and distributed following openings and temperature 

exposure along with light and sea slope to help attenuate the direct contact between man and 

corals and to enclose the endangered species in a shielded zone that is semi-open and 

efficiently lit and exposed to a continuous current. 

 

 
Figure 8.  Group 1: Final outcome, cross section. 

 

The final outcome showed in figure 8 emphasizes the importance of porosity natures and 

openings in the performance of the hub; it also sheds light on the importance of the exchange 

between the different realms such as the passages between sea and land and the translucent 

lighting to be diffused to corals through the porous fractal design generated from the 

experimentation of the founding nucleus. 

 

Lastly, Figure 9 presents an imaginative scene in which the artificial reefs would have been 

completely developed and grown following the growth patterns studied in figure 6. The once 

porous links are expected to be colonized by corals once again and to host species that were 

once menaced in the zone. The figure also displays the user-coral interface in a protected 

environment that would help corals thrive in an interactive and healthy ambiance. 
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Figure 9.  Final outcome: imaginative scheme of future forms. 

 

This was one of many case studies underwent in the visiting school and was directed 

primarily to the effect of light, radiation and temperature on coral health and survival. Other 

proposals revealed ideas and concepts such as semi-submerged touristic complexes, human 

capsule units that would double as exploration pods and artificial coral cultures, museums and 

awareness centers, and diving facilities. All these projects and ideas were led by a similar 

analogy of design based on the recruitment of computational methods and simulation in the 

generation of the general shape and the forecast of its functioning in a specific given context. 

Conclusion 

This paper investigated the potential development of the concept of artificial reefs in a way 

that would raise the expected performance of the now weak attempts of requalification, 

through the employment of computation method as a promising instrument in this quest. It 

briefly reviewed the importance of coral reefs as crucial economic poles for neighboring cities 

and vital architectural habitats for a wide spectrum of species. It then discussed the main 

threats and the resilience factors that should be listed as criteria for any future artificial reef 

planning. 

 

In this exploration, computation presents itself as a driver to experimental and unorthodox 

development that would detoxify and revitalize the fragile Ecotone. Computation methods, so 

far mostly enrolled in mono-disciplinary domains such as math, civil engineering and 

electrical engineering, has proven to have a potential role in poly-disciplinary practices as 

well such as architecture and environmental studies tackling global warming repercussions. 

This is a new horizon that we think should be further carried out in the near future in order to 

optimize the efficiency of once challenging and obsolete issues in architecture and complex 

industrial design. This however calls for the adoption of a new attitude towards computation 

and experimentation and for the setting out of a detailed plan with optimized management that 

would bring out the finest result and most effectual solutions for today’s problematical issues. 
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Abstract 
Continuing a chronological line of mutual influences of architecture and geometry, where 
geometry is perceived as an inextricable part of the syntax of architectural space, this paper 
focuses on the clarification of a specific position which mathematical topology takes within 
contemporary architectural discourse. The understanding of topology within architectural 
design process is based on the mathematical theoretical framework in which the term of 
continuous deformation of geometric shapes is specified, whose subsequent occurrence in 
architectural creative work is linked to the increasing use of digital tools in design process and 
the shift of the dominant philosophical influences in architectural theoretical research. In 
order to completely perceive the topological method, the theoretical framework ranges 
between the area of architectural theory of form and architectural design theory, firstly 
through the explanation of three basic design principles of topological method: deformability, 
openness and continuity, and secondly through the representation of the models through 
which the principles occur in the architectural design process. The first part of this work will 
introduce and analyse the transition of concepts of deformability, openness and continuity, 
from mathematical topology through philosophy to architecture emphasizing the 
computational shift in architectural design, while the second part of the work will explain the 
modalities through which the principles are applied in several architectural design practices. 
Generally, the paper is conducted in order to determine whether the development of the 
topological method, as a creative tendency, resulted in forming a unique design strategy due 
to transformations and adaptations through some authorial design approaches. The topological 
method design strategy, which involves a complete design approach, is identified as a result 
of an in-depth research of distinguished methods through three case studies, taking into 
consideration the complexity of topology within the mathematical area and a complex 
transition towards the area of architectural theory. The final question returns to the primarily 
theoretical framework, seeking to set operating platform for development and use of three 
strategic principles, which simultaneously indicate the possible directions of future 
development. 

Keywords: topology, deformation, continuity, openness, digital tools, design theory, 
design methodology 

Transition of topology from mathematics to architecture   

In current theoretical studies of architecture, there are numerous references to a branch of 
mathematics i.e. notably higher geometry, which is called topology, but it is difficult to detect 
more precise and detailed elaboration of the analysed in-depth and somewhat hidden 
properties of geometrical objects that topology is generated for. The analysis of the term 
topology points out the problem of ambiguity, which occurs due to imprecise and frequently 
loose interpretations of terms which belong to the field of the exact science disciplines. In the 
widest sense of the word, one can say that mathematical topology does not make distinction 
between two shapes or two spaces, if it is possible to shift from one to another under 
continuous deformation. When it comes to these spaces, size and shape are irrelevant if they 

ICCM2018, 6th-10th August 2018, Rome, Italy

752



can be changed by, for instance, stretching. The difference between two spaces is primarily 
related to those components which remain unchanged when deformation occurs. The relevant 
literature in the field of mathematical topology explains that, generally speaking, topology 
studies the properties of geometrical objects which remain preserved under continuous 
deformations, such as connectedness or compactness. Geometrical objects that topology 
studies are usually manifold, but set theory enabled the studying of both general and abstract 
objects, the so-called topological spaces. Some of the typical examples of topological spaces 
are Möbius strip, Klein bottle, tori, different knots, etc. In the outline of the history of 
mathematics, Morris Kline indicates that the first ideas about topology can be found in the 
works by Gottfried Wilhelm Leibniz, in his book “Characteristica geometrica” from 1679, in 
which Leibniz introduced the concept of Analysis situs (Analysis of position) to counter size 
and form, highlighting the lack of adequate language when talking about form [1]. Also, in a 
letter addressed to Christiaan Huygens, Leibniz accentuated that we need “another, strictly 
geometrical analysis which can directly express situm /position/ in the way algebra expresses 
the Latin magnitude /magnitude/” [2]. The first precise setting of topological spaces was 
conducted by Leonard Euler in the period around 1736. In an attempt to solve the problem of 
The Seven Bridges of Köninsberg1 he made the first topological diagram. What is essential for 
understanding the problem which Euler reduced to the diagram is the cognition that, 
regardless of the quantitative characteristics of the diagram, the shown topological structures, 
as well as a solution to the problem given remains the same. By changing the approach Euler 
has predominantly pointed out to the nature of the problem, placing it in the field of 
autonomous, qualitative properties of geometric shape, ones that remain unchanged under 
certain conditions. Euler explains this as follows: “The branch of geometry that deals with 
magnitudes has been zealously studied throughout the past, but there is another branch that 
has been almost unknown up to now; Leibniz spoke of it first, calling it the “geometry of 
position” (geometria situs). This branch of geometry deals with relations dependent on 
position alone, and investigates the properties of position; it does not take magnitudes into 
consideration, nor does it involve calculation with quantities” [3]. Sergei Petrovich Novikov 
underlined that it was even intuitively clear that the cognition of geometric properties of 
shapes was not exhausted by data on their metrical characteristics, such as length, height, 
angles etc, i.e. “there is something more beyond the limits of the old geometry“ [4]. 
Regardless of length, a line can be open, closed, knotted, several lines can be linked in 
different manners, shapes can contain holes etc. The characteristic of these and similar 
properties of geometric shapes, as well as of different mathematical objects that do not have 
geometric realisations, is that they do not change upon continuous deformations. The 
invention of precise calculus i.e. the part of mathematics with its exact terms, methods and 
formulas describing topological properties lasted for a long time. Throughout the 19th century, 
it was developed, among others, by Karl Friedrich Gauss and Bernhard Riemann, but it is 
deemed that topology, as an autonomous branch of mathematics, was established at the end of 
the 19th century by Henri Poincaré. During the following decades, its internal tasks were being 
resolved and only in the 1970’s did the topological methods more intensively infiltrate into 
the apparatuses of contemporary physics and chemistry and they were more generally 
interpreted through discourses of social sciences and humanities, particularly through 
philosophy and therefrom spreading the influence to different branches of art.  
By analysing the transition of topology from mathematics to architecture, one can detect 
certain influences which result in its more intense presence in architectural discourse around 
1990’s. There are two streams of influence, the first one being streamlined through 
philosophical discourse in specific methods and through work of certain authors, and the other 

1 Königsberg is the name of a former city in Prussia, now Kaliningrad in Russia.  
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stream being reflected in the change of tools used in the process of architectural design 
induced by emergence of digital tools and intensive development of software for drawing and 
modelling. One of the most significant influences on adoption of mathematical terms and 
concepts, notably those in the field of topology, was realized in the 20th century through 
philosophical theory of Gilles Deleuze. Taking distance from the predominant thought of the 
period, where language became the fundamental problem of philosophy, Deleuze insisted on 
philosophical creativity which enables the formulation of new concepts instead of exclusively 
describing the existing appearances and states. Basing his philosophical theory on creation of 
concepts through experimental thinking, Deleuze stressed that there were no simple concepts 
but instead that they were complex, multi-layer structures, figures, metaphors, individual 
elements etc. [5]. His overall approach to philosophy defines him as a more progressive 
materialist, who based his materialism on science and its discoveries and does not observe 
matter exclusively as essence but also addresses its genesis and the genesis of its form. Matter 
does not have an inert but rather an active character, and its form is shaped primarily by 
generic processes, which results in concepts that merge scientific knowledge with philosophy. 
The link of philosophy with scientific knowledge, primarily with that of mathematics and 
mathematical topology, gave a fundamentally spatial character to Deleuze’s numerous 
philosophical concepts, and thus he defines the differences between continuity and 
discontinuity, smoothness and folding, topological and metrical, large and small, stable and 
nomadic etc. Through his philosophical materialism which relied on mathematical terms and 
their interpretation, Deleuze made topological concepts accessible to public. But Deleuze’s 
contribution to topology was somewhat greater than mere interpretation of mathematical 
discoveries. He applied topological discourse to his philosophical concepts falling within the 
domain of philosophy, such as the issues of ontology and the nature of being, metaphysics etc, 
and thus he gave additional meaning to classical philosophical terms, attributing them the 
properties such as continuity, deformability, curvature, smoothness, folding, bending etc. The 
impact of his work thus became important for theoretical discourses apart from philosophy, 
notably for architecture, since he used dominant spatial characteristics to interpret the issues 
of individuals, societies, relations within social groups.  
One can observe that the methodology of applying mathematical concepts to wider scope of 
knowledge frequently relies on specific knowledge that define different areas, which are 
defined by Arkady Plotnitsky by reciprocity of mutual influence of mathematics and 
philosophy known as “quasi-mathematics” [6]. Although he does not question philosophical 
influence of mathematics on the development of civilization, he claims that quasi-
mathematics enables the spreading of certain mathematical terms and principles which are not 
defined exclusively by mathematical tools, although deriving therefrom, and therefore they 
become feasible and applicable beyond its disciplinary margins. Through term quasi-
mathematics, Plotnitsky explains the difference in interpreting algebra, geometry and 
topology in general. He interprets algebra as an ultimate concept of formalisation, whether 
formalising a system in sciences, conceptual systems like those in logic or philosophy, or 
language system existing in linguistics. In this manner, “algebra” means a set of certain 
formal elements and their relations. On the other hand, “geometry” and “topology” have 
different mathematical backgrounds although they both deal with the issues of space. 
“Geometry” deals with space measuring as geo-metry, whereas “topology” disregards sizes 
and deals exclusively with the structure of space (topos) and the essence of a shape. Putting 
them in a philosophical discourse, Plotnitsky explains the difference between these two 
theoretical aspects with Derrida’s “algebra”, which referred to writing, characters, and form 
dislocated in negation, and Deleuze’s “topology”, through which he insists on the continuity 
of folding.  
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Referring to the previously given elaborations, one can conclude that topology was difficult, 
incomprehensible and entirely abstract for architecture, and that it emphasised certain 
differences in mathematical and architectural perception of space. On the one hand, 
mathematics brings abstraction to its extreme, which exceeds architectural perception of 
spatial relations. On the other hand, the methodology used in mathematics for solving its 
internal tasks is exceptionally precise and exact, which is not characteristic for the process of 
architectural design. It appeared that philosophical texts, which were already highly 
positioned in the theory of architecture, managed to overcome this discrepancy between 
architecture and mathematics by interpreting certain mathematical terms using language that 
was much comprehensible for architectural discourse.  
Simultaneously with the change of philosophical influences, the presence of topology in 
architectural discourse was also registered in the change of working tools used in the process 
of architectural design. Digital tools and the development of modelling software changed the 
position of classical drawing where space was displayed through projections during the design 
process. Even greater influence is resulting from the knowledge of software and their 
intensive upgrading, which introduces algorithm logic for design problem solving into 
architectural discourse. Computer software had an option to generate geometry of topological 
characteristics, not only by means of equation, but also through parametric functions that 
provided numerous variants for continuous curves. Already in mid-90’s, the computers with 
software for modelling the desired curves became affordable because their price was 
drastically decreasing. However, in the context of this paper, there is a more important thesis 
that states that digitalisation in architecture implies a more drastic progress towards a new 
architectural paradigm i.e. a new way of thinking where use of digital technology does not 
only imply the use of digital tool, but also the theory of algorithm as the main creative 
postulate, way of thinking, special thought and creative form. In early 1990’s, Peter Eisenman 
introduced a new term: “During the fifty years since the Second World War, a paradigm shift 
has taken place that should have profoundly affected architecture: this is the shift from the 
mechanical paradigm to the electronic one” [7]. During the nineties, theoretical papers in the 
field of architecture and the related discussions began to see the positions that digital 
principles started to transform the paradigmatic framework and that they were growing from 
technological fascination into the way of thinking. Word has it that algorithmically-generated 
space indicated fundamental, ontological change of basic elements of architecture and that the 
appearance of digital tools and the specific logic for their use in architectural theory and 
practice became a reality. The Deleuze’s philosophy in the theory of architecture definitely 
appeared at the moment when digital technology was already well developed. At the same 
time, this is a basis for debating whether Deleuze’s philosophical platform found a tool for its 
realisation in digital means i.e. whether it would have such an impact on architecture if there 
were no technological prerequisites for its visualisation. Anyhow, the presented comparative 
analysis of the impact of philosophical thought on the one side and the development of 
computer tools for modelling on the other, proves that the connection between Deleuze’s 
philosophical theory and digital tools in architectural discourse is undeniable. By joint action 
– that of Deleuze through philosophical terms based on mathematical topology and that of 
digital technologies that enabled the manifestation of certain abstract mathematical concepts 
expressed exclusively by calculus – the idea of topological tendencies in architecture is 
actualized.  
In the context of in-depth elaboration of different modes of use of topological principles, one 
can understand why certain historical overviews contain the term “topological architecture”. 
The clarity of visual expression, which was present at the very beginning of use of topological 
principles, led to the denial of claim that certain fields of art must first decide how to present 
their final product in relation to the process of its generation. It appeared that quite the 
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opposite was in the case of architecture – the form of final product was known, with 
increasingly clear picture of the possibilities for its realisation through faster development of 
technological means and applied materials, but once the manifestation became clear its actual 
meaning came into question. 

Three topological methodology principles  

The discussion on positions of different scientific disciplines in architectural discourse tells us 
that certain parallels can also be made with topology, primarily in the context of relation 
between architecture and sciences. When it comes to methodologies of architectural design, it 
is clear they can be different, but they usually do not imply the exactness and fixed language 
for solution of individual problems such as other scientific disciplines. Therefore, for the sake 
of more efficient link between contemplation and creation leading to ultimate result – the 
work of architecture, architecture freely adapts specific methodologies of other disciplines. As 
regards topology, it is clear that in architectural discourse it cannot be formally considered as 
mathematical topology. Adjustment of knowledge in topology for the purpose of forming 
topological principles in architecture is explained by philosopher and architectural theorist 
Manuel De Landa through term “topological thinking”, based on the idea of research of 
system potentials and the manner in which the potentials may generate certain forms, whereas 
he treats form as a system of elements with capacity to influence other system elements [8]. 
Relying on De Landa’s positions, in the upcoming text we will use three topological 
principles - continuity, openness and deformability - to explain transition and transformation 
of topological properties, from mathematical definitions to segments of individual project 
methodologies, and to explain their potential for creation of a wider design platform.   

Principle of continuity  

Generally speaking, the main idea that defines and specifies mathematical topology is the idea 
of continuity, which in topology primarily refers to continuity of mapping. Continuous 
mapping can be explained by the idea that “close” points of one set are transferred to the 
“close” points of the other set. Intuitive explanation of continuity implies that, upon mapping 
of figure А into figure B there are no sudden rises, hence upon “slight” changes of the original 
its picture is also “slightly” changed. The term homoeomorphic mapping that can be found in 
architectural theory texts comes as a more precise definition of mathematical topology, and it 
can be perceived as mapping of one set of elements into another, without tearing or 
subsequent gluing together. If we presume that it is possible for figures A and B to be 
stretched and bent so that we bring figure A to translate to figure B, we can generally say that 
they are homoeomorphic. For instance, the perimeter of triangle is homoeomorphic to a circle, 
the surface of sphere is homoeomorphic to the surface of cube or cylinder and it is not 
homoeomorphic to torus etc. Also, line segment can not only be stretched and shrunk, but also 
bent and straightened.  
The principle of smooth continuous stretching contains deep spatial references and, 
interpreted by the continuity of architectural space, it demonstrates a necessary degree of 
flexibility of spatial framework. It can be interpreted through continuous circulations, 
implying that the architectural structure has continuous trace of movement and continuous 
flows of different information. With regard to the type of the observed trajectory, it is possible 
to treat continuity as a spatial characteristic that includes and spreads within an architectural 
structure, or more narrowly observed as a continuous planar communication visible at the 
architectural plan. Continuity of architectural structure reflected through superficial 
continuous movements is conditioned by predominantly organisational solutions, whereas 
spatial continuous movements can be achieved by the continuous void within architectural 
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structure. The principle of continuity of spatial voids is closely linked with interpretation of 
and linkage with the principle of free plan, since both of them rely on acceptance of basic 
architectural postulates, as defined back in the modernism.  
The analysis of this specific principle tells us that it comprises of two terms that need to be 
elaborated: continuity, which is closely linked with the mentioned principle of modernism and 
which can be partly interpreted through forms of movement within space, and void, the 
manipulation whereof can be used to define the structure of the work of architecture. Specific 
continuity of inner space in terms of volume relates to a more general perception of 
continuous flows including, beside movement of users, visual, information and other spatial 
circulations. However, the issue of spatial articulation, empty space within certain form, 
represents one of the key issues of architecture that can be interpreted both as a relation and as 
mutual action of internal and external space. The origin of these contemplations dates back in 
the 19th century, when space i.e. void had a sort of metaphysical significance, but the overall 
methodological basis was developed by Raumplan concept at the beginning of the 20th 
century through a complex system of interior development by Adolf Loos. Although 
connected with the development of open plan principle, Raumplan builds on Loos’ design 
methodology based on the idea of designing space instead of plan. The basic idea of interior 
space segmentation is achieved by dividing different floors in to the several levels, so that 
continuous space spreads within a building. Although this system is close to Le Corbusier’s 
methodology “from the inside out”, Loos’ perception of space incites a volume-based 
modality of creative thinking, relying on enclosing skin as a structural element. Charles 
Jencks indicated the existence of another approach to modern space, based on the tradition of 
rational Chicago school, and Le Corbusier further developed it through structural skeleton of 
Maison Domino, where all future principles of modern architecture can be observed [9]. 
Space is here perceived as being homogenous in every direction, but segmented as skeleton at 
right angle to the façade plane. Although such interior space is characterised by vast and open 
structures, it is nevertheless limited by edges, the enclosing skin is clear, ultimately rational 
and feasible.   
It was only with contemporary definitions that the terms of continuity and void were brought 
into clear connection for the purpose of explaining topological properties of architectural 
works. Methodological postulates of architectural theorists such as Greg Lynn, Lars 
Spuybroek et al. clearly rely on previous researches, they underline the significance of 
Raumplan concept and take a distance from Le Corbusier’s open plan, whilst topological 
continuity of space is described by emphasising the potential towards more flexible 
connection between internal elements. The logic of fluidity supports the thesis on intensive 
mobility, which implies vast and easy deformability because the interior structure is such that 
small forces lead to large deformation. The issue of continuous interior discussed herein is 
maybe most relevantly referring to the logic of continuity elaborated by Spuybroek in his 
book The Architecture of continuity. In the first place, he writes that buildings are made of 
elements does not mean that architecture should be based on elementarism; we should rather 
strive for an architecture of continuity that fuses tectonics with experience, abstraction with 
empathy and matter with expressivity [10]. Spuybroek recalls the logic of continuity that is 
philosophically developed by Charles Sanders Pierce on basis of topology explanation [11]. 
Elaborating Pierce’s notion “structure of vagueness”, Spuybroek explains that the relation 
between elements is always vague since they are at the same time elements and parts of a 
whole. Vagueness does not represent the absence of logic, on the contrary, the logic of 
vagueness is what constitutes the relations. In this manner, using Pierce’s conclusions, 
Spuybroek establishes equivalence between continuity and relations, strictly opposing the 
idea that architectural space can be classified as space and void. He thus concludes that void 
needs to be interpreted as a spatial structure and not as air between the walls. Thus observed, 
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an architectural work implies that emptiness has a temporal aspect as well, since it can change 
iterations over time. The definition of this type is significant in the domain of continuity 
research, since it indicates that it is possible to create a specific design methodology which 
defines space through manipulation of the absence of space. As it is completely unnatural in 
built structures to conduct construction and subsequently take out its parts, the design 
methodology building on emptiness implies that the most significant spaces within buildings 
are created either by elimination or omission in the phase of architectural concept design. 
Strategically, such design methodology treats void as an integral part of spatial complex and 
builds upon it in the design process.  
In her experimental work, Dagmar Richter used the model of Le Corbusier’s Maison Dominо 
as a subject of research and a mechanism for verifying her own hypothesis that topological 
principle of continuity can be largely defined through changed attitude to surface, which 
becomes the ultimate structural concept [12]. Richter tests her explicitly topological position 
starting from a paradigmatic definition of five architectural principles, where the connections 
between reinforced concrete column and beam bear the ceilings on six offset points and 
represent the only load-bearing elements of architectural assembly. The research process 
implies that the structure of Maison Dominо is analysed by layers, where the first layer in the 
structural hierarchy – slab – is treated as a series of fields with local characteristics in points 
of bearing, which breaks up the primary form of universal form skeleton. During the first 
phase of research, the skeleton evolves, during the second phase it develops spatially under 
the influence of spatial connectivity principle, non-hierarchal spatial relations and 
adaptability, all for the purpose of controlling the variable nature of the newly-designed 
prototype. By application of animation technique, Richter’s research team developed several 
simulations of the process, creating a collection of possible prototypes which typologically 
still refer to housing. After the second phase, the change of the structural skeleton is visible, 
as it is now constructed from a single continuous plane, the mass whereof becomes an 
important factor for construction of the new model of topological structure (Figure 1). 
 

 
 

Figure 1.  Dagmar Richter, new structural role of surface - transformation of Le 
Corbusier’s Maison Dominо model 

 
The aspect of deconstruction of façade shell, which drastically differs from Le Corbusier’s 
free façade, can be interpreted as a prototype of essential intertwining of interior and exterior 
space of the house. An important conclusion of Dagmar Richter’s research is that topological 
deconstruction of an architectural work can only be achieved by changing the structural 
system i.e. its major transformation relative to the existing assemblies. Throughout the project 
research, she demonstrates how this can be realised, proving her own assumption that the 
treatment of space, relying on topological principles during the design of architectural works, 
is founded on the new structural role of surface. 
The establishment of the role of topological principles in the design and research done by 
Dagmar Richter can be monitored through all phases of architectural work design. In addition 
to structural system deformation and creation of a new type of topological architectural 
structure, Richter directly refers to topological principles in her theoretical essays, as well as 
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to mathematical discipline. Broadly observed, the entire research process, which starts from 
the paradigm of modernism, additionally refers to post-modernistic references, where a new 
structure can never be clear and original in a classical sense, but it is always an interpretation. 
Thus perceived, the design methodology is defined as a strategy for adapting previous 
systems to new conditions i.e. rather as a process of reinterpretation than that of creation. The 
design methodology of Dagmar Richter directly relies on chronological references to the 
notion of space continuity, including the questions of what was before and what would 
follow, as a constant historical postulate, that the science has been striving to overturn since 
the beginning of the 20th century. Cyclical history, fundamentally different as compared with 
the evolutionistic, is a history of one multi-dimensional space where texts and writing 
overlap, making a single network of “diversity” of events. Each text has a reading history 
because different societies re-write the text by reading it and unconsciously attribute it with 
different meanings. No one can read a text without making an image of the context in which it 
was made and what it actual aim is. 

The principle of openness  

Generally speaking, the notion of limits of space is related to the notion of distance between 
two elements, which in mathematical sense implies that elements can be attributed real 
number and declare it distance between them. Metrical space reflects natural ideas about the 
notion of distance, relying on understanding of spatial relations where i.e. distance between 
two points is always positive – distance between x1 and x2 is always equal with the distance 
between x2 and x1 etc., which simultaneously most corresponds to the perception of Euclidean 
space. The notion of openness becomes very important for the topology induced by metrical 
space, because mathematical definition of surface relies on understanding of the surrounding 
of points that it comprises of, so that surfaces with and without boundaries are being 
distinguished. Surfaces with boundaries are, for instance, circle or sphere where several 
openings have been cut out, while surfaces without boundaries are generally classified 
according to the number of holes they contain.  
Contemplation on the notion of boundary in architectural discourse can be extremely broad, 
but in the context of the postulate of topological principle of openness, it primarily implies the 
research of properties of space at the limits of structure, where topological character is 
displayed in its imprecision. As originally explained in topology, the focus on surroundings 
of a point can be perceived as a small shift in the surroundings so that it is never even 
abandoned, which complicates the relation inside-out and the question of defining the limits 
and bordering areas relating to the observed point surroundings. Openness thus starts to refer 
to the property of architectural work which relativizes the treatment of exterior and interior of 
architectural structure and is manifested through the weakened attitude to the object limits. 
The characteristic of this type implies the research of classical spatial duality interior/exterior, 
by methodologies where architectural work is designed by intertwining structure with 
imminent surroundings. Research can be done from two aspects, by analysing façade plane 
and ground floor of the architectural work, in order to clarify possible approaches relative to 
the shell and to the ground. Transition of openness term from mathematics towards 
architecture is largely founded on Deleuze’s interpretations, both through specific spatial 
indications and through more direct elaborations of philosophical postulates. Architectural 
discourse of the 1990’s recognised the importance of interpretations of Deleuze’s positions 
stating that exterior is not a fixed limitation but rather a mobile matter, animated by 
movement, folds and bending, which defines the interior: it is nothing else but exterior, or 
more precisely the interior of the exterior [13]. Research of the architectural work boundaries 
demonstrates that folding goes from outside to the inside and vice versa, through different 
scales and regardless of distances, where nothing is fixed but rather in constant change. 
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Architectural treatment of façade through theoretical assumptions of the 20th century, formed 
within the two previously noted and somewhat opposed architectural principles: the principle 
of structure and the principle of membrane. Design methodologies of architects such as 
Walter Gropius and Le Corbusier affirm the idea of structural façade plane which is based on 
the plan of structural columns (pilotis) by means of which façade can be treated apart from the 
spatial assembly of objects, which is fully described by Le Corbusier’s fifth postulate of 
architecture. The structure principle enables the façade plane to exist irrelevant of the interior 
space organisation, which provides it with certain autonomy in display of exterior/interior 
relation, so that the limit can be treated both as open and closed, depending on different 
external parameters. On the other hand, Bernard Cache explains that, as opposed to the 
principle of structure the principle of membrane is being developed, which is particularly 
affirmed in theoretical platform of Adolf Loos where façade is an element conditioned by 
internal space organisation and the membrane indicates the differences between internal 
spaces. This gradual movement toward interior can also be understood as an attempt to create 
an extrovert architectural work. Although the principle of membrane in Loos’s realised works 
is displayed through organisation of façade openings, a significant deviation in façade 
treatment is represented by the attempt of its deconstruction, which leads to the nearing of 
interior and exterior of architectural object. Italian architectural theorist Alicia Imperiale 
explains that modernistic design methodologies generated in the first half of the 20th century 
strived to present a tension between deep interior space and façade surface, using glass or 
similar transparent façade planes, which actually indicated a dialectic difference between 
interior and exterior [14]. Certain contemporary approaches use different techniques for 
processing façade plane in order to allude to this principle by means of delayering the surface 
with specific materials or patterns with different transparency. However, Imperiale deems that 
the openness principle can only be achieved by substantial merging of the interior and 
exterior, inseparably from the continuity principle, and that the relation between these two 
dualities can only be significantly changed by continuous plane treatment. If the weakening of 
limit in the façade plane is not restricted exclusively to the impacts that the membrane 
receives from the inside and/or outside along its surface, but it is rather interpreted through 
more intensive inside-outside relation, the perception of membrane surpasses the plane 
structure and the limit along which the membrane extends becomes a zone on the inside-
outside crossing. Blending of interior and exterior is in this case slowly shifting, according to 
Loos’ attitude to structural shell, which in its final form can become the entire structure. In 
theoretical postulates where façade is comprehended as a certain area, where width and 
position of the area fluctuate to the outside or to the inside, one can record significant use of 
topological surfaces such as Möbius strip, Klein bottle etc. Möbius strip is a surface with one 
side and only one boundary, but its direction covers both the inside and the outside through 
orientation reversal. Although it is clear that the system of Möbius strip and notably that of 
Klein bottle do not have three-dimensional realisations, they cannot be directly applied, in the 
context of architectural design the non-orientability of surface indicates membrane treatment 
where certain bending can provide for continuity of interior and exterior. If the notion of non-
orientability in architectural discourse starts to refer to Deleuze’s notion of fold, it can also be 
interpreted as a process of continuous and homogenous transformation that manages to 
preserve integrity, continuity and uniformity of parts. Intuitively, this process can be 
perceived as bending of surface, smoothly and without pulling, whereas after several 
variations the limit between the outside and the inside and between full or empty would 
disappear. Therefore, topological property of openness can be estimated on basis of 
recognition of the open façade interspace which displays the causative relation that affects its 
deformation. The weakening of opposites outside/inside does not imply the vanishing of 
architectural structure, but it requires theoretical analysis of elements affecting the limit 
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behaviour. Through such postulates, the space between interior and exterior is treated as space 
between, as defined by Andrew Benjamin when he says that the space of difference is not just 
“between” but the interspace of the boundary becomes a third segment that cannot be 
predefined and it is directly comprised of the inside and outside elements that generate it [15]. 
Direct application of openness principle can be analysed on the design for Eyebeam museum, 
the award-winning work of the architecture studio Diller Scofidio + Renfro at the 
international competition realised in 2002 by Eyebeam foundation, which is an art 
organisation oriented towards research of technology impact on the development of different 
art practices. The call and programme definition of the competition required a facility that 
combined the purposes of museum, theatre, education and production, wherefore the museum 
part was intended for exhibition of modern art works generated under the influence of new 
media, in form of performance, video works, 2D and 3D digital imaging, sound installation 
etc. The second part implied laboratory for art production, as a requirement of contemporary 
art institutions, for the purpose of displaying the works of art whilst transparently presenting 
the process of their generation.  
The conceptual presentation of Diller Scofidio + Renfro is based on the use of pliable strip the 
disposition of which separates two museum segments: presentation and production. The strip 
starts to bend from the ground floor level, it extends along the entire building width so as to 
form a continuous plane of the floor, wall and ceiling. Each bending and change of direction 
opens either presentation or production zone, which additionally combines the movements of 
visitors and staff. Activities within the space can best be seen at the section that displays strip 
bending and intertwining of interior and exterior space, which is entirely transposed to the 
façade plane. The approach where exterior of a building is conditioned by the internal 
organisation, which is displayed on the façade, represents a significant departure from the 
traditionally closed facades of museum buildings. Spatial relations are becoming even more 
complex in the parts where the strip splits towards upper and lower level, which leads to 
additional overlapping of presentation and production spaces and announces additional 
thematic dualism. One can say that the concept of pliable strip permanently indicates the 
existence of different binary pairs within the designed space, but with the aim of their 
essential overlapping instead of distancing. Duality is particularly emphasised by the two-ply 
treatment of the very strip, which comprises of a smooth concrete ply with precast service 
jacks or “smart pores” line exhibition levels and a second ply of lightweight removable panels 
of non–conductive composite material line production/education levels. The interstitial space 
is an installation base running through the interior and exterior of the building so that the open 
structure of the strip enables subsequent additions to the necessary installations, which was 
described by Diller Scofidio + Renfro as the building’s “nervous system” [16]. The building 
orientability in terms of outside/inside relation is additionally complicated by double-layer 
treatment of plane, where specific colours underline the change of position (Figure 2).  
 

 
 
Figure 2.  Diller Scofidio + Renfro, double-layered folding plane for Eyebeam museum 
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The presented building, generated by bending of surface that twists freely under different 
angles, is now indicated as paradigmatic example of architectural theoretical standpoints 
based on Deleuze’s theory of folding. Although Diller Scofidio + Renfro do not elaborate the 
design in this context, other segments of their work, particularly the initial period, indicate 
direct influence of French post-structuralism philosophers. Direct application of topology in 
their work is confirmed along with the position of Deleuze’s philosophical platform, so that 
different topological properties can be observed in the continuous and smooth deformation of 
plane. Generally speaking, openness that relates to the weakening of limits is reflected in 
specific vertical plane deformation, which results in weakening of boundaries at the positions 
opposite to bending. 

The principle of deformability  

Although the previous presentation of topology might lead to the conclusion that in the 
essence of homoeomorphic translation contains the deformability of a certain figure in order 
for it to translate to another figure, the introduction of deformation notion in topology 
primarily implies the deformability of the translation itself. More precisely, the term 
deformation is used in order to describe the relation between two continuous functions and 
not between two figures. Off the record, the function parameter can only be perceived as time, 
whereas the notion of time in this case does not imply any of the precise mathematical 
definitions, but it underlines that the process of deformation primarily displays over a certain 
interval and the display of change happening within such interval. It appears that the relation 
to form change temporality in architectural works can be built and displayed by application of 
the same principles. On the other hand, in architectural design methodology deformability 
usually implies the analysis of potentials of spatial structure for deformation, but not as a 
property which explicitly regulates formal rules for architectural buildings. Deformability 
implies that an architectural work was created by application of design methodologies where 
elements build structure by examination of internal relations instead of according to pre-
defined order principles. Generally speaking, deformability property is preserved through a 
specific space building logic and it can be analysed on basis of two key issues: what has the 
potential for transformation of the main form, which is known and metrically defined, and 
how the change occurs. The first issue indicates the object of deformation i.e. specific 
characteristics of architectural work and it pertains to the research of deformable potentials of 
the existing elements. The second issue focuses on the display of the change of form of 
architectural structure i.e. the process that deforms it. Accordingly, the deformability of 
architectural structure speaks about the potential for topological logic of construction to be 
manifested in the ultimate form of architectural work.  
Anas Alfaris deems that the form is a set of elements and their structure, where elements 
represent parts of a whole, and structure regulates formal relations between such elements 
[17] Referring to this definition, it is possible through the history of architecture to follow the 
development of the principle of architectural form creation from general to individual, which 
is rooted way back in the architecture of ancient Greeks and Romans, where the system of 
proportions was based on the golden ration, symmetry and examination of ideal relations 
between parts and the whole. The first examples of use of individual to general system in 
form development can be found way back in the Islam architecture, where mathematical 
formulas were used for repetition of geometric figures to obtain a complex pattern surface. 
Generally speaking, both systems of form development – from general to individual and from 
individual to general – rely on the idealised perception of the world. Geometrical systems of 
proportion, perspective, typology, geometrization of tiles is Islam architecture etc. are a priori 
based on ideal principles which either multiply elements or separate the whole, but the 
internal principles of the given system remain unchanged. Considering that both parts and the 
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whole are displayed as fixed, unchangeable geometric forms, they cannot be combined so as 
to make any impact on or to modify one another. The presented systems of composition of 
structural assemblies neglect the character of relation between elements and such relation 
remains quite simplified, even in the treatment of structure as developed by Metabolists or 
members of Archigram group. Against these two systems, Farshid Moussavi’s book The 
function of form suggests a different system for construction of architectural functionally-
formal assembles which she called transversal system [18]. The system implied that the main 
constructive element is not geometrically pre-defined but that it comprises of multiple 
causatively-complex systems. The principle of element combination arises from their specific 
nature, which causes form to be generated from proto-geometrical characteristics that are 
physically and geometrically specific but are not necessarily specified. The elaboration of 
proto-geometrical characteristics of basic constructive elements is close to definition of 
topological invariants, and, as explained by Moussavi, these are the characteristics with 
capacity to be the constants in any form they generate. Topological character of deformable 
spatial assembly essentially implies the same as in mathematical discourse i.e. that 
architectural work is accessed at the moment of generation as to a system subject to free 
deformation, the formal display whereof can be freely changed if the elements, which are 
close in the initial disposition, remain close after the deformation. On the other hand, the 
limits of deformation and constant provision of architectural part are conditioned by external 
restrictions and they are never the result of a universal internal rule.  
The principle of deformability in creation of an architectural work, including a temporal 
component in the process, implies the display of all phases of deformation and not only the 
original figures. The idea of direct display of deformation process is based on the display of 
change in architectural work in certain time intervals, while the transposition from one form 
to another is done by small deviations from the previous spatial determination. Visual 
research can rely on the perception of time continuum through strip element, which also 
represents a change graphic. This type of display implies that it is possible to read movement 
or motion through such formed conceptual aspect, whereas this type of minor departure in 
time definition is only defined when there are no fixed reference points or suggested identity, 
but only when relations based on uncertainty and certain differences are established, instead 
of those based on traditional attempts of order and its repetition. During the project procedure, 
what mattered was transformation of previous step into the following through current state, 
and in order for each deformation step to remain within the limits of topological method, the 
elements must not be subject to tearing and subsequent connection. Ultimately, the use of 
deformation principle can be tested on architectural works by application of standard 
architectural techniques, such as architectural drawing or three-dimensional picture, since the 
displayed time interval provided the projected methodologies and it refers exclusively to the 
design process. Elaborating the kinetic form, Kostas Terzidis added that movement was an act 
or process which changes position or place over time, hence the movement includes temporal 
component which actually represents a unit of change [19]. Referring to similar definitions, 
Greg Lynn indicates a need for systematic inclusion of time and movement upon form 
definition, identifying cinematic model when movement indication in architecture is 
concerned [20]. Cinematic model implies the multiplication of static film sequences that 
simulate movement, and the displayed frames create a memory of form which is spatially and 
temporally simultaneous. In fact, it generates an idea of architecture that creates temporal 
component through memory of time. It is based on animation, morphing and similar 
techniques based on the display of several isolated pictures over a defined time period. In the 
context of creation of architectural works, Kostas Terzidis explains that morphing is a term 
used to describe a process where an object changes form to obtain another shape. Although 
this is a gradual transition, it can result in significant change of appearance, character, state or 

ICCM2018, 6th-10th August 2018, Rome, Italy

763



function. Morphing is a significant formal means and it refers to one of the most significant 
matters of architectural objects: possibility to express and identify itself through own form.  
The interior design of Miran Galerie by architectural studio dECOi is explained by Mark 
Goulthorpe as a process of membrane generation and the beginning of research of 
architectural surfaces by Rhinoceros computer programme, for the purpose of creating the 
impression of morphed three-dimensional shell within a static architectural building. 
Homogeneity of continuous curved surface that fills the existing spatial frame by unique 
treatment of floors, walls and ceiling, had been preserved by bending and folding of plane 
within the spatial limits. A series of analytic diagrams displays how dECOi follow the change 
of main form through deformation of longitudinal axis, which can be interpreted according to 
mathematical definition as translation deforming the displayed structure in the interval 
starting from initial to the final position (Figure 3).  

 
Figure 3. dECOi, series of analytic diagrams showing the process of deformation 

 
The designers’ intention to implement deformation process through a series of cross-sections 
implied that dECOi had to develop a sophisticated technique of computer modelling – in 
order to present a three-dimension form as a collection of two-dimension elements, to obtain 
structurally stable frames and to develop encrypted tools generating sections on the desired 
positions. During the elaboration phase, the problem with main figures in generation of hybrid 
form was detected. Their manipulation uses two curves of nurbs type, where one controls the 
angle of cutting and the other controls the assumed density of crossing, hence the final figures 
can be harmonised with the primary volume. An important part of the developed methodology 
relates to the development of diagram approach to the control of these two lines – where 
definition of the assisting cross-section and line for density regulation, located outside the 
building, can be used for testing of variations of temporal axis. The displayed methodology 
implies changes in the manner of element production, along with the development of special 
computer programme with clear optimisation parameters. The recognition of use of 
topological principles in the development and realisation of the internal membrane of Miran 
Galerie is reflected in the clear intention to present the process of deformation by specific 
cross-section system. The design methodology, based on the development of programmed 
tools used to control the complex geometry of the designed membrane, takes into account the 
change in curvature of the local plane parts. The significance of Goulthorpe’s opus is reflected 
in the intensified use of certain topological principles in project development phase by using 
certain topological methods to resolve explicit problems in realisation and use of specific 
materials. As the focus from its initial work was shifted towards the research of new 
materialisation models and creation of theoretical platform relying on specific computer logic 
for resolution of architectural details, Goulthorpe retains priority in the realised works as well.  

Conclusions 

Based on the presented topological principles, illustrated by examples of architectural works 
where they can be observed, it becomes clear that contemporary architectural paradigm has, 
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by registering key principles of topological method in design process, acknowledged the 
presence of topology as an integral part of a wider design strategy. During the review of 
statement that geometry conditions a part of relations within architectural space but it needs to 
be integrated in a much more comprehensive theory so that her proper place and significance 
would be assigned, it becomes clear that topology, as a creative tendency, contains design 
principles based on which it builds its own framework and which ensure its position in 
contemporary architectural paradigm. Although the first part of the paper indicated a more 
complex theoretical position of topology in architectural discourse, it followed on to observe 
three topological properties and principles of architectural structures, demonstrating that 
recognising the use of topological principles in designing architectural works can be done on 
basis of basic architectural postulates. These principles are not new, but in previous design 
methodologies they were not observed in this manner i.e. so that openness is reflected in a 
weakened relation to façade shell, continuity in internally empty and full spaces, and 
deformability is interpreted by the specific principle of building an architectural structure and 
as a process causing deformation. The presented principles indicated a wider context of 
application previously elaborated through the idea that architecture and sciences contribute to 
creation of a specific system of world perception, while it is insisted on flexibility of structure 
susceptible to easy changes dictated by a moment. If we assume the most general position that 
architecture, as well as sciences, speaks about the creation of the world which is inhabited by 
subjects and objects, whereas the “manner” is always historically determined, we can 
understand the position of Antoine Picon who refers to relation between a subject and its 
environment, while architecture and sciences are the fields which define this relation, 
primarily in the domain of the created environment. It can be noted that certain historical 
processes hold this relation to be more significant and productive, and Picon relates it to the 
periods when architecture and sciences contribute to creation of a specific system of world 
perception [21]. The manner of perception and image of the environment refers primarily to 
the environment as a cultural category.  
This paper is an attempt to clearly outline the causative link between digital technologies and 
complex geometry reflected in topology, but also to emphasise the additional problem arising 
from the approach of topological treatment of form which refers to the absence of aesthetic 
valorisation of the deformed amorphous architectural forms. A part of problem also stems 
from the absence of clearly defined system of evaluation of aesthetic characteristics of new 
forms, and another part is in the process of their generation which is underlined by question of 
what is it in the process of form transformation that determines when the form would end. 
Similar observations are made by Michael Meredith who states that the results of use of 
topological principles during the 1990’s are reflected in isolated physical and aesthetic models 
that have no wider impact but instead remain within their own limits [22]. In this context, we 
can contemplate whether literal application of topological principles in architectural design 
favours the formal-shaped aspect of architectural work, which transfers the matter of use of 
topological principles from the domain of architectural theory of form closer to the 
architectural design theory. The three suggested strategic principles of application of 
topology: principle of continuity, openness and deformability represent certain characteristics 
of architectural works and indicate methodological processes rather than precise designing 
recommendations, which makes the defined platform for use of topological principles less 
determined and looser for interpretation. 

References 

[1] Kline, M. (1972) Mathematical Thought from Ancient to Modern Times, Vol.1, Oxford University Press, 
New York, 370-378. 

[2] Kantor, J. M. (2005) A Tale of Bridges: Topology and Architecture, Nexus Network Journal, vol. 7, no. 2, 
Birkhäuser Verlag, Basel. 

ICCM2018, 6th-10th August 2018, Rome, Italy

765



[3] Euler, L. (1956) The Seven Bridges of Königsberg, The World of Mathematics, Vol. 1, James Newman, ed., 
Simon and Schuster, New York, 573. 

[4] Novikov, S. P. (1984) Foreword in Očigledna topologija, Zavod za udžbenike i nastavka sredstva, Beograd. 
[5] Deleuze, G. (1994) Difference and Repetition, The Athlone Press, London, 14. 
[6] Plotnitsky, A. (2003) Algebras, geometries, and topologies of the fold: Deleuze, Derrida, and quasi-

mathematical thinking (with Leibniz and Mallarmé), Between Deleuze and Derrida, Paul Patton & John 
Protevi, ed., Continuum, London, New York, 98-119. 

[7] Eisenman, P. (1992) Visions unfolding: architecture in the age of electronic media, Domus no. 734, 17-21. 
[8] De Landa, M. (2002) Intensive science and virtual philosophy, Continuum Books, London, 26. 
[9] Dženks, Č. (2007) Nova paradigma u arhitekturi, Orion Art, Beograd. 
[10] Spuybroek, L. (2008) The Architecture of continuity, NAI Publishers, Rotterdam, 23. 
[11] Buchler J. (1955) Philosophical Writings of Peirce, Dover Publications Inc, New York. 
[12] Vidler, A. (2001) The Future is a Graph: Dagmar Richter’s Diagrammatic Practice, X Y Z: The Architecture 

of Dagmar Richter, Princeton Architectural Press, New York,15. 
[13] Delez, Ž. (1989) Fuko, Izdavačka knjižarnica Zorana Stojanovića, Sremski Karlovci, 99. 
[14] Imperiale, A. (2002) Digital Skins: The Architecture of Surface, Skin: Surface, Substance, and Design, Ellen 

Lupton ed., Princeton Architectural Press, New York, 56-57. 
[15] Bendžamin, E. (2011) Filozofija arhitekture, Clio, Beograd, 37.  
[16] Dimendberg, E. (2013) Diller Scofidio + Renfro: Architecture after Images, The University of Chicago 

Press, Chicago, 146-147. 
[17] Alfaris, A. (2009) Emergence Through Conflict, The Multi-Disciplinary Design System (MDDS), doctoral 

dissertation, Department of Architecture, MIT, Massachusetts, 49. 
[18] Moussavi, F. (2009) The function of form, Actar and Harvard University Graduate School of Design, New 

York, 31-32. 
[19] Terzidis, K. (2003) Expressive Form. A Conceptual Approach to Computational Design, Spon Press, 

London and New York, 33. 
[20] Lynn, G. (1999) Animate form, Princeton Architectural Press, New York, 11. 
[21] Picon, A. (2003) Architecture, Science, Technology and The Virtual Realm, Architecture and The Science, 

Exchanging Metaphors, Antoan Picon and Alessandra Ponte, eds., Princeton Architectural Press, New York, 
294. 

[22] Meredith, M. (2008) Never Enough (transform, repeat ad nausea), From control to design: 
Parametric/Algorithmic Architecture, Tomoko Sakamoto ed., Actar, Barcelona, 7-9. 

ICCM2018, 6th-10th August 2018, Rome, Italy

766



Application of Uniform Design on Improvement Design of Detector Slides 
in Switch Machine system 

 
†*Yung-Chang Cheng, and Jin-Long Liou 

Department of Mechanical and Automation Engineering, National Kaohsiung University of Science and 
Technology, Kaohsiung, Taiwan. 

*Presenting author: yccheng@nkfust.edu.tw  
†Corresponding author: yccheng@nkfust.edu.tw 

Abstract 
The purpose of this paper is to present the use of uniform design of experiments method in 
improving the von Mises stress of the detector slides in the switch machine. Four system 
parameters of the detector slide are selected as the control factors to be improved. Uniform 
design of experiment is applied to create a set of simulation experiments. Applying 
ANSYS/Workbench software, the finite element modeling is investigated and the von Mises 
stress of each detector rod is calculated under fatigue testing. From the numerical results, the 
best detector slide of all the experiments which causes the smaller von Mises stress is selected 
as the improved version of design.  

Keywords: Uniform design, Detector slide, ANSYS/Workbench, von Mises stress 

 
Introduction 

Railway turnout consists of switch machines and crossings with specific complexity which is 
exposed to several defects. When the train through the turnout area, the safe and reliable 
operation of switch machines and crossings must be assured by high levels of routine 
maintenance. Figure 1 shows the all elements in the turnout area. [1] 
 
Some literatures have presented the dynamic analysis of the switch machine system.  By 
using the dynamic switch machine model, Xu et al. [2] studied the lock calculation of nose 
rail after conversion and presented the stress and deformation for the nose rail and wing rail. 
Wang et al. [3] investigated the effect of different bedplates, different friction coefficient, 
lateral stiffness of switch rail end, stroke error and performance of fasteners on switching 
force and deviation. Based on envelope and morpheme match algorithm, exact curve 
matching method is used to match the detected current curve with the reference curve by Mo 
et al. [4]. 
 

 
Figure 1.  Turnout system and its components [1] 
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In this article, the fatigue analysis of detector slides under the dynamic forces is investigated. 
The uniform design of experiment is used to create a set of simulation experiments. 
According to the GB/T 25338.1-2010 fatigue testing standard, the maximum von Mises 
stresses of the upper and lower detector slides are obtained by using ANSYS/Workbench and 
HyperMesh software. Finally, from the numerical results, the best detector slide of all the 
experiments which causes the smaller von Mises stress is presented.     

Finite Element Modeling for Detector Slide 

The S700K switch machine system, including motor, clutches, control system, throw bar, 
detector slides, gear reducer system and case, is shown in Figure 2. [5] The throw bar, which 
is connected to the points, is held with a defined force in the end positions by the trailing 
clutch. During the trailing of a trail-able point machine, it is released once the retention force 
is exceeded. For fail-safe detection of the blade end positions, the point machine is equipped 
with detector slides. The detector slides are linked to the point blades via the detector rods and 
prove whether the blades have reached the end position. The end position of the point blades 
is detected continuously. 
 

 
Figure 2.  S700K switch machine system 

 

Fatigue testing standard 

Figure 3 illustrates schematically the detector slide fatigue test. The upper and lower detector 
slides are assembled in the guide sleeve as shown in Figure 3. Then, the upper and lower 
detector slide connects to a fork joint to translate the force to the lock member linked the 
switch rails. The guide sleeve is fixed on the case and the case is fixed on the ground. Next, 
the dynamic loads 6000 N act on the lock member in the horizontal direction as shown in 
Figure 3. The dynamic loads of the upper and lower detector slides are given in Figure 4. 
According to the GB/T 25338.1-2010 fatigue testing rule [6], the maximum endured loading 
is conducted to 106 cycles. 
 

 
Figure 3.  S700K switch machine system 
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Figure 4.  Time history of dynamic loads in one period 

 

Finite element modeling 

In the solving stage, HyperMesh software is used for the pre-processing. The boundary and 
contact conditions are given as shown in Figure 5. ANSYS/Workbench software is applied to 
calculate the maximum von Mises stress of the detector slide. The material properties of the 
detector slides, fork joint, lock member, guide sleeve, and the case are given as shown in 
Table 1. In addition, the S-N curve for the detector slide is given as shown in Figure 6. 
 
In FE analysis, a convergence test is necessary for verifying the mesh quality because the 
solution is approximate rather than an exact solution. Consequently, each FE model executed 
the simulation test and the convergence condition is determined to be less than 5% of changes 
in the maximal magnitudes of von Mises stress with varying element sizes. Figure 7 shows 
the convergence curve of the obtained maximal magnitude of von Mises stress with meshing 
different element size. The optimized element size is 4 mm because the difference of the 
simulation result between element size of 4 and 3.5 mm is less than 5%. Therefore, element 
size is determined to be 4 mm to mesh all FE models. 
 
The maximum von Mises stress and fatigue safety factor of each detector slide for the fatigue 
testing are shown as Figures 8 and 9. From the numerical results, the maximum von Mises 
stresses of the upper and lower detector slide are given as 117.16 MPa and 121.5 MPa, 
respectively. In addition, the minimum fatigue safety factors of the upper and lower detector 
slide are given as 1.34 and 1.29, respectively. Figure 10 shows the deformation of each 
detector slide. From the numerical results, the maximum deformations of the upper and lower 
detector slide are given as 0.84 mm and 0.52 mm, respectively. It means that the strength 
performance of the upper detector slide is better than the lower detector slide. 
 

Table 1. Material types and properties 

Body Young’s Modulus (Pa) Poisson’s Ratio Density (g/cm3) 

Detector slide 21×1010 0.29 7.9 

Fork joint 
Lock member guide 

Sleeve the case 
20×1010 0.2 7.85 

 
 

ICCM2018, 6th-10th August 2018, Rome, Italy

769



 
Figure 5.  Boundary conditions for detector slides 

 

 
Figure 6.  S-N curve for detector slide 

 
Figure 7.  Convergence curve of the obtained maximal magnitude of von Mises stress 
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(a) 

 
(b) 

Figure 8.  von Mises stress of the (a) upper detector slide and (b) lower detector slide. 

 
(a) 

 
(b) 

Figure 9. Fatigue safety factor of the (a) upper detector slide and (b) lower detector slide. 
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(a) 

 
(b) 

Figure 10. Deformation of the (a) upper detector slide and (b) lower detector slide. 
 

Uniform Design of Experiments for Reducing von Mises Stress of Detector Slide 

As shown in Figure 10, the detector slide studied in this paper has four dimensional control 
factors. The original design and variation ranges of control factors are shown in Table 2. 
Since all factors are continuous, the design space is also a continuous space. For a continuous 
design space, design points are infinite and evaluation of all design points is impossible. 
Therefore, this study applies uniform design method proposed by Fang and Wang [7] to 
construct a set of sample points which are scattered uniformly in the continuous design space. 
Uniform design has been widely used for optimization in many engineering applications [8-
10].  
In our study, due to the limitation of computational resource, each factor is divided into 12 
levels and the uniform table ( )* 10

12 12U  is utilized to construct 12 experiments.  As shown in 

Table 3, the uniform table  ( )* 10
12 12U  has 12 rows and 10 columns (Fang and Wang [7]). 

Since the detector slide has four control factors, columns 1, 6, 7, 9 should be used according 
to the use table of ( )* 10

12 12U . The constructed experiments are shown in Table 4. Each 

experiment denotes a specific design of detector slide. For each detector slide, SolidWorks is 
applied to build the geometric model of frame and ANSYS/Workbench is used to simulate the 
behavior of detector slide undergoing fatigue testing. 
 
From the numerical results in Table 4, the minimum von Mises stress of the upper detector 
slide occurs at the 3rd experiment. However, at 7th experiment, it has the minimum von 
Mises stress of the upper detector slide. It is difficult to select an optimal solution. 
Considering the lower von Mises stress for each detector slide, the 7th experiment is regarded 
as the improved version of design. The improved version causes the von Mises of 104 MPa 
and 110.2 MPa for the upper and lower detector slide, respectively. 
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(a) 

 
(b) 

Figure 10. Control factors of the (a) upper detector slide and (b) lower detector slide 
 

Table 2. Variation ranges of control factors 

Control factors Lower bound Original design  Upper bound 

LL1 (mm) 30.6 34 37.4 
LL2 (mm) 120.47 133.85 147.24 
LL3 (mm) 253.8 282 310.2 
LL4 (mm) 27 30 33 

 
Table 3. Uniform table ( )* 10

12 12U  

Experiment No. 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 8 9 10 
2 2 4 6 8 10 12 3 5 7 
3 3 6 9 12 2 5 11 1 4 
4 4 8 12 3 7 11 6 10 1 
5 5 10 2 7 12 4 1 6 11 
6 6 12 5 11 4 10 9 2 8 
7 7 1 8 2 9 3 4 11 5 
8 8 3 11 6 1 9 12 7 2 
9 9 5 1 10 6 2 7 3 12 
10 10 7 4 1 11 8 2 12 9 
11 11 9 7 5 3 1 10 8 6 
12 12 11 10 9 8 7 5 4 3 
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Table 3. Constructed experiments and results 

Experiment 
No. 

von Mises stress of upper 
detector slide (MPa) 

von Mises stress of lower 
detector slide (MPa) 

1 111.3 113.9 
2 118.4 114.4 
3 97.5 117.4 
4 110.0 150.4 
5 112.2 112.2 
6 115.0 120.9 
7 104.0 110.2 
8 113.3 129.3 
9 113.8 121.1 
10 113.0 118.2 
11 118.2 121.0 
12 116.0 120.7 

 

Conclusions 

This paper has completed the improvement of von Mises stress for the detector slides under 
the fatigue testing simulations by using uniform design method. Uniform design method is 
used to build a set of experiments and finite element modeling is fulfilled by employing 
ANSYS/Workbench. For the original design, the von Mises stress for the upper and lower 
detector slide are 117.16 MPa and 121.5 MPa, respectively. After executing uniform design 
improvement, the von Mises stresses of the improved version will go down to 104 MPa and 
110.2 MPa. This paper has shown that uniform design is a useful tool to reduce the von Mises 
stress of detector slides. 
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ABSTRACT 

This research implements a numerical simulation of flexible risers under oscillatory flows 
initially at rest. A single freedom degree spring-mass-damper system is employed with low 
mass allowed to move only in cross-flow direction. Two-dimensional incompressible Navier-
Stokes equations are discretized using the Finite Volume Method (FVM). To resolve the 
pressure-velocity linkage, an iterative solution strategy SIMPLEC algorithm for transient 
problems is used. To study the influence of smaller Reynolds values on the dynamic system, a 
critic value KC=7,9 is fixed. For Reynolds less than 300, the system behavior is in agreement 
with the literature, where a direct relationship between the force and the vortex shedding is 
presented. An almost null cross-flow force appear for Re=40 which becomes important as 
increased the Reynolds value, changing between fluctuating and stabilizing force. From 
Reynolds 300 the cross-flow force is very chaotic and some discrepancies with literature appear 
in the system dynamics. The numerical results obtained from the proposed numerical base 
approach show good agreement with experimental data collected from a flexible riser model 
according to the spectral analysis.  

Keywords: Flexible riser, Keulegan-Carpenter number, oscillating flow, numerical 
simulation, vortex dynamics 

1. Introduction 

The structural movement by external variable velocity flow is a very common phenomenon in 

flexible risers but there is still a limitation to accurately predicting the response of these 

structures. This is due to most of the prediction models rely heavily on large experimental 

databases. In addition, flexible and light materials have been developing for marine applications 

leading to slender structures with low mass ratios. This characteristic facilitates the structure 

movement caused by vortex shedding for incoming flow. In many real cases, the flow can be 

oscillating in a sinusoidal mode and Reynolds (Re) and Keulegan-Carpenter (KC) 

dimensionless numbers can describe this behavior. Here 𝑅𝑒 = 𝑈𝑚𝐷/𝜈  and  𝐾𝐶 = 𝑈𝑚𝑇/𝐷 , 

where 𝜈 is the kinematic viscosity, 𝑈𝑚 is the amplitude of the oscillatory flow velocity, 𝑇 is the 

oscillatory flow period and 𝐷 is the diameter of the cylinder. Their importance regards in the 

relationship between these numbers and the forces that causing the structure movement. The 

cross-flow force exerted onto the structure is particularly harmful, exerting a significant 

dynamic stress, increasing the damage accumulation and eventually causing structural failure. 

 

The frequency at which the vortices are shear is known as vortex shedding frequencies (𝑓𝑣); a 

regular pattern of vortices induces fluctuating lift and drag forces on the cylinder [1]. The 

shedding frequency and both forces become constant for Reynolds number intervals, which 

means the heavy influences of this number on the cylinder maximum response ( [2] [3]).  Many 

authors have been researching its influence until a value of 500, considering a fixed value for 

𝐾𝐶 ( [4], [5], [6], [7], [8], [9], [10], [11]). Tatsuno and Bearman [12] analyzed 1.6 < 𝐾𝐶 < 15 

and 5 < 𝛽 < 160 (𝛽 = 𝑅𝑒/𝐾𝐶 = 𝐷2/𝜈𝑇), including three-dimensional features, provided the 

identification of eight regimes denoted from A to G in a plane (𝐾𝐶, 𝑅𝑒). This classification has 

become the standard description for the associated flow regimes. The regimen A corresponds 

to the Williamson`s symmetrical regimen [13], that is also similar to Regime B but with an 
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axial direction three-dimensional structure. Regime C corresponds to vortices of opposite 

rotation senses in the same fashion of a Von Kármán vortex street. Regime D exhibits a 

symmetrical V-pattern around the transverse axis, very similar to regime E, however here the 

V-pattern changes intermittently its direction from one side to the other. Regime F describes 

the Williamson`s double pair regime [13], whereas the Williamson`s transverse street is similar 

to Regime G. Finally, the Tatsuno and Bearman [12] regimen classification suggests that a 𝐾𝐶 

such as 7,9 that crosses five different regimens, can be assumed as critical and important to be 

studied.  
 

This study describes and discusses the resulting forces by oscillating fluid flow effect around a 

cylinder under the influence of a fixed 𝐾𝐶 (7,9) and  Re between 40 and 1000, considering 

lower mass ratio and covering the most Tatsuno and Bearman regimes (A, D, E, F and G). The 

cylinder-oscillating period is implemented for a long time (more than fifty cycles) in order to 

analyze the flow patterns in each regime. A single degree of freedom system with a spring-

mass-damper is implemented, where the mass is allowed to move only in cross-flow direction. 

To discretize the transport equations, the Finite Volume Method (FVM) is used and to resolve 

the pressure-velocity linkage, an iterative solution strategy SIMPLEC algorithm for transient 

problems is used. Moreover, a bi-dimensional model is established using OpenFOAM 

simulations and employing a single desktop computer. The results presented here consider an 

experimental validation [14] in order to demonstrate the use of numerical based approaches to 

predict the response of flexible risers.  

 

In what follows, Section 2 presents the numerical method description with the respective 

equations modeling, parameters taking account, computational domain, boundary conditions 

and model validation. Section 3 put forward a discussion of the force characterization according 

to the transitions between regimes established for different intervals of Reynolds values. In 

addition, the results are compared with experimental data in this section. A study summary is 

presented in Section 4.  

2. Numerical method 

To model the vortex generation around a structure, commonly a sinusoidal oscillatory flow is 

considered to represent a realistic phenomenon representation. The flow in the longitudinal 

direction is given by: 

 

𝑈1(𝑡) = 𝑈𝑚𝑠𝑖𝑛 (2 𝜋𝑡 𝑇⁄ )            (1) 
 

The oscillating flow considered is controlled by 40, 100, 150, 200, 250, 300, 500 and 1000 as 

Reynolds numbers and 7,9 as Keulegan Carpenter number, so eight different regimens were 

simulated. Other parameters (mass, damping, reduced velocity) are set up to allow the cylinder 

movement according to Valencia-Cardenas, M. [15]. 

 

A discretized form of two-dimensional incompressible Navier-Stokes equations must be 

defined at a nodal point placed within each control volume in order to solve the problem. 

OpenFOAM, an open source solver, is used to solve the governing equations selecting adequate 

solution schemes in order to achieve reliable results. To reach it, a second-order central 

difference scheme is used for the convection and diffusion terms. A stable and accurate 

simulation is obtained by choosing an implicit second-order scheme for temporal discretization. 

For the numerical procedure in the simulation, to improve the pressure and velocity coupling, 

the PIMPLE algorithm is utilized [16]. 
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The structure is allowed to move only perpendicularly to the flow direction. To apply the 

transport equations to the inertial system, time to time and according to the cylinder movement, 

the numerical grid is moved and adjusted. For that reason, a mesh dynamic motion solver is 

implemented in the model, where the cylinder is constrained to only move along “𝑦” and cannot 

rotate. Finally, the total force per unit length by a stationary cylinder under a oscillatory flow 

𝐹𝑜𝑠𝑐  is known as Morison’s equation [17], written as: 

 

𝐹𝑜𝑠𝑐(𝑡) = 𝜌𝐶𝑚
𝜋

4
𝐷2�̇�(𝑡) +

1

2
𝜌𝐶𝐷𝐷|𝑈(𝑡)|𝑈(𝑡)       (2) 

 

Where 𝜌 represents the fluid density, 𝐶𝑚 the inertia coefficient and 𝐶𝐷 the drag coefficient. The 

last two are functions of 𝑅𝑒 and 𝐾𝐶.  
 

The computational domain is a cylinder in a channel represented using two-dimensional 

numerical simulations as shown in Figure 1. The cylinder is represented as a circle with 

diameter 𝐷  submersed in an incompressible fluid, represented here as a rectangular flow 

domain. As the simulation begins, the center body is located at the center of the coordinate’s 

axis, 10D from the horizontal walls and 20D from the vertical walls. The domain areas around 

the cylinder, where the vortices are shed, contains a higher cell density in order to obtain a 

better resolution.  This region is shaped by four arcs whose radius equal 2.5√2𝐷.  

 

  

Figure 1. Sketch and computational mesh of oscillating flow around circular cylinder 
 

To guarantee the smallest numerical errors, it is necessary to proof the meshing independently. 

The test is developed from a course mesh established, using a non-dimensional time step  

𝑈1∆𝑡/𝐷 = 0,1 (where ∆𝑡 is time step) as sufficient condition to ensure coefficients with three 

significant digits [18]. Then, the mesh is refined consecutively and the time step is determined 

from the Courant number (𝑐𝑜) expression, 𝑐𝑜 = |𝑈1|∆𝑡/∆𝑥 where ∆𝑥 is the smaller cell size in 

the velocity direction and 𝑐𝑜 is defined as 0.2 [19]. Finally, the appropriate mesh is selected 

taking into account the fitting between results and literature and the tradeoff between precision 

and computational cost (see Figure 1).  

 

Table 1. Comparison of drag force coefficient ( =1.307, 95% CI [1.281, 1.332]) and Strouhal 

number ( =0.193, 95% CI [0.187, 0.198]) at 𝑅𝑒 = 200 and 𝐾𝐶 = 10 

 𝐶�̅� 𝑆𝑡 

Guilmineau and Queutey 

(2002) 

1.286 0.195 

Cao et al. (2010) 1.300 0.186 

Cao and Li (2015) 1.343 0.191 

Present work 1.331 0.192 
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In order to guarantee an accurate solution, the model is setting up at values of Reynolds and 

Keulegan Carpenter well studied in the literature (e.g. [18], [20], [10], [21]). The drag and lift 

coefficients time history and the Strouhal number are analyzed, considering 20 vortex shedding 

periods once the periodic flow is stablished. These values have been compared with published 

results ( [10], [21], [22]) and shown in Table 1.  

 

The drag coefficient (mean value of the in-line non-dimensionalized force) and the Strouhal 

number, 𝑆𝑡  = 𝑓𝑣𝐷/𝑈𝑚 , are obtained from the frequency of vortex shedding  𝑓𝑣 , which is 

calculated with the period measured from velocity time history. At 𝑅𝑒 = 200 and 𝐾𝐶 = 10, 

𝐶�̅�  is equal to 1.331 and 𝑆𝑡 is equal to 0.192, meaning that the vortex natural frequency 

shedding is  𝑓0 =0.192. Results are in good agreement with those published in the literature 

(see Table 1). 
 

3. Results and discussions  

The results of direct numerical simulation are presented in this section considering the effect of 

𝐾𝐶 = 7,9 and Reynolds values equals to 40, 100, 150, 200, 250, 300, 500 and 1000. In this 

work, the regimes are defined from the flow structure and force behavior. 

 

3.1.In-line and transverse forces 

Drag and lift coefficients time histories in an oscillating flow are estimated using force 

coefficients function library by OpenFOAM. Vortex shedding frequencies and Strouhal 

numbers obtained for different Reynolds values are shown in Figure 2. The time history 

frequencies are verified for both drag and lift coefficients in order to obtain the vortex shedding 

frequency, using the Fast Fourier Transform method (FFT) [20]. The dominant frequency 

corresponds to the oscillating frequency.  

 
Figure 2. Vortex shedding frequencies (circle) and Strouhal numbers (square) by Reynolds 

number 

 

The semi-empirical Eq. (2) estimate the in-line force on a cylinder divided in two forces: 1) The 

drag force, proportional to the flow instantaneous velocity square and 2) the inertial flow 

coupled with the local flow acceleration [22]. The drag force coefficient 𝐶𝑑 and the inertial 

force coefficient 𝐶𝑚  can be obtained by last square fifting on the time history of 𝐹𝑜𝑠𝑐 , or 

calculated using the equations below [23]. 

 

 𝐶𝑑 =
3

4
∫

𝐹𝐷 sin 𝜃

𝜌𝐷𝑈1
2 𝑑𝜃

2𝜋

0
=

3

8
∫ 𝐶𝐷 sin 𝜃 𝑑𝜃

2𝜋

0
       (3) 
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𝐶𝑚 =
2𝑈1𝑇𝑓

𝜋3𝐷
∫

𝐹𝐷 cos 𝜃

𝜌𝐷𝑈1
2 𝑑𝜃

2𝜋

0
=

𝑈1𝑇𝑓

𝜋3𝐷
∫ 𝐶𝐷 cos 𝜃 𝑑𝜃

2𝜋

0
       (4) 

 

Where, 𝐶𝐷 represents the mean drag coefficient.  

 

According to Cao and Li [22], the time history of drag force can be acceptably approximated 

by Morrison’s equation. Using the same equations is possible to obtain the cross-flow force. 

Figure 3 shows an interval of in-line and cross-flow forces for every Reynolds value studied. 

 

The drag and the inertial forces share a direct relation with the vortex behavior as shown in 

Figure 3. A uniform in-line force with almost constant frequency and period can visualized in 

Figure 3(a). This regimen A does not exhibits vortex detachment, but it does show a vortex 

formation totally symetric in the direction of the flow. This is why in-line force predominates 

and the trasnverse force is almost null.  

 

A representative regimen D is showed in Figure 3(b), where the V-pattern symmetrical starts 

to dominate and the cross-flow force becomes important. The symmetric pattern becomes 

predominant when the cross-flow force amplitude reduces. The fluctuation force classify this 

case of Reynolds value in a symmetric regime group.  

 

The Re=150 case present and amplitude instability due the irregular vortex shedding in Figure 

3(c). After a while, the fluctuations tends to become regular and the in-line force is stabilizes. 

Here regimen E is predominant with intermitently changes of direction, related with the 

fluctuating amplitude in-line force because the action of cross-flow force. When cross-flow 

force present a peak, vorticity pattern tends to be transversal street. 

 

For Re= 200, an amplitude stability is presented and persist at the time (Figure 3(d)). In the 

same way, the Re= 250 present a regular fluctuation force (Figure 3(e)). Also, cross-flow force 

present uniform behavior for both Reynolds (200 and 250). Reynolds case 200 and 250 are 

dominated by regimen F. In-line force for Re= 200 tends to be more stable in comparison with 

Re= 250 which means the first one present vortex shedding more symmetrical about the cross-

flow axis while the second one tends to be more transversal. In this way, the proximity to the 

transition range is a bit evident for Re= 250. 

 

For case of Reynolds 300, 500 and 1000, in-line and cross-flow forces are chaotic and strong 

peaks appear (see Figures 3(f)(g) and (h)). A chaotic behavior is observed here because there 

are no persistent vortex pattern. Sometimes, the dominant harmonic for the case of Re= 1000 

are three times the frequency of oscillating fluid flow, but predominates two times the 

oscillating frequency. On the other hand, flow regime is dominated by the viscous drag 

component in all the cases.  

 

3.2.Spectral analysis 

Several oscillating fluid flow frequencies peaks that are integral times the vortex oscillating 

frequency, are illustrated in Figure 4 and Figure 5. These figures were obtained from time 

history of drag force and lift force coefficients respectively, using Fast Fourier Transform 

(FFT). The oscillating frequencies are graphed with the magnitude of the Fourier Transform, 

using the main peak as indicated Williamson [13]. 
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(a)  (b)  

(c)  (d)  

(e)  (f)   

(g)  (h)  

 

Figure 3. In-line and cross-flow forces for a) Re 40, b) Re 100, c) Re 150, d) Re 200, e) Re 

250, f) Re 300, g) Re 500 and h) Re 1000. 

 

Spetral analysis of drag force is shown in Figure 4 with several peaks at frequencies. The main 

frequency are always the oscillating frequency and the other peaks has an increment factor, 

namely 3𝑓0, 5𝑓0, 7𝑓0 and in that way forward (see Figure 4(a)(b)(c)), for regimes A, D, E and 
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F. Besides of the main frequency and the 3𝑓0 peak, other frequencies peaks without multiple of 

𝑓0 appear in regimen G. 

 

It is possible to note, the oscillating frequencies for Reynolds values less than 200 (see Figure 

4) are twice the main frequency of lift coefficient. As shown in Figures 5(a)(b), for regimes A 

and E respectively, the main frequencies occur with an increment of 2𝑓0 . Otherwise, the 

dominant frequency for regimen F (Figures 5(c)) is three times the oscillating frequency. In this 

case, the case of Reynold value 250 presents main frequency at 3𝑓0 and the increment is about 

1𝑓0 in the others frequencies peaks. 

 

 Figure 4. Spetral analysis of drag force coefficient at a) Re 100, b) Re 150, c) Re 250, d) Re 

1000. 

 

 

The same behavior for these regimens is shown by Duclercq et. al. [4]. Again, for Reynolds 

values higher than 300 the oscillating frequencies are two times the main frequency of lift 

coefficient. Note that the main frequency in Figures 5(d), is presented around of 2𝑓0. Them 

appear others frequencies peaks without a clear multiple of 𝑓0  and strong fluctuations is 

observed. Williamson [13] concluded that in an oscillating flow, the dominant frequency of lift 

force is equal to one plus the number of vortices shedding in a half period, which is evidenced 

in the regimes A, D and F. However, for regimen G this condition is not fulfilled as proved in 

this study.  

 

 
(a) 

 
(b) 

 
(c)  

 
(d)  
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 Figure 5. Spetral analysis of lift force coefficient at a) Re 100, b) Re 150, c) Re 250, d) Re 

1000. 

 

3.3.Experimental validation 

 

Riveros et. al. [14] conducted a series of forced oscillation experiments for flexible risers where 

a 20-meter riser model was tested for different values of Re and KC numbers; their  

experimental model case 1 has the same diameter as Re (1000) and KC (7,9) numbers presented 

here. Although good agreement was reported by Riveros et. al. [14], it is still possible to observe 

some deviations between the simulation results and experimental data in the main cross-flow 

frequency. The model presented in this paper, as shown in Figure 4(d), overcomes this difficulty 

providing a value of the dominant cross-flow frequency in good agreement with the 

experimental value of 1 Hz presented by Riveros et. al. [14]. Likewise, the dominant inline-

flow frequency presented in the experimental model by Riveros et. al. [14] is 4,9 Hz, the same 

visualized in Figure 4(d) using the numerical model. 

 

4. Summary  

A numerical simulation of two-dimensional risers under oscillatory flows with low Reynolds 

and KC for predicting the involve forces response was presented in this paper. A inverse 

relationship between the Reynolds number and the mean drag coefficients, is an expected 

behavior result [14]. Also demostrated that the peaks shape variation of forces behaviour is 

related with a pressure distribution asymmetry in the flow direction, due to  asinchrony in the 

vortex shedding. Thus, the lowest Reynolds number, the less variation in amplitude and 

 
(a) 

 
(b) 

 
(c)   

 

 
(d)  
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frequency parameters and conversely, the higher Reynolds numbers produces significant 

variations, especially in fluctuation amplitude. 

 

Reynolds value 40 present a good agreement to the Williamson regimen with vortex symmetric 

formation in the flow direction which explains why the in-line force predominates and the cross-

flow force is almost null. Instability develops when Reynolds value is incremented to 𝑅𝑒 = 100 

where transverse vortices appear. This is conforms to Tatsuno & Bearman regimen D behavior, 

where a symmetrical V-pattern began to develop and the cross-flow force becomes important. 

The V-pattern symmetrical regimen persists in the 𝑅𝑒 = 150  case because changes 

intermittently from a transverse street to oblique street vortex. An amplitude instability is 

present due irregular vortex shedding, after a while, the fluctuations becomes regular and the 

in-line force stabilizes. Here regimen E is predominant with intermittently changes of direction, 

related with the fluctuating amplitude in-line force because the action of cross-flow force, this 

conforms to Tatsuno & Bearman.  

 

In-line force for 𝑅𝑒 =  200 tends to be more stable in comparison with  𝑅𝑒 = 250, so  𝑅𝑒 =
200 shows  vortex shedding more symmetrical about the cross-flow axis while the second one 

tends to be more transversal. In this way, the proximity to the transition range is evident for  

𝑅𝑒 = 250. Both cases are conform to Tatsuno & Bearman regimen F behavior with regular 

fluctuation force and also, the cross-flow force present uniform behavior. Regimen instability 

appears as the Reynolds value increases (Reynolds value 300, 500 and 1000). Reynolds 300 

and 500 is classified by Williamson [13] as regimen G, but transverse street is not the most 

persistent behavior. The pattern is considered chaotic for all these cases where there are ot 

persisten force patterns. In-line and cross-flow forces are chaotic and strong peaks appear. The 

dominant harmonic for the case of Re= 1000 sometimes is three times higher than the oscillating 

fluid flow frequency, but two times the oscillating frequency. The flow regime is dominated by 

the viscous drag component in all these cases. 

 

Finally, the numerical results presented in this paper for the dominant in-line and cross-flow 

frequency shows good agreement with experimental results provided by Riveros et. al. [14]. 
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Abstract 

In this paper, we propose a new family of efficient and optimal iterative methods for multiple roots 

with known multiplicity 1)( m . We use weight function approach involving one and two 

parameters to develop the new family. An extensive convergence analysis is discussed in order to 

demonstrate the optimal eighth-order convergence of the proposed scheme. Finally, numerical and 

dynamical tests are presented which confirm the theoretical results established in this paper and 

illustrate that the proposed family is efficient among the domain of multiple root finding methods.  

Keywords: Nonlinear equations, multiple zeros, efficiency index, optimal iterative methods. 

Introduction 

 

The problem of solving nonlinear equation is recognized to be very old in history as many practical 

problems arising in nature are nonlinear. Various one-point and multi-point methods are presented 

to solve nonlinear equation or system of nonlinear equation [17, 18, 21]. The above cited methods 

are designed for the simple root of nonlinear equations but the behavior of these methods are not 

similar when dealing with multiple roots of nonlinear equations. The well known Newton’s 

method with quadratic convergence for simple roots of nonlinear equations decays to first order 

when dealing with multiple roots of nonlinear equations. These problems lead to minor troubles 

such as greater computational cost and severe troubles such as no convergence at all. The prior 

knowledge of multiplicity of roots make it easier to deal with these difficulties. The anomalous 

behavior of the iterative methods while dealing with multiple roots is well known at least since 

19th century when Schröder [20] developed a modification of classical Newton’s method to 

preserve its 2nd order of convergence for multiple roots. The nonlinear equations with multiple 

roots commonly arise from different topics such as complex variables, fractional diffusion or 

image processing, applications to economics and statistics(Lẻvy distributions) etc. By knowing the 

practical nature of multiple root finders, various one-point and multi-point root solvers have been 

developed in recent past [1, 3, 4, 6-9, 11-15, 19, 24]  but most of them are not optimal as defined 

by Kung and Traub [10] which states that an optimal without memory method can achieve its 

convergence order at most 
n2  requiring 1n  evaluations of functions or derivatives. According 

to Ostrowski [17], if O  is the convergence order of an iterative method and n  is the total number 

of functional evaluations per iterative step then the index 
nOE 1/=  is known as efficiency index of 

an iterative method. 

Sharma and Sharma [19] proposed the following optimal fourth order multiple root finder with 

known multiplicity m  as follows: 
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Geum et al. in [7], presented a non-optimal family of two-point sixth-order methods to find 

multiple roots given as follows: 
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Following is a special case of their family: 
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Another non-optimal family of three-point sixth-order methods for multiple roots by Geum et al. 

[8], is given as follows: 
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v  The weight functions 𝑄: ℂ → ℂ  is analytic in a 

neighborhood of 0  and 𝐾: ℂ2 → ℂ is holomorphic in a neighborhood of (0,0) . Following is a 

special case of the family (1.4): 
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The families (1.2) and (1.4) require four functional evaluations to produce sixth order convergence 
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with the efficiency index 1.5650=64

1

 and therefore are not optimal in the sense of Kung-Traub’s 

conjecture [10]. 

 

Recently, Behl et al. [2] have proposed a family of optimal eighth order iterative methods for 

multiple roots given as: 
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being 1a  and 2a  are complex non-zero free parameters. 

We take particular case (27) for ( 1a 1= , 1=2a , 0)=02G  of the family by Behl et al. [2] and 

denote it by BM  as follows: 
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Most recently, second optimal eighth order scheme have been proposed by Zafar et al. [22], which 

is given as follows: 
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where 𝐵1, 𝐵2 ∈ ℝare free parameters and the weight functions 𝐻: ℂ → ℂ, 𝑃: ℂ → ℂ and 𝐺: ℂ →
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From the eighth order family of Zafar et al. [22], we consider the following special case denoted by 

ZM : 
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Optimal iterative methods are more significant than the non-optimal ones, regarding their 

efficiency and convergence speed. Therefore, there was a need to develop optimal eighth-order 

schemes for finding multiple zeros ( 1>m ) as well as simple zeros ( 1=m ) because of their better 

efficiencies and order of convergence [17], in addition optimal schemes require a small number of 

iterations to obtain desired accuracy as compare to fourth and sixth-order methods of Sharma and 

Geum [7, 8, 19]. In this paper, our main concern is to find the optimal iterative methods for 

multiple root   with known multiplicity 𝑚 ∈ ℕ  of a sufficiently differentiable nonlinear 

function 𝑓: 𝐼 ⊆ ℝ → ℝ where 𝐼 is an open interval. We, in here, develop an optimal eighth order 

zero finder for multiple roots with known multiplicity 1m . The beauty of the method lies in the 

fact that developed scheme is simple to implement with minimum possible number of functional 

evaluations. The family requires four functional evaluations to obtain eighth-order convergence 

with the efficiency index 1.6817=84

1

. 

 

The rest of the paper is organized as follows: In Section 2, we propose a new family of optimal 

eighth-order iterative methods to find multiple roots of nonlinear equations and discuss its 

convergence analysis. Some special cases are given in Section 3. In Section 4, numerical 

performance and comparison of the proposed schemes with the existing ones are given, dynamical 

analysis is given in section 5.Concluding remarks are given in Section 6. 

 

Development of the scheme 
 

In this section, we propose a new family of eighth-order method for a known multiplicity 1m  of 

the desired multiple root as follows: 
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and the weight function 𝐻: ℂ → ℂ is analytic function in the neighborhood of 0  and weight 

function 𝐿: ℂ2 → ℂ  is holomorphic in the neighborhood of (0,0)  and st,  and u  are 

mtoone   multiple -valued functions. 
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In the next theorem, it is demonstrated that the proposed scheme (2.1) achieves the optimal eighth 

order of convergence without increasing the number of functional evaluations. 

 

Theorem 1 Let =x  (say) be a multiple zero with multiplicity 1m  of an analytic function 

𝑓: ℂ → ℂ in the region enclosing a multiple zero   of ).(xf  Then the family of iterative 

methods defined by (2.1) has eighth-order convergence when the following conditions are 

satisfied: 

 2.=4,=2,=1,=0,=36,=2,=2,=1,= 20110110003210 LLLLLHHHH   (2.2) 

Then the proposed scheme (2.1) satisfies the following error equations: 
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Proof. Let =x   be a multiple zero of )(xf . Expanding )( nxf  and )( n

' xf  about =x  by 

the Taylor’s series expansion (with the help of computer algebra software Mathematica), we 

obtain 
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respectively. By using the above expressions (2.4) and (2.5) in the first substep of (2.1), we obtain 
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where 𝐺𝑘 = 𝐺𝑘(𝑚, 𝑐1, 𝑐2, … , 𝑐8)  are expressed in terms of 𝑚, 𝑐1, 𝑐2, … , 𝑐8  where the two 

coefficients 0G and 1G  can be explicitly written as 
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With the help of Taylor’s series expansion, we obtain 
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By using the expressions (2.4) and (2.7), we get 
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where,  
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Expanding Taylor series of 𝐻(𝑡) about 0  we have: 
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where 𝐻𝑗 = 𝐻𝑗(0) for 0 ≤ 𝑗 ≤ 3. Inserting the expressions (2.6)-(2.9) in the second substep of 
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Now, again by using the Taylor’s series expansion for (2.10), we have 
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 With the help of expressions (2.4) and (2.11), we have  
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where, 

𝜌1 = −(1/(6𝑚³)){𝑐₁³(98 + 𝐻3 + 4𝑚2 + 54𝑚 − 6𝐻2(3 + 𝑚) − 12𝑚(9 − 𝐻2 + 𝑚)𝑐₁𝑐₂ +
             12𝑚²𝑐₃},  

𝜌2 = (1/(24𝑚⁴))899 + 1002𝑚 + 313𝑚² + 18𝑚³ + 4𝐻₃(8 + 3𝑚) − 6𝐻₂(43 + 33𝑚 +
6𝑚²))𝑐₁⁴ − 12𝑚(167 + 2𝐻₃ + 87𝑚 + 6𝑚² − 𝐻₂(33 + 10𝑚)𝑐₁²𝑐₂ + 24𝑚²(26 − 3𝐻₂ +
3𝑚)𝑐₁𝑐₃ + 12𝑚²(𝑐₂²(35 − 4𝐻₂ + 3𝑚) − 6𝑚𝑐₄)  

and 

𝜌3 = −(1/(60𝑚⁵))[−4257 − 7270𝑚 − 4455𝑚² − 101𝑚³ − 48𝑚⁴ − 10𝐻₃(37 + 30𝑚 +
6𝑚²) + 30𝐻₂(60 + 75𝑚 + 31𝑚² + 4𝑚³)𝑐₁⁵ + 10𝑚(1454 + 60𝐻₃ + 1548𝑚 + 21𝐻₃𝑚 +
454𝑚² + 24𝑚³ − 18𝐻₂(25 + 18𝑚 + 3𝑚²)𝑐₁³𝑐₂ − 30𝑚²(234 + 3𝐻₃ + 118𝑚 + 8𝑚² −
2𝐻2(24 + 7𝑚)𝑐₁²𝑐₃ − 60𝑚²𝑐₁(141 + 2𝐻₃ + 67𝑚 + 4𝑚² − 2𝐻₂(15 + 4𝑚)𝑐₂² + 2(−17  

+2𝐻₂ − 2𝑚)𝑚𝑐₄) − 120𝑚³(−25 + 3𝐻₂ − 2𝑚)𝑐₂𝑐₃ + 2𝑚𝑐₅} + ((1/(720𝑚⁶)))((102047  

+180𝐻₂² + 204435𝑚 + 187055𝑚² + 81525𝑚³ + 14738𝑚⁴ + 600𝑚⁵ + 40𝐻₃(389498𝑚  

+214𝑚² + 30𝑚³) − 45𝐻₂(1223 + 2030𝑚 + 1353𝑚² + 394𝑚³ + 40𝑚⁴)) − 30𝑚(13629  

+22190𝑚 + 12915𝑚² + 2746𝑚³ + 120𝑚⁴ + 16𝐻₃(83 + 64𝑚 + 12𝑚²) − 6𝐻₂(1015 +
1209𝑚 + 470𝑚² + 56𝑚³)) + 120𝑚²(2063 + 2088𝑚 + 589𝑚2 + 30𝑚3³ + 𝐻3(88 + 30𝑚)  

−18𝐻₂ + (36 + 25𝑚 + 4𝑚²)) + 80𝑚²(2323 + 2348𝑚 + 635𝑚² + 30𝑚³ + 4𝐻₃(289𝑚)  

−3𝐻₂(259 + 173𝑚 + 26𝑚²)) − 2𝑚(303 + 4𝐻₃ + 149𝑚 + 10𝑚² − 9𝐻₂(7 + 2𝑚))  

−720𝑚³((393 + 6𝐻₃ + 178𝑚 + 10𝑚² − 𝐻₂(87 + 22𝑚))] + (−42 + 5𝐻₂ − 5𝑚)𝑚𝑐₅) +
20𝑚³((−473 − 8𝐻3 − 195𝑚 − 10𝑚2 + 12𝐻2(9 + 2𝑚))𝑐₂𝑐₃ + 6𝑚(65 − 8𝐻2 + 5𝑚) 𝑐₂  

+3𝑚((71 − 9𝐻2 + 5𝑚)𝑐₁₀𝑚𝑐₆.  

Since it is clear from (2.8) that u  is of order ne . Therefore, we can expand weight function 

𝐿(𝑠, 𝑢) in the neighborhood of origin by Taylor’s series expansion as follows: 
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 By using the expressions (2.4)-(2.13) in the proposed scheme 

(2.1), we have 
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where the coefficients 𝑀𝑖(2 ≤ 𝑖 ≤ 7) depends generally on m  and the parameters jiL , .For 

obtaining at least fifth-order convergence, we have to choose 1=0,= 1000 LL  and get 
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where the coefficients 𝑀𝑖
̅̅ ̅(6 ≤ 𝑖 ≤ 7) depends generally on m  and the parameters ., jiL To obtain 
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eighth order of convergence we choose the following values of parameters: 

 4=2,=2,=1,=0,=36,=2,= 112001100032 LLLLLHH   (2.15) 

which leads us to the following error equation: 
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The above asymptotic error constant (2.16) reveals that the proposed scheme (2.1) reaches at 

optimal eighth-order convergence by using only four functional evaluations (using. 

)(),(),( nn

'

n yfxfxf  and𝑓(𝑧𝑛) )per iteration.  

 

Special Cases of Weight Functions 
 

From Theorem 1, several choices of weight functions can be obtained, we have considered the 

following: 

Case 1: The polynmial form of the weight function satisfying conditions (2.2) can be represented 

as: 

 32 621=)( ttttH   
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A particular iterative method related to (3.1) is given by: 
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Case 2:  The second suggested form of the weight functions in which )(tk f  is constructed using 

rational weight function satisfying conditions (2.2) is given by: 
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The corresponding iterative method (3.3)can be presented as: 

 

SM-2: 
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Case 3: The third suggested form of the weight function in which )(tK f  is constructed using 

trigonometric weight satisfying conditions (2.2) is given by:  

 𝐻(𝑡) =
211185
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The corresponding iterative method obtained using (3.5) is given by: 

 

SM-3: 
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Numerical tests 

 

In this section, we show the performance of the presented iterative family (2.1) by carrying out 

some numerical tests and comparing the results with existing method for multiple roots. All the 

numerical computations have been performed in Maple 16 programming package using 1000 

significant digits of minimum number of precision. In that case   is not exact, it is replaced by a 

more accurate value which has more number of significant digits than the assigned precision. The 

test functions along with their roots   and multiplicity m  are listed in Table 1 [16]. The 

proposed methods SM-1 (3.2), SM-2 (3.4) and SM-3(3.6) are compared with the methods of Geum 

et al. given in (1.3) and (1.5) denoted by GKM-1 and GKM-2 and with method of Bhel given in 

(1.7) denoted by BM and Zafar et. al method given in (1.9) denoted by ZM respectively. Tables 

2-8 display the errors of approximations to the sought zeros ( nx ) produced by different 

methods at the first three iterations, where )( iE   denotes 
iE 10 . The initial approximation 0x  

for each test function and computational order of convergence (COC) is also included in these 
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tables, which is computed by the following expression [23]: 
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It is observed that, the performance of new method SM-2 is same as method of BM for function 1f  

and better than method of ZM for function 2f . The newly developed schemes SM-1, SM-2 and 

SM-3 are not only convergent but also their speed of convergence is better than methods of 

GKM-1 and GKM-2. On the other hand methods of ZM and BM show divergence for function
3f

. For 4f , 5f , 6f  and 7f  the newly developed schemes newly developed schemes SM-1, SM-2 

and SM-3 are comparable with methods of ZM and BM. Hence, we conclude that the proposed 

family is comparable and robust among existing methods for multiple roots. 

 

Table 1: Test functions 

 Test Functions   Exact root    Multiplicity m  

52

1 ))
2

((=)( 


 x
x

cosxf  2.034724896… 5  

2

2 20)(=)(  xexf x  2.842438953… 2  

94

3 2)1)(ln(=)(  xxxf  1.222813963… 9  

3

4 )(=)( xcosxxf   0.7390851332… 3  
503

5 1)1)((=)( xxf  2.0 50  
623

6 10)4(=)(  xxxf  
1.365230013… 6  

82

7 3)2(8=)(  xxexf x  
-1.7903531791… 8  

 

 

Table 2: Comparison of different methods for multiple roots 
f1(x),x0=2.5 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 6.83(-4) 1.11(-3) 2.15(-4) 1.87(-4) 2.03(-4) 1.52(-4) 1.84(-4) 

|𝑥2 − 𝜇| 3.42(-14) 2.53(-18) 2.37(-29) 3.53(-30) 1.25(-29) 9.69(-31) 2.89(-30) 

|𝑥3 − 𝜇| 2.13(-55) 3.58(-106) 5.28(-299) 5.71(-236) 2.53(-231) 2.56(-240) 1.05(-236) 

COC 4.00 6.00 8.00 8.00 8.00 8.00 8.00 

 

Table 3: Comparison of different methods for multiple roots 
f2(x),x0=3.0 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 1.18(-7) 5.27(-6) 2.33(-7) 1.21(-7) 1.90(-7) 1.40(-7) 1.16(-7) 

|𝑥2 − 𝜇| 2.62(-37) 1.15(-32) 1.30(-53) 2.21(-56) 1.99(-54) 1.30(-55) 1.57(-56) 

|𝑥3 − 𝜇| 3.07(-221) 1.25(-192) 1.19(-423) 2.67(-446) 2.87(-430) 7.37(-440) 1.73(-447) 

COC 4.00 6.00 8.00 8.00 8.00 8.00 8.00 
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Table 4: Comparison of different methods for multiple roots 
f3(x),x0=3.0 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 5.50(-1) 4.29(-2) 1.81(-2) 1.75(-2) 1.79(-2) * * 

|𝑥2 − 𝜇| 3.99(-7) 8.77(-10) 2.82(-15) 9.58(-16) 2.04(-15) * * 

|𝑥3 − 𝜇| 1.13(-27) 7.51(-56) 2.06(-117) 8.21(-122) 6.49(-119) * * 

COC 4.00 6.00 8.00 8.00 8.00 * * 

 

“*” stands for divergence  

 

 Table 5: Comparison of different methods for multiple roots 
f4(x),x0=1.0 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 2.77(-4) 2.55(-5) 6.78(-8) 5.45(-8) 6.29(-8) 4.90(-8) 5.15(-8) 

|𝑥2 − 𝜇| 3.28(-14) 6.83(-36) 7.95(-60) 8.55(-61) 3.83(-60) 4.06(-61) 4.91(-61) 

|𝑥3 − 𝜇| 5.86(-49) 2.51(-213) 2.82(-475) 3.11(-483) 7.18(-478) 8.99(-486) 3.36(-485) 

COC 3.50 6.00 8.00 8.00 8.00 7.99 7.99 

 

 

Table 6: Comparison of different methods for multiple roots 
f5(x),x0=2.1 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 7.68(-5) 1.12(-5) 7.58(-7) 4.85(-7) 6.52(-7) 4.77(-7) 4.65(-7) 

|𝑥2 − 𝜇| 3.49(-17) 5.33(-29) 3.70(-47) 4.10(-49) 8.82(-48) 5.66(-49) 2.72(-49) 

|𝑥3 − 𝜇| 1.46(-66) 6.11(-169) 2.82(-369) 1.06(-385) 9.93(-375) 2.22(-384) 3.79(-387) 

COC 3.99 6.00 8.00 8.00 8.00 7.99 7.99 

 

Table 7: Comparison of different methods for multiple roots 
f6(x),x0=3.0 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 5.44(-2) 1.01(-1) 5.40(-2) 5.30(-2) 5.36(-2) 4.36(-2) 5.39(-2) 

|𝑥2 − 𝜇| 7.40(-7) 5.37(-7) 1.10(-10) 8.60(-11) 8.60(-11) 1.36(-11) 4.92(-11) 

|𝑥3 − 𝜇| 3.54(-26) 1.86(-38) 5.28(-80) 576(-81) 5.76(-81) 1.80(-87) 3.14(-83) 

COC 3.97 5.96 8.00 7.98 7.97 7.97 7.97 

 

Table 8: Comparison of different methods for multiple roots 
f7(x),x0=-1.2 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 2.65(-3) 2.15(-3) 4.38(-7) 4.24(-4) 4.32(-7) 3.41(-4) 4.26(-4) 

|𝑥2 − 𝜇| 7.24(-12) 9.63(-17) 4.44(-27) 1.11(-27) 3.11(-27) 3.58(-28) 1.14(-27) 

|𝑥3 − 𝜇| 4.05(-46) 7.81(-97) 4.97(-211) 2.55(-216) 2.28(-212) 5.27(-220) 3.06(-216) 

COC 4.00 6.00 8.00 8.00 8.00 7.99 7.99 

 

Dynamical analysis 

 

Regarding the stability comparison, we use the routines presented in [5] for plotting the dynamical 
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planes corresponding to each method (SM-1,SM-2, S-M3, BM and ZM) for the non-linear 

functions 7654321 ,,,,,, fffffff . For this, we define a mesh of 400   400 points, as each point of 

the mesh is an initial guess for the analyzed method on the specific nonlinear function. If the 

sequence of iteration method reaches (closer than 
310
) the multiple root in less than 80 iterations, 

then this point is painted in orange color; if the iterate converges to another thing (strange fixed 

points, cycles, etc.) then the point is painted black. The multiple root is represented in the different 

figures by a white star.  

 

We observe from Figures 1–7 that the only basin of attraction is that of the multiple root (that is, 

the set of initial points converging to it fills all the plotted region of the complex plane), plotted in 

orange in the figures; although in general, convergence to other roots, divergence or even 

convergence to other fixed points that are not roots of the non-linear function (known as strange 

fixed points), can appear. We see in the figures, that the orange region is more bigger and brighter 

for the proposed schemes SM1, SM2 and SM3 than the regions of methods BM and ZM for all 

examples, that confirms their stability and fast convergence speed. 

 

 

 

 

 

 
               SM-1                        SM-2                         SM-3 

 
                    BM                        ZM 

Fig. 1: Basins of attraction of different methods for f1 
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               SM-1                         SM-2                         SM-3  

 
                                BM                          ZM 

Fig. 2: Basins of attraction of different methods for f2 

 

 

 
       SM-1                          SM-2                         SM-3 

 
                            BM                           ZM 

Fig. 3: Basins of attraction of different methods for f3 
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               SM-1                         SM-2                         SM-3 

 
                                BM                          ZM 

Fig. 4: Basins of attraction of different methods for f4 

 

 

 
                SM-1                       SM-2                       SM-3 

 
BM                       ZM 

Fig. 5: Basins of attraction of different methods for f5 
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                SM-1                        SM-2                         SM-3 

 
                                BM                          ZM 

Fig. 6: Basins of attraction of different methods for f6 

 

 

 
                SM-1                        SM-2                         SM-3 

 
                                BM                          ZM 

Fig. 7: Basins of attraction of different methods for f7 
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Conclusion 

 

In this paper, we present a new family of optimal eighth-order methods to find multiple roots of 

nonlinear equations. An extensive convergence analysis is done which verifies that the new family 

is optimal eighth order convergent. The proposed family requires four functional evaluations to 

obtain optimal eighth-order convergence with the efficiency index 1.6817=84

1

 which is higher 

than the efficiency index of any of the methods for multiple roots and of the families of Geum et al. 

[7, 8]. Finally, numerical and dynamical tests confirm the theoretical results and show that the 

three members SM-1, SM-2 and SM-3 of the new family are better than existing methods for 

multiple roots. Hence, the proposed family is efficient among the domain of multiple root finding 

methods. 
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Abstract

A novel smoothed finite element method (S-FEM) using 10-node tetrahedral (T10) elements,

SelectiveCS-FEM-T10, is proposed. In the proposed method, each T10 element is divided into

T4 subelements and the strain smoothing is performed only within each T10 element, meaning

no strain smoothing across elements. Also, the proposed method utilizes the selective reduced

integration (SRI) technique for the stress integration. As a result, the proposed method avoids

volume locking and pressure checkerboarding in nearly incompressible materials. A few ex-

amples of analysis reveal that the proposed method has good accuracy and robustness in large

deformation analyses of nearly incompressible materials.

Keywords: Smoothed finite element method, Tetrahedral element, Large deformation, Volumet-

ric locking, Pressure checkerboarding, Reaction force oscillation.

Introduction

Because of the difficulties in generating good-quality hexahedral meshes for complex shapes,

finite element analyses with tetrahedral meshes are often demanded. However, it is well known

that the standard tetrahedral elements are less accurate than hexahedral elements and make hard

to obtain reliable results. The simplest tetrahedral element, the standard 4-node tetrahedral (T4)

element, causes issues of shear locking, volume locking, and pressure checkerboarding. Al-

though the standard 10-node tetrahedron (T10) element can resolve the issue of shear locking, it

can not resolve the other issues. Moreover, it brings an additional issue of nodal reaction force

oscillation. The issues of volume locking and pressure checkerboarding appear not only in rubber

materials but also in materials with near incompressibility such as viscoelastic and elastoplastic

materials. It is known that these issues can not be resolved at all by using finer meshes. From

such a background, researches on accurate tetrahedral elements to analyze nearly incompressible

materials are still being carried out actively.

The most widely used formulation as a highly accurate tetrahedral element is the mixed (hybrid)

element [1, 2] based on the mixed variational principle. Various hybrid T4 or T10 elements

have been proposed, but none of them has resolved all the issues above together yet. In addi-

tion, since hybrid elements require additional unknowns such as pressure, they all give rise to

incompatibility with the dynamic explicit method.

On the other hand, the smoothed finite element methods (S-FEM) [3, 4] has recently attracted

attention as the highly accurate tetrahedral formulations based on the pure displacement method

without no additional unknowns. S-FEM is a type of strain smoothing method, and there are

several formulations varied with the domains for strain smoothing: NS-FEM at nodes, ES-FEM

at element edges, CS-FEM at elements and so on. We have proposed SelectiveES/NS-FEM-

T4 [5, 6] combining ES-FEM-T4 and NS-FEM-T4 with the selective reduced integration (SRI)
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method and also F-barES-FEM-T4 [7, 8, 9, 10] combining them with the F-bar method [11]. In

particular, F-barES-FEM-T4 has been proved to be a formulation that can resolve all the issues

above in static analysis. However, since our previous methods require strain smoothing across

elements, it is difficult to implement them as user-defined elements of general-purpose FEM

codes, which is a critical problem in practical engineering.

In this research, we propose a new S-FEM formulation with T10 elements, SelectiveCS-FEM-

T10, which does not perform strain smoothing across elements. Following the method of Ostien

et al. [12], a dummy node is introduced at the center of each T10 element, and the element is

divided into twelve T4 subelements. By performing strain smoothing only across the subele-

ments within each element, it is possible to implement the proposed S-FEM formulation as a

user-defined T10 element of general-purpose FEM codes. In addition, SRI is applied in stress

integration to combine the deviatoric and hydrostatic stresses derived from two different ways of

strain smoothing. As a result, the proposed method avoids all the issues above in the analyses

with nearly incompressible materials. In this paper, the outline of the formulation of the pro-

posed method is described in Section 2, and then some results of example analyses are presented

to confirm the effectiveness of the proposed method in Section 3, followed by the conclusion in

Section 4.

Methods

The method proposed in this paper (SelectiveCS-FEM-T10) is a type of cell-based smoothing

finite element method (CS-FEM). One dummy node and twelve T4 subelements are introduced

in each T10 element and the strain smoothing is performed across the subelements within each

element. In contrast to the node-based S-FEM (NS-FEM), edge-based S-FEM (ES-FEM) or face-

based S-FEM (FS-FEM), there is no strain smoothing across elements. The deviatoric stress is

evaluated at each subelement using the smoothed strain. On the other hand, we regard the set

of 12 subelements as a patch to calculate pressure in element, which is similar to the concept

of F-bar Patch method [13, 14]. The final nodal force is calculated by combining them in the

manner of the selective reduced integration (SRI).

Addition of a dummy node

A schematic diagram of a T10 element defined by SelectiveCS-FEM-T10 is shown in Fig. 1.

The exterior 10 nodes (4 corner nodes and 6 intermediate nodes) are the same as the standard

T10 element, but SelectiveCS-FEM-T10 has one additional dummy node at the element center.

The position of the dummy node x10 is defined by the following equation as the average position

of all intermediate nodes.

x10 =
1

6

9∑

P=4

xP, (1)

where xP represents the position vector of the node P. Since the position of the dummy node is a

dependent variable, the number of unknowns does not increase. The total degrees of freedom of

each element is 30: 10 nodes × 3 dimensions. Note that the edges may be bent at the intermediate

nodes although the edges in Fig. 1 are all straight for simplicity.
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Table 1: List of the node numbers composing each subelement. Each number denotes an intra-

element subelement/node number.

Subelement Number Node Number

0 0, 4, 6, 7

1 1, 5, 4, 8

2 2, 6, 5, 9

3 3, 7, 9, 8

4 4, 6, 7, 10

5 5, 4, 8, 10

6 6, 5, 9, 10

7 7, 9, 8, 10

8 6, 4, 5, 10

9 7, 8, 4, 10

10 8, 9, 5, 10

11 9, 7, 6, 10

Subdivision of element into subelements

An elements are subdivided into 12 T4 subelements using the 11 nodes including the dummy

one as shown in Fig. 1. Table 1 shows the list of intra-element node numbers composing each

subelement. Subelement 0 to 3 are located at the four corners of the element whereas Subelement

4 to 11 are located in the remaining octahedron. There are 6 edges on each subelement, and there

are 30 edges in an element without duplication.

0

1

2

3

7

4

5

9

8
6

10

Figure 1: Schematic diagram of an element of SelectiveCS-FEM-T10. The numbers 0 to 10 denote

the intra-element node numbers. Node 10 is a dummy node and is located at the average

position of Node 4 to 9. An element is subdivided into 12 T4 subelements. There are 30

edges of the subelements in the element without duplication.
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Shape functions of subelements and its derivatives

SelectiveCS-FEM-T10 is a T10 element but is formulated as a set of linear elements, not a

quadratic elements. We consider each subelement as a standard T4 element and calculate a

shape function Sube
N represented by volume coordinates for each subelement. In case of the

subelement using the dummy node, the weight of the dummy node is distributed to the 6 inter-

mediate nodes evenly. As a result, the term of the dummy node can be eliminated from the shape

functions. The spatial derivative of the shape function in the initial state for each subelement
Sube

N
′ini (= dSube

N
ini/dx) is calculated in the same fashion as the standard T4 element. Since

each subelement is considered as a standard T4 element, Sube
N
′ini is constant in each subelement,

Now that Sube
N
′ini is fundamentally derived from the standard T4 element, and thus locking and

pressure checkerboarding occur when we use Sube
N
′ini directly for strain evaluation. Therefore,

SelectiveCS-FEM-T10 smoothes Sube
N
′inis inside the element before strain evaluation.

Smoothed derivatives of shape functions

As SelectiveCS-FEM-T10 adopts SRI, we use two kinds of smoothed spatial derivatives of shape

functions for deviatoric and hydrostatic stress components. The derivative of the shape function

for the deviatoric stress component is defined on each subelement (12 in total), whereas that for

the hydrostatic stress component is defined only on the element. As a result, the spatial order of

the hydrostatic stress is reduced in comparison to the deviatoric stress. The following shows the

derivation of the derivatives.

For the deviatoric stress, we perform a cycle of smoothing. First, in the same fashion as ES-

FEM-T4, the smoothed derivative on each edge (Edge
Ñ
′ini) is derived from Sube

N
′inis as

Edge

h
Ñ′ini

P, j =
1

Edge

h
V ini

∑

k∈
Edge

h
K

Sube
kN
′ini
P, j

Sube
kV

ini/6, (2)

where N′
P, j

is the derivative of the shape function on Node P in the jth direction (= ∂NP/∂x j),
Edge

h
K denotes the set of subelements adjacent to Edge h, Sube

k
V ini is the initial volume of Subele-

ment k, and
Edge

h
V ini is the initial corresponding volume of Edge h (=

∑
k∈

Edge

h
K

Sube
k
V ini/6). Next,

using the obtained Edge
Ñ
′inis, the smoothed derivative in each subelement (Sube

Ñ
′ini) is derived as

Sube
kÑ
′ini
P, j =

∑

h∈Sube
k
H

Edge

h
Ñ′ini

P, j /6, (3)

where Sube
k
H denotes the set of edges adjacent to Subelement k.

For the hydrostatic stress, we perform a smoothing over all subelements. The smoothed deriva-

tive on the element (ElemÑ′ini
P, j ) is derived from Sube

N
′inis as the weighted average of all the subele-

ments:

ElemÑ′ini
P, j =

1
ElemV ini

11∑

k=0

Sube
kN
′ini
P, j

Sube
kV

ini, (4)

where ElemV ini is the total volume of the element (=
∑11

k=0
Sube

k
V ini).
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Calculation of nodal internal force

Using the two kinds of smoothed derivatives of shape functions, contributions to the nodal inter-

nal force is calculated by dividing it into two parts.

For the contribution of deviatoric stress, the deformation gradient of each subelement in the trial

state (Sube
F
+) is calculated as

Sube
kF
+
i j =

Sube
kÑ
′ini
P, j x+P:i, (5)

where �+ denotes a trial state and xP:i is the jth coordinate of Node P. Putting Sube
F
+ (and its

history) into the material constitutive equation, the Cauchy stress of each subelement in the trial

state (Sube
T
+) is obtained. The deviatoric component of Sube

T
+ is then given by

Sube
kT

(dev)+

i j
= Sube

kT
+
i j − δi j trace(Sube

kT
+)/3, (6)

where δ represents the Kronecker’s delta. The contribution of the deviatoric stress to the nodal

internal force {Subef int(dev)+} is calculated with the following equation.

Sube
k f

int(dev)+

P:p
= Sube

kÑ
′ini
P, j

Sube
kF
+−1
jl

Sube
kT

(dev)+

lp
Sube

kV
+, (7)

where f int
P:p

represents the internal force of Node P in the pth direction.

For the contribution of hydrostatic stress, the deformation gradient of the element in the trial state

(Elem
F
+) is calculated as

ElemF+i j =
ElemÑ′ini

P, j x+P:i, (8)

Putting ElemF+
i j

(and its history) into the material constitutive equation, the Cauchy stress of the

element in the trial state (Elem
T
+) is obtained. The hydrostatic component of Elem

T
+ is then given

by

ElemT
(hyd)+

i j
= δi j trace(Elem

T
+)/3. (9)

The contribution of the hydrostatic stress to {Subef int(dev)+} is calculated by the following equation.

Elemf
int(hyd)+

P:p
= ElemÑ′ini

P, j
ElemF+−1

jl
ElemT

(hyd)+

lp
ElemV+. (10)

Finally, the total contribution of the element to the nodal internal force is calculated as the sum

of Eq. (7) and (10):

Elemf int+
P:p =

11∑

k=0

(
Sube

k f
int(dev)+

P:p

)
+ Elemf

int(hyd)+

P:p
. (11)

Calculation of tangent stiffness matrix

The tangent stiffness is obtained by calculating ∂{ f int}/∂{x} according to the definition. Details

are omitted due to the limitation of space.
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Characteristics in formulation

The characteristics seen in the formulation of SelectiveCS-FEM-T10 are summarized as follows.

• It is a pure displacement-based finite element method.

=⇒ It is applicable to dynamic explicit analysis unlike hybrid elements.

• There is no need to smooth strains across elements.

=⇒ It can be implemented into general-purpose FEM software as a user-defined T10

element.

• The shape functions are all linear (1st-order).

=⇒ It has superior robustness in large deformation; meanwhile, its mesh convergence

is slower than 2nd-order elements in small deformation.

• Selective reduction integration (SRI) is used.

=⇒ It is difficult to deal with material constitutive models considering pressure depen-

dence etc.

According to our numerical experiments, the proposed one cycle strain smoothing for deviatoric

stress is the optimal procedure to achieve accuracy and stability. When we perform only the edge-

based smoothing within the element for deviatoric stress, no smoothing is applied to the edges of

the element outline and thus shear locking occurs. On the contrary, when we repeat the cycle of

strain smoothing more than once, too much smoothing is conducted and thus zero-energy mode

occurs.

Results

Bending of cantilever

A large deflection cantilever bending analysis of a nearly incompressible material is performed.

The analysis domain is a cuboid of 10 × 1 × 1 m, its left end face is perfectly constrained,

and a concentrated load in the vertical downward direction is given to the tip corner point. The

material is a neo-Hookean hyperelastic body with 6 GPa initial Young’s modulus and 0.499 initial

Poisson’s ratio. An unstructured T10 mesh with 0.2 m mesh seed size is used. In addition to the

analysis with SelectiveCS-FEM-T10, analyses with ABAQUS T10 elements (C3D10, C3D10M,

C3D10H, C3D10MH, and C3D10HS) are also performed using the same mesh to compare their

accuracy and stability.

The distribution of Mises stress and pressure when the concentrated load is 2 × 107 N is shown

in Fig. 2. The deformations are almost the same in all methods, which confirms that SelectiveCS-

FEM-T10 avoids volume locking. Only ABAQUS C3D10 suffers from moderate pressure checker-

boarding and the other methods including SelectiveCS-FEM-T10 are free from pressure checker-

boarding. The amount of deformation at the loaded node is somewhat larger in SelectiveCS-

FEM-T10 in comparison with the ABAQUS T10 elements. This might be because SelectiveCS-

FEM-T10 does not use 2nd-order shape functions unlike the ABAQUS T10 and behaves more

softly in large deformation. Note that the superiority or inferiority of these deformation results

is difficult to be determined because of stress singularity.

Barreling of cylinder

A large deformation cylinder barreling analysis of a nearly incompressible material is performed.

The analysis domain is a 1/8 of a cylinder of 1 m radius and 2 m height, symmetric boundary
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conditions are applied to the symmetric surfaces, and an enforced displacement to the vertical

downward direction is applied to the top surface with constrains of in-plane displacements. The

material is a neo-Hookean hyperelastic body with 6 GPa initial Young’s modulus and 0.49 initial

Poisson’s ratio. An unstructured T10 mesh with 0.05 m mesh seed size is used. As in the

previous example, analyses with SelectiveCS-FEM-T10 and five ABAQUS C3D10 elements are

performed using the same mesh.

The distributions of Mises stress and pressure at 0.24 m enforced displacement (24% compres-

sion) are shown in Fig. 3. Although the stress distributions near the rim of the top surface are

(a) SelectiveCS-FEM-T10 (b) ABAQUS C3D10

(c) ABAQUS C3D10M (d) ABAQUS C3D10H

(e) ABAQUS C3D10MH (f) ABAQUS C3D10HS

Figure 2: Comparison of Mises stress (left) and pressure (right) distributions in the cantilever bend-

ing analysis.
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somewhat different each other due to stress singularity, their deformations and stress distribu-

tions have no much difference among all the methods. Looking at the deformation on the rim

part carefully, we can see that the element edges are largely bent periodically at the intermediate

nodes in the ABAQUS T10 elements. It is well known that the accuracy and stability of T10

elements drop greatly when the position of the intermediate node deviates largely from the mid-

point of the corner nodes. In fact, all of the ABAQUS T10 elements get converge failure around

25% compression. On the other hand, SelectiveCS-FEM-T10 does not show such a bending at

the intermediate nodes owing to the piecewise linear shape functions.

Fig. 4 shows the distribution of the nodal reaction forces on the top surface at the same time.

Typical nodal reaction force oscillations are seen in the results of the non-modified ABAQUS

elements (C3D10, C3D10H and C3D10HS), whereas SelectiveCS-FEM-T10 and the modified

(a) SelectiveCS-FEM-T10 (b) ABAQUS C3D10

(c) ABAQUS C3D10M (d) ABAQUS C3D10H

(e) ABAQUS C3D10MH (f) ABAQUS C3D10HS

Figure 3: Comparison of Mises stress (left) and pressure (right) distributions in the cylinder barreling

analysis at 24% compression states.
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(a)SelectiveCS-FEM-T10 (b)ABAQUS C3D10

(c)ABAQUS C3D10M (d)ABAQUS C3D10H

(e)ABAQUS C3D10MH (f)ABAQUS C3D10HS

Figure 4: Comparison of nodal reaction force distributions of the upper face in the cylinder barreling

analysis at 24% compression states. The proposed method (a) and the modified T10 elements of

ABAQUS ((c) and (e)) represent valid distributions. In contrast, the non-modified T10 elements

of ABAQUS ((b), (d) and (f)) represent oscillatory invalid distributions.
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ABAQUS elements (C3D10M and C3D10MH) show valid distributions. Nodal reaction force os-

cillation is a severe issue especially when handling contacts, but it is confirmed that SelectiveCS-

FEM-T10 avoids this issue.

As a demonstration, the distributions of Mises stress and pressure at 0.47 m enforced displace-

ment (47% compression) are shown in Fig. 5. Only the result of SelectiveCS-FEM-T10 is

shown in this figure because the ABAQUS T10 elements get convergence failure in earlier states,

as mentioned above. SelectiveCS-FEM-T10 gets convergence failure at 48% compression in

this case; however, it gives reasonable deformation and stress distribution until it reaches the

convergence failure.

Conclusion

A novel smoothed finite element method (S-FEM) using 10-node tetrahedral (T10) element,

SelectiveCS-FEM-T10, was proposed. By combining the selective reduced integration (SRI) and

S-FEM with cyclic smoothing, the proposed method overcome various issues: shear/volumetric

locking, pressure checkerboarding, and nodal reaction force oscillation. Unlike the conventional

4-node tetrahedral (T4) S-FEMs, the strain smoothings of the proposed method are only per-

formed within each T10 element using T4 subelements. As a result, the proposed method can be

implemented as a user-defined element of general-purpose FEM codes and also its computational

time is almost equivalent to the conventional T10 elements. Moreover, like the conventional S-

FEMs, the proposed method is applicable to the dynamic explicit analysis because it is a pure

displacement-based finite element method.

SelectiveCS-FEM-T10

Figure 5: Mises stress (left) and pressure (right) distributions of SelectiveCS-FEM-T10 in the cylinder

barreling analysis at 47% compression states. Every ABAQUS T10 elements get convergence

failure around 25% compression and thus their results are not shown here.
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Abstract 
The paper aims to present the time evolution of the number of hegemonic states based on a 
temporal series analysis. The basic idea is that a hegemonic state is the state that culminates 
by a distinct, universal civilization. As a consequence, the analysis has as basic input data the 
number and the duration of general recognized civilization. There are identified a general 
evolution trend and a periodic component. Finally, a prediction is made concerning the 
number of hegemonic states during the next five-hundred years period. 

Keywords: hegemonic state, universal civilization, time series analysis 
 
1. Introduction 
 
Stability of the world depends on the equilibrium established between forces driving it. Those 
forces are mainly issued from states which imposed their leadership either cultural, economic 
or military to the rest of the world – the hegemonic states. 
 
For this reason, many researchers in history and sociology were interested in studying the 
characteristics of hegemonic states, the mechanisms which drive their formation, their 
influence zones and their evolution or involution in time. 
 
This paper aimed to study by mathematical means the frequency of hegemonic states 
apparition in order to make predictions concerning the structure of the geo-political world 
map. 
 
The results obtained until now focused on the number of hegemonic states existing in a given 
time period, but future research could offer predictions concerning their position. 
 
The history and the sociology didn’t elaborate a “definite standard” on what is and what 
characterize a hegemonic state. This paper is based mainly on the theory and data elaborated 
by a well-recognized historician – Arnold Toynbee [1], [2]. One of the reasons is that his 
theories have raised a resuscitated interest in the last years, being used in the writings of very 
contemporary politicians [3]. 
 
2. The hegemonic state and the universal civilization 
 
Accordingly to the theories of Toynbee, a hegemonic state represents a civilization which 
reached an universality state. 
 
A civilization is actually defined as a cultural entity: language, religion, life style defines a 
civilization. The universal civilizations of the human history were usually defined by their 
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religion. This doesn’t mean that civilizations could be very exact delimitated or that into a 
given civilization couldn’t subsist groups of people with a religion different of the dominant 
one. 
 
A civilization is the most extended cultural entity: states, ethnic groups, nationalities, 
religious groups – all of them have distinct cultures at different levels of heterogeneity.  
Though a civilization is a group of people with the same cultural concept – defined both by 
common objectives as language, history, religion, customs, institutions and by their own 
subjective auto-identification.  
 
People have different levels of identity: as an example, a Roman resident could define itself 
by various degrees of identity as Roman, Italian, Catholic, Christian, Occidental, European.  
 
This point of view became less obvious in our world, when levels of identity are less 
discriminatory, but were extremely powerful in former historical phases. Anyway, Toynbee 
used the identity universal civilization – hegemonic state and defined consequently the 
following hegemonic states with their respective starting/ ending periods (Table 1). 
 

Table 1: Universal civilizations 
No Civilization Starting 

year 
Ending 

year 
1 Summerian -2298 -1905 
2 Babylonian -650 -529 
3 Indic -322 -185 
4 Synic -221 172 
5 Helenic -31 378 
6 Egiptian (1) -2070 -1660 
7 Egiptian (2) -1580 -1175 
8 Orthodox (Russia) 1478 1881 
9 Extreme oriental 1597 1868 
10 Occident (1) 1797 1814 
11 Occident (2) 1526 1918 
12 Andine 1430 1533 
13 Syriac (1) -525 -332 
14 Syriac (2) 640 969 
15 Extreme Oriental (1) 1280 1351 
16 Extreme Oriental (2) 1644 1853 
17 Central American 1521 1821 
18 Orthodox 1372 1768 
19 Hindus (1) 1572 1707 
20 Hindus (2) 1818 1947 
21 Mynoic -1750 -1400 
22 Maya 300 690 
 
3. A mathematical approach 
 
3.1. Conceptual aspects 
 
A temporal series (dynamic series) consists of a lot of observations resulting from 
measurements made in successive periods of time [4], [5]. Commonly, it is noted {xt, t∈T}, 
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where xt data represents consecutive measurements, taken at quasi-equal intervals (hours, 
days, weeks, etc.). A temporal series illustrates the dynamics of a particular process over time, 
xt representing the measured value at time t ∈ T. 
 
Since time is continuous, in time series analysis it is fragmented in equidistant periods: hours, 
days, months, years, etc., hence it has a discrete character. 
 
The evolutionary time series include three basic components: 

i. Trend or tendency (T); 
ii. Periodic component or cycle (P); 
iii. The random or stochastic component (A). 

 
Under these conditions, it can be considered that a temporal series Y(t) consists of the sum of 
the three basic components: 
 
Y (t) = T + P + A (summative model) 
 
or from their product: 
 
Y(t) = T x P x A. (multiplicative model) 
 
where: the tendency indicates the ascending or descending change of the evolution of the 
series, the periodic component includes oscillations (cycles) that are repeated at regular time 
intervals, with regular or irregular amplitudes and the random component expresses the 
residue or deviations of the series values from the theoretical values corresponding to the 
trend. 
 
Time series analysis involves separating the three components and interpreting them. 
 
3.2. Data analysis 
 
The first approach concerned the time distribution of the universal civilization (Figure 1). 
Numbers in the figure identify the civilizations presented in Table 1. As the figure shows the 
time density of hegemonic states has increased in the last 2000 years.  
  

 
Figure 1: Time density of universal civilization 
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The representation as time series of the data included in Table 1 resulted in Table 2. 
 

Table 2: Number of hegemonic states/ time 
Time interval Number of hegemonic states 

(NHS) 
-3000 -2500 0 
-2500-2000 2 
-2000-1500 3 
-1500-1000 2 
-1000-500 2 
-500-0 4 
0-500 3 
500-1000 2 
1000-1500 4 
1500-2000 9 
2000-2500 3 (estimated value) 

 
The sample period used for the study is one of 500 years – the main reason being the use of 
the same period in the Toynbee approach. 
 
Figure 2 shows from another point of view the evolution of the density in time of the number 
of hegemonic states. A “peak” of this evolution appears in the last five hundred years – a 
historical period in which many states identified themselves as nations and implicitly as 
civilizations.  
 
Moreover, in Figure 2 could be observed a slight increasing trend of the number of universal 
civilization and the existence of a certain periodicity of the evolution. 

 
Figure 2: Time - density of hegemonic states 

 

-30 -25 -20 -15 -10 -5 0 5 10 15

10

8

6

4

2

0

Time [years] x 100

N
um

be
r 

of
 h

eg
em

on
ic

 st
at

es

ICCM2018, 6th-10th August 2018, Rome, Italy

818



Another representation of the former data (i.e. as temporal series) is shown in Figure 3, in 
which the evolution periodicity (Figure 5) of the number of hegemonic states (NHS) and the 
increasing trend (Figure 4) are more evident. 
 

 
Figure 3: A time series of hegemonic states evolution 

 
The correlation coefficient of the time-series model is 0.733, which is acceptable, considering 
that, as mentioned above, it is difficult to clearly define temporal “boundaries” of a 
civilization. 
 

 
Figure 4: Increasing trend of NHS 

 
The slope of the linear trend is 0.11, but it is corrected by evolution periodicity which imposes 
for the immediate future a decreasing of the number of universal civilizations. 
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Figure 5: Evolution periodicity of NHS 

 
If the trend is eliminated, the evolution of NHS results as is shown in Figure 6. 

 
Figure 6. 

The time series modeling the evolution of NHS without the increasing trend was identified as 
being: 

where x is the time-variable and T and k are constants with following values: T=29.17 and k = 
-5.68   
 
Based on this time series, the prediction for the next 500 years-period is the existence of 3 
hegemonic states. 
 
Conclusion 
 
The present paper aimed to model by time series means the evolution of the number of 
hegemonic states in order to predict a future evolution of the geo-political structure. 

)2sin( k
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The assumptions on which the study is based are those made of a historician and sustained by 
many politicians, so as their theory is modeled by statistical means. Interpretation of the 
results could be made only following the starting theory. 
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Abstract

Over the past several years, many scholars have attempted to construct higher-order schemes
for locating multiple solutions of a univariate function having known multiplicity m ≥ 1. But
till date, we have a very limited literature (only four research articles) of eighth-order conver-
gence iteration functions for multiple zeros. The primary contribution of this study is to propose
an optimal eighth-order scheme for multiple zeros having simple and compact body structure
with faster convergence. An extensive convergence analysis is also present with the main the-
orem which clearly show the eighth-order convergence of propose iteration scheme. Finally,
numerical tests on some real-life problems, such as a Van der Waals equation of state and the
conversion problem from the chemical engineering, among others are presented, which confirm
the theoretical results to great extent of this study.

Keywords: Nonlinear equations, King-Traub conjecture, multiple roots, optimal iterative meth-
ods, efficiency indexce.
Introduction

Finding the multiple zeros of the involved function f(x) = 0 (where f : D ⊂ C → C is a
holomorphic function in the enclosed region D containing the required zero) is one of the most
challenging, of great significance and difficult tasks in the area of computational mathematics.
It is quite tough to obtain exact solution in analytic way of such problems or we can say that
it is almost fictitious. So, we have to satisfy ourselves by obtaining approximated and efficient
solution up to any specific degree of accuracy by the means of iterative procedure.

This is one of the main reason that researchers are putting their great efforts to resort an iteration
function since the past few decades. Additionally, this accuracy is also depend on some other
facts like: the considered iterative function, structure of the considered problem, initial guess
and programming software namely, Maple, MATLAB, Fortran, Mathematica, etc. Further, the
people or researchers using these iterative methods have to struggle with many problems, some
of them are like: choice of initial guess/approximation, slower convergence, non-convergence,
divergence, oscillation problem close to the initial guess, failure etc. (for the details please see
Ostrowski 1960 [17], Traub 1964 [25], Ortega and Rheinboldt 1970 [18], Burden and Faires
2001 [? ], Petkovic et al. 2012 [19]).

In addition, we dont have a single iteration function which is applicable to every problem until
now. This is the main reason that we have an excessive amount of literature on the iteration
functions for scalar equations. Here, we concern about the multiple zeros of the involved uni-
variate function in this study. Unfortunately, we have a small amount of literature belongs to
higher-order iteration function in the case of scalar equations that can handle multiple roots. The
tough calculation work and more time consumption are the main reason behind of this. More-
over, it is more challenging task to construct iterative procedure for multiple zeros as compared
to simple.
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Eighth-order multi-point methods have faster convergence and better efficiency index as com-
pare to fourth-order [6, 16, 15, 27, 21, 22, 23, 28, 14, 4, 5, 24] and sixth-order [12, 13] iteration
functions. Our mean to say that we can save computational time and cost by using them and
obtain the approximate solution in a small number of iterations as compared to them. However,
we have only four research articles [3, 26, 2, 8] till date that talk about the eighth-order conver-
gence for multiple zeros with known multiplicitym ≥ 1, according to our best knowledge. But,
we know that there is always a scope in the research to obtain better approximation techniques
with simple and compact body structure.

While keep all these things in our mind, we not only present an eighth-order iteration scheme
having optimal convergence for obtaining the multiple solutions of scalar equation which is
better than the existing ones. But, lower residual errors, lower error among two consecutive
iterations and more stable computational order of convergence belong to our methods when we
compared them to the existing ones of identical order of convergence. Moreover, we present
a main theorem which demonstrate the eighth-order convergence when multiplicity of zeros is
known in advance. Finally, we give a practical exhibition of our newly propose methods to the
real life problems.
Construction of higher-order scheme

In this section, we present the main contribution of this study. Our mean to say that we present
an eighth-order scheme for multiple zeros having simple and compact body structure. There-
fore, we consider the new scheme in the following way:

yn = xn −m
f(xn)
f ′(xn) ,

zn = yn − µH (ν) f(xn)
f ′(xn) ,

xn+1 = zn − κµ
(
G(µ) + mκ

1− 4µ

)
f(xn)
f ′(xn) ,

(1)

where α, β ∈ R are two free disposable parameters and two weight functions H : C→ C and
G : C → C are analytic functions in the neighborhoods of (1) and (0) with ν = 1+αµ

1+βµ , µ =(
f(yn)
f(xn)

) 1
m , κ =

(
f(zn)
f(yn)

) 1
m .

In Theorem 1, we illustrate that the constructed scheme (1) attain maximum eighth-order of
convergence for all α, β ∈ R (α 6= β), without using any extra functional evaluation. It is
interesting to observe that the weight functionsH andG play significant role in the construction
of scheme (for details please see Theorem 1).

Theorem 1 Let us consider x = ξ (say) be a multiple zero with multiplicity m ≥ 1 of the
involved function f . In addition, we assume that f : D ⊂ C → C be an analytic function in
the region D enclosing a multiple zero ξ. Then, the scheme defined by (1) has an eighth-order
convergence, when it satisfies the following values

H(1) = m, H ′(1) = 2m
α− β

(α 6= β), G(0) = m, G′(0) = 2m, G′′(0) = H ′′(1)(α− β)2 + (2− 4β)m,

G′′′(0) = (α− β)2
(
H ′′′(1)(α− β)− 6(β − 1)H ′′(1)

)
+ 12m(β2 − 2β − 2).

(2)

Proof: Let us consider that en = xn − ξ and ck = m!
(m−1+k)!

fm−1+k(ξ)
fm(ξ) , k = 2, 3, 4 . . . , 8 are the
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error in nth iteration and asymptotic error constant numbers, respectively. Now, we expand the
Taylor’s series expansions of the functions f(xn) and f ′(xn) about x = ξ, which are given by

f(xn) = f (m)(ξ)
m! emn

(
1 + c1en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n +O(e9

n)
)

(3)

and

f ′(xn) =f
m(ξ)
m! em−1

n

(
m+ (m+ 1)c1en + (m+ 2)c2e

2
n + (m+ 3)c3e

3
n + (m+ 4)c4e

4
n

+ (m+ 5)c5e
5
n + (m+ 6)c6e

6
n + (m+ 7)c7e

7
n + (m+ 8)c8e

8
n +O(e9

n)
)
,

(4)

respectively.
By using the expressions (3) and (4) in the first substep of scheme (1), we have

yn − ξ = c1

m
e2
n + 1

m2

(
2mc2 − (m+ 1)c2

1

)
e3
n +

4∑
i=0

θie
i+4
n +O(e9

n), (5)

where θi = θi(m, c1, c2, . . . , c8) are given in terms ofm, c2, c3, . . . , c8 for example θ0 = 1
m3

[
3m2c3+

(m + 1)2c3
1 −m(3m + 4)c1c2

]
and θ1 = 1

m4

[
2c2c

2
1m(2m2 + 5m + 3) − 2c3c1m

2(2m + 3) −

2m2
(
c2

2(m+ 2)− 2c4m
)
− c4

1(m+ 1)3
]
, etc.

With the help of expression (5) and Taylor Series expansion, we further obtain

f(yn) =f (m)(ξ)e2m
n

[( c1
m

)
m

m! +
(2mc2 − (m+ 1)c2

1)
( c1
m

)m
en

m!c1
+
(
c1
m

)1+m 1
2m!c3

1

{
(3 + 3m+ 3m2 +m3)c4

1

− 2m(2 + 3m+ 2m2)c2
1c2 + 4(m− 1)m2c2

2 + 6m2c1c3
}
e2
n +

4∑
i=0

θ̄ie
i+3
n +O(e8

n)
]
.

(6)
From the expressions (3) and (6), we have

µ = c1en
m

+ 2mc2 − (m+ 2)c2
1

m2 e2
n +

4∑
i=0

¯̄θiei+3
n +O(e8

n), (7)

which further leads us

ν = αµ+ 1
βµ+ 1 = 1 + (α− β)

8∑
k=1

γke
k
n +O(e9

n), (8)

where γk = γk(m,α, β, c1, c2, . . . , c8) are given in terms of m,α, β, c2, c3, . . . , c8 for example
γ1 = c1

m
, γ2 = 1

m2

[
2c2m− c2

1(β +m+ 2)
]
, γ3 = 1

2m3

[(
2β2 + 8β + 2m2 + (4β + 7)m+ 7

)
c3

1 +
6c3m

2 − 2c2c1m(4β + 3m+ 7)
]
, etc.

Now, let us consider ν = 1 + Ω. Then, from the expression (8) that the remainder Ω =
ν − 1 is infinitesimal with the order en. Therefore, we can expand weight function H(ν) in the
neighborhood of (1) by Taylor’s series expansion up to third-order terms in the following way:

H(ν) = H(1) +H ′(1)Ω + 1
2!H

′′(1)Ω2 + 1
3!H

′′′(1)Ω3. (9)
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By using expressions (3)–(9) in the second substep of scheme (1), we obtain

zn − ξ = −
c1
(
H(1)−m

)
m2 e2

n +
5∑
i=0

Aie
i+3
n +O(e9

n), (10)

whereAi = Ai(m, c1, c2, . . . , c8, α, β,H(1), H ′(1), H ′′(1), H ′′′(1)) are given in terms ofm, c1, c2,
c3, . . . , c8, α, β, H(1), H ′′(1), H ′′′(1). For example, first coefficient explicitly written as A0 =

1
m3

[
2c2m

(
m−H(1)

)
− c2

1

(
m2 +m−H(1)(m+ 3) + (α− β)H ′(1)

)]
and we can also write

other ones in the similar way.
It is straightforward to say from the expression (10) that we can easily obtain at least third-order
convergence, when we consider

H(1) = m. (11)

With the help of expression (11) and A0 = 0, we obtain

c2
1

(
H ′(1)(β − α) + 2m

)
m3 = 0, (12)

which further yield

H ′(1) = 2m
α− β

, α 6= β. (13)

In this way, we reach optimal fourth-order convergence. Now, by inserting the expressions (11)
and (13) in (10), we have

zn−ξ =


(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
c3

1 − 2c1c2m
2

2m4

 e4
n+

5∑
i=2

Aie
i+3
n +O(e9

n). (14)

Again, with the help of Taylor series expansion and expression (14), we obtain

f(zn) =f (m)(ξ)e4m
n


2−m

 c3
1

(
−H′′(1)(α−β)2+m2+(4β+9)m

)
−2c1c2m2

m4

m

m! +
5∑
i=1

Āie
i
n +O(e6

n)

 .
(15)

From the expressions (6) and (15), we further have

κ =
c2

1

(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2

2m3 e2
n +

5∑
i=1

¯̄Aiei+2
n +O(e8

n). (16)

It is clear from the expression (16) that the κ is of order e2
n. Therefore, we can expand weight

function G(µ) in the neighborhood of origin (0) by Taylor’s series expansion up to third-order
terms in the following way:

G(µ) = G(0) +G′(0)µ+ 1
2!G

′′(0)µ2 + 1
3!G

′′′(0)µ3. (17)
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Insert the expressions (3) – (17) in the last substep of scheme (1), we obtain

en+1 =
c1
(
G(0)−m

)[
c2

1

(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2
]

2m5 e4
n

+
4∑
i=1

Lie
i+4
n +O(e9

n),
(18)

where Li = Li(α, β,m, c1, c2, . . . , c8, H
′′(1), H ′′′(1), G′(0), G′′(0), G′′′(0)).

It is noteworthy that we can obtain at least fifth-order convergence if we choose

G(0) = m. (19)

By using the value of G(0) = m and L1 = 0, we have

−
c2

1

(
G′(0)− 2m

)[
c2

1

(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2
]

2m6 = 0, (20)

which further yield
G′(0) = 2m. (21)

Again, by inserting the value of G(0) and G′(0) in L2 = 0, we yield

−
c3

1

[
c2

1

(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2
](
G′′(0)−H ′′(1)(α− β)2 + (4β − 2)m

)
4m7 = 0,

(22)
which further have

G′′(0) = H ′′(1)(α− β)2 + (2− 4β)m. (23)

By using the expressions (19), (21) and (23) in L3 = 0, leads us

−
c4

1

(
c2

1

(
−H ′′(1)(α− β)2 +m2 + (4β + 9)m

)
− 2c2m

2
)

12m8

×
(
G′′′(0) + (α− β)2(6(β − 1)H ′′(1) +H ′′′(1)(β − α))− 12m(β2 − 2β − 2)

)
= 0,

(24)

which further provide

G′′′(0) = (α− β)2
(
H ′′′(1)(α− β)− 6(β − 1)H ′′(1)

)
+ 12m(β2 − 2β − 2). (25)

In order to obtain final asymptotic error constant term, we insert the expressions (19), (21), (23)
and (25) in (18). Then, we have

en+1 =
c1
(
c2

1
(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2
)

24m9

[
c4

1

{
(α− β)2

(
3(6β2 − 8β + 15)H ′′(1)

− 2(3β − 2)(α− β)H ′′′(1)
)
−m

(
24β3 − 48β2 + 180β + 3H ′′(1)(α− β)2 + 433

)
+ 6(2β + 1)m2

+ 7m3
}
− 6c2c

2
1m
(
4m2 −H ′′(1)(α− β)2 + (4β + 2)m

)
+ 12c3c1m

3 + 12c2
2m

3
]
e8
n +O(e9

n).
(26)

The expression (26) demonstrate that our scheme (1) reaches maximum eighth-order conver-
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gence for all α and β (provided α 6= β) by using only four functional evaluations per full
iteration. Hence, it is an optimal scheme in the sense of Kung-Traub conjecture, completing the
proof. �

Some special cases

In this section, we discuss some special cases of our proposed scheme (1) based on different
weight functionsH(ν) andG(µ). Therefore, we have depicted some special cases of the scheme
(1) in Table 1. We can also easily obtain several new eighth-order iterative methods for multiple
zeros by choosing different kind of weight functions provided they should satisfy the conditions
of Theorem 1.

Table 1: Some special cases of the proposed scheme (1).

Cases H(ν) G(µ)
Case-1 m(α−β+2ν−2)

α−β m
[
1 + 2µ+ (1− 2β)µ2 + 2(β2 − 2β − 2)µ3

]
.

Case-2 m(α−β+2ν−2)
α−β

m(2β2µ+β(2−4µ2)−(3µ+1)2)
2β2µ+β(2−4µ)−4µ−1

Case-3
a1 + a2

ν m
[
1 + 2µ+ (1− 2α)µ2 + 2(α2 − 2α− 2)µ3

]
where, a1 = − 2m

α−β , a2 = m(α−β+2)
α−β

Case-4
a1 + a2

ν m
(

2α2µ+α(2−4µ2)−(3µ+1)2
)

2α2µ+α(2−4µ)−4µ−1where, a1 = − 2m
α−β , a2 = m(α−β+2)

α−β

Case-5
b1
ν + b2

1+ν
m
4
(
4 + 8µ− 2b3µ

2 + b4µ
3)

where, b1 = m(−α+β−4)
α−β , b2 = 4m(α−β+2)

α−β b3 = α2 − 2α(β − 3) + β2 − 2β − 2,
b4 = 3α3 − 5α2(β − 2) + α(β2 + 4β − 24) + β3 − 6β2 + 8β − 16

Let us remark that the order of the proposed scheme (1) does not depend on the values of α
and β (provided α 6= β). So, these elements can be considered as free parameters in order to
analyze the computational results.
Numerical experiments

In this section, we illustrate the efficiency and convergence behavior of our iteration func-
tions for particular cases. Therefore, we use case-1 for (α = 0, β = −2),

(
α = 1

2 , β = −3
2

)
,(

α = 1
4 , β = −7

4

)
and case-2 for (α = 0, β = −2) in expression (1), known by PM1, PM2,

PM3 and PM4, respectively. In this regards, we choose four real life problems having multi-
ple and simple zeros and two standard academic problems with multiple zeros. The details are
outline in the examples (1)–(6).

For better comparison of our iterative methods, we consider several existing methods of order
six and eight (optimal). Firstly, we compare our methods with a non optimal family of sixth-
order iteration functions given by Geum et al. [13], out of them we choose the case 5YD, which
is given by

yn = xn −m
f(xn)
f ′(xn) , m ≥ 1,

wn = xn −m
[

(un − 2) (2un − 1)
(un − 1) (5un − 2)

]
f(xn)
f ′(xn) ,

xn+1 = xn −m
[

(un − 2) (2un − 1)
(5un − 2) (un + vn − 1)

]
f(xn)
f ′(xn) ,

(27)
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where un =
(
f(yn)
f(xn)

) 1
m and vn =

(
f(wn)
f(xn

) 1
m , is denoted by GM .

In addition, we demonstrate comparison of them with an optimal eighth-order iteration function
proposed by Behl et al. [8], which is given by (this was one of the best scheme claimed by them):

yn = xn −m
f(xn)
f ′(xn) ,

zn = yn −mun
f ′(xn)
f ′(xn)

[
1 + βun

(β − 2)un + 1

]
,

xn+1 = zn − unvn
f(xn)
f ′(xn)

[1
2m

{
(2vn + 1)

(
4(β2 − 6β + 6)u3

n + (10− 4β)u2
n + 4un + 1

)
+ 1

}]
(28)

where un =
(
f(yn)
f(xn)

) 1
m and vn =

(
f(zn)
f(yn)

) 1
m , is known by BM .

Moreover, we compare them with optimal eighth-order iterative methods constructed by Zafar
et al. [26]. We choose the following schemes out of them

yn = xn −m
f(xn)
f ′(xn) ,

zn = yn −mun
(
6u3

n − u2
n + 2un + 1

) f(xn)
f ′(xn) ,

xn+1 = wn −munvn(1 + 2un)(1 + vn)
(2wn + 1

A2P0

)
f(xn)
f ′(xn)

(29)

and

yn = xn −m
f(xn)
f ′(xn) ,

zn = yn −mun
(

1− 5u2
n + 8u3

n

1− 2un

)
f(xn)
f ′(xn) ,

xn+1 = wn −munvn(1 + 2un)(1 + vn)
(

3wn + 1
A2P0(1 + wn)

)
f(xn)
f ′(xn) ,

(30)

where un =
(
f(yn)
f(xn)

) 1
m , vn =

(
f(zn)
f(yn)

) 1
m , wn =

(
f(zn)
f(xn)

) 1
m , with A2 = P0 = 1 (both schemes

(29) and (30)) are known as FM1 and FM2, respectively.

Finally, we also contrast them with another optimal family of eighth-order methods presented
by Behl et al. [2], out of them we choose the following methods

yn = xn −m
f(xn)
f ′(xn) ,

zn = xn −mun (1 + 2un) f(xn)
f ′(xn) ,

xn+1 = zn −
unwn

1− wn

(
m (un (8vn + 6) + 9u2

n + 2vn + 1)
4un + 1

)
f(xn)
f ′(xn)

(31)
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and

yn = xn −m
f(xn)
f ′(xn) ,

wn = yn −mun (1 + 2un) f(xn)
f ′(xn) ,

xn+1 = zn −
unwn

1− wn

(
4u3

4 − u2
4 − 2u4 − 2v4 − 1

) f(xn)
f ′(xn) ,

(32)

where un =
(
f(yn)
f(xn)

) 1
m , vn =

(
f(zn)
f(yn)

) 1
m , wn =

(
f(zn)
f(xn)

) 1
m , are called by RM1 and RM2,

respectively.

In Tables 2 – 3, we display the number of iteration indexes (n), error in the consecutive iterations
|xn+1−xn|, computational order of convergence (ρ) (we used the formula given by Cordero and
Torregrosa [10] in order to calculate ρ) and absolute residual error of the corresponding function
(|f(xn)|). We make our calculations with several number of significant digits (minimum 5000
significant digits) to minimize the round off error.

As we mentioned in the above paragraph we calculate the values of all the constants and func-
tional residuals up to several number of significant digits. However, due to the limited paper
space, we display the value of errors in the consecutive iterations |xn+1 − xn| and absolute
residual errors in the function |f(xn)| up to 2 significant digits with exponent power which are
depicted in Tables 2 – 3. Moreover, computational order of convergence is provided up to 5
significant digits. Finally, we mentioned the values of approximated zeros up to 25 significant
digits for each of the examples.

All computations have been performed using the programming package Mathematica 11 with
multiple precision arithmetic. Further, the meaning of a(±b) is shorthand for a × 10(±b) in the
Tables 2–3.

Example 1 Fractional conversion in a chemical reactor:
Let us consider the following expression (for the details of this problem please see [20])

f1(x) = x

1− x − 5 log
[

0.4(1− x)
0.4− 0.5x

]
+ 4.45977, (33)

In the above expression x represents the fractional conversion of species A in a chemical reactor.
Since, there will be no physical meaning of above fractional conversion if x is less than zero or
greater than one. In this sense, x is bounded in the region 0 ≤ x ≤ 1. In addition, our required
zero to this problem is ξ = 0.7573962462537538794596413. Moreover, it is interesting to note
that the above expression will be undefined in the region 0.8 ≤ x ≤ 1 which is very close to
our desired zero. Furthermore, there are some other properties to this function which make the
solution more difficult. The derivative of the above expression will be very close to zero in the
region 0 ≤ x ≤ 0.5 and there is an infeasible solution for x = 1.098.

Example 2 Continuous stirred tank reactor (CSTR)

Let us consider the isothermal continuous stirred tank reactor (CSTR). Components A and R
are fed to the reactor at rates of Q and q − Q, respectively. Then, we obtain the following
reaction scheme in the reactor ( for the details see [9]):
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A+R→ B

B +R→ C

C +R→ D

C +R→ E

The problem was analyzed by Douglas [11] in order to design simple feedback control systems.
He presented the following expression for the transfer function of the reactor

KC
2.98(x+ 2.25)

(x+ 1.45)(x+ 2.85)2(x+ 4.35) = −1,

where KC is the gain of the proportional controller. The control system is stable for values of
KC that yields roots of the transfer function having negative real part. If we choose KC = 0 we
get the poles of the open-loop transfer function as roots of the nonlinear equation:

f2(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x+ 51.23266875. (34)

No doubts, the above function f2 has four zeros ξ = −1.45,−2.85,−2.85,−4.35. However,
our required zero is ξ = −4.35 for expression (34).

Example 3 Van der Waals equation of state

(
P + a1n

2

V 2

)
(V − na2) = nRT,

explains the behavior of a real gas by introducing in the ideal gas equations two parameters,
α1 and α2, specific for each gas. The determination of the volume V of the gas in terms of the
remaining parameters requires the solution of a nonlinear equation in V

PV 3 − (na2P + nRT )V 2 + α1n
2V − α1α2n

2 = 0.

Given the constants α1 and α2 of a particular gas, one can find values for n, P and T , such that
this equation has a three simple roots. By using the particular values, we obtain the following
nonlinear function

f3(x) = x3 − 5.22x2 + 9.0825x− 5.2675.

have three zeros and out of them one is a multiple zero ξ = 1.75 of multiplicity of order two
and other one simple zero ξ = 1.72. However, our desired root is ξ = 1.75.

Example 4 Multifactor problem

An undesirable RF breakdown which may happen in the high power microwave devices working
under the vacuum condition is known as is multifactor [1]. For example, multifactor appears
inside a parallel plate waveguide. There exists an electric field with an electric potential differ-
ence which creates the electron movement between these two plates. An interesting case in the
study of the electron trajectories is when the electron reaches a plate with root of multiplicity 2.
The trajectory of an electron in the air gap between two parallel plates is as follows

y(t) = y0 + (v0 + e
E0

mω
sin(ωt0 + α))(t− t0) + e

E0

mω2 (cos(ωt+ α)− cos(ωt0 + α))
(35)
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where m and e are the mass and charge of the electron at rest, E0 sin(ωt+α) is the RF electric
field between plates and y0 and v0 are the position and velocity of the electron at time t0. We
consider the following particular case of (35), where the parameters have been normalized:

f4(x) = x+ cos(x)− π

2 (36)

with the zero ξ = π
2 of multiplicity 3.

Example 5 Let us consider a polynomial equation similar to [18], which is given by

f5(x) = ((x− 1)3 − 1)100. (37)

The above function has one multiple zero at ξ = 2 of multiplicity m = 100.

Example 6 Let us consider the following standard nonlinear test function from Behl et al. [6]

f6(x) =
(

1−
√

1− x2 + x+ cos
(
πx

2

))3
. (38)

The above function has a multiple zero at ξ = −0.7285840464448267167123331 of multiplicity
3.

Conclusion

In this study, we propose a new eighth-order iteration function having optimal eight-order
convergence for multiple zeros of a univariate function with faster convergence, simple and
compact body structure. The construction of the present scheme is based on the weight func-
tion approach that play an important role in the establishment of eighth-order convergence. In
addition, we presented an extensive convergence analysis with the main theorem which clearly
show the eighth-order convergence. Each member of our scheme is optimal in the sense of the
classical Kung-Traub conjecture. The computational efficiency index is defined as E = p1/θ,
where p is the order of convergence and θ is the number of functional evaluations per iteration.
Thus, the efficiency index of the present methods is E = 4

√
8 ≈ 1.682 which is better than the

classical Newton’s method E = 2
√

2 ≈ 1.414.

Moreover, we can easily obtain several new methods by considering different weight functions
in our scheme (1). Lower residual errors, lower error among two consecutive iteration and
stable computational order of convergence belongs to our methods when we compared them to
the existing ones of same order on problem like chemical conversion, continuous stirred tank
reactor, Van der Waals equation of state, multi factor problem, etc. Finally, on accounts of the
results obtained, it can be concluded that our proposed methods are highly efficient and perform
better than the existing methods.
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Table 2: Difference between two consecutive iterations (|xn+1 − xn|) of different iteration
functions.

f(x) n GM BM FM1 FM2 RM1 RM2 PM1 PM2 PM3 PM4

f1(x)

1 1.8(−10) 5.1(−12) 5.1(−11) 7.7(−11) 8.0(−12) 1.4(−11) 8.2(−13) 9.4(−13) 2.9(−12) 1.3(−14)

2 1.7(−53) 1.2(−81) 1.6(−72) 5.9(−71) 1.4(−79) 9.4(−78) 8.1(−89) 5.8(−88) 9.7(−84) 4.3(−105)

3 1.3(−311) 1.5(−638) 1.5(−564) 7.3(−552) 1.2(−621) 4.7(−607) 7.3(−697) 1.3(−689) 1.4(−655) 7.4(−829)

ρ 6.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

f2(x)

1 9.5(−3) 2.0(−2) 2.0(−2) 2.0(−2) 2.7(−4) 2.7(−4) 2.0(−2) 2.0(−2) 2.0(−2) 2.0(−2)

2 8.1(−16) 4.2(−18) 5.2(−18) 5.2(−18) 9.1(−14) 9.1(−14) 4.2(−18) 4.2(−18) 4.2(−18) 4.2(−18)

3 3.9(−94) 3.1(−143) 1.9(−142) 1.7(−142) 3.4(−42) 3.4(−42) 3.0(−143) 3.0(−143) 3.0(−143) 3.0(−143)

ρ 5.9929 7.9858 7.9846 7.9847 3.0005 3.0005 7.9862 7.9861 7.9861 7.9862

f3(x)

1 3.9(−4) 2.6(−4) 3.9(−4) 4.1(−4) 2.6(−4) 2.7(−4) 7.2(−5) 2.9(−5) 5.1(−5) 3.3(−5)

2 1.0(−14) 3.6(−19) 5.2(−17) 9.8(−17) 1.4(−19) 1.1(−18) 9.4(−24) 1.1(−27) 3.9(−25) 2.4(−27)

3 3.9(−78) 6.1(−138) 5.9(−120) 1.2(−117) 1.0(−141) 6.1(−134) 8.0(−175) 3.3(−207) 5.0(−186) 7.5(−207)

ρ 5.9975 7.9977 7.9945 7.9941 8.0026 7.9971 7.9994 7.9996 7.9995 7.9995

f4(x)

1 2.5(−6) 4.3(−6) 4.3(−6) 4.3(−6) 1.4(−10) 1.4(−10) 1.3(−17) 1.3(−17) 1.3(−17) 1.3(−17)

2 1.5(−18) 1.4(−30) 1.4(−30) 1.4(−30) 3.8(−52) 3.8(−52) 1.4(−30) 1.4(−30) 1.4(−30) 1.4(−30)

3 3.7(−55) 5.9(−153) 5.9(−153) 5.9(−153) 5.3(−260) 5.3(−260) 5.9(−153) 5.9(−153) 5.9(−153) 5.9(−153)

ρ 3.0000 5.0000 5.0000 5.000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

f5(x)

1 2.0(−7) 9.5(−8) 4.8(−7) 6.5(−7) 6.3(−8) 1.9(−7) 5.1(−8) 2.3(−8) 2.7(−8) 1.5(−8)

2 1.8(−41) 1.6(−55) 5.7(−49) 8.4(−48) 4.2(−57) 8.0(−53) 8.0(−58) 2.6(−59) 4.6(−60) 1.7(−15)

3 1.0(−245) 1.3(−437) 2.2(−384) 6.6(−375) 5.9(−169) 9.6(−416) 2.9(−456) 3.2(−454) 3.2(−474) 1.9(−118)

ρ 6.0000 8.0000 8.0000 8.0000 2.2745 8.0000 8.0000 8.0000 8.0000 14.862

f6(x)

1 3.5(−6) 1.7(−7) 2.4(−7) 2.4(−7) 9.3(−8) 9.7(−8) 1.2(−7) 1.2(−7) 1.2(−7) 1.1(−7)

2 1.2(−32) 4.4(−53) 2.0(−51) 2.5(−51) 3.0(−55) 5.8(−55) 1.2(−54) 1.2(−54) 1.2(−54) 2.6(−55)

3 1.8(−191) 9.4(−418) 5.3(−404) 3.6(−403) 3.1(−435) 1.0(−432) 8.7(−431) 8.7(−431) 1.3(−430) 2.8(−436)

ρ 6.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000
(∗ means the corresponding fails to work. ∗∗ means computational order of convergence is not calculated in the case divergence.)
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Table 3: Comparison based on residual error (i.e. |f(xn)|) of different iteration functions.

f(x) n GM BM FM1 FM2 RM1 RM2 PM1 PM2 PM3 PM4

f1(x)

1 1.4(−8) 4.1(−10) 4.1(−9) 6.1(−9) 6.4(−10) 1.1(−9) 6.6(−11) 7.5(−11) 2.3(−10) 1.0(−12)

2 1.4(−51) 9.9(−80) 1.3(−70) 4.7(−69) 1.1(−77) 7.5(−76) 6.5(−87) 4.7(−86) 7.8(−82) 3.4(−103)

3 1.0(−309) 1.2(−636) 1.2(−562) 5.8(−550) 9.7(−620) 3.8(−605) 5.8(−695) 1.0(−687) 1.1(−653) 5.9(−827)

f2(x)

1 1.9(−4) 8.0(−4) 8.5(−4) 8.5(−4) 1.5(−7) 1.5(−7) 8.0(−4) 8.0(−4) 8.0(−4) 8.0(−4)

2 1.4(−30) 3.7(−35) 5.7(−35) 5.6(−35) 1.7(−26) 1.7(−26) 3.7(−35) 3.7(−35) 3.7(−35) 3.7(−35)

3 3.2(−187) 2.0(−285) 7.3(−284) 6.3(−284) 2.5(−83) 2.5(−83) 1.9(−285) 1.9(−285) 1.9(−285) 1.9(−285)

f3(x)

1 4.6(−9) 2.0(−9) 4.6(−9) 5.1(−9) 2.0(−9) 2.3(−9) 1.6(−10) 2.5(−11) 7.7(−11) 3.2(−11)

2 3.2(−30) 4.0(−39) 8.0(−35) 2.9(−34) 5.9(−40) 3.4(−38) 2.6(−48) 3.3(−56) 4.6(−51) 1.7(−55)

3 4.6(−157) 1.1(−276) 1.1(−240) 4.3(−236) 3.1(−284) 1.2(−268) 1.9(−350) 3.3(−415) 7.6(−373) 1.7(−410)

f4(x)

1 2.6(−18) 1.3(−17) 1.3(−17) 1.3(−17) 4.7(−31) 4.7(−31) 4.7(−31) 4.7(−31) 4.7(−31) 4.7(−31)

2 6.2(−55) 5.0(−91) 5.0(−91) 5.0(−91) 9.1(−156) 9.1(−156) 5.0(−91) 5.0(−91) 5.0(−91) 5.0(−91)

3 8.4(−165) 3.5(−458) 3.5(−458) 3.5(−458) 2.4(−779) 2.4(−779) 3.5(−458) 3.5(−458) 3.5(−458) 3.5(−458)

f5(x)

1 1.1(−622) 2.2(−655) 4.4(−585) 5.3(−572) 3.9(−673) 3.1(−626) 4.5(−682) 1.3(−709) 2.5(−709) 3.7(−736)

2 9.7(−4027) 1.4(−5431) 1.2(−4777) 8.7(−4661) 11.(−5590) 9.1(−5163) 1.6(−5662) 6.7(−5376) 2.3(−5886) 5.3(−1429)

3 5.4(−24451) 4.1(−43641) 2.7(−38318) 5.1(−37371) 1.1(−16775) 7.8(−41455) 3.3(−45506) 6.1(−41287) 1.6(−47302) 5.9(−11726)

f6(x)

1 1.1(−6) 1.3(−20) 3.5(−20) 3.7(−20) 2.1(−21) 2.3(−21) 4.8(−21) 4.8(−21) 4.5(−21) 3.5(−21)

2 4.3(−96) 2.2(−157) 2.1(−152) 4.2(−152) 6.7(−164) 5.1(−163) 4.3(−162) 4.3(−162) 4.6(−162) 4.7(−164)

3 1.5(−572) 2.1(−1251) 3.8(−1210) 1.2(−1207) 7.5(−1304) 2.5(−1296) 1.7(−1290) 1.7(−1290) 6.2(−1290) 5.4(−1307)
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Abstract 

An axially symmetrical domain of biological tissue exposed to an external heat source is 

analyzed. The temperature field is described using the dual-phase lag equation supplemented 

by Neumann boundary conditions and initial conditions. At first, the direct problem is solved 

using the implicit scheme of finite difference method. Based on the determined temperatures, 

the Arrhenius integral is calculated. Next, the inverse problem related to the identification of 

Neumann boundary condition assuring the destruction of target region of biological tissue is 

considered. The inverse problem is solved using the gradient method. In the final part of the 

paper the results of computations and conclusions are presented. 

Keywords: Bioheat transfer, Dual-phase lag model, Arrhenius integral, Inverse problem 

 

Introduction 

Controlled or uncontrolled heating of biological tissues can lead to their destruction. One of 

the mathematical methods for assessing the degree of tissue destruction is the so-called 

Arrhenius integral [1]-[3]. The estimation of its value requires the knowledge of temperature 

history at the selected set of points (measuring points) from the domain considered. To 

determine the temperature distribution, the different mathematical models can be used e.g. 

Pennes equation [4]-[9], Cattaneo-Vernotte model [10]-[12], dual-phase lag model [13]-[18] 

or generalized dual phase lag model [19]-[22]. These equations should be supplemented by 

appropriate boundary and initial conditions. The solution obtained using the selected model 

and the suitable numerical method allows one to determine the temperature distribution in the 

biological tissue and then the values of the Arrhenius integral.  

In the inverse problem considered here, the knowledge of the Arrhenius integral at the set of 

measuring points of the domain is assumed and on this basis the parameters of the Neumann 

boundary condition are identified. This procedure can be helpful in planning artificial 

hyperthermia treatment, because it allows to predict the amount of necessary heat delivered to 

the tissue that ensures the destruction of the target region. 

 

Direct problem 

 

An axially symmetrical domain of biological tissue exposed to an external heat source is 

considered. Thermal processes can be described by dual-phase lag model [14], [18], [21] 
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where c, cb are the specific heat of tissue and blood, respectively, ρ, ρb are the mass density of 

tissue and blood, λ is the thermal conductivity of tissue, τq is the relaxation time, τT is the 

thermalization time, w is the perfusion coefficient, Tb is the arterial blood temperature, T is the 

tissue temperature, Qm is the metabolic heat source, r, z, t denote the spatial coordinates and 

time. 

On the upper surface of domain, the Neumann condition is assumed 
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where q0 is the constant value and te is the exposure time, while rD ≤ R where R is the radius 

of cylinder. 

On the remaining boundaries the no-heat flux conditions can be accepted. 

The initial conditions are also known 
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where T0 is the constant initial temperature of tissue and u(r, z) is the initial heating rate. 

The thermal damage parameter can be evaluated according to the Arrhenius 

integral [1]-[3], [23] 
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where P [1/s] is the pre-exponential factor, E [J/mole] is the activation energy, Rg [J/(mole K)] 

is the universal gas constant, T(r, z, t) [K] is the tissue temperature and [0, t f ] is the time 

interval under consideration. 

A value of damage integral A(r, z, t f ) = 1 corresponds to a 63% probability of cell death at 

a specific point, while A(r, z, t f ) = 4.6 corresponds to 99% probability of cell death at this 

point. 

Inverse problem 

The inverse problem formulated here concerns the estimation of the boundary heat flux (2), 

more specifically, the values q0 and te, which ensure the destruction of target region of 

biological tissue. Thus, the following criterion is formulated 
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where Am(ri, zi, t f) is the ‘measured’ Arrhenius integral. A(ri, zi, t f, q0, te) is the calculated 

Arrhenius integral obtained from the direct problem solution with the current estimation of the 

unknown parameters q0 and te, while M is the number of points and F is the number of time 

steps. 
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In the case of typical gradient method application [24], [25] the criterion (5) is differentiated 

with respect to the unknown parameters q0, te and next the necessary condition of optimum is 

used. Finally, one obtains the following system of equations 
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where (c.f. equation (4)) 
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and ( )0, , , ,f f

i i i eA A r z t q t= , ( ), , ,f f

m i i iA A r z t= . 

Function f

iA  is expanded into a Taylor series for the known values of 0

kq  and k

et , this means 
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where k is the number of iteration, 0

kq  and k

et  for k = 0 are the arbitrary assumed values of q0 

and te, while for k > 0 0

kq  and k

et result from the previous iteration. 

Introducing formula (9) to equations (6) one obtains 
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it means 
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or in the matrix form 
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 (12) 

 

After solving the system of equations (12), the new values of identified parameters are 

determined using the formulas 
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The iterative process is continued until the assumed number  K of iterations is achieved. 

Sensitivity analysis 

To solve the inverse problem, the sensitivity functions, it means the partial derivatives of 

Arrhenius integral and tissue temperature with respect to the parameters q0 and te (c.f. 

equations (7), (8)) should be determined. For this purpose the direct approach of sensitivity 

analysis [26]-[29] can be used. Thus, the governing equations are differentiated with respect 

to the parameter ps , s = 1, 2, where p1 = q0, p2 = te. The differentiation of equation (1) gives  
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where 
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are the sensitivity functions. 
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The boundary condition (2) and initial conditions (3) are also differentiated. Thus 
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 (18) 

 

and 
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 (19) 

 

It should be noted that in the dual-phase lag model the Neumann condition should be 

formulated in a different way than in the macroscopic Fourier model, namely [16], [17] 
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where n is the normal outward vector. 

Thus, the differentiation of boundary condition (20) gives 
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or 
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Finally, the Arrhenius integral (4) is differentiated with respect to the parameter ps 
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Method of solution 

A structure of equations (1) and (15) is similar, therefore they can be written in the form 
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 (24) 

 

where Z0(r, z, t) = T(r, z, t), Zs(r, z, t) = Us(r, z, t), s = 1,2 and 
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In a similar way the boundary conditions (20) and (22) can be expressed as 
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where 

 

 

( )
( )

( ) ( )

, ,
, , , 0

( , , )
, , , ,

, 1, 2

b

b q

s

b b

q

s s

q r z t
q r z t s

t
V r z t

q r z t q r z t
s

p t p






+ =


= 

   + =     

 (27) 

 

The equations (24) – (27) are supplemented by the initial conditions (3) and (19). 

The basic problem and additional ones connected with the sensitivity functions are solved 

using the implicit scheme of finite difference method. 

The following approximation of equation (24) is proposed 
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In the above equations, index s is omitted for simplification. 
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After mathematical manipulations one has 
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where 
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 (31) 

 

The approximation of the boundary conditions (26) is the following 
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Thus, one obtains the formulas 

• for j=1, 2, ..., n‒1 

 

 ( )
( )

1 1

0, 1, 0, 1, 0,

f f f f fT
j j j j j

T T

h t
Z Z Z Z V

t t

− − 
= − − +

 +    + 
 (33) 

 

 ( )
( )

1 1

, 1, , 1, ,

f f f f fT
n j n j n j n j n j

T T

h t
Z Z Z Z V

t t

− −

− −

 
= + − −

 +    + 
 (34) 

 

• for i=1, 2, ..., n‒1 
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It should be noted that the implicit scheme of finite difference method is unconditionally 

stable [30]. 
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Results of computations 

As axially symmetrical domain of biological tissue is considered (R = Z = 0.015 mm). The 

following values of parameters are assumed [31], [32]: specific heat of tissue c = 4000 

[J/(kg K)], specific heat of blood cb = 3770 [J/(kg K)], tissue density ρ = 1000 [kg/m3], blood 

density ρb = 1060 [kg/m3], thermal conductivity of tissue λ = 0.5 [W/(m K)], blood 

temperature Tb = 37 [°C], blood perfusion rate w = 0.0005 [1/s], relaxation and thermalization 

times τq = τT = 0.5 [s], metabolic heat source Qm = 250 [W/m3]. Initial temperature of tissue is 

equal to T0 = 37 [°C] and initial heating rate equals u = 0. Parameters for Arrhenius's integral 

[33]: P = 1.98·10106 [1/s] and E = 6.67·105 [J/mol]. 

At first, the direct problem is solved under the assumption that  te = 200 s and q0 = 15 000 

[W/m2] (c.f. equation (2)) and rD = R / 4.  The spatial grid step equals h = 0.0003 [m] and the 

time step Δt = 0.1 [s]. 

 In Figure 1 the temperature histories at the points P1(0.3mm; 0.3mm) and 

P2(2.7mm; 2.7mm) are  shown. As can be seen maximum temperature at point P1 (the most 

heated node of domain interior) is almost 52 °C. The maximum temperature appears after 

120 s, while the exposure time is 100 s. This is due to the relaxation time and the 

thermalization time that occur in the considered model. 

 

 
Figure 1. Temperature history at selected points - direct problem 

 

The distribution of Arrhenius integral in the domain considered is presented in Figure 2. It 

should be noted that Arrhenius integral at the point P1 is above 4.6, while at the point P2 is 

lower than 1. 
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Figure 2. Arrhenius integral distribution 

 

As the measuring points, the fifty points uniformly distributed in the range R: 0 – 2.7 mm and 

Z: 0 – 2.7 mm were selected. At those points the history of Arrhenius integral (Am) was saved 

during solving the direct problem. 

Next, three variants of starting values have been assumed: 

• LV1: q0 = 50 000 W/m2, te = 500 s 

• LV2: q0 = 13 000 W/m2, te = 150 s 

• LV3: q0 = 50 000 W/m2, te = 110 s 

In Figures 3 – 5 the convergence of the algorithm is presented. It can be seen that for all three 

variants the concurrence is obtained after different numbers of iterations. When the starting 

values are close to the values used in direct problem, the algorithm needs fewer numbers of 

iterations, what can be seen in Figure 4. 

 

 
Figure 3. Convergence of the algorithm for the starting values LV1 
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For the starting values LV1 and LV3 (q0 = 50 kW/m2) the value of q0 straightforward goes to the 

desired value, while the value of te for several iterations remains constant, and then quickly 

changes to the desired value (c.f. Figures 1 and 3). 

In Figure 4 the values of both variables in first two iterations increase significantly, while 

after tenth iteration they are almost concurrent. 

 

 
Figure 4. Convergence of the algorithm for the starting values LV2 

 

 
Figure 5. Convergence of the algorithm for the starting values LV3 
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Conclusions 

Thermal processes proceeding in axially symmetrical domain of heated tissue are considered. 

The inverse problem concerns the estimation of the boundary condition parameters. The 

mathematical model of the required sensitivity functions is also discussed. 

The inverse problem was solved on the basis of the results of direct problem solution. The 

convergence of algorithm is presented for three different starting sets of values. 

The presented approach can be efficiently used for determining the parameters of the artificial 

hyperthermia treatment. 
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Abstract 

Accurate computations of high-speed-viscous flows demand the use of higher-order-accurate 

schemes for computing the inviscid-flux vectors. However, the constraint of monotonicity 

preservation calls for the need of limiters in the solution or flux reconstructions used for 

obtaining higher-order accuracy. The necessity for use of limiters is strong in the inviscid-

flow regions owing to the presence of discontinuities like shocks, contact surfaces, slip lines 

etc. In contrast, the flow field inside the boundary layer is smoother compared with that 

outside the shear layer in viscous-compressible flows. It is a well-known fact that all the 

limiters inherently possess diffusive effects like extremum clipping. These diffusive effects of 

limiters add up with the physical dissipation present inside the boundary layer and spoil the 

solution accuracy. To overcome this problem, this paper proposes a novel approach to control 

the limiters used for MUSCL reconstruction using a recently introduced boundary layer 

sensor. The limiters are switched off inside the boundary layer using the sensor. This 

approach results in controlling the diffusive effects of the limiters in the higher-order-accurate 

computation of viscous-compressible flows. The higher accuracy of the new methodology is 

demonstrated by a number of carefully selected test problems using van Albada limiter. 

Keywords: MUSCL, reconstruction, limiter, boundary layer sensor 

 

Introduction 

The design of accurate, robust and efficient schemes for computing high-speed flows has been 

an area of prime importance in the field of computational gasdynamics [1]. The dynamics of 

inviscid-compressible flows is governed by the Euler equations of gasdynamics. Even for 

high-speed viscous applications governed by the compressible Navier-Stokes equations, the 

convective fluxes are numerically computed by using the same flux formulas developed for 

the Euler equations. The design of a stable and accurate numerical scheme for the convective 

fluxes is a highly challenging task because the highly nonlinear behaviour of these equations 

admits discontinuous solutions in the forms of shocks, contact discontinuities, slip surfaces, 

and also expansion waves with sonic points [2].  Since the unsteady Euler equations are 

hyperbolic in nature admitting wave-like solution, simple central differencing of the fluxes 

leads to numerical instabilities necessitating the development of upwind schemes which 

comprise one-sided differencing that respects the direction of signal propagation. Roe’s Flux-

Difference Splitting (FDS) [3], van Leer’s Flux-Vector Splitting (FVS) [4], Liou and 

Steffen’s Advection Upstream Splitting Method (AUSM) [5], Nishikawa and Kitamura’s 

Rotated Riemann Solvers [6], Residual Distribution (RD) schemes [7-8], multidimensional 

Riemann solvers [9-12] are examples of some popular upwind methods. It can be shown that 

an upwind scheme is equivalent to central-space discretization plus an “implicit” numerical 
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diffusion term. In other words, addition of numerical diffusion plays the role of imparting 

stability to a purely central space discretization of the convective-flux vectors. Contrary to the 

upwind schemes, the central schemes choose a symmetric stencil irrespective direction of 

signal propagation. For numerical stability some artificial diffusion is added to the central-

space discretization of the flux. The Lax-Friedrichs [13], Lax-Wendroff [14], Local-Lax 

Friedrichs [15], Jameson-Schmidt-Turkel (JST) [16] are to mention a few noteworthy central 

schemes.  

While numerical diffusion is essential for stability, excessive diffusion spoils the solution 

accuracy by smearing the discontinuities and shear layers. Especially for viscous-flow 

computations excessive numerical diffusion causes the smearing of boundary layers, under 

prediction of skin friction and wall-heat fluxes [5, 17, 18] and over-prediction of separation-

bubble sizes [19]. For example, though van Leer’s FVS scheme is robust and accurate for the 

computation of the Euler equations, it is less accurate than AUSM for viscous-flow 

computations owing to the more diffusive nature of the former [5]. It may be noted that the 

numerical diffusion required for stability is high in zones of shocks or sharp gradients, while 

in smooth-flow regions its requirement is less. These requirements call for the regulation of 

numerical diffusion based on the smoothness of flow field.  

Godunov showed that a monotonous conservative linear scheme can be at best first-order 

accurate [20]. However, because of excessive numerical diffusion the first-order accurate 

computations are not preferred for viscous-flow computations. Naturally for accurate 

computation of viscous flows one needs to go for higher-order-accurate schemes. 

Nevertheless, the higher-order-accurate reconstructions of the fluxes require the use of 

nonlinear limiters in order to avoid spurious numerical oscillations [21 (van Leer, 1979)]. The 

limiters aid in the attainment of monotonous solutions, but they also induce diffusive effects 

like extremum clipping [22]. Kalita and Dass [18] presented an improved version of the 

Diffusion-Regulated Local Lax Friedrichs (DRLLF) scheme [23] for viscous computations by 

scaling down its numerical diffusion inside the boundary layer using a new boundary-layer 

sensor with different limiters in the higher-order reconstructions. 

In viscous flows solution gradients may exist inside the boundary layers. However, these 

gradients are mild owing to the diffusive effects of physical viscosity.  Therefore, a scope 

exists to control the diffusive effects of limiters inside shear layers in the computation of 

viscous-compressible flows. To the best of our knowledge, efforts to suppress the action of 

limiters inside the boundary layers are not reported in the available literature. This work 

presents a novel approach of controlling the limiters only inside the boundary layers in 

computations of high-speed-viscous flows on a finite volume framework. This approach 

switches off the limiters inside the viscous-shear layers using a recently introduced boundary 

layer sensor [18]. Outside the boundary layer the original-solution-reconstruction approach 

with full limiting is followed. For the demonstration, the performance of higher-order-

accurate AUSM scheme with MUSCL reconstruction [21] using the van Albada limiter [24 

(van Albada)] is shown for a number of viscous supersonic and hypersonic test cases. The 

numerical experiments reveal that the new approach of controlling the diffusive effects of 

limiters produces more accurate results compared with the higher-order versions of the same 

scheme with full limiting over the entire flow field. 

This paper is organized in four sections. The next section presents the numerical methodology 

for computing the boundary-layer sensor and an algorithm for controlling the limiters using 

the same. The improved performance of the new approach is demonstrated in the section on 

“Numerical Simulations, Results and Discussion” with a number of standard-test cases, 

before making the concluding remarks in the “Conclusions” section. 
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The numerical methodology and the algorithm to control limiters 

We first introduce the MUSCL reconstruction for a one-dimensional (1D) formulation. The 

same methodology can be easily extended to multiple dimensions. A 1D-computational 

domain is shown in Fig. 1.  The left and right states for any variable U across any cell-

interface 
1

 
2

I  between the cells I and 1I   are computed by using the MUSCL approach as 

[25] 

       L 1 1 1 1

2 2 2 2

1 ˆ ˆ1 1
4

I
I I I I

U U k U k U 

   

 
         

 
     (1) 

       R 1 1 1 3 3

2 2 2 2

1 ˆ ˆ1 1
4

I
I I I I

U U k U k U 


   

 
         

 
     (2) 

where U is the cell-averaged value stored at a cell centre, 1

2
I




 is a slope limiter, subscripts L 

and R represent the left and right states of the variable U across the cell-interface, and k̂ is an 

integer that determines the stencil size. The expression 1

2
I

U


 is evaluated as  

    1 1

2

I I
I

U U U


        (3) 

 
Figure 1.  A cell-interface and its left and right states  

 

In the case of van Albada limiter, ˆ 0k   and the update equations for left and right states are 

given by [24] 

    L L

1

2
IU U        (4) 

    R 1 R

1

2
IU U        (5) 

where the function  is typically the same for both the states given by 

    
   2 2

2 2

a b b a

a b

 




  


 
     (6) 

so that 

    R 2 1 R 1,  bI I I Ia U U U U           (7) 
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L 1 L 1,  bI I I Ia U U U U          (8) 

The additional parameter  is required in order to prevent the activation of the limiter in 

smooth-flow regions owing to small-scale oscillations. It has to be set proportional to the 

local grid scale. Based on extensive numerical experiments the present work considers  in 

terms of the cell volume V as 

     
1.25

10 V        (9) 

Inside the viscous-shear layers owing to the presence of physical diffusion the extrema in the 

flow field are attained smoothly. This offers an opportunity to switch off the slope limiter 

1

2
I




 inside the boundary layer, provided the presence of the boundary layer is sensed by a 

suitable sensor. If the slope limiter is switched off, the MUSCL reconstruction becomes 

       L 1 1

2 2

1 ˆ ˆ1 1
4

I
I I

U U k U k U
 

 
       

 
     (10) 

       R 1 1 3

2 2

1 ˆ ˆ1 1
4

I
I I

U U k U k U
 

 
       

 
     (11) 

In order to regulate the slope limiter, a recently introduced boundary layer sensor is used in 

the present work. The boundary layer sensor vgr is computed as the absolute ratio of velocity 

gradient across a cell-interface to the velocity gradient at the solid wall [18].  

    
 

 
par interface

vg

par wall

U
r

U






 

 
     (12) 

where parU  is the velocity component parallel to the wall and   is the direction normal to the 

wall. Literature suggests scaling down the numerical diffusion in the wall-normal direction 

only for viscous-flow computations [26]. Following the same principle, the present work also 

suggests to control the action of limiters in the higher-order-accurate computations of fluxes 

only across the cell-faces that are “aligned” with the flow. The algorithm for switching on and 

off the limiters for MUSCL reconstruction in the higher-order-accurate computations of 

fluxes is as follows: 

(i) The parameter vgr is used to track the location of the edge of the boundary layer. 

At the wall vg 1.r   As one moves away from the wall towards the free stream, the 

value of the boundary-layer sensor decreases asymptotically till it attains a value 

zero far away from the wall. Thus, a critical height Ycritical is identified at the cell 

for which, vg 0.01r  . 

(ii) In the cells where Y<Ycritical, the flow is considered to be inside the boundary layer, 

where physical viscosity plays a significant role. Therefore the limiter is switched 

off during the solution reconstructions within the boundary layer, and 

computations are carried out using Eq. (10) and Eq. (11). 

(iii) For cells located at criticalY Y the solution reconstructions are done using Eq. (1) 

and Eq. (2). If the limiter used is van Albada, then these equations reduce to Eq. 

(4) and Eq. (5). 
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Numerical Simulation, Results and Discussion 

In the present work, we choose to demonstrate the performance of higher-order-accurate 

AUSM scheme. The AUSM scheme is selected because of its high accuracy for viscous-flow 

computations.  For illustration the solution reconstruction using the MUSCL approach with 

van Albada limiter is shown. However, our experience shows that the switching off other 

limiters inside the viscous-shear zones using the boundary-layer sensor also yield favourable 

results similar to that of the van Albada limiter. Two standard test cases are shown in the 

present paper, namely, viscous supersonic flow over an adiabatic flat plate at Mach 3 [18, 27, 

28] and hypersonic flow over a ramped surface at Mach 6 [18, 28, 29]. The geometric and 

free-stream parameters for the two test cases are given in Table 1 and Table 2. 

Table 1. The geometric and flow parameters for viscous supersonic flow over a flat plate  

Parameter Value 

Length of the plate (Lc) 0.0000285 m 

Free-stream pressure (p∞) 101325 N/m
2
 

Free-stream temperature (T∞) 288.15 K 

Free-stream Mach number (M∞) 3 

 

Table 2. The geometric and flow parameters for hypersonic flow over a ramped surface 

Parameter Value 

Length of the plate upto the compression corner (Lc) 0.05 m 

Total length of the ramped surface  0.12 m 

Ramp angle (θ) 15
0
 

Reynolds number per unit length  Re /U      8X10
5 
m

-1 

Free-stream stagnation temperature  1747 K 

Free-stream Mach number (M∞) 6 

Wall temperature (Tw) 298 K 

 

 
(a) 

 
(b) 

Figure 2. Viscous supersonic flow over an adiabatic-flat plate: (a) temperature profile at 

the trailing edge (b) velocity profile at the trailing edge 
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The normalized-temperature  /T T profiles for viscous supersonic flow over a flat plate 

under the adiabatic condition are compared in Fig. 2(a). The y-distance is non-

dimensionalized as suggested by Van Driest [30]. It can be seen that full limiting predicts a 

marginally higher adiabatic wall temperature compared with the controlled limiting. This is 

due to the fact that switching off the limiter inside the boundary layer during controlled 

limiting results in a lower level of numerical diffusion. The normalized-velocity profiles are 

shown in Fig. 2(b). As expected, the controlled limiting results in marginally less smearing of 

the hydrodynamic boundary layer, which is evident from the encircled and zoomed-in 

portions. 

 
(a) 

 
(b) 

Figure 3. Hypersonic flow over a ramped surface: (a) wall-heat flux along the surface  

(b) pressure coefficient along the surface 

 

The variations of wall-heat flux from Marini’s experimental results for hypersonic flow over a 

ramped surface are compared with the present computations in Fig. 3(a). With full limiting, 

the peak-heat flux in the post-reattachment zone is lower that the corresponding value with 

controlled limiting. In other words, the prediction of wall-heat flux with controlled limiting is 

in better agreement with the experimental results. The reason for this can be ascribed to the 

fact that full limiting induces more numerical diffusion compared with controlled limiting. 

Accordingly, both the computed hydrodynamic and thermal boundary layers are smeared 

more by the former case than the latter one. The increased smearing of the computed thermal 

boundary layer results in a lower temperature gradient at the wall, which leads to an under-

estimation of the wall-heat flux. The variations of pressure coefficients with both full and 

controlled limiting are in close agreement with Marini’s experiments, as can be seen in Fig. 

3(b). 

Conclusions 

In the present work, a novel approach is proposed to control the diffusive action of limiters 

inside the boundary layers for computation of viscous compressible flows. The method 

proposes an algorithm to switch off the limiters inside the viscous shear layers and switch on 

the same in the inviscid zone using a recently introduced boundary-layer sensor. This is 

important since the viscous-flow computations demand the minimum possible level of 

numerical diffusion so as to avoid the smearing of hydrodynamic and thermal boundary 

layers. The superior performance of the approach is demonstrated by choosing the higher-

order AUSM scheme with MUSCL reconstruction using van Albada limiter. Two standard 

test cases, namely, viscous supersonic flow over an adiabatic flat plate and hypersonic flow 
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over a ramped surface are used to showcase the improved performance of the new approach. 

It is shown that controlling the diffusive effects of the limiters inside the boundary layers 

results in the decrease of smearing of boundary layers, thereby the improvement in accuracy 

of viscous-compressible-flow computations.  
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Abstract 

Computer simulations of human movements are used for understanding the dynamics of the 

motion. These simulation models using individual muscles or torque generators can be 

separated into two parts as the dynamics of the body segments and the muscular mechanics 

part. The solution of the governing equations for these parts is necessary for the simulation. In 

this study, two different solution techniques will be compared and discussed. The first technique 

includes the solution of each part separately whereas all equations solved simultaneously in the 

second technique. In the first technique, the solutions can be obtained with relatively less 

computational effort but in the second technique more accurate results are expected. The 

comparison of the results will show whether the improvement in the accuracy worth the increase 

in the computational effort. As a result, a particular solution technique can be proposed to all 

current and forthcoming studies.  

Keywords: Computation, biomechanics, motion analysis, simulation modelling 

 

Introduction 

Computer simulations of human movements are used for understanding the dynamics of the 

motion. In general, a detailed information is obtained from the simulations at a level where no 

direct measurement is possible. In the literature, there are many examples of simulation models 

with different complexity level using different methods. The most common methods for the 

modelling of the human motion include individual muscles or torque generators as actuators of 

the model. These elements represent the effect of force/torque generated at the muscle fibres. 

For example, Anderson and Pandy [1] developed an individual muscle model to simulate 

walking whereas Kentel et al. [2] developed a model with torque generators for simulating 

backhand ground strokes in tennis.  

The models that use individual muscles or torque generators can be separated into two parts as 

the dynamics of the body segments and the muscular mechanics part causing the force or torque 

generation. These parts are directly related to each other and have to be considered together 

during the simulation. Each part has their own modelling structure but have common variables 

that affect both parts. The dynamics of the body segments simply deals with the motion of the 

body using the equation of motion. On the other hand, muscular mechanics part deals with the 

amount of force/torque generated due to muscle fibres.  

The simulation of the human motion depends on the solution of the differential equations 

relating the variables in each part. The difficulty arises on how to solve these equations since 

they have common variables. No explicit solution of these equations were present in the 

literature but two possible ways of solutions may be used. As a first technique, the parts solved 
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separately at each integration step using the data transferred from the other part. In the second 

technique, all equations are solved simultaneously. 

This study focusses on the effects of these two ways of solution techniques on the results. 

Although the second technique promises more accurate results, the computational effort would 

be higher. By analysing a sample human motion such as dumbbell curl, this study investigates 

whether the improvement in the accuracy worth additional computational effort. The results of 

both techniques are compared and the difficulties as well as advantages of both techniques are 

discussed     

Model Development 

This study focusses on the solution technique rather than the motion itself. Therefore, a simple 

and realistic motion could be selected for the computer simulation. For this purpose, a planar 5 

kg dumbbell curl is used. The upper arm is assumed to be fixed and there is no relative motion 

at the wrist joint. In short, only one segment (forearm and hand) is moving about the joint 

(elbow) on the sagittal plane. The free body diagram of the forearm with the weight can be seen 

in Fig. 1. The equation of motion using the free body diagram is given in Eq. (1). 

 
Figure 1. Free body diagram of the forearm with the weight 

     

  T- IE �̈�-mt g l1 sinθ - W l2 sinθ                                                   (1) 

As the actuator of the model, a single torque generator located at the elbow joint is used. The 

anthropometric parameters of the forearm and the torque-strength parameters of the muscles 

are obtained from the literature [3]. The torque generator represents the moment effects of all 

muscle fibres going through the elbow joint. It has two separate units each corresponding the 

flexor and extensor muscle groups for agonistic and antagonistic action. The algebraic sum of 

the flexor and extensor units is the net torque on the elbow joint. Torque generators can be 

considered as a rotational form of Hill’s muscle model (Fig. 2). 

In this rotational form, muscle fibre length, tendon length and musculotendon length is 

represented by muscle angle (θm), tendon angle (θe) and joint angle (θj), respectively. The 

relation between these variables are expressed in Eq. (2) (Fig. 2b). The joint angle is the relative 

angle between the upper arm and the forearm at any instant. 

 

θm + θe = θj                                                               (2) 
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Figure 2. (a) Hill-type muscle model; (b) torque generator 

 

The contractile element (CE) of the muscle model determines the relation between the torque, 

the muscle angle and the muscle angular velocity (contraction velocity). This torque value (Tcon) 

is the maximum voluntary torque and has to be multiplied with the muscle activation, a(t). In 

addition, differential activation, d(�̇�𝑚), may be used as a correction considering the depression 

in muscle extension (Eq. 3).   The torque can also be calculated through the series elastic 

element (SE) using the torsional spring constant, kt, which represents the tendon stiffness. 

  

 Tcon(𝜃𝑚,�̇�𝑚)*a(t)*d(�̇�𝑚) = T = kt 𝜃𝑒                                              (3) 

 

The muscle activation is a function of time and ranging from 0 (no activation) to 1 (full 

activation). Muscle activation profiles describe how the activation changes during the period of 

simulation. Parametric curves are used for muscle activation profiles and the parameters are 

determined via an optimisation process to match the simulation result with the actual motion. 

A sample activation profile is presented in Fig. 3. 

 

 
Figure 3. A sample activation profile generated with 9 parameters 

 

The simulation model can be separated into two parts as the dynamics of the body segments 

and the muscular mechanics part. Eq. (1) describes the dynamics of the body segments whereas 

Eq. (2) and (3) describe the muscular mechanics part. The torque and joint angle terms appear 

in both parts and relate the two parts. The estimated torque values are input to the body segments 
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part and the output is the motion of the forearm i.e. change in the muscular geometry. On the 

other hand, muscular geometry is used to determine the amount of torque generated at the 

elbow. 

Eq. (1) and (2) are two differential equations and can be solved by applying numerical methods. 

In this study, 4th order Runge-Kutta method is used to solve the differential equations in both 

muscular part and the dynamics of the body segments. Two different techniques are used for 

the solution of the equations. 

In the first technique, two parts solved separately at each integration step. The output from the 

solution of one part in a step is used as an input to the other part. This can be summarized in 

Fig. 4. The same procedure continues at each integration step until the end of the simulation 

Figure 4. A schematic representation of the first solution technique 

In the second technique, all equations are considered simultaneously at each integration step. 

Therefore, there is no distinct parts in the model. A combinatory Runge-Kutta method is applied 

to both differential equations. 

Currently, the model is developed and two solutions method are being applied. Numerical 

results will be presented once the results from the both methods are obtained. 

Conclusions 

Two different solution techniques of the equations that govern the human motion will be 

compared and discussed. The first technique uses separate solutions of each part of the model 

at each integration step. This brings modularity to the model and therefore, the solutions can be 

obtained with relatively less computational effort. However, the values of the variables in one 

part appears to be unchanged with respect to other at each integration step and the change of 

the variables in one part can affect the other part only in the next step. 

The second technique uses all equations simultaneously at each integration step. Since a 

combinatory Runge-Kutta is applied, the computational effort is higher than the first technique. 

The results are expected to be more accurate. The changing of all variables taken into account 

at the same time that result in less error during the numerical solution. After having the 

comparison of both methods a particular solution technique can be proposed to all current and 

forthcoming studies. 
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Abstract 

The Italian Guidelines for Seismic Risk Classification of Buildings, issued by D.M. 

28.02.2017, point to a vulnerability assessment to be understood primarily in terms of risk 

mitigation and in terms of optimization of the interventions. Considering the current serious 

condition of the Italian built heritage, which has been devastated by earthquakes because of its 

high vulnerability, the main goal is to provide a seismic classification methodology of 

existing buildings, before and after any interventions aimed to improving the vulnerability 

class. For masonry buildings, the Guidelines also provide a simplified approach based on a 

classification of buildings depending on their wall masonry type, their structural peculiarities 

and site hazard, identified through the zoning defined by the OPCM 3274/2003. The method 

allows to evaluate both the seismic vulnerability and the effectiveness of the interventions to 

be implemented to mitigate the risk. The purpose of the paper is a constructive critical 

analysis of the application of the above simplified method applied to buildings located in the 

province of Caserta, hypothesizing some interventions of improvement. The possible 

interventions of mitigation included in the procedures, are directed to strengthen in local way 

the building, to increase its safety index and to decrease the class of risk, they are the product 

of a study aimed to individualize its real necessity both in relationship to the type of 

intervention that to the part of the structure that is in the optics of the optimization of the same 

interested by it. The analyses were conducted with reference to two types of buildings 

particularly recurrent and representative of the built heritage of the province of Caserta and 

located into areas with different seismic hazards. 

Keywords: Classification, Seismic Risk, Masonry, Interventions, Province of Caserta. 

 

Introduction 

The building patrimony of our Country is represented by constructions in masonry of which a 

wide part is situated in the historical centres. Such constructions deserve particular attention 

as bearers of inestimable values due to their existence in the time that makes her a rich 

historical, artistic and cultural palimpsest, and in how much the totality of them has not 

almost been realized with criterions seismic. Besides the existing buildings are characterized 

by problems concerning phenomena of degrade and longevity [1]. 

The actual strategy of seismic prevention is based on an unitary approach that foresees the 

seismic classification of the territory, the seismic planning of the new constructions and its 

projected toward the adjustment or the improvement [2], [3], [4]. The Directive the Ministers' 

President of the Council [5] (Directive 2011) furnishes indications for the evaluation and the 

reduction of the seismic risk for the protected cultural patrimony; compiled with the intent to 

specify a run of knowledge, evaluation of the safety level towards the seismic actions and 

project of the possible interventions conceptually analogous to that anticipated for the 
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constructions not protected, but opportunely suitable to the demands and peculiarity of the 

cultural patrimony [6]. 

Due to the recent code developments and of the growing attention given to the seismic safety 

of structures, especially after the last Italian earthquakes, the analysis and verification of 

existing building heritage have become a fundamental tool to assess the seismic vulnerability, 

to safeguard human lives and to plan structural interventions. 

The Italian building heritage is characterized by high complexity and heterogeneity, both from 

architectural and structural points of view. For all these reasons, it is important to define a 

methodology to obtain comparable results to plan the future activities of risk analysis, 

assessment and management. 

A significant number of older stone and masonry buildings are not in accordance with any of 

actual provisions code. The seismic risk assessment and seismic vulnerability assessment of 

existing building stock is essential for establishing priorities in a long-term prevention policy. 

Vulnerability index method uses collected information of parameters of the building (plan, 

height, structural and non-structural elements, type and quality of materials). This method is 

used as one of several general methodologies for vulnerability assessment and seismic risk 

assessment. 

Due to the scale and number of buildings involved, the methodologies currently available to 

assess the seismic vulnerability of urban areas usually require the treatment of a massive 

volume of data associated with the inspection and survey work, and for this reason the use of 

more simplified approaches is becoming more popular. 

In [7] is to identify a methodology of verification easily manageable and adaptable to many 

different buildings, but at the same time able to determine the actual state of structure in terms 

of critical steps and structural deficiencies. 

Actual condition obviously pushes toward an evaluation expeditious type, based on the logic 

to adjust how much patrimony possible but the choice of the typology of interventions 

adopted following the evaluations it doesn't result to always have been both decisive in 

comparison to a fragile and unstable starting  condition that economic in comparison to a 

condition of urgency [8], many interventions adopted following the seismic phenomena are 

partially revealed ineffective to withstand the intense seismic actions [9]. 

In the present paper is effected a seismic analysis applying the method LV1 for the calculation 

simplified of the safety index before and after the interventions. Particularly it has been made 

an evaluation of the typology and the quantity of local interventions to adopt. The analyses 

were conducted with reference to two types of buildings particularly recurrent and 

representative of the built heritage of the province of Caserta and located into areas with 

different seismic hazards.  

The aim of this paper is to provide the first steps in assessing seismic risk in Campania, which 

has been achieved through an investigation of the building typology by site investigation and 

existing plans and documentation. 

Cases Study 

The present study analyses two residential buildings, representative of the large majority of 

the existing constructions in the historical center of the province of Caserta, in which it is 

possible to individualize two periods of construction, the XV century and the period between 

1800 to the beginnings of 1900. The greatest part of the buildings is made by simple or 

massive stones and develops around a court or a central courtyard, generally raising for at 

least two or three floors. The constructions are whether isolated or inserted in united and they 

usually have gable roof not pushing and timber and metallic planking’s. 
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Palazzo Petrucci-Novelli 

The first building examined in Fig. 1 and Fig. 2, is a construction situated in Carinola as 

showed in Fig. 3, in the province of Caserta and it constitutes a typical example of the 

constructive typology of the area made by simple stone in regular blocks and it’s located in a 

town which has an average-low seismic dangerousness. The thickness of the construction, 

realized around the XIV century, is 60 cm and it develops on two levels around a central 

courtyard where is an external staircase which colleague the ground floor to the loggia as 

showed in Fig. 4 and in Fig. 5. The decks have crossvaults, barrel vaults, plan floor and a roof 

made by wooden trusses. It has a compact form and an irregular morphology in both plant and 

elevated. 

 

  
 

Figure 1. Building’s exterior 

 

 

Figure 2. Building’s exterior 

 

  
 

Figure 3. Layout of the historical center 

 

 

Figure 4. Floor Plan 

 

  
 

Figure 5a. Elevations 

 

Figure 5b. Elevations 

ICCM2018, 6th-10th August 2018, Rome, Italy

861



Palazzo Ducale 

This building showed in Fig. 6 and Fig. 7, situated in the commune of Piedimonte Matese Fig. 

8, in the province of Caserta, it’s a prototype of the constructive typology of the Middle 

Volturno’s areas, next to the Appennino therefore a district to high seismic dangerousness. 

The palace, built in the XVI century, is made by a massive stone mixed to fieldstone and 

blocks of bricks with a thickness around 80 cms. The building has four levels with attics in 

wood articulated around a central court and it has a compact form and an irregular 

morphology in both plant and elevated as showed in Fig. 9 and Fig. 10. 

 

  
 

Figure 6. Building’s exterior 
 

 

Figure 7. Building’s courtyard 
 

  
 

Figure 8. Layout of the historical center 
 

 

Figure 9. Floor Plan 
 

  
 

Figure 10a. Elevations 

 

Figure 10b. Elevations 
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The Guidelines for the Reduction of Seismic Risk on Cultural Heritage  

The Guidelines for the Reduction of Seismic Risk on Cultural Heritage (code DPCM 2011), 

linked to the NTCs 2008, has been compiled in order to specify a path of knowledge, 

evaluation and reduction of the seismic risk for masonry buildings. To evaluate the seismic 

safety, three different levels of increasing completeness have been identified of which the 

level LV1 concerns the evaluations of the seismic safety at a territorial scale. It is necessary to 

quantitatively evaluate the ground acceleration leading to the achievement of the structure 

ultimate limit state (SLV), with a pre-set probability of overcoming, and that attended in the 

site on a reference’s period defined on the building’s characteristics and its use. The seismic 

safety index is estimated by the relation between the return period of the seismic action 

provoking the generic limit state and the corresponding return period of reference related to 

the earthquake expected on the site. This is useful to underline the critical situations and to 

establish a priority for the future interventions. In the same way it’s possible to define an 

acceleration factor defined by the relation between the acceleration which provokes the 

ultimate limit state and the acceleration expected on the site. 

Palazzo Petrucci Novelli_The LV1 method 

According to the procedure defined in the Directive 2011 for the method LV1-Palace and (X), 

the construction has nominal life equal to 50 year-old (buildings with ordinary performance 

levels), use class II, coefficient of equal use 1,00 (construction that foresees normal 

overcrowdings without dangerous elements for the environment), reference period for the 

seismic action equal to 50, category of soil class A specific for "very rigid appearing on the 

surface or terrestrial rocky heaps", coefficient of subsoil equal to 1,00 and topographical 

category T1 for "level surfaces, slant and isolated reliefs with middle inclination i<15°. Using 

a NTCs software, inserting the coordinates of the structure (Lat. 41.188625°, Long. 

13.976842°) and the values mentioned, the ground peak acceleration results ag / g: 0,098g, the 

F0 factor equal to 2,675. The construction, made by simple stone has a proper weight equal to 

16,0 KN/m3s, the permanent load Gk changes by the levels. For example, the first floor has 

both metal decking and desks with vaults, the desks of the second floor are in metallic profiles 

and timber, and the third floor introduces a timber’s roof. Analyzing them, three values of Gk 

are gotten, respectively 12 KN/m2s, 6 KN/m2s and 1,7 KN/m2s. The confidence factor 

assumed is FC=1 ,35 (corresponding to complete survey of the building geometry and to 

limited knowledge of the mechanical properties of materials). Due to the characteristics and 

peculiarity of the structure, the shearing force is equal to 0,028 MPas for each level and the 

failure index is equal to 0,8 for the piers and the strength of the spandrel beams for all the 

levels in both the directions. The minor acceleration factor (0,45) isn’t sufficient to make 

forehead to a seismic event. 

Palazzo Ducale_ The LV1 method 

Using the same procedures above mentioned, the second construction has nominal life equal 

to 50 year-olds, use class II, coefficient of equal use 1,00, reference period for the seismic 

action equal to 50, category of soil class A, coefficient of subsoil equal to 1,00 and 

topographical category T1. Inserting the geographical coordinates in the software (Lat. 41. 

41.365277°, Long. 14.383055°) and the other values above-mentioned, the design ground 

acceleration is ag / g: 0,249g, the F0 factor equal to 2,304.  In contrast to the previously 

construction analyzed, this building has a mixed masonry composition in simple stone and 

fieldstone, so its proper weight is 19,0 KN/m3s, and has a permanent load Gk equal to 5,4 

kN/m2s unchanged for all the floor excluding the roof for which it’s 0,5 kN/m2s. The level of 

knowledge assumed for the construction is FC=1 ,35 and thanks to its characteristics and 
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peculiarity the shearing force is equal to 0,028 MPas for each level and the failure index is 

equal to 0,8 for the piers and the strength of the spandrel beams for all the levels in both the 

directions. The smaller acceleration factor resulted by the analysis is equal to 0,25 indicate 

that the structures is unable to withstand the required seismic forces, provided by the seismic 

code. 

Interventions 

The procedure for the evaluation of the seismic safety also includes the potential interventions 

of mitigations, aims to strengthen in local way the building and to increase its seismic safety 

index; the two analyzed constructions, have a seismic safety index inferior to 1, so they are 

both unable to make forehead to a seismic event. In preliminary analysis the structure is 

verified before the intervention with identification of the lacks and the level of seismic action 

for which the SLU is reached. The choice of the improvement intervention must be a 

motivated strategy aimed to interest a select portion for which improve the structural 

performance. Subsequently the technical choices and the materials are verified in order to 

apply them with the preliminary sizing of the reinforcements and the additional structural 

elements. Post intervention, a structural analysis will be effected.  The evaluation of the safety 

and the design of intervention must be wide to all the parts of the structure potentially 

interested by changes of behavior, as well as to the structure in its whole.  Starting from the 

condition of the single construction, with the purpose to increase the safety index of the 

structure, a first operation of analysis consists of combining interventions through which 

increases the shearing force from the first floor to the top in order to produce an increase 

safety index. Consequently, there are planned interventions which engrave on the collapse 

method through a further increase of the coefficients of collapse and strength gradually 

increasing until reaching a safety index greater than beginning. 

Palazzo Petrucci Novelli_Interventions 

The Figure 11 shows the increase’s curve of the safety index, obtained through a combination 

of gradual increases of the shearing force (Ify) and the coefficients of collapse and strength of 

piers and the spandrel beams (Cc – Cr) from the initial safety index 0.45, thin to the ultimate 

0.73. The points in black, represents the three values of the safety index reached increasing at 

the most the shearing force (Ify) and the coefficients of collapse and strength of piers and the 

spandrel beams (Cc – Cr) at the first to the top floor and then adding the maximum increases 

to the inferior floors. The gradual increase’s curve of the seismic safety index and the points 

of maximum increase, differ between them for the different design choice, in the specific one 

the points of maximum increase hypothesize diffused interventions on the whole construction 

strengthening at the most the coefficients of collapse and resistance of the single piers and the 

spandrel beams (Cc – Cr) and the shearing force (Ify) to every floor without consider that,  the 

result of the LV1 analysis and the consequent low safety index, could be due a specific lack 

located on the construction rather than to a general lack, contrarily the curve minimizes the 

interventions and the costs going to gradually increase the single coefficients and the single 

shearing force (Ify) (whereas is necessary) in the optics to reach a result of improvement but 

optimizing choices and costs. Following the hypothesis of the targeted and optimized 

interventions, the safety maximum index is obtained increasing the shearing force (Ify) by 

50% to the third floor; 50% to the second floor and 20% to the first floor. The coefficients of 

collapse of piers and the strength of spandrel beams (Cc – Cr) (assumed equal in directions x 

and y) have been increased thin to 1 for the third and the second floor while they have been 

being unchanged at the first floor. In the second case globally maximizing the values, the 

curve quickly grows and steeply up to get a safety index equal to 0.73. In this case both the 
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shearing force (Ify) (increased by 50% to each floor) and the coefficients of collapse of the 

piers and strength of spandrel beams (Cc – Cr) (passed by 0,8 to 1) have reached the 

maximum increase. The increase of the seismic safety index, is verified increasing by 20% the 

shearing force (Ify) to the first floor, considered the weakest floor, rather than increasing of 

50% shearing force (Ify) to the other floors. 

 

 
Figure 11. Safety Index curve of Palazzo Petrucci Novelli 

 

Such analysis underlines as despite both design choices are succeed in optimizing the strength 

of the building increasing its safety index from 0.45 to 0.73, in the first case the interventions 

would be inferior, less expensive and really located on the parts interesting from structural 

lacks while in the second case it would intervene over the minimum, globally on the whole 

building and in very more elevated economic terms. 

Palazzo Ducale_Interventions 

In this case as underlines in Fig. 12, the LV1 method, returns an initial safety index equal to 

0.25 that being smaller than 1 expresses a meaningful insufficiency to make forehead to a 

seismic event, condition mostly criticism in comparison to the first case study. Also for this 

second building has been effected a double analysis on two different design choices, the first 

one with a gradual increase of the factors while the second through the pursuit of the 

maximum result gotten contemporarily maximizing the increases. Otherwise from the 

previously case analyzed, for this typology of construction, the real raising of the index safety 

and relative structural improvement, is gotten for both the design choices, increasing at the 

most the shearing force (Ify) to every floor in both the directions that the coefficients of 

collapse of the piers and the strength of the spandrel beams (Cc – Cr). In the specific case, the 

curve, that represents the gradual increase that conducts to a passage of the safety index from 

0.25 (initial scenery) to 0.52 are obtained increasing by 50% the shearing force (Ify) to the 

fourth floor; by the 50% to the third floor; by the 50% to the second floor and finally by the 

50% to the first floor. The coefficients of collapse of piers and the strength of spandrel beams 
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(Cc – Cr) (assumed equal in directions x and y) have been increased thin to 1 for all the 

levels.  

 

 
 

Figure 12. Safety Index of Palazzo Ducale 

 

The points in black instead, representative of the second typology of design choices, show as 

increasing all the values from the fourth floor up to the first one, it’s obtained a seismic safety 

index equal to that gotten from the first scenery of intervention, passing from 0,25 to 0,52. For 

the analysis of this construction, otherwise from the first one, the attainment of the increase of 

the safety index is contextually achieved for both the sceneries maximizing the increases of 

the resistances, delineating therefore as the real improvement of the strength ability of the 

building object of analysis is bound to a design choice of intervention globally put in work on 

the whole construction. 

Conclusions 

This paper deepens some aspects linked both to the estimation of the vulnerability of the 

masonry buildings and both to the choice of the interventions to adopt, with specific reference 

to those reverting in the area of Caserta. 

Particular attention has been set on the simplified methods of evaluation which requesting a 

less deepened knowledge on the structure, they conduct to results that can be more reliable, 

but being of faster application, they are particularly suitable for the analyses of consistent 

champions, as in the case of the historical centers. The simplified method LV1 has been 

applied, on two representative buildings of an ample quantity of residential buildings of 

Caserta: a building of the historical center of Carinola, area with a low-average seismic 

dangerousness, representative of the regular buildings realized in simple stone and a second 

construction built in the historical center of Piedimonte Matese, area with an elevated seismic 

dangerousness, strongly irregular in its configuration and realized with mixed material of 

various typology. Analogous results have been caught by numerous constructions similar to 
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the examine ones, confirming the extendibility of the conclusions that are derived to an ample 

portion of the built patrimony of the northern area of Caserta. 

Seismic vulnerability has been valued using a quantitative type of procedure: the method LV1 

for the simplified calculation of the safety index introduced by the Directive of the 2011. For 

the first building (Palazzo Petrucci-Novelli), representative of the area of Carinola, the result 

caught through the LV1 method, based on the shearing force of the building walls, conduct to 

a middle vulnerability. The results achieved from the second Building (Palazzo Ducale) 

underlining a high vulnerability.  

The LV1 method, operate in order to appraise the SLV seismic action of a building, choosing 

subsequently to effect interventions of reparation and developing a LV2 analysis which is 

necessary to confirm the real necessity of the interventions, considering the maximum 

acceleration to the floor of reference in the site; in the elements in which the SLV acceleration 

is already superior to this last, wouldn’t be necessary to proceed would to the seismic 

improvement of that part. 

It is clear that a simplified type of approach, needs reduced time but able, at the same time, to 

optimize the interventions. LV1 allows us to get a series of coherent information for the 

attainment of the objective and addresses toward the calculations that will allow to increase 

the safety index, studying the global/geometric state of the construction to be able to found a 

project of intervention. Individualized the formality of collapse, through LV1 that allows us to 

individualize the weak portions, on which it is necessary to intervene of it, it’s simple to use 

the LV2 method, to extend to these parts of the construction to be able to develop the project 

of intervention and to choose its typology. The analyzed cases are representative of many 

others sceneries verified in the time in which, as in the case of Palazzo Ducale, in the optics 

to improve much possible patrimony, has been select to realize a series of interventions on the 

whole construction at the expense of costs and times but as they had showed, that determined 

benefits would be produced in every cases opting for a number of interventions done on the 

whole construction, otherwise in the case of Palazzo Petrucci-Novelli, the strength increase of 

the safety index and the strength ability of the structure would be achieved choosing to adopt 

interventions focused to located and weak parts of the structure that would have produced the 

same effects and the same benefits of interventions realized on the whole structure. 

Proceeding, for simplified models, could be neglected different peculiar characters but surely 

a whole series of fundamental parameters wouldn’t be neglected neither in phase of analysis 

nor choosing interventions. 
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Abstract 
Planning pedestrian and bicycle bridges to overpass rivers, highways or roads with intense 
traffic, represents a smart way to enhance a territory and to reduce the massive and improper 
use of public and private transports with high environmental impact. In this research work we 
would like to show how, thinking different, cold be possible to improve the concept of 
mobility in a sustainable way. Proper design choices on shape, with high structural efficiency, 
and material, with low footprint on nature, are fundamental for this process. Thanks to its 
great shape stiffness, the hyperbolic paraboloid surface has proven to be good choice. It 
represents a ruled surface capable of realizing complex curvatures simply derived from 
straight lines crossed between themselves. About the material, we have chosen the Cross 
Laminated Timber (CLT) as an interesting alternative to the traditionally used materials for 
this kind of structure. The very good strength/weight ratio, the orthotropous behaviour and the 
flexibility in designing and forming structural elements of different sizes and shapes are some 
of the main features of the CLT. The geometric modelling of the bridge is created in 
Rhinoceros using a parametric approach. The algorithm, developed through a visual 
programming language Grasshopper, is written in such way that the size of the geometric 
element can be rapidly and parametrically modify as necessary. The structural analysis is 
based on a Finite Element Method (FEM) through MIDAS/Gen. A software chosen for its 
flexibility, the wide material and finite element library and the possibility of modelling the 
orthotropous behaviour. In particular, we have chosen “plate” as finite element with proper 
material characteristics according to an implemented well oriented mesh. In conclusion, the 
aim of this research work is to design a cycle and pedestrian bridge in which choices on 
material and shape move towards a sustainable mobility. The possibility of in-site rapid 
assembly process should not be neglected. 
 

Keywords: Sustainability. Efficiency, Wood, Bridge, Paraboloid, Parametric, FEM 
 

Introduction  

In recent years, the urban development of Western countries has produced a clear separation 
between the art of building the city and the attention to places. The starting point of the 
following research work is the awareness that engineering, architecture and urban planning 
must return to assume a central role within the city, looking at the sustainable development of 
the urban landscape to "satisfy two human instances: [...] the physical and the spiritual one 
[...] " [1].  
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The design of cycle walkways is one of the concrete ways to follow this philosophy. It offers 
the possibility of experimenting with innovative forms and materials to create something that 
is not just a simple means of connection between two places 

Modelling and Structural Analysis 
 
The installation of a walkway that allow passing over rivers or busy roads is an intelligent 
way of enhancing a territory and reducing the massive use of public and private polluting 
vehicles. 
At the base of the following research work there is the will to enhance, in an alternative way, 
the concept of slow and sustainable mobility. The decision to design a "structural 
architecture" was fundamental to this process. It is intended as an aptitude for combining 
forms and structures by attributing aesthetic value to the "backbone" of an architectural 
project. Therefore, the search for design solutions different from the classic types used for the 
design of driveway bridges. The adopted choices regarding the form, the material, the 
structural, constructive and economic feasibility, have the aim to obtain a result with a low 
environmental impact and high structural efficiency. 
Thanks to its great stiffness in shape, with a membrane behaviour and an optimal thickness 
distribution, the meeting point between structural efficiency and sustainability was obtained 
through the choice of the hyperbolic paraboloid. A quadratic striped surface for the realization 
of only apparently complex curvatures, obtainable thanks to simple translation of straight 
lines into the space, through a simple and flexible construction process.    
The structure has been designed with Cross-Laminated  Timber (CLT) wooden plates making 
the material work according to its natural attitude of orthotropic and combining its technical 
performances with the energetic and ecological ones. The excellent strength-weight ratio, the 
properties of orthotropic, the excellent resistance and reaction to fire and the great flexibility 
in the design of structural elements of different sizes and shapes are some of the important 
peculiarities of CLT. 
A key factor for a successful approach in the design of this boardwalk was the integration 
between architectural-parametric and structural modelling.  
In particular, in the geometric modelling, a parametric approach was chosen using the 
Grasshopper software. A modelling therefore that does not follow the logic of CAD or 3D, 
but algorithmic. It is generated from a list of instructions that process inputs through a logical 
sequence of descriptive geometry operations. Only with the algorithm terminated, the surface 
has been edited with the help of the Rhinoceros Software.  
From a square-based hyperbolic paraboloid [2] a hyperbolic paraboloid of rhomboidal base 
has been made. The surface has been cut out of the dimensions and features compatible with 
those of the boardwalk in question, implementing equations and parametric, as shown in 
Fig.1. Therefore, since the solution is not unambiguous in this way, design constraints have 
been inserted regarding the context, the structural and architectural properties and the 
normative apparatus in force. The obtained solution represents the fusion between geometrical 
features (derived from the most disadvantageous load conditions) and the optimization of 
results concerning the structural efficiency and the aesthetic dimension. 
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Figure 1.  Geometrical and parametric modelling of the boardwalk surface [3] 

 
 
 
The structural analysis, based on the Finite Element Method (FEM) has been realized through 
the MIDAS-Gen software. This choice derives from its flexibility, the possibility of having a 
very large library available to the user, both as regards the materials (customizable if 
necessary) and the finite elements, from the implementation of the orthotropic properties of 
the chosen material. from the ability to import and export files in many formats (it is perfectly 
oriented in the world of Building Information Modelling - BIM [4]). 
The modelling was carried out following a computational method. In particular, established 
form, size, type of material and model loads, we have moved to its resolution. By determining 
deformation, strain and displacement, the structural verification of the element has been 
achieved. 
The implementation of a simplified structural scheme with respect to the architectural model 
was fundamental. The inclusion of simplifying hypotheses has allowed to reduce the 
computational cost from the software point of view. However, the discretization of the model 
in 2D finite elements, called "plate", has been strongly influenced by the orthotropy of the 
material. The orthotropic behaviour was implemented by inserting the mechanical and 
physical properties of the material according to the orientations of the local (non-global) axes 
of the individual plate elements. Considering this choices, the creation of a manual mesh was 
necessary. Elements were created as close as possible near to be rectangles or squares, 
oriented in such a way that the values assigned to the mechanical properties in the material 
definition were consistent with the designed structure. It was specifically obtained by 
generating the transversal and longitudinal parabolas whose joint nodes are placed on the lines 
of connection between the various surfaces (surface, bridge deck and diaphragm in Fig.2). 
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Figure 2.  Structural model and mesh [3] 

 
 
The first model created is certainly the most comprehensive of approximations with relatively 
poor reliability results. In it, the main approximation is made in the calculation of 
"equivalent" Young's modulus to be assigned to the mechanical properties of the material.  
One of the design constraints involved in the realization of different study models is 
represented by the orientation of the CLT panels in crossed layers. It does not follow that of 
the Cartesian reference system for which the values of the mechanical properties for the 
different directions are assigned by the literature [5], but it is dictated by the inclination of the 
generating lines of the ruled surface. Furthermore, since the 2D plate elements are finite, the 
different layers of each single panel are composed and the respective mechanical properties 
are taken into account in the introduction of the "equivalent" Young's modulus. The 
fundamental steps are:  

§ Computation of the projection of the "equivalent" Young's modulus, longitudinal (E'0) 
and transverse (E'90), based on the inclination dictated by the geometry of the surface 
compared to the XY global reference system; 

§ Multiplication of the previous components for the number of layers respectively 
provided for both directions; 

§ Considered an "equivalent" thickness (equal to ¾ of the real one) to have values of 
stiffness, axial and bending, not too far from the actual values (consequence of the 
approximation reported in the first point). 

 

 
Figure 3.  Displacements  and strain results of the first model [3] 

 
 
Because of the excessive approximations made, the results obtained by this model (shown in 
Fig.3) are unreliable. After several iterations in modelling, in which the transversal 
components (E''0 and E''90) of the Young's modulus were not neglected, a further division of 
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the plates in subgroups, was carried out. For each of them, the longitudinal component of the 
Young's modulus E (E'0 and E'90) has been recalculated and projected from time to time 
depending on the inclination of the elements in the global mesh. Furthermore, an equivalent 
thickness of ½ of the real one was considered. This last model implemented show results that 
are the most reliable and all verified according to the limits set by the Italian code. In 
particular, keeping unchanged the mechanical properties assigned to the material once the 
approximations relative to the first model have been eliminated, in the last one a stiffening 
operation of the deck structure was carried out by inserting specially sized beams. In fact, 
despite being designed with an inclination of lamellar wood panels placed at 45 °, it turns out 
to be the only element to have no enough stiffness in shape. As shown in the graphs in Fig.4), 
the deformation of the deck is much higher than those of the striped surface of the hyperbolic 
paraboloid. 
 

 
 

Figure 4.  Displacement and Strain of the updated model [3] 
 

In this model, the structural analysis is satisfied. However, from the graphs shown in Fig.4, it 
can be seen that in the diaphragm-bridge deck connection zone this check is not satisfied 
because of the geometry of the mesh and higher deformations in the deck. 
The desire to enhance, in an alternative and innovative way, the concept of sustainable 
mobility design has been fulfilled by creating a meeting place; a new public space in which to 
stop, in a sensitive relationship with the surrounding environment. To complete the work and 
the tasks for this research work, an extension of the surface of the hyperbolic paraboloid used 
as a parapet was created in order to obtain a seat (in glulam wood) with soft shapes and in 
harmony with the whole boardwalk (Fig. 5). Furthermore, the upper surface of this additional 
element was exploited by inserting flexible and light solar panels used in the naval field [6]. 
The electric power produced allows the arrangement of a higher number of lighting devices 
than those provided for the classic walkways. So, a new urban space in which to experience a 
simple way of living, stopping, observing, listening, riding, walking. 
 

 
Figure 5.  Detail of the realing-seat [3] 
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Conclusions 

The goal of this work is to give a new identity to the design of cycle-pedestrian walkways; a 
new way of conceiving form, linked not only to aesthetics but also to structural efficiency; an 
alternative design of sustainable mobility through the choice of unusual materials and shapes. 
Finally, it is important to underline how this project turns out to be a specific case but 
adaptable to any other context with different conditions. The simple construction (it may be 
assembled near the site and placed by two cranes in the right position), combined with 
flexible replicability are important features. Not last, the possibility of further optimizing the 
structure by pushing towards new structural models and more reduced thicknesses. 
 

 
Figure 6.  Longitudinal Section [3] 
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Abstract

In this paper, we present a local convergence analysis of some iterative methods to approximate
a locally unique solution of nonlinear equation in a Banach space setting. In the earlier study,
Babajee et al. [1] demonstrate convergence of their methods under hypotheses on the fourth-
order derivative or even higher. However, only first-order derivative of the function appears in
their proposed scheme. In this study, we have shown that the local convergence of these methods
depends under hypotheses only on the first-order derivative and the Lipschitz condition. In this
way, we not only expand the applicability of these methods but also proposed the theoretical
radius of convergence of these methods. Finally, a variety of concrete numerical examples
demonstrate that our results even apply to solve those nonlinear equations where earlier studies
cannot apply.

Keywords: Newton-like method, local convergence, Banach space, Lipschitz constant, radius
of convergence.
Introduction

One of the most basic and important problem of Numerical analysis concerns with approximat-
ing a locally unique solution x∗ of the equation of the form

F (x) = 0, (1)

where F is a Fréchet -differentiable operator defined on a convex subset D of a Banach space
X with value in a Banach space Y.

Analytical methods for such type of problems are very rare or almost non existent. Therefore, it
is only possible to approximate solutions by relying iterative methods. The convergence analy-
sis of iterative methods is usually divided into two categories: semi-local and local convergence
analysis. The semi-local convergence matter is, based on the information around an initial point,
to give criteria ensuring the convergence of iteration procedures. A very important problem in
the study of iterative procedures is the convergence domain. Therefore, it is very important to
propose the radius of convergence of the iterative methods.

We study the local convergence of the two step method defined for each n = 0, 1 2, . . . by

yn = xn −
2
3F
′(xn)−1F (xn),

xn+1 = G4th HM(xn) = xn −H1(xn)A(xn)F (xn),
z(xn) = F ′(xn)−1F ′(yn),

H1(xn) = I − 1
4
(
z(xn)− I

)
+ 1

2
(
z(xn)− I

)2
,

A(xn) = 1
2
(
F ′(xn)−1 + F ′(yn)−1

)
(2)
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and
xn+1 = G(2s+4)th HM(xn) = zs(xn)

zj(xn) = zj−1(xn)−H2(xn)A(xn)F
(
zj−1(xn)

)
, j = 1, 2, . . . , s, s ≥ 1,

H2(xn) = 2I − z(xn),
z0(xn) = G4th HM(xn),

(3)

where, s is a natural number with s = 0, x0 ∈ D is an initial point and I is the identity operator.
Notice that if s = 0, then method (3) reduces to method (2). These methods were studied in [1]
in the special case when X = Y = Ri (i is a natural integer). Method (2) was shown to be of
order four and method (3) was to be shown of order 2s + 4. However, the local convergence
was shown in [1], by using the Taylor series expansions and hypotheses reaching up to the fifth
Fréchet derivative of involved operator F although only first order derivative appears in the
proposed schemes. The hypotheses on the derivatives of F restrict the applicability of method
(2) and method (3). As a motivational example, define function F on X = Y = R, D = [−5

2 ,
1
2 ]

by

F (x) =
{
x3lnx2 + x5 − x4, x 6= 0
0, x = 0 .

Then, we have that
F ′(x) = 3x2lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6xlnx2 + 20x3 − 12x2 + 10x

and
F ′′′(x) = 6lnx2 + 60x2 − 24x+ 22.

Then, obviously, function F ′′′(x) is unbounded on D at the point x = 0. Hence, the results in [1],
cannot apply to show the convergence of method (2) or its special cases requiring hypotheses
on the fourth derivative of function F or higher. Notice that, in-particular there is a plethora of
iterative methods for approximating solutions of nonlinear equations [2, 3, 4, 5, 6, 1, 7, 8, 9, 10,
11, 12, 13, 14, 15]. These results show that initial guess should be close to the required root for
the convergence of the corresponding methods. But, how close initial guess should be required
for the convergence of the corresponding method? These local results give no information on
the radius of the ball convergence for the corresponding method. The same technique can be
used to other methods.

In the present study we expand the applicability of method (2) using only hypotheses on the
first order derivative of function F . We also proposed the computable radii of convergence and
error bounds based on the Lipschitz constants. We further present the range of initial guess x∗

that tell us how close the initial guess should be required for granted convergence of the method
(2). This problem was not addressed in [1].
Local convergence in Banach space

We present the local convergence analysis that follows is based on some scalar functions and pa-
rameters. Let L0, L > 0 and M ∈ [1, 3) be given parameters. Define functions g1, g2, h2, p,
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qj , hqj
, j = 1, 2, . . . , s (s is a natural integer) on the interval

[
0, 1

L0

)
by

g1(t) = 1
2(1− L0t)

(
Lt+ 2M

3

)
,

g2(t) = Lt

2(1− L0t)
+ L0M(1 + g1(t))t2

2(1− L0t)2 +
[
L0(1 + g1(t))t2

4(1− L0t)2 + 1
2
L2

0(1 + g1(t))2t4

(1− L0t)4

]
M2

(1− L0t)2 ,

h2(t) = g2(t)− 1,

p(t) = M

1− L0t

(
1 + L0(1 + g1(t))

1− L0t

)
,

q1(t) = (1 + p(t))g2(t),
hq1(t) = q1(t)− 1,
qj(t) = (1 + p(t))qj−1(t) = (1 + p(t))jg2(t), j = 2, 3, . . . , s,
hqj

(t) = qj(t)− 1

and parameters r1 and rA by

r1 =
2
(
1− M

3

)
2L0 + L

,

rA = 2
2L0 + L

.

We have that
0 < r1 < rA, (4)

g1(r1) = 1 and for each t ∈ [0, r1] : 0 ≤ g1(t) < 1. Moreover, by the definition of the functions
g2 and h2 : h2(0) = −1 and h2(t) → +∞ as t → 1−

L0
. It then follows from the intermediate

value theorem that the function h2 has zeros in the interval
(
0, 1

L0

)
. Further, consider that r2

is the smallest such zero. Similarly, we have that hqj
(0) = −1 and hqj

(t) → +∞ as t → 1−

L0
.

Denote by rqj
the smallest zeros of the functions hqj

, respectively on the interval
(
0, 1

L0

)
. In

particular, we have hq1(r2) = (1 + p(r2))g2(r2) − 1 = p(r2) > 0, since 1 − L0r2 > 0 and
g2(r2) = 1. Hence, rq1 < r2. Similarly, we get hqj

(rj−1) = p(rqj−1) > 0, since 1−L0rqj−1 > 0
and qj−1(rqj−1) = 1. That is we obtain that

rqs < rqs−1 < · · · < rq1 < r2. (5)

Define
r = min{r1, rqs}. (6)

Then, in view of (4) – (6), we have that

0 < r < rA <
1
L0

(7)

and for each t ∈ [0, r)
0 ≤ g1(t) < 1, (8)

0 ≤ g2(t) < 1, (9)

and
0 ≤ qj(t) < 1. (10)
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Notice that if s = 0, then the radius of convergence should be defined by r = min{r1, r2}. Let
U(w, ρ), Ū(w, ρ) stand, respectively for the open and closed balls in X with center w ∈ X
and of radius ρ > 0. Next, we present the local convergence analysis of method (3) using the
preceding notations.

Theorem 1 Let F : D ⊆ X → Y be a Fréchet differentiable operator. Suppose there exist
x∗ ∈ D and L0 > 0 such that for each x ∈ D

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y, X) (11)

and ∥∥∥F ′(x∗)−1(F ′(x)− F ′(x∗)
∥∥∥ ≤ L0‖x− x∗‖. (12)

Moreover, suppose that there exist L > 0 and M ∈ [1, 3) such that for each x, y ∈ D ∩
U
(
x∗, 1

L0

)
the following estimates hold

∥∥∥F ′(x∗)−1 (F ′(x)− F ′(y))
∥∥∥ ≤ L‖x− y‖, (13)

∥∥∥F ′(x∗)−1F ′(x)
∥∥∥ ≤M, (14)

and
Ū (x∗, r) ⊆ D, (15)

where the radius of convergence r is defined by (6). Then, the sequence {xn} generated by
method (3) for x0 ∈ U(x∗, r) − {x∗} is well defined, remains in U(x∗, r) for each n =
0, 1, 2, . . . and converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (16)

‖xn+1 − x∗‖ = ‖z0(xn)− x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (17)

and
‖zj(xn)− x∗‖ ≤

(
1 + p(‖xn − x∗‖)

)
‖zj−1(xn)− x∗‖

≤
(
1 + p(r)

)j
g2(r)‖xn − x∗‖ < ‖xn − x∗‖,

(18)

where the “g” functions are defined previously. Furthermore, for T ∈
[
r, 2

L0

)
, the limit point

x∗ is the only solution of equation F (x) = 0 in Ū(x∗, T ) ∩D.

Proof: Mathematical induction shall be used to show estimates (16) – (18). By hypotheses
x0 ∈ U(x∗, r)− {x∗}, (7) and (12), we get that∥∥∥F ′(x∗)−1 (F ′(x0)− F ′(x∗))

∥∥∥ ≤ L0‖x− x∗‖ < L0r < 1. (19)

In view of (19) and the Banach Lemma on invertible operators [5, 13], we get that F ′(x0)−1 ∈
L(Y, X), y0 exists and

∥∥∥F ′(x0)−1F ′(x∗)
∥∥∥ ≤ 1

1− L0‖x0 − x∗‖
. (20)
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We also get that y0 is well defined by the first sub step of method (3) for n = 0. We can write
by (11)

F (x0) = F (x0)− F (x∗) =
∫ 1

0
F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ (21)

Notice that ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ < r, so x∗ + θ(x0 − x∗) ∈ U(x∗, r). Then,
by (14) and (21), we have that∥∥∥F ′(x∗)−1F ′(x0)

∥∥∥ ≤M‖x0 − x∗‖ (22)

We can write by the first sub step of method (3) and (11)

y0 − x∗ =
(
F ′(x0)−1F ′(x∗)

) ∫ 1

0
F ′(x∗)−1 (F ′(x∗ + θ(x0 − x∗))− F ′(x0)) (x0 − x∗)dθ

+ 1
3
(
F ′(x0)−1F ′(x∗)

) (
F ′(x∗)−1F ′(x0)

) (23)

Using (7), (8), (13), (20), (22) and (23), we obtain in turn that

‖y0 − x∗‖ =
∥∥∥F ′(x0)−1F ′(x∗)

∥∥∥ ∥∥∥∥∫ 1

0
F ′(x∗)−1 (F ′(x∗ + θ(x0 − x∗))− F ′(x0)) (x0 − x∗)dθ

∥∥∥∥
+ 1

3
∥∥∥F ′(x0)−1F ′(x∗)

∥∥∥ ∥∥∥F ′(x∗)−1F ′(x0)
∥∥∥

≤ L‖x0 − x∗‖2

2(1− L‖x0 − x∗‖)
+ M‖x0 − x∗‖

3(1− L‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(24)
which shows (16) for n = 0 and y0 ∈ U(x∗, T ). It follows from (19), (20) and (24) for y0
replacing x0, since y0 ∈ U(x∗, T ) that F ′(y0)−1 ∈ L(Y, X)

∥∥∥F ′(y0)−1F ′(x∗)
∥∥∥ ≤ 1

1− L0‖y0 − x∗‖

≤ 1
1− L0g1(‖x0 − x∗‖)

≤ 1
1− L0‖x0 − x∗‖

(25)

and x1 is well defined by the second sub step of the method (3) for n = 0. Then, we can write
by the second sub step of method (3) for n = 0 in turn that but using (9) instead of (8), we
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obtain in turn that

x1 − x∗ = (x0 − x∗ − F ′(x0)−1F (x0)) + 1
2
(
F ′(x0)−1F (x∗)

)[
F ′(x∗)−1

(
F ′(x0)− F ′(x∗)

)
+ F ′(x∗)−1

(
F ′(x∗)− F ′(y0)

)](
F ′(y0)−1F (x∗)

)(
F ′(x∗)−1F (x0)

)
+
[

1
4
(
F ′(x0)−1F (x∗)

)(
F ′(x∗)−1(F ′(y0)− F ′(x∗)) + F ′(x∗)−1(F ′(x∗)− F ′(x0))

)
×
(
F ′(y0)−1F ′(x∗)

)
F ′(x∗)−1 + 1

2

((
F ′(x0)−1F (x∗)

)(
F ′(x∗)−1(F ′(y0)− F ′(x∗))

+ F ′(x∗)−1(F ′(x∗)− F ′(x0))
)(
F ′(y0)−1F ′(x∗)

)
F ′(x∗)

)2]1
2
(
F ′(x0)−1F ′(x∗)−1

)
×
(
F ′(x∗)−1F ′(y0) + F ′(x∗)−1F ′(x0)

)(
F ′(y0)−1F (x∗)

)(
F ′(x∗)−1F (x0)

)
.

(26)
Then, using the triangle inequality in (26), (7), (9), (20), (22) (for x0 = x0 and x0 = y0), (24)
and (25), we get in turn that

‖x1 − x∗‖ ≤
L‖x0 − x∗‖2

2(1− L0(‖x0 − x∗‖))
+
L0M

(
‖x0 − x∗‖+ ‖y0 − x∗‖

)
‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)(1− L0‖y0 − x∗‖)

+
[
L0
(
‖x0 − x∗‖+ ‖y0 − x∗‖

)
‖x0 − x∗‖

4(1− L0‖x0 − x∗‖)(1− L0‖y0 − x∗‖)

+ 1
2

L0
(
‖x0 − x∗‖+ ‖y0 − x∗‖

)
‖x0 − x∗‖

(1− L0‖x0 − x∗‖)(1− L0‖y0 − x∗‖)

2 ]
M2‖x0 − x∗‖

(1− L0‖x0 − x∗‖)(1− L0‖y0 − x∗‖)
≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(27)
which shows (17) for n = 0 and x1 ∈ U(x∗, T ). Notice that by the definition of the method
(3), x1 = z0(x0) and all iterates zj(x0), j = 1, 2, · · · , s are well defined. Then, we have by
the third sub step of method (3) for n = 0

‖z1(x0)− x∗‖ ≤ ‖z0(x0)− x∗‖+ ‖H2(x0)A(x0)F ′(x∗)‖M‖z0(x0)− x∗‖
= (1 +M‖H2(x0)A(x0)F ′(x∗)‖)‖z0(x0)− x∗‖.

(28)

We need an upper bound on the norm inside (28). It follows from the definition of A, H2 and
(27) that

‖H2(x0)A(x0)F ′(x∗)‖ ≤ 1
2

( 1
1− L0‖x0 − x∗‖

+ 1
1− L0‖y0 − x∗‖

)
(‖I‖+ ‖I − u(x0)‖)

≤ 1
1− L0‖x0 − x∗‖

(
1 +

∥∥∥F ′(xn)−1(F ′(xn)− F ′(yn))
∥∥∥)

≤ 1
1− L0‖x0 − x∗‖

(
1 +

L0
(
‖x0 − x∗‖+ ‖y0 − x∗‖

)
1− L0‖x0 − x∗‖

)

≤ 1
1− L0‖x0 − x∗‖

(
1 +

L0
(
1 + g1(‖x0 − x∗‖)‖x0 − x∗‖

)
1− L0‖x0 − x∗‖

)

≤ p(‖x0 − x∗‖)
M

.

(29)
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Using (28) and (29), we get that

‖z1(x0)− x∗‖ ≤
(
1 + p(‖x0 − x∗‖)

)
‖z0(x0)− x∗‖

≤
(
1 + p(‖x0 − x∗‖)

)
g2(‖x0 − x∗‖)‖x0 − x∗‖

= q1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(30)

so z1(x0) ∈ U(x∗, r) and (18) for n = 0 and j = 1. In an analogous way by using
zj(x0), zj−1(x0) instead of z1(x0), z0(x0) in (28) and (29), we get that (18) holds for n = 0
and j = 1, 2, . . . , s. Hence, x2 is well defined in x2 ∈ U(x∗, r) and by (18) and the definition
of the method (3) ‖x2 − x1‖ ≤ ‖x1 − x∗‖. Continuing in this way, we arrive at the estimates
(16) –(18) and ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, c = g2(‖x0 − x∗‖) ∈ [0, 1), which shows
xk+1 ∈ U(x∗, r) and lim

k→∞
xk = x∗. Finally, to show the uniqueness part, let y∗ ∈ Ū(x∗, T ) be

such that F (y∗) = 0. Set Q =
∫ 1

0 F
′ (x∗ + θ(y∗ − x∗)) dθ. Then, using (12), we get that

∥∥∥F ′(x∗)−1(Q− F ′(x∗))
∥∥∥ ≤ L0

∫ 1

0
θ‖x∗ − y∗‖dθ = L0

2 T < 1. (31)

Hence, Q−1 ∈ L(Y, X). Then, in view of the identity F (y∗) − F (x∗) = Q(y∗ − x∗), we
conclude that x∗ = y∗. �
Remark

(a) In view of (12) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗) + F ′(x∗))‖

≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖

≤ 1 + L0‖x0 − x∗‖,

condition (14) can be dropped and M can be replaced by

M = M(t) = 1 + L0t

or M = 2, since t ∈ [0, 1
L0

).

(b) The radius r1 was shown in [5, 6] to be the convergence radius for Newton’s method under
conditions (12) and (13). It follows from (5) and the definition of r1 that the convergence
radius r of the method (2) cannot be larger than the convergence radius r1 of the second
order Newton’s method. As already noted in [5, 6], r1 is at least as large as the convergence
ball give by Rheinboldt [13]

rR = 2
3L.

In particular, for L0 < L we have that

rR < r1

and
rR

r1
→ 1

3 as
L0

L
→ 0.
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That is our convergence ball r1 is at most three times larger than Rheinboldt’s. The same
value for rR given by Traub [14].

(c) It is worth noticing that method (2) is not changing if we use the conditions of Theorem 1
instead of the stronger conditions given in [1]. Moreover, for the error bounds in practice
we can use the computational order of convergence (COC) [9]

ξ =
ln‖xn+2−x∗‖
‖xn+1−x∗‖

ln‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . . (32)

or the approximate computational order of convergence (ACOC) [9]

ξ∗ =
ln‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . . (33)

This way we obtain in practice the order of convergence in a way that avoids the bounds
involving estimates higher than the first Fréchet derivative. Notice that the evaluation of ξ∗

does not require that the usage of the solution x∗.

(d) If s = 0 and r = min{r1, r2}, then the results of Theorem 1 hold for method (2) replacing
method (3) (except (18)).

Numerical example and applications

In this section, we shall check the effectiveness and validity of our theoretical results which
we have presented in section 2 on the scheme proposed by Babajee et al. [1]. For this purpose,
we shall choose a variety of nonlinear equations and system of nonlinear equations which are
mentioned in the following examples including motivational example. At this point, we will
choose the following methods

yn = xn −
2
3F
′(xn)−1F (xn),

xn+1 = G4th HM = xn −H1(xn)A(xn)F (xn),
z(xn) = F ′(xn)−1F ′(yn),

H1(xn) = I − 1
4
(
z(xn)− I

)
+ 1

2
(
z(xn)− I

)2
,

A(xn) = 1
2
(
F ′(xn)−1 + F ′(yn)−1

)
(34)



yn = xn −
2
3F
′(xn)−1F (xn),

zn = xn −H1(xn)A(xn)F (xn),
xn+1 = zn −H2(xn)A(xn)F (zn),

H2(xn) = 2I − F ′(xn)−1F ′(yn)

(35)

and 

yn = xn −
2
3F
′(xn)−1F (xn),

zn = xn −H1(xn)A(xn)F (xn),
wn = zn −H2(xn)A(xn)F (zn),

xn+1 = wn −H2(xn)A(xn)F (wn),

(36)
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having convergence order of p = 4, p = 6 and p = 8 which can be deduced by using s = 0,
s = 1 and s = 2, respectively. For computational point of view, we denoted them by M1, M2
and M3, respectively.

First of all, we shall calculate the values of rR, r1, rA, r2, rqs and r which are displayed in
the Tables 1, 3, 5, 6. So, we can obtain the radius of convergence of the above mentioned
methods. Then, we will also verify the theoretical order of convergence of these methods for
scalar equations on the basis of the results obtain from computational order of convergence

and
∣∣∣∣ en

ep
n−1

∣∣∣∣ (where p is either p = 4, 6 or p = 8). In the Tables 2, 4 and 7, we displayed the

number of iteration indexes (n), approximated zeros (xn), residual error of the corresponding

function (|F (xn)|), errors |en| (where en = xn − x∗),
∣∣∣∣ en

ep
n−1

∣∣∣∣ and the asymptotic error constant

η = lim
n→∞

∣∣∣∣∣ en

ep
n−1

∣∣∣∣∣. In addition, we calculate the computational order of convergence by using

the above formulas (32) and (33). Moreover, we calculate the computational order of conver-
gence, asymptotic error constant and other constants up to several number of significant digits
(minimum 1000 significant digits) to minimize the round off error.

In the context of system of nonlinear equations, we also consider a nonlinear system in example
3 to check the proposed theoretical results for nonlinear system. In this regards, we displayed
the number of iteration indexes (n), residual error of the corresponding function (‖F (xn)‖),

errors ‖en‖ (where en = xn−x∗),
∥∥∥∥ en

ep
n−1

∥∥∥∥ and the asymptotic error constant η = lim
n→∞

∥∥∥∥∥ en

ep
n−1

∥∥∥∥∥ in

the Table 7. Moreover, we use the above mentioned formulas namely, (32) and (33) to calculate
the computational order of convergence to further verifying the theoretical order of convergence
of nonlinear system.

As we mentioned in the earlier paragraph that we calculate the values of all the constants and
functional residuals up to several number of significant digits but due to the limited paper space,
we display the values of xn up to 15 significant digits and the values of other constants namely,

rR, r1, rA, r2, rqs , r, ξ(COC),
∣∣∣∣ en

ep
n−1

∣∣∣∣ , η and
∥∥∥∥ en

ep
n−1

∥∥∥∥ are up to 5 significant digits. Further, the

residual error in the function/system of nonlinear functions (|F (xn)| or ‖F (xn)‖), and the error
|en| or ‖en‖ are display up to 2 significant digits with exponent power which are mentioned in
the following Tables corresponding to the test function. However, minimum 1000 significant
digits are available with us for every value.

Furthermore, we consider the approximated zero of test functions when the exact zero is not
available, which is corrected up to 1000 significant digits to calculate ‖xn − x∗‖. For the
computer programming, all computations have been performed using the programming package
Mathematica 9 with multiple precision arithmetic. In addition, the meaning of ae(±b) is
a× 10±b in the tables 1–7.

Example 1 Let S = R, D = [−1, 1], x∗ = 0 and define function F on D by

F (x) = sin x. (37)

Then, we get L0 = L = 1 and M = 1. We calculate the different values of the radius of
convergence, COC (ξ) etc., which are displayed in the following Tables 1 and 2.
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Table 1: Different values of parameters which satisfy Theorem 1

Cases rR r1 rA r2 rqs r
M1 0.66667 0.44444 0.66667 0.33913 0.19871 0.19871
M2 0.66667 0.44444 0.66667 0.33913 0.097223 0.097223
M3 0.66667 0.44444 0.66667 0.33913 0.0401905 0.0401905

Table 2: Convergence behavior of different cases on example 1

Cases n xn |F (xn)| |en| ξ
∣∣∣ en

ep
n−1

∣∣∣ η

M1

0 0.15 1.5e(−1) 1.5e(−1)
1 4.22751609372639e(−6) 4.2e(−6) 4.2e(−6) 8.3497e(−3) 2.2442e(−7)
2 7.16819456281920e(−29) 7.2e(−29) 7.2e(−29) 5.0045 2.2442e(−7)

M2

0 0.070 7.0e(−2) 7.0e(−2)
1 −7.42990061829384e(−11) 7.4e(−11) 7.4e(−11) 6.3153e(−4) 6.5738e(−13)
2 1.10589328064363e(−73) 1.1e(−73) 1.1e(−73) 7.0009 6.57738e(−13)

M3

0 0.020 2.0e(−2) 2.0e(−2)
1 −7.56773592959322e(−19) 7.6e(−19) 7.6e(−19) 2.9561e(−5) 1.1160e(−21)
2 1.20053454004807e(−166) 1.2e(−166) 1.2e(−166) 9.0001 1.1160e(−21)

Example 2 Let X = Y = R3, D = Ū(0, 1), v = (x, y, z)T and defined F on D by

F (v) =
(
ex − 1, e− 1

2 y2 + y, z
)T

. (38)

Then the Fréchet-derivative is given by

F ′(v) =

e
x 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that x∗ = (0, 0, 0)T , F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1, L =
1.789572397 and M = 1.7896. Hence, we calculate the different values of the radius of con-
vergence, COC (ξ) etc., which are mentioned in the following Tables 3 and 4.

Table 3: Different values of parameters which satisfy Theorem 1

Cases rR r1 rA r2 rqs r
M1 0.37253 0.15440 0.38269 0.17719 0.067047 0.067047
M2 0.37253 0.15440 0.38269 0.17719 0.0152413 0.0152413
M3 0.37253 0.15440 0.38269 0.17719 0.0023526 0.0023526

Example 3 Let X = Y = C[0, 1], and consider the nonlinear integral equation of Hammerstein-
type defined by

x(s) =
∫ 1

0
G(s, t)x(t)2

2 dt, (39)
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Table 4: Convergence behavior of different cases on example 2

Cases, x0 n ‖F (xn)‖ ‖en‖ ξ
∥∥∥ en

ep
n−1

∥∥∥ η

M1, (0.017, 0.017, 0.018)

0 3.0e(−2) 3.0e(−2)
1 1.4e(−7) 1.4e(−7) 0.17667 1.7584
2 7.5e(−28) 7.5e(−28) 3.8124 1.7584

M2, (0.0022, 0.0022, 0.0023)

0 3.4e(−3) 3.4e(−3)
1 6.4e(−16) 6.4e(−16) 0.19198 5.7481
2 4.1e(−91) 4.1e(−91) 5.8845 5.7481

M3 (0.00022, 0.00022, 0.00023)

0 3.9e(−4) 3.9e(−4)
1 9.9e(−29) 9.9e(−29) 0.19642 18.010
2 1.6e(−223) 1.6e(−223) 7.9202 18.010

where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1] by

G(s, t) =
{

(1− s)t, t ≤ s

s(1− t), s ≤ t.
(40)

The solution x∗(s) = 0 is the same as the solution of equation (1), where operator F :
C[0, 1]→ C[0, 1] is defined by

F (x)(s) = x(s)−
∫ 1

0
G(s, t)x(t)2

2 dt. (41)

Notice that ∥∥∥∥∫ 1

0
G(s, t)dt

∥∥∥∥ ≤ 1
8 . (42)

Then, we have that the Fréchet- derivative is defined by

F ′(x)(y(s)) = y(s)−
∫ 1

0
G(s, t)x(t)dt. (43)

So, we get that F ′(x∗(s)) = I and

∥∥∥F ′(x∗)−1(F ′(x)− F ′(y))
∥∥∥ ≤ 1

8‖x− y‖. (44)

Hence, we can choose L0 = L = 1
8 and M = 2. We calculate the different values of the radius

of convergence based on the methods, which are mentioned in the following Table 5.

Table 5: Different values of parameters which satisfy Theorem 1

Cases rR r1 rA r2 rqs r
M1 5.3333 1.7778 5.3333 1.0014 0.61000 0.61000
M2 5.3333 1.7778 5.3333 1.0014 0.33700 0.33700
M3 5.3333 1.7778 5.3333 1.0014 0.16848 0.16848

Example 4 Returning back to the motivation example at the introduction on this paper, we have
L = L0 = 14.5, M = 2 and our required zero is x∗ = 1. We calculate the different values of
the radius of convergence, COC (ξ) etc., which are given in the following Tables 6 and 7.
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Table 6: Different values of parameters which satisfy Theorem 1

Cases rR r1 rA r2 rqs r
M1 0.045977 0.015326 0.045977 0.030850 0.002334 0.002334
M2 0.045977 0.015326 0.045977 0.030850 0.000052082 0.000052082
M3 0.045977 0.015326 0.045977 0.030850 1.01954e(−6) 1.01954e(−6)

Table 7: Convergence behavior of different cases on example 4

Cases n xn |F (xn)| |en| ξ
∣∣∣ en

ep
n−1

∣∣∣ η

M1

0 0.318 7.3e(−5) 3.1e(−4)
1 0.318309886198877 3.5e(−12) 1.5e(−11) 1636.0 1615.17
2 0.318309886183791 2.0e(−41) 8.4e(−41) 4.0007 1615.17

M2

0 0.3183 2.3e(−6) 9.9e(−6)
1 0.318309886183791 1.0e(−25) 4.3e(−25) 4.5854e(+5) 4.5825e(+5)
2 0.318309886183791 6.6e(−142) 2.8e(−141) 6.0000 4.5825e(+5)

M3

0 0.3183 2.3e(−6) 9.9e(−6)
1 0.318309886183791 2.8e(−33) 1.2e(−32) 1.3008e(+8) 1.2997e(+8)
2 0.318309886183791 1.2e(−248) 5.1e(−248) 8.0000 1.2997e(+8)

Results and discussion

It is worthy to note that the radii of convergence in the Table 6 are very small. Actually, the
radius of convergence depends on the considered function, corresponding bounds and the body
of structure of the iterative methods. We can see these things in the above Tables 1, 3 and 5
where we obtain better radii of convergence rather than Table 6. In addition, we also want to
check the convergence behavior of the listed methods, when we consider initial approximation
out of the convergence domain which can be seen in the Table 6. So, we can say that the
proposed iterative methods will always converge to the required root whenever we consider
the initial approximation inside of convergence domain however, it is also possible outside the
domain. No doubts, the radius of convergence of the listed scheme is decreasing by increasing
the number of sub-steps. But, we are getting better and faster convergence towards the required
root which can be seen the Tables 2, 4 and 7.
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Abstract 
In this paper, we present a meshless solution of natural convection from the heated cylinder. 
The numerical technique is constructed around Weighted Least Squares approximation that is 
used to evaluate derivatives needed to solve partial differential equations governing the 
problem at hand, i.e. Navier-Stokes, mass continuity, and heat transport. The results are 
presented in terms of temperature and velocity magnitude contour plots, as well as a more 
quantitative comparison with reference data in terms of Nusselt number and maximal velocity 
values. Three different cases are tackled, namely the standard de Vahl Davis case, natural 
convection from the heated cylinder, and cooling of overhead power line due to the natural 
convection under realistic conditions. 

Keywords: Navier-Stokes, MLSM, de Vahl Davis, natural convection, cooling of 
overhead power lines.  

Introduction 

Natural convection from a horizontal cylinder plays a crucial role in many heat transfer 
related problems ranging from heat exchangers, solar heating systems, cooling of electronic 
packages, to cooling of overhead power lines. One of the first studies of convective heat 
transfer from circular cylinders goes back to 1892 when Ayrton and Kilgour investigated the 
thermal emission of thin, long horizontal wires [1]. Several similar experiments followed [2], 
and in 1975 Morgan collected experimental data in a comprehensive review paper [3]. Based 
on the collected data Morgan introduced the correlations between Grashof, Prandtl and 
Nusselt numbers [3]. In other words, he presented relationships between the power of cooling 
in dependence on the material properties and the temperature difference between the cylinder 
and the ambient, which still serve as a basis in operative models for predicting the 
temperature of overhead power lines [4, 5]. There are many other similar studies where 
authors investigate the heat transfer from the heated cylinder due to the natural or forced 
convection under different conditions [2, 6, 7].  
 
Probably the most famous article on the numerical investigation of natural convection was 
published in 1983 by de Vahl Davis [8], who defined and solved a reference solution for 
natural convection of air in a closed rectangular cavity with differentially heated vertical and 
isolated horizontal walls. Many researchers followed his paper and solved proposed 
benchmark case with different numerical techniques [9, 10], gradually establishing high 
confidence in the numerical solution. Similar benchmark case for the natural convection 
around the homogeneously heated cylinder was introduced in 1992 by Demirdžić, et al. [11], 
again researchers responded with different numerical solutions [12].  
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Although numerical methods such as the Finite Volume Method, Finite Difference Method, or 
the Finite Element Method are typically used for solving natural convection problems, there 
has been also a considerable research done in an alternative meshless solution [13-15], which 
appeared in the seventies with Smoothed Particles Hydrodynamics (SPH) [16]. The SPH is an 
answer for attacking problems, where mesh-based methods fail entirely, e.g. breaking waves, 
however, at the cost of inconsistency due to the combination of Eulerian kernel and 
Lagrangian description of motion. Nevertheless, since the introduction of SPH a myriad of 
different strong and weak form meshless methods appeared [17]. The conceptual difference 
between meshless methods and mesh-based methods is in the treatment of relations between 
nodes. In the mesh-based techniques the nodes need to be structured into a mesh that covers 
the whole computational domain, while the meshless methods do not require any special 
relations between nodes and can be fully defined only through the relative inter nodal 
positions [18]. An immediate consequence of such simplification is greater generality 
regarding the approximation and the position of computational points and much higher 
flexibility in implementation.  
 
In this paper, we present a local meshless solution that is based on Weighted Least Squares 
approximation of a natural convection problem in three scenarios: the de Vahl Davis case, the 
Demirdžić case, and finally the cooling of overhead power line.  
 
The rest of the paper is organized as follows. In section Governing problem the problem is 
introduced in section Meshless solution procedure all the details for implementation of the 
solution procedure are presented, in section Results, the analyses of present study are given, 
and in the last section, paper offers conclusions and guidelines for future work.  

Governing problem 

The physical model for describing natural convection is well-established. The fluid mechanics 
is described with the Naver-Stokes equation, i.e. the Cauchy momentum equation with 
Newtonian stress tensor, and mass continuity, which is coupled with the heat transfer through 
the Boussinesq approximation. The model can be written nicely in the following system of 
partial differential equations   

 0∇⋅ =v ,  (1) 

 ( )( ) P
t

ρ ρ µ∂
+ ∇⋅ = −∇ +∇⋅ ∇ +

∂
v vv v b ,  (2) 

 
( ) ( )( )p

p

c T
c T T

t
ρ ρ λ
∂

+ ∇⋅ = ∇ ⋅ ∇
∂

v ,  (3) 

 [ ]ref1 ( )T T Tρ β= − −b g ,  (4) 

with ( ) ref, , , , , , , , , ,p Tu v P T c Tλ ρ β µv g  and b  standing for velocity, pressure, 
temperature, thermal conductivity, specific heat, gravitational acceleration, density, the 
coefficient of thermal expansion, reference temperature for Boussinesq approximation, 
viscosity and body force, respectively. The natural convection can be characterised by two 
dimensionless numbers 

 
3 2

Ra= T pT cβ ρ
λµ
∆ Ωg

,  (5) 
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 Pr pcµ
λ

= ,  (6) 

referred to as Rayleigh and Prandtl numbers, respectively, where Ω  stands for the domain 
dimension. 

We will consider three cases. First, the de Vahl Davis case to confirm the solution procedure, 
second, the heated cylinder case to demonstrate the flexibility of meshless method regarding 
the geometry, and finally a cooling of the overhead power line by natural convection under 
realistic conditions. The cases differ in geometry, boundary conditions and thermo-physical 
properties. The de Vahl davis case is the most straightforward, since the closed square cavity 
with impermeable no-slip velocity boundary conditions, differentially heated vertical, and 
isolated horizontal walls are considered. The heated cylinder case is a bit more challenging 
due to the irregular geometry introduced by a cylinder in the domain. The last case, the 
cooling of the overhead power line is the most challenging due to realistic conditions and 
presence of velocity Neumann boundary conditions. All three cases are presented in Figure 1. 

 
Figure 1: Geometry and boundary conditions for de Vahl Davis case (left), Demirdžić 

case (middle), and cooling of the overhead power line (right). 

Meshless solution procedure 

Spatial discretization 

Spatial discretization is based on a local approximation of a considered field over the 
overlapping local support domains, i.e. in each node an approximation over a small local sub-
set of neighbouring n  nodes among all nodes N 

 ( )Tˆ( ) ( )
m

i i
i

u bα= =∑p p b p α ,  (7) 

with ( ), , , ,x ym p pα b p  standing for the number of basis functions, approximation 
coefficients, basis functions and the position vector, respectively, is used. Using the same 
number of basis functions as a number of support domain, i.e. n m= , the determination of 
coefficients α  simplifies to solving a system of n  linear equations that result from expressing 
eq. (7) in each support node.  

 ( ) ( )T
ju = =p u b p α ,  (8) 
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jp  are positions of support nodes and u  are values of the considered field in the support 
positions. The above system can be written in a matrix form as  

 =u Bα ,  (9) 

where B  stands for a coefficient matrix with elements ( )ji i jB b= p . Using a higher number 
of support nodes than the number of basis functions, i.e. n m> , a Weighted Least Squares 
(WLS) approximation is used to solve the over-determined problem. In other words a norm 

 ( )( ) ( ) ( )2 T2 ˆ( ) ( )
n

j j j
j

r W u u= − = − −∑ p p p Bα u W Bα u ,  (10) 

is minimized, where W  is a diagonal matrix with elements ( )jj jW W= p  with 

 ( )
2

0

min

expW
pσ

  − 
 = −    

p p
p ,  (11) 

where σ  stands for weight parameter, 0p  for the centre of support domain  and minp  for the 
distance to the first support domain node. The solution can be written in matrix form as  

 ( )0.5 0.5 
+

=α W B W u ,  (12) 

where ( )0.5 +
W B  stand for a Moore–Penrose pseudo inverse. By explicit expression of α  into 

(8) an equation  

 ( ) ( ) ( )( ) ( ) ( )T 0.5 0.5ˆ u
+

= =p b p W p B W p u χ p u ,  (13) 

is obtained, where χ  stand for the shape function. Now, we can apply partial differential 
operator, which is our goal, on the trial function,  

 ( ) ( )ˆ Lu L=p χ p u ,  (14) 

where L stands for a general differential operator. In this paper, we deal with a Navier-Stokes 
equation and therefore only shape functions for Laplace operator and first derivatives are 
needed, which are pre-computed and stored  

 ( ) ( ) ( )( )T 0.5 0.5 x

x
+∂ ∂

=
∂

χ p b p W p B W ,  (15) 

 ( ) ( ) ( )( )T 0.5 0.5 y

y
+∂ ∂

=
∂

χ p b p W p B W ,  (16) 

 ( ) ( ) ( )( )2 T2 0.5 0.5+∇ = ∇χ p b p W p B W ,  (17) 

The presented formulation is convenient for implementation since most of the complex 
operations, i.e. finding support nodes and building shape functions, are performed only when 
nodal topology changes. In the main simulation, the pre-computed shape functions are then 
convoluted with the vector of field values in the support to evaluate the desired operator. We 
will refer to this approach as to the Meshless Local Strong Form Method (MLSM) in further 
discussions.  

Positioning of computational nodes 

The presented MLSM approach can be understood as a generalisation of FDM. Despite its 
simplicity it offers many possibilities for treating challenging cases, e.g. nodal adaptivity to 
address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in 
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physical field. Furthermore, the stability versus computation complexity and accuracy can be 
regulated merely by changing a number of support nodes, etc. In this paper, we will exploit 
the generality to solve the problem in an irregular domain. Although the above formulation 
does not need an exact mesh, it is expected that using regularly distributed nodes lead to more 
accurate and stable results [18-20]. Therefore, despite seeming robustness of meshless 
methods regarding the nodal distribution, a certain effort has to be invested into the 
positioning of the nodes [21], with the ultimate goal to maximize stability and accuracy and 
retain the generality of the meshless principle. A possible approach to achieve that is to 
distribute nodes with a straightforward algorithm based on Poisson Disc Sampling. Such 
algorithms have been already used in a meshless context [22] and will also be used here. The 
general idea is to put a seed node randomly within the domain. Then, add new nodes on a 
circle with centre in the seed node and radius supplied as a desired nodal density parameter rδ  
where  the value of rδ  represents the desired distance between nodes. In the next iteration 
one of the newly added nodes is selected as the new seed node and the procedure repeats. 
Example of nodes positioned within the domain that will be tackled in numerical examples 
with the Poisson Disk Sampling algorithm is depicted in Figure 2. 

 
Figure 2: Nodes positioned with a Posisson Disk Sampling algorithm. 

 

Solution procedure 

Each time step begins with computing new intermediate velocity from the equation (2) 
without pressure term with explicit Euler’s method. Since the intermediate velocity does not 
satisfy equation (1), a Poisson pressure correction equation  

 2 corr iterp
t
ρ

∇ = ∇⋅
∆

v ,  (18) 

where t∆  stand for time step and iterv  for intermediate velocity, is solved with following 
boundary condition 

 ( )ˆ
corr

iter BCt p
nρ

∆ ∂
= −

∂
n v v ,  (19) 

where n̂  stands for the outside unit normal vector.  The pressure Poisson equation is, at given 
boundary conditions, defined only up to a constant and to avoid instabilities a unique solution 
is enforced with an additional condition, also referred to as a regularization 

The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
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 0pd
Ω

Ω =∫ .  (20) 

Once the pressure correction is known, a velocity is corrected accordingly 

 corr corrt P
ρ
∆

= − ∇v .  (21) 

Finally, the equation (3) is solved, again with Euler method.  

Results 

De Vahl Davis benchmark case 

De Vahl Davis investigated natural convection of air with Pr 0.71=  up to 6Ra=10  in his 
original paper. However, more intense solutions followed with the most volatile case of 

8Ra=10 . Here, we focus only on the 8Ra=10 case. Results are presented in terms of 
temperature and velocity magnitude contour plots in Figure 3. A more quantitative result is 
shown in Figure 4, where a hot side Nusselt number and maximal vertical cross-section 
velocity with respect to the number of nodes used are compared against reference solutions 
[23] (a), [9] (b) and [10] (c). It can be clearly seen that the solutions of MLSM approach 
converge towards values that are within the dispersion of the reference solutions and we can 
conclude that the presented solution procedure can handle intense natural convection cases on 
regular nodal distributions.  

 
Figure 3: Temperature (left) and velocity maginute (right) contour plots for de Vahl 

Davis case at Ra=108. 

 
Figure 4:  Average hot side Nussulet number (left) and maximal vertical velocity (right) 

with respect to the number of used nodes N  for 8Ra 10=  case. 
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Heated cylinder case benchmark case 

In a next case, the natural convection from a cylinder whose wall is maintained at a constant 
temperature HT , enclosed by a square duct with vertical walls kept at constant temperature, 
and horizontal walls assumed adiabatic, is considered. The cylinder centre is displaced from 
the duct centre vertically for 10%, and its radius is 20% of domain height. The temperature 
and velocity magnitude contour plots computed by MLSM approach are presented in Figure 
5. Furthermore, in Figure 6 MLSM solution is compared against reference data [11] in terms 
of isotherms and cold side Nusselt number. We can observe that the MLSM solution agrees 
well with the data provided by Demirdžić, et al. 

 
Figure 5: Temperature (left) and velocity maginute (right) contour plots for Demirdžić 

case. 

 
Figure 6: Comparison between MLSM solution and data from [11] in terms of  

isotherms (left) and cold side Nusselt number (right). 

Cooling of overhead power line case 

In the last numerical example, we examine a cooling of the overhead power line by natural 
convection.  The problem is very similar to the previous one, with the main difference in a top 
boundary condition, where instead of confined cavity an open domain is assumed. Besides, 
the thermo-physical properties of real materials are considered and not dimensionless 
characterisation as in previous two examples. The power line 490-AL1/64-ST1A with radius 
1.33 cm is positioned in the centre of in 5x5 cm square domain, and the air is modelled with 
following properties: 31.29kg/mρ = , 1005J/kgKpc = , 0.00367β = , thermal conductivity 
modelled as 
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 2 5 8 22.368 10 7.23 10 2.76 0 W3 1
mKa T Tλ − − −  = ⋅ + ⋅ − ⋅   

, (22) 

and viscosity modelled as 

 ( ) [ ]2 5 2 617.239 4.635 10 2.03 10 10 Pa sT Tµ − − −= + ⋅ − ⋅ ⋅ . (23) 

First, the temperature and velocity magnitude contour plots for 0 CCT °=  80 CHT °=  are 
presented in Figure 7. In a next analysis (Figure 8) we compare the power of convective 
cooling computed by presented MLSM solution procedure against two leading standards, 
namely CIGRE [4] and IEEE [5]. Although the agreement is not perfect, we are satisfied with 
the results. It is essential to understand that CIGRE and IEEE computations rely only on 
empirical relations, while the MLSM solution uses solely physical model and thermo-physical 
properties of air. 

 
Figure 7: Temperature (left) and velocity maginute (right) contour plots for cooling of 

overhead power line case at skin temperature 80 C° . 

 
Figure 8: Power of convective cooling with respect to the difference between the skin 

temperature and ambiental temperature ( H CT T T∆ = − ) . 
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Conclusions 

In this paper, we demonstrated the usability of the meshless method in solving the natural 
convection from a heated cylinder. First, we established some confidence in the solution 
procedure by solving the standard de Vahl Davis case on the regular nodal distributions. Next, 
we attacked a bit more complicated case of natural convection in the irregular domain. As for 
the last numerical example, we demonstrated the simulation of cooling of the overhead power 
line by natural convection.  
 
In all presented cases the results computed with MLSM are in good agreement with the 
reference data. In the future work we would like to present also a coordinate free 
implementation of MLSM and compare its performance with more established numerical 
libraries. 
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Abstract 

Compared with tetrahedron elements, hexahedron elements are preferred for its high accuracy. 

However, coordinate mapping required in the hexahedron elements of FEM formulation costs 

huge running time, leading to poor performance. Besides, the high quality of Jacobian matrix 

and mesh is required, which affects the accuracy of the strain results greatly. In order to solve 

these problems, we propose a novel simplified integration technique based on smoothed finite 

element method (S-FEM) for the eight-noded hexahedron elements, where coordinate 

mapping is not demanded. The proposed new S-FEM models include: NS-FEM-H8 (using 

node-based smoothing domains) and FS-FEM-H8 (using face-based smoothing domains). In 

the work, we divide a non-triangular face segment of a smoothing domain into two triangular 

sub-segments, since the strain-displacement matrix can be calculated using a summation in 

S-FEM theory instead of the integration in FEM. Then we conduct the Gauss integration 

scheme in each triangular face sub-segment in order to avoid the coordinate mapping in 

quadrilateral face segments. The rest solving algorithm is the same as the standard S-FEM. 

Through intensive numerical examples, our simplified S-FEM-H8 is approved to have the 

following features: (1) the strain energy of simplified NS-FEM-H8 is an upper bound of the 

exact solution; (2) simplified NS-FEM-H8 can overcome the volume locking problems for 

incompressible materials.  

Keywords: eight-noded hexahedron element, coordinate mapping, a novel simplified 

integration technique, S-FEM-H8. 

1. Introduction 

Since the late 1950s, researchers have used the finite element method (FEM) [1] as an 

essential and important tool for the modeling and simulation of practical problems. However, 

when using FEM we encounter some problems, such as overly stiff issues and the significant 

loss of accuracy caused by distortions of the mesh.  

In recent years, a new numerical method-smoothed finite element method (S-FEM) [2][3] is 

presented by G.R. Liu to overcome the disadvantages of the standard FEM, which combines 

the FEM and the mesh-free technique. S-FEM always produces models that are softer than 

FEM and even softer than the exact model. Besides, S-FEM can obtain relative accurate 

strain solutions for the distorted mesh where FEM cannot work.  

In practical problems, engineers prefer to use linear elements since the linear elements can be 
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easily obtained using automatically dividing program. However, the poor accuracy of the 

strain solution is the biggest problem for linear elements. Although FEM based on 

higher-order elements, such as quadrilateral element (Q4) and eight-noded hexahedron 

element (H8), can overcome the shortcoming of poor precision in lower-order elements, the 

coordinate mapping and the strict requirement of the quality of the mesh lead to the limitation 

of the high-order elements.    

To solve the problems, we present a novel simplified integration technique for eight-noded 

hexahedron elements in S-FEM to avoid coordinate mapping. The proposed S-FEM-H8 

includes simplified NS-FEM-H8 and simplified FS-FEM-H8. In order to compute the 

smoothed strain-displacement matrix effectively for smoothing domains, a simplified 

integration technique is also proposed, in which we divide a non-triangular face segment of a 

smoothing domain into two triangular sub-segments. Therefore, the surface integration in the 

S-FEM formulation can be performed without coordinate mapping.   

2. Three-dimensional Smoothed Finite Elements 

2.1 Discretized Linear Algebraic System of Equations 

Standard discretized algebraic system of equations 

fdK
~

  (1) 

where 
0

ndN
d

 
is the vector of nodal displacements for the all nodes in the S-FEM model, 

and K  is the smoothed stiffness matrix given in the general form of 
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The above surface integration along 
s

k
  can be carried out using the Gauss quadrature 

technique. Where 
sn


 is the total number of boundary surfaces 
s

k
  and G

p
x  is the Gauss 

point of the boundary surfaces of 
s

k
 , whose area and outward unit normal are denoted as 

Surf

p
A  and 

ph
n

,
, respectively.  
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When the displacement field along the boundary 
s

k
  is used, four Gauss points are in 

demand to a quadrilateral surface segment. The quadrilateral segment has in general an 

arbitrary shape in the physical coordinate system. When the general procedure is used to 

create the shape functions for Q4 elements, we will meet the problems with the compatibility 

issue. Thus, the formulation of H8 elements for 3D problems requires a coordinate mapping 

procedure which is a cost procedure. 

However, for triangular surface segment, one Gauss point is sufficient for linear element. And 

using directly the physical Cartesian coordinate system Oxy, three shape functions have the 

following forms: 

 ycxba
A

N
jjjSurf

p


6

1
j

    

(5) 

in which subscript j varies from 1 to 3, Surf

p
A  is the area of triangular surface segment, and 

jjj
cba ,,  are constants. It is clear that the strain-displacement matrix 

I
B  for the above 

segment is a constant matrix. And any coordinate mapping is not demanded. 

Hence, we try to employ the advantage of the triangular surface segment to set up a 

simplified S-FEM-H8. 

2.2 3D Simplified FS-FEM-H8 and NS-FEM-H8 

In 3D problems, face-based smoothing domain is the simplest smoothing domain, which is 

created by joining the center points of the two adjacent elements to the four nodes of the face, 

shown in Figure 1(a). Node-based smoothing domain is a little complex, which is constructed 

by successively connecting the middle points of the edges connected to this node and the 

centroids of the faces containing this node, and the centroids of the faces and the center point 

of the element, shown in Figure 1(b). Edge-based smoothing domain is formed by sequentially 

connecting the center point of the element to the two nodes of this edge, the centroids of the 

faces containing the edge to the two nodes of this edge and the centroids of the faces 

containing the edge to the center point of the element, shown in Figure 1(c). 

   

(a) (b) (c) 

Figure 1 (a) a face-based smoothing domain (b) a node-based smoothing domain (c) a edge-based smoothing 

domain 

From Figure 1, it is easily found that the smoothing domain has quadrilateral surface segments 

and triangle surface segments. For quadrilateral surface segments, the coordinate mapping is 

needed to obtain Jacobian matrix when the Gauss integration scheme implements in Eq.         
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(4). For triangular surface segments, such as the surface segments of edge-based smoothing 

domain and triangular surface segments of face-based smoothing domain, because the 

strain-displacement matrix is a constant matrix, no numerical integration is needed to 

compute the elemental stiffness matrix. 

Therefore, in order to avoid the coordinate mapping, we divide a non-triangular surface 

segment of a smoothing domain into two triangular sub-segments to form simplified 

FS-FEM-H8 and simplified NS-FEM-H8, shown in Figure 2. For standard ES-FEM-H8, the 

smoothing surface segments are all triangles, so that we still use the standard ES-FEM-H8. 

  

(a) (b) 

Figure 2 (a) Simplified face-based smoothing domains (FS-FEM-H8) (b) Simplified node-based smoothing 

domains (NS-FEM-H8) 

3. Numerical Example 

Consider a 3D Lame problem consists of a hollow sphere with inner radius a=1m, outer 

radius b=2m and subjected to an internal pressure P=1 N/m
2
. As the problem is spherically 

symmetrical, only one-eighth of the sphere model is shown in Figure 3 and symmetry 

conditions are imposed on the three symmetric planes.  

 
 

(a) (b) 

Figure 3 (a) hollow sphere problem domain and (b) one-eighth model discretized using eight-noded 

hexahedron elements. 

Figure 4 shows that the convergence of the strain energy solution obtained using different 
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methods for the hollow sphere subjected to inner pressure. We can easily find that the strain 

energy of simplified FS-FEM-H8 and NS-FEM-H8 are both more accurate than that of 

FEM-H8. Besides, it confirms the upper bound property on the strain energy of simplified 

NS-FEM-H8 and the lower bound property of simplified FS-FEM-H8 and FEM-H8 for this 

3D problem. Also, the distribution of the radial displacement, radial and tangential stresses 

using FEM-H8, simplified FS-FEM-H8, simplified NS-FEM-H8 and standard ES-FEM-H8 

compared with the analytical solution is presented in Figure 5. 

 
Figure 4 Convergence of the strain energy solution obtained using different methods for the hollow sphere 

subjected to inner pressure. 

  
(a) (b) 

Figure 5 (a) Radial displacement and (b) radial and tangential stresses for the hollow sphere subjected to 

inner pressure. 

Figure 6 plots the error in the displacement norm against Poisson’s ratio changing from 0.4 to 

0.4999999 obtained using eight-noded hexahedron elements. The results show that simplified 

NS-FEM-H8 is naturally immune from volumetric locking, while standard FEM-H8 is 

subjected to volumetric locking, resulting in a drastic accuracy loss in the numerical 

solutions. 
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Figure 6 Displacement norm versus different Poisson’s ratios for the hollow sphere subjected to inner 

pressure. 

 

4. Conclusion  

In the paper, we put forward a simplified NS-FEM-H8 and ES-FEM-H8 to avoid coordinate 

mapping for 3D problems, which can improve the efficiency of the algorithm. At the same 

time, the novel methods can maintain the high accuracy of the higher-order elements. 

Through numerical examples, some main conclusions are presented as follows: 

● The strain energy of simplified NS-FEM-H8 is an upper bound of the exact strain energy, 

while the solutions of simplified FS-FEM-H8 and standard FEM-H8 are upper bound of the 

exact strain energy. 

● For the almost incompressible problems, simplified NS-FEM-H8 has the characteristic of 

simplified integration that is free from volume locking. 
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Abstract 

Fourier transformation is one of the most frequently used operation in data processing. In case 

of discrete data sets the Discrete Fourier Transformation (DFT) algorithm is often applied. As 

the measured data always contain noise, the noise sensitivity of the processing methods is an 

important feature. The noise registered in the time domain is directly transformed into the 

frequency domain. Therefore the traditional discrete variants of Fourier transformation are very 

noise sensitive procedures. In the field of inverse problem theory a variety of numerous 

procedures are available for noise rejection, so if the Fourier transformation is formulated as 

an inverse problem these tools can be used to reduce the noise sensitivity. 

It is well-known from inverse problem theory that simple least square methods give optimal 

results only when data noises follow Gaussian distribution. The practice of geophysical 

inversion shows that the least square solutions are very sensitive to sparsely distributed large 

errors, i.e. outliers in the data set and the estimated model parameters may even be completely 

non-physical. There are various ways to address the question of statistical robustness: the Least 

Absolute Deviation (LAD) method (minimizing the L1 norm of the misfit between the 

observed and predicted data) and the Cauchy weighted Iteratively Reweighted Least Squares 

method are well-known. A more flexible method can be defined by modifying the weights with 

the help of Steiner’s Most Frequent Value method. In the present paper the 2D Fourier 

transformation is handled as robust inverse problem using IRLS algorithm with Cauchy-Steiner 

weights. The discretization of the continuous Fourier spectra is given by a series expansion 

with the scaled Hermite functions as basis functions. The expansion coefficients are determined 

by solving an overdetermined inverse problem. In order to define a quick algorithm in 

calculating the Jacobi matrix of the problem, the special feature that the Hermite functions are 

eigenfunctions of the Fourier transformation was used. It is shown that the method can 

successfully be applyed in the interpretation of geomagnetic data sets measured in 2D arrays. 

There is an important feature of the new inversion based Fourier Transformation: the 

measurement array should not be equidistant along the (x,y) directions. It will be shown in the 

presentation that the method gives accurate results even in the interpretation of geomagnetic 

data measured also in “random walk” measurement array. 

 
Key words: Fourier Transformation, Inversion, Series Expansion, Cauchy Noise, Random walk 

measurement. 

 

 
Introduction 

 

The systematic improvement in geophysical data acquisition over the years demand for more innovative 

data processing methods. Traditional survey designs employ equidistant measurement on a regular grid. 

Unfortunately, measurements are sometimes taken out of grid due to several obstacles encountered in 

the field of survey. This has necessitated the development of methods for the effective processing of 

equal in random-walk geophysical measurements. Fourier transformation is one of the most frequently 
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used operation in data processing. It connects the time domain of signal registration and the frequency 

domain of signal processing. In case of discrete data sets, the DFT algorithm is often applied (Discrete 

Fourier Transformation). As the measured data always contain noise, the noise sensitivity of the 

processing methods is an important feature. The noise registered in the time domain is directly 

transformed into the frequency domain. Therefore, the traditional discrete variants of Fourier 

transformation are very noise sensitive procedures. Dobróka et al. (2015) presented an inversion based 

1D Fourier transformation method (S-IRLS-FT) which proved to be an effective tool for noise 

reduction. The method was generalized to 2D, and an application is presented in solving reduction to 

the pole of the magnetic data set (Dobróka et al., 2017). In this paper, it is shown that the newly 

developed inversion-based Fourier transformation algorithm can also be used in processing non-

equidistant (even in random walk) measurement geometry dataset. 

 

 
Method Development (2D inversion-based Fourier transformation) 

 

The 2D Fourier transform of a function u(x,y) can be calculated by the integral 
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its inverse is given by the formula 
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where x, y are the spatial coordinates, U(ωx,ωy) means the 2D spatial-frequency spectrum and ωx, ωy 

indicate the spatial-angular frequencies. Following a powerful inversion strategy (the so-called series 

expansion-based optimization) developed at the Geophysical Department of the University of Miskolc 

(Gyulai and Szabó 2014, Dobróka et al. 2015), the discretization of the continuous spectrum is written 

in the form of a series expansion, 
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where Ψn,m(ωx,ωy) are frequency dependent basis functions, Bn,m are the expansion coefficients which 

represent the model parameters of the inverse problem. The basis function system should be square 

integrable in the interval (-∞, ∞). The Hermite functions meet this criterion with an additional 

advantage. The determination of Jacobian matrix in an inversion process requires the calculation of a 

complex integral for the interval (-∞, ∞), which is usually a time-consuming process. As it was derived 

by Dobróka et al. (2015) the elements of the Jacobian matrix can be considered as the inverse Fourier 

transformation of the basis function system. Therefore, they can be calculated more easily if the basis 

functions are chosen from the eigenfunctions of the inverse Fourier transformation. It can be shown, 

that the normed and scaled Hermite functions  
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are eigenfunctions of the inverse Fourier transformation and the Jacobian matrix of the inverse problem 

can be written as 
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n H,H denote the non-scaled Hermite functions. Applying Eq. (6) provides a fast solution to 

the forward problem 
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The introduction of single indices instead of double ones (s=k+(l-1)K, i=n+(m-1)N) makes the 

calculations much easier 
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where I=N+(M-1)N=NM is the number of series expansion coefficients, S=K+(L-1)N=KL is the 

maximal number of data. With these simplifications, the deviation of measured and calculated data (es) 

can be calculated as 
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The Iteratively Reweighted Least Squares (IRLS) method is a reliable data processing procedure if the 

data set contains outliers. It can be combined with Cauchy weights, where the scale parameters σ2 have 

to be known a priori. Using the Most Frequent Value method (Steiner 1997), Szegedi and Dobróka 

(2014) proposed the use of Steiner weights because the scale parameters are derived from the statistical 

sample in an inner iteration cycle. To make the Fourier transformation more robust, a new Steiner-

weighted IRLS method (S-IRLS) was introduced where the following weighted norm is minimized 

                                                 2
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where Wss is the s-th Steiner weight. The normal equation for the j-th IRLS step can be written as 
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After reaching the stop criteria, the series expansion coefficients determined in the last iteration step are 

considered the solution of the problem. 

 

Application 

 

To prove the applicability of the 2D robust inversion based S-IRLS FT method, it was tested on 

synthetic magnetic data sets: one was noise-free and the other contained random noise following 

Cauchy distribution. 1089 measurement points were assumed along with a 5 m x 5 m grid which was 

further randomized to obtain non-equidistant measurements. Data were generated for a surface between 

-100 m, and 100 m both in the x and y directions above a ‘CL’ shaped magnetic body (inclination I=63°, 

declination D=3°, magnetization 200 nT). The surface magnetic data were calculated by the 

Kunaratnam (1981) method and was subsequently reduced to the pole (I=90°) by applying the formula 

in the frequency domain 

                                    

                                         )v,u(S)v,u(T)v,u(R  , (12)                                                                       

 

where T(u,v) is the 2D Fourier transform of the magnetic data set, S(u,v) is the frequency domain 

operator of pole reduction and R(u,v) is the reduced data set after the data reduction process. First, the 

reduction to the pole was performed by using conventional DFT algorithm. The map of noiseless 

magnetic data on equidistant grid and its reduced to pole are given in Fig. 1a and Fig.1b, respectively.  

The data was contaminated with Cauchy noise to produce Figure 2a which was reduced to pole using 
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the traditional DFT method. The poor noise reduction capability of the DFT method can be clearly seen 

in Figure 2b. This underlines the need for a new, robust and outlier-resistant Fourier Transformation 

method. 

 

Figure 1 Noise-free data set and the conventional DFT. a) Magnetic map without pole reduction. b) 

Magnetic map reduced to the pole using conventional DFT.  

 

Figure 2 Data set with Cauchy noise and the conventional DFT. a) Magnetic map without pole 

reduction. b) Magnetic map reduced to the pole using conventional DFT.  

Therefore, the magnetic data were processed using the new S-IRLS-FT algorithm instead of traditional 

DFT. The same map of noisy data (Fig. 3a) and its processing result are presented (Fig. 3b). Comparing 

Fig. 2b (the pole reduced map on noisy data set using conventional DFT) and Fig. 3b (the pole reduced 

map on noisy data set using S-IRLS-FT), sufficient improvement can be seen in the processed data 

using S-IRLS-FT method. The traditional DFT left more spikes of Cauchy noise after the pole reduction 

causing artifacts and a possible misinterpretation of magnetic anomalies. The high noise reduction 

capability of the new S-IRLS-FT algorithm is clearly observable. 

 
Figure 3 Data set with Cauchy noise and the new S-IRLS-FT. a) Magnetic map without pole reduction. 

b) Magnetic map reduced to the pole using the new S-IRLS-FT.  

As an important feature of the new inversion-based Fourier Transformation, the measurement array 

should not be equidistant along the (x,y) directions. This is demonstrated in Fig. 4a and 4b. In Fig. 4a, 

(produced from Fig. 1a and same as Fig. 1b) the arrangement of the measurement points was equidistant. 

To generate a highly non-equidistant arrangement, we shifted randomly all the measurement point from 

a)     

a)  b)  

b)  

a)   b)  
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their “regular” place in the sampling interval before the S-IRLS FT method was applied. The result in 

the noise-free case is shown in Fig. 4b., which is similar to Fig. 4a. demonstrating that the method gives 

accurate results even in “random walk” measurements. 

 
Figure 4 Reduction to the pole of noise-free data set. a) Equidistant measurement system. b) Random 

walk measurement system. 

 

Conclusion  

 

The Discrete Fourier Transformation (DFT) is a common data processing method but incorporate some 

level of noise in the transformation process. The introduced 2D S-IRLS-FT method treats the Fourier 

transformation as an inverse problem. The spectrum is discretized by series expansion and the inversion 

problem is solved for the series expansion coefficients by IRLS method using Steiner weights. Taking 

advantage of the good features of Hermite functions described in this paper, they were chosen as basis 

functions making the algorithm quicker. Comparatively, the newly introduced inversion-based Fourier 

transformation algorithm (2D S-IRLS-FT method) has a higher noise rejection capability than the 

traditional DFT Method as demonstrated in reduction to pole of magnetic data. In this paper, it was 

further shown that the inversion-based Fourier transformation algorithm can be effectively used in 

processing data set collected in non-equidistant (even in random walk) measurement geometry. 
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Abstract

Mathematical model has been used extensively in solving engineering problems with singular-

ity. This paper introduces a mesh-free numerical scheme for solving problems with boundary

singularity. The solution of the governing equation is approximated by a class of mesh-free

radial basis functions. The proposed radial basis function is a continuously differentiable, pos-

itive definite and integrable function, it can easily be used to solve higher order of differential

equations. In the vicinity of the singular point, we use a series to approximate the solution.

Then domain decomposition is used to blend the two solutions together.

Keywords: Radial basis functions, singular problem, domain decomposition.

Introduction

The behaviour of many fatigue and fracture mechanics can be modelled as problems with

boundary singularity. Studies of boundary singularity problems can be traced back to Motz

[1] in 1946. The author adopted the classical finite difference scheme together with the re-

laxation method to overcome the discontinuity occurring from the crack tip over the boundary

interface. The solution to the Motz’s problem is singular at the origin and is often used by many

researchers as reference example for testing numerical methods. The Motz’s problem has the

form ∇2u = −f , where f is a specific function. In the vicinity of the singular point, the singu-

lar solutions u can be written as u = ûh + up, where ûh is the homogeneous solution and up is

the particular solution. For the two-dimensional Laplace equations, the homogeneous solution

ûh in the vincinity of the singular points can be found in [2] and is given by the asymtotic series

of the form

uh =
∞∑
i=1

Air
αifi (θ) , r, θ ∈ Ω

over a connected region Ω, where Ai are the unknown expansion coefficients to be determined.

These coefficients are termed as generalized flux intensity factors (GFIFs). The polar coordi-

nates (r, θ) centred at the singular point and (αi, fi) associated with eigen-pairs, where αi is the

power arranged in ascending order as defined by αi ≤ αi+1.

Yosibash et al [3, 4] in 1997 developed a mesh-dependent method derived from the least-square

finite difference scheme for approximating solutions in the vicinity of the singular point and a

conventional finite difference scheme was then applied to the remaining part of the given prob-

lem. Another comprehensive study on crack tip analysis of singularity problems was carried

out by Li [5] using conformal mappings and several types of combined methods.

Recently Rao et al [6] developed an element-free Galerkin method (EFGM) for fracture analysis

of cracks. However, the mathematical formulation is rather complicated and consists of three

components: (i) moving least-squares approximation; (ii) choosing the weight functions and

(iii) variational formulation and discretization. This paper introduces an efficient mesh-free

numerical scheme which is derived from a class of radial basis functions (RBF). The RBF

method possess a simple mathematical formulation and a truly mesh free property, which does
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not require a global mesh for supporting computations. In addition, RBF are continuously

differentiable and integrable, and is insensitive to dimension d. These features make it suitable

for solving problems in higher dimensions with unsmooth boundary conditions.

Meshless Radial Basis Function Method for Solving PDEs

This paper discusses a mesh free approximation scheme based on the radial basis function for

solving the problems with complex boundary conditions and singularities. The RBF methods

have been found to have major advantages over the classical finite element or finite difference

methods. One of these advantages is that it does not require the construction of an underlying

mesh. This allows it to handle complicated boundaries with concave surface more efficiently.

The basic concept of the RBF method is described below.

The RBFs were originally devised for scattered geographical data interpolation by Hardy [7],

who introduced a class of functions called multiquadric functions in the early 1970’s. The basic

idea of the RBF interpolation is to approximate an unknown function, {f(x) : x ∈ Rd} by an

interpolant, say {f̂(x) : x ∈ Rd} at a set of N distinct data points X = {xj : j = 1, 2, · · · , N}.
Let Φ : R+ → R be a set of positive definite basis functions defined by

Φ = {φ (‖x− xj‖)} , x,xj ∈ Rd

on a fixed space Rd. Here φ(‖x− xj‖) refers to a typical type of RBFs that is solely dependent

on the Euclidean distance between x and a fixed point xj ∈ Rd. The RBF interpolant to the

approximated solution of f(x) can be expressed as a finite linear combination of φ (‖x− xj‖) :

f̂(x) =
N∑
j=1

αjφ(‖x− xj‖), x,xj ∈ Rd, (1)

where {αj : j = 1, 2, · · · , N} are the unknown coefficients, which can be determined by setting

the following condition:

f̂(xi) = f(xi), i = 1, 2, . . . , N. (2)

This yields a system of linear equations, which can be expressed in the following matrix form

[Aφ] ~α =
−→
F , (3)

where [Aφ] = [φ(xi − xj)]1≤i,j≤N is an N × N matrix, ~α = [α1, α2, . . . , αN ]T and
−→
F =

[f(x1), f(x2), . . . , f(xN)]T are N × 1 column matrices. Provided that the chosen radial basis

function φ ∈ Rd is positive definite, the matrix [Aφ] is non-singular so the linear system (3)

has a unique solution. The unknown coefficients {αj} can be obtained uniquely by solving the

linear system (3).

Although the above-mentioned condition guarantees the uniqueness of some particular RBF

interpolants, not all RBFs can satisfy the conditions of positive definiteness. A general theory on

the existence, uniqueness and convergence of the RBFs interpolation was proven by Micchelli

[8] in 1986. In accordance with the Micchelli’s result, Powell [9], Madych et al [10] and Wu et

al [11] extended the study and deduced some important non-singularity properties of the RBF

interpolation. Their analysis concluded that the RBF interpolation method possess a super-

convergent property and truly mesh-free algorithm. The RBF method has been demonstrated

to be highly flexible for the approximation of high spatial dimensional problems. The accuracy

of the RBF interpolant has an order of convergence O
(
hd+1

)
, where h is the density of the
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collocation points and d is the spatial dimension.

Many of RBF ideas can be easily generalized to the case where the basis function φ is only

conditionally positive definite [12] in which one needs to add a finite number of polynomial

of suitable degree to the interpolant f̂(x) in equation (1) and impose additional conditions to

accomplish its uniqueness. Let Qd
m(x) ∈ Πm where Πm is a set of d-variate polynomials of

degree less than m. The RBF interpolant ŷ(x) is now written as

f̂(x) =

N∑
j=1

αjφ(||x− xj||) +Qd
m(x), x ∈ Rd, 0 < m < N, (4)

where

Qd
m(x) =

L∑
k=1

bkpk(x), L =
(m+ d− 1)!

(m− 1)!d!
.

The terms {pk(x)| k = 1, 2, · · · , L} are the basis of Qd
m(x). The approximation function of (4)

has a unique solution if the system satisfies the conditions (2) and the following constraints

N∑
j=1

αjpk(xj) = 0, k = 1, 2, · · · , L. (5)

Note that, in this case, the matrix [Aφ] is enlarged to order (N + L)× (N + L) , and −→α and
−→
Y

are (N + L)× 1 column matrices. Although there are many possible radial basis functions, the

followings are the most popular choices:

φ(rj) =



r3j Cubic (a)
(r2j ) log rj, Thin plate splines in R2 (b)

e−σr
2
j , Gaussian, σ > 0 (c)

(r2j + δ2)
1
2 , Multiquadric, δ ∈ R (d)

(r2j + δ2)−
1
2 , Reciprocal multiquadric, δ ∈ R (e)

(6)

where {rj = ‖x− xj‖ | j = 1, 2, · · · , N} is the Euclidean distance between x and xj ∈ Rd
and δ2 ∈ R is the shape parameter of the multiquadric functions in (d) & (e), which is used

to control the fitting of a smooth surface to the data. These functions are globally supported

and will generate a system of equations with a full matrix. However, as shown by Madych and

Nelson [13], the multiquadric function (MQ-RBF) can be exponentially convergent so we can

often use a relatively small number of basis elements to achieve a computational efficiency. As

a consequence, the MQ-RBF method has been the most commonly used has been radial basis

function and progressively refined recently by Kansa [14] and widely used by Hon et al [15]

and Wong et al [16] to solve scientific and engineering problems. Their results from solving

elliptic, parabolic and hyperbolic problems were shown to be better than other well established

approximation methods.

The Algorithm

To study the performance of the proposed method, we apply it to solve a classical re-entrant

corner problem. Re-entrant corner problem possesses a typical nature of singularity of solution,

the singular point occurs at the origin forming an angle of γπ which would result discontinu-

ity. The model involves the Laplace equation satisfying some mixed Neumann and Dirichlet
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Figure 1: A region with an re-antrance angle.

boundary conditions. The re-entrant corner with the L-shaped domain as depicted in Figure (1),

is a special case in which, γ = 3
2
π at the origin.

The governing equation is:

∇2f = 0 (7)

and the boundary conditions are dipicted in the figure. We then divide the region into three

as shown in the figure. Ω1 is the region that is far away from the corner and Ω3 is the region

close to the the corner. Ω2 is the region between Ω1 and Ω3. We are going to use a radial basis

function to approximate the solution in Ω1 and Ω2 and the series solution to approximate the

solution in Ω2 and Ω3.

Let X1 = {xi|i = 1, .., N1} be nodes in Ω1, X2 = {xi|i = N1 + 1, .., N1 +N2} be nodes on the

boundary Γ in the figure, X3 = {xi|i = N1 + N2 + 1, .., N1 + N2 + N3} be nodes in Ω2. We

now use these N(= N1 +N2 +N3) nodes in forming the approximation of the solution:

frbf (x) =
N∑
j=1

ajφ(||x− xj||) +
M∑
j=1

bjpj(x), x ∈ Rd, 0 < M < N.

For solution close to the re-entrancc corner, we would approximate the solution using the series

solution:

fseries(r, θ) =
P∑
i=1

cir
2
3
(i−1) cos

[
2

3
(i− 1) θ

]
, − 3π/2 ≤ θ ≤ 0. (8)

ICCM2018, 6th-10th August 2018, Rome, Italy

911



For each of the node in X1, we would set up an equation according to (7), so we have N1
equations for them: [

A B
] [ a

b

]
= [0] , (9)

where A is an N1 × N matrix, B is an N1 ×M matrix, a is an N × 1 matrix, b is an M × 1
matrix, and

{A}ij = ∇2φ(||x− xj||)
∣∣
x=xi

,

{B}ij = ∇2pj(x)
∣∣
x=xi

,

[a] = {a1, ..., aN}T ,
[b] = {b1, ..., bM}T .

Let the boundary condition be specified as:

Bou(f) = v(x), for x ∈ Γ, (10)

where Bou is the boundary condition operator and v(x) is the prescribed boundary condition.

So for each node in X2, we would set up an equation according to (10):

[
C D

] [ a
b

]
= [d] , (11)

where C is an N2 ×N matrix, D is an N2 ×M matrix, and

{C}ij = bou(φ(||x− xj||))|x=xi+N1 ,
{D}ij = bou(pi(x))|x=xi+N1 ,

[d] = {v(x1+N1), ..., v(xN2+N1)}T .

For nodes in X3 we would we would set up an equation so that the radial basis solution equals

to that of the series solution:

[
E F G

]  a
b
c

 = [0], (12)

where E is an N3 ×N matrix, F is an N3 ×M matrix, E is an N3 × P matrix, and

{E}ij = ∇2φ(||x− xj||)
∣∣
x=xi+N1+N2

,

{F}ij = ∇2pj(x)
∣∣
x=xi+N1+N2

,

{G}ij = −r 23 (j−1) cos

[
2

3
(j − 1) θ

]∣∣∣∣
r=ri+N1+N2 ,θ=θi+N1+N2

,

[c] = {c1, ...., cP}.

Then, we select additional nodes X4 = {xN1+N2+N3+1, ....xN1+N2+N3+N4} in Ω2 so that N4 >
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P , we would then use the least square method to set up the last P equations. First we find the

sum of square of differences between the radial basis function and the series solution at nodes

in X4:

S =

N4∑
j=1

(frbf (x)− fseries(r, θ))2 .

Then, we would set up one equation for each of

∂S

∂ci
= 0, for i = 1, ..., P. (13)

In matrix form, (13) is:

[
KTH KTJ KTK

]  a
b
c

 = [0], (14)

where H is an N4 ×N matrix, J is an N4 ×N matrix, K is an N4 × P matrix, and

{H}ij = ∇2φ(||x− xj||)
∣∣
x=xi+N1+N2+N3

,

{J}ij = ∇2pj(x)
∣∣
x=xi+N1+N2+N3

,

{K}ij = −r 23 (j−1) cos

[
2

3
(j − 1) θ

]∣∣∣∣
r=ri+N1+N2+N3 ,θ=θi+N1+N2+N3

.

We can then combine all the equations (9), (11), (12) and (14), we have the following system

LP = Q, (15)

where

L =


A B 0
C D 0
E F G

KTH KTJ KTK

 ,P =

 a
b
c

 , and Q =


0
d
0
0

 .
The solution of P from (15) can be obtained by

P = L−1Q.

Numerical Results

The numerical results from the proposed scheme are compared with that obtained by Yosibash

[3], who produced the value of Ai by using finite element method. The computational results

for u′s were generated 342 collocation points over the domain Ωu. Table 1 analyses the first

four intensity factors c1, c2, c3 and c4 of the series expression (8).
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Table 1

Intensity factors Results from Yosibash [3] Results from MQ-RBF Method

c1 0.6667 0.6676
c2 −0.4520 −0.4514
c3 −0.2149 −0.2139
c4 0.0000 4.1516× 10−5

The maximum relative errors of the approximate results is 5.30E-02 when comparing to the

global solution obtained from series expansion. The small magnitude of relative errors reflects

the proposed radial basis function method to produce a reasonable degree of accuracy. Figure

2 shows the predicted results over Ωu of the underlying problem. The smooth distribution

indicates a good performance of using the RBF method in the given model.

Figure 2: Predicted result of u(x, y) over the L-sharp region.

From the numerical experience, we observed that the results of MQ-RBF method appear to

have a same order of magnitude as those results achieved by Yosibash [3], where the authors

reported that their first four coefficients are accurate up to the shown 4 decimal places. Our

results indicates that the RBF method combined with overlapping domain decomposition is not

only an efficiency scheme, it also produced a high level of accurate approximation. The present

scheme has been shown to be very effective to overcome the shortcoming of RBF method as

mentioned above.

Conclusions

In summary, the MQ-RBF method used in this paper is type of globally supported functions.

The disadvantage of such global RBF is that the result in a full matrix which is computation-

ally expensive and may cause instability if the matrix is ill-conditioned, which has seriously

hindered its ability from solving large scale problem with a large number of nodal points. This

shortcoming leads to the studies of domain decomposition scheme. The combination of RBF

scheme and domain decomposition has been verified to be a very effective technique to over-

come this shortcoming of RBF method. The overlapping domain decomposition scheme used

in this paper is specially designed to overcome the discontinuity of the solution near the singular

point. The special region which covers the singular point, is small and Ω12 is common region

to both Ω1 and Ω2.
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On the other hand, the RBF method possesses a number of attractive properties. The greatest

attractive properties are the mesh free configuration and the simple mathematical formulation,

these properties make the RBF method more flexible in coupling with other remedial numerical

schemes. In this paper, we would easily incorporate the domain decomposition and least square

approximation scheme with RBF. We showed that the least square approximation with MQ-RBF

lead to a small numerical discrepancy in the numerical experiments.

We have illustrated the efficiency of the proposed scheme. However, the scheme can be applied

to any elliptic problems with boundary singularity, provided that the solution in the vicinity

of the singular point in the form of asymtotic series expansion has been known explicitly. In

addition, since the RBF method is insensitive to the dimension of the problem, the scheme can

be used to solve higher dimensional problems.
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Abstract 

The integration of adaptive elements to buildings might reduce significant amounts of material 
and energy. Load-bearing structures are extremely oversized for the predominant period of use. 
If it is possible to dampen the stress peaks, significant quantities of building materials could be 
saved.  
As a result, the overarching objective is to enable material savings through the deployment of 
energy when required and to anticipate such an approach in early design through computational 
processes. For adaptivity, almost all design and form-finding methods embedded in the 
planning process require completely new exploration and development. 
A building with adaptive qualities has no constant properties. Therefore, such structures can’t 
be designed with the usual design methods. The related knowledge and components from 
mechanical and aerospace engineering need to be transferred, adapted, and redeveloped, since 
the building industry lacks the experience of adaptive qualities.  
Furthermore, this means an increase in the number of disciplines participating in the planning 
process. 
This Paper presents insight in the ongoing process of building a twelve story tower with 
adaptive qualities by an interdisciplinary research team from the fields of architecture, 
mechanical engineering, civil engineering, aerospace engineering, textile engineering, social 
science and computer science. 
For this task, parametric modeling was used in the early design phase to investigate the 
advantages and limitations of this method in terms of adaptive behavior. The findings will be 
the foundation for a computational design approach in early design for adaptive buildings with 
the integration of knowledge from the different research fields in the future. 

Keywords: Computational Design, Adaptive Buildings, Early Design, Material Savings, 
Interdisciplinary, Parametric Modeling, Building Information Modeling 

 

Introduction  

Globally, the building industry consumes 40% of our global resources, produces about 50% of 
the entire waste, and is responsible for 40% of energy consumption and emissions [1]. 
Furthermore, 2 billion people need new apartments, workplaces, and infrastructures within the 
next 16 years because of the rapid growth of the world population [2]. The creation of such a 
big construction volume with conventional approaches is impossible without tremendous 
consequences for our planet. Therefore, a new approach is vital. 
For the future, the described problems require building more with less material, waste, energy 
consumption, and emission. The integration of adaptive elements inside a building can reduce 
significant amounts of material and energy. Nowadays all load-bearing structures are designed 
for peak loads, which usually occur in very rare cases. As a result, they are extremely oversized 
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for the predominant period of use. If it is possible to dampen the stress peaks by manipulating 
the stress conditions in the load-bearing construction, significant quantities of building 
materials could be saved. Adaptivity allows a façade or a supporting structure to assume a 
variety of different states. This is the major difference to the current building design, which 
assumes one state for any possible scenario. This raises the question of how we design and 
represent these multiple conditions. Since the building industry never worked with adaptive 
qualities before, the related knowledge and components from other disciplines like mechanical 
and aerospace engineering need to be transferred, adapted, and redeveloped. 
The Collaborative Research Center (SFB) 1244 “Adaptive Building Skins and Structures for 
the Built Environment of Tomorrow”, funded by the German Research Foundation (DFG), 
focuses on the basic principles, as well as the potential and the impact of integrating adaptive 
elements in load-bearing structures, facades and interior work of buildings.  
Here, the term “adaptive” is used in the context of precise modification of the geometry, 
adjustment of material characteristics and the properties of construction elements over time. 
The aim is to minimize the amount of required material and minimize embodied energy. The 
interdisciplinary research team consist of scientists on the topic of architecture, mechanical 
engineering, civil engineering, aerospace engineering, textile engineering, social science and 
computer science. 
As a first milestone, a 36-metre-high tower with an adaptive load-bearing structure will be built 
for specific research into the topic of adaptivity [Figure 1]. At a later point in time, the 
demonstrator tower will also be equipped with different adaptive façade systems, which are 
still in development. The demonstrator serves as a proof-of-concept and gives the researches 
the ability to contribute and analyse the process of creating such a tall adaptable building. 
The main part of the authors work was to assists and observes the design, planning and 
construction process of the demonstrator. For this task parametric models were created with 

Figure 1. Twelve-story demonstrator tower 
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the Building Information Modeling Software “Autodesk Revit” and relevant information was 
shared with other research fields to guarantee an interdisciplinary design approach from the 
start. The gathered information of the building process will provide the framework for novel 
computational methods for a digital planning environment to help architects anticipate adaptive 
qualities in early design in a later stage. The findings from the planning of the demonstrator 
can be used to specifically identify the restrictive aspects of linear, conventional planning and 
to define and concretize requirements more precisely for the investigation of computational 
processes. 
Also the design model of the demonstrator will be used in the future as a benchmark for an 
adaptive design model which is to be developed. 

Current State 

The established architectural planning process is hierarchical. A first draft developed by the 
architect can only be successively refined, constructively developed, and realized in the later 
phases in cooperation with experts like structural engineers.  
The formulation of the task is initially vague and is only defined over time by the generation 
and evaluation of variation in the early design phase. For this reason, no optimization is 
possible right from the start.  
Today, stationary and static planning is carried out. Each element of a building can be described 
precisely and has only one state for each occurring situation. For example, façade insulation 
has a set heat transfer coefficient, which remains identical regardless of external weather 
conditions and is unable to adapt. 
The linearity and hierarchy of the existing process make it more difficult to integrate adaptivity 
into the necessary planning, structural, structural-physical, mechanic, and mechatronic 
considerations in the early design decisions. But these early design decisions account for 80% 
of a building's energy and material consumption [3]. On the other hand, this phase is only 
compensated with 24% of the commission fee according to the German Regulations for 
Architects and Engineers [4]. As a result, many architects lose the opportunity to examine far-
reaching decisions and their implications in depth at this phase and postpone conflicts to later 
phases in the planning process at which a higher compensation is paid. But at this later stage it 
is not possible to explorer the solutions space for better individuals anymore, because the 
design phase has already been completed and a final design has been selected. 
Building Information Modeling is a method which attempts to break the linearity of the 
planning process and enables collaborative work on 3D models, avoidance of collisions, 
quantity and mass determination, coordination of processes on construction sites, etc. BIM is 
an approach for merging and enriching the planning and construction process with information. 
But the method lacks considerable influence on the early design phase. Therefore, BIM is 
usually applied after the conceptual design process, when there aren't many changes to be 
expected. Almost two-thirds of the UK BIM user think, that BIM won’t help to reduce 
greenhouse gas emissions in the built environment by 50% [5]. Although there is research in 
the field of using BIM in the early design phase, nobody is approaching an interdisciplinary 
design approach for adaptive buildings. In contrast to existing information models, an extended 
information model should be able to map and quantify the different states of the structure and 
systems with dynamic and instationary properties, as well as their temporal change due to 
adaptivity. 
The existing methods and approaches of architectural planning can therefore only be 
conditionally applied to adaptive structures, because they cannot fulfil the fundamentally 
interdisciplinary character right from the start. The essential requirement for the development 
of new methods and procedures for adaptive architecture is to enable integrative planning right 
from the beginning. 
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Adaptive Envelope Systems and Adaptive Structures form a linked system of sensors and 
actuators with a variety of interdependencies. In order to better investigate these interactions, 
the architect needs digital support to assist him in exploring the solution space. This process 
has to recognize or point out characteristics and thus create new solutions which the human 
being alone can hardly foresee. 

Observations of the design and planning process  

The task was to analyze the capabilities of current state-of-the-art Design and Planning 
software in the Building industry regarding the advantages and limitations for adaptivity on a 
real showcase. “Autodesk Revit” is the market leader for BIM Software with a usage rate in 
the UK of 41%, followed by “Graphisoft ArchiCAD” with 15% [5]. Therefor “Autodesk Revit” 
was used for parametric Modeling of the demonstrator building. The parametric models were 
created on the foundation of vertical and horizontal Gridlines with dependencies to each other. 
On top of these guides, family members were attached and could adapt to changes of the 
gridlines. 
As in the Beginning, this approach of parametric modeling seemed the most logic. The 
Topology of the Building was set. A ten stories tower with a height of 36 Meters had no space 
allocation plan and therefore very little requirements concerning the architectural design. 
The main task seemed to be massing, detail drawing and scheduling to support the construction 
planning. Later the BIM Model should be transferred to become a control model of the adaptive 
elements. 
Over time, more Inputs and Outputs were added to the Model [Figure 2]. Some of these 
requirements are specific for adaptive design and helped the interdisciplinary approach of the 
planning process. The BIM Model was used as central hub for all information. 
A small footprint of the building would help the oscillation behavior for the testing scenario of 
the damping actuators of the structure. For this reason, the access had to move to a separate 
tower standing nearby, with stairwell, an elevator and bridges connecting the demonstrator. 
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This resulted in a conflict of the structural and the architectural design, because the bridges had 
to avoid the structural diagonal branching in order to access the demonstrator.  
The principles for the adaptive structure were developed in a parallel process by civil and 
mechanical engineers. Over time, the tower had to become slender to increase the oscillating 
behavior. This was easily achieved by changing the parameter of the Center-to-Center distance. 
Over the course of one year the distance changed from 6000 millimeters, to 5300 Millimeters 
and 4300 Millimeters. Massing and drawings were updated on the fly without the need change 
multiple plans by hand. The process for the actuator integration [Figure 3.] was included into 
the linear and hierarchical planning process, because of the limited timespan to build the 
demonstrator. Also it was not the main goal to test novel planning methods in this phase and 
risk the fixed date for the completion of the building. Still this process leads to some interesting 
findings: Left side of the diagram shows similarities to the normal planning process, while the 
most adaptive activities happen on the right side. The concept design lacks adaptive qualities 
at the start. Therefor some feedback loops had to made, which the architect didn’t like, because 
it meant more work which wouldn’t be reimbursed. 
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Fundamental topology modifications in the structure make parametric modeling difficult 
[Figure 4. & 5.]. Most of the time the parametric model can’t adapt to topology changes and a 
new parametric model needs to be created, because the changes couldn’t be foreseen, while 
creating the parametric model. Due to continuous improvements in the calculation of the 
actuator placement, changes in the adaptive structure topology had to be made more frequently. 
The first design envisaged a wooden structure. But a wooden column with an actuator could 
not be developed in the short time. So it was decided to use only a steel structure for the time 
being. 
This also results in the idea of having maximum flexibility in changing the structure topology 
even after the building was finished. Therefore, the idea came up that every column or diagonal 
could integrate an actuator. Also every element of the structure can be replaced by a different 
design e.g. concrete or wood columns after the construction is finished. This is because there 
may be improved actuator placement models in the future, which might need further 
investigation. 
So an attempt was made to change to Generative Parametric Modeling with the ability to solve 
the previous mentioned problems. This process is currently under investigation. However, 
implementing such an approach under the recognized conditions takes a considerable amount 
of time and still cannot guarantee to cover all upcoming scenarios of changes in the topology. 
But in the early design phase it is important to have no limitations in the creation and evaluation 
of many variations without spending too much time creating complex solutions. As mentioned 
before, the time in this phase is restricted and not sufficiently compensated. 
  

Figure 4. Changes of the Structural Topology in the Design Process 
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Conclusions and Outlook 

Parametric BIM modeling is capable of assisting in the early design process of adaptive 
buildings of an interdisciplinary team. Still it lacks the ability to describe dynamics and 
instationary properties of adaptive elements and is therefore limited in exploring the solution 
space in the early design phase. Hence, a holistic description of adaptive qualities in an 
extended building information model must be developed. Because of the necessity to change 
the structural topology during the exploration of the design space, further development of 
parametric models with regard to topological flexibility and variability is required. A graph-
based approach for parametric modeling could be one feasible solution. Other longtime goals 
are the Development of computational processes and tools for the exploration and variation 
reduction in the early design phase, with the principles of adaptive buildings and the Integration 
of processes and methods into a digital design environment which enables feedback and 
optimization on the principle of simulation and analysis with the involved disciplines. 

Acknowledgments 

This work was supported by Collaborative Research Center (SFB 1244) " Adaptive Building 
Skins and Structures for the Built Environment of Tomorrow " (subproject A02) of the German 
Research Foundation (DFG). 

References 

[1] UN Environment Programme (2009), Buildings and Climate Change: Summary for Decision-Makers 
[2] United Nations, Department of Economic and Social Affairs, Population Division (2014) World Urbanization 

Prospects: The 2014 Revision, https://www.compassion.com/multimedia/world-urbanization-prospects.pdf 
[3] Bogenstätter, U. (2000), Prediction and optimisation of life-cylce costs in early design, Building Research & 

Information 28.5/6, 376–386.  
[4] Regulations for Architects and Engineers in Germany (HOAI) 
[5] NBS National BIM Report 2017 

Figure 5.  From Left to right: Evolution of the Building 

ICCM2018, 6th-10th August 2018, Rome, Italy

923



Comparison of Characteristic-wise WENO and Central Difference Schemes 
With Numerical Viscosity Models for the Unsteady Compressible Flow 

 
Hyun-Jin Kwon¹ and †*Se-Myong Chang2 

1Department of Mechanical Engineering, Kunsan National University, Korea. 
2School of Mechanical Convergence System Engineering, Kunsan National University, Korea 

*Presenting author: smchang@kunsan.ac.kr 
†Corresponding author: smchang@kunsan.ac.kr 

Abstract 
In the computation of unsteady compressible fluid dynamics, unnecessary numerical 
oscillations can appear in the domain near the sharp discontinuities such as shock or slip line, 
especially for the high-order spatial accuracy. The WENO(weighted essentially no oscillation) 
method can delete the oscillation of numerical dissipation error, and so can the central 
difference methods with artificial viscosity, which  are very economical for the computational 
cost. The characteristics of conventional WENO and central difference schemes are compared 
with each other for a benchmark problem in this study where LF(Lax-Friedrichs) and Garnier 
filters are used with ACM(Artificial Compression Method) switch acting near the sharp-
gradient discontinuities. 

Keywords: Compressible Flow, WENO, Central Difference, Numerical Filter, ACM 
Switch, Numerical Viscosity 
 
Introduction 

Originally, the discontinuity of signal in the physical property can produce improper 
oscillation due to a loss of information in the sampling of continuous analog data, which can 
be analyzed as the truncation of high-order Fourier series terms even in the various 
experiments. In the similar principle, the truncation error in Taylor series expansion generates 
numerical oscillation for the finite difference approximation. For the spatial accuracy more 
than the second order, a dissipation error is inevitable in the central difference schemes.  In 
the WENO schemes[1] developed by Jiang and Shu, the smooth indicator acts as a sensor for 
the gradient, giving a filtered solution like upwind or TVD(total variation diminishing) 
methods. However, this kind of schemes sacrifices an order of spatial accuracy that is an odd 
number: for example, three, five, and seven, etc. The central difference schemes with ACM 
sensors[2] developed by Yee et al. has shown a possibility to develop a filtered method with 
filters, and various filter models are proposed such as Garnier et al.[3] and Kim and Kwon [4]. 
Generally, so far the central-difference based methods show better result in the smooth region 
like vortex and slip layer, but the numerical oscillation can be very critical in the 
discontinuous waves. Therefore, systematic approach for the selection of schemes and filters 
is required in the development of numerical codes. In this study, we compared characteristics 
and performances related with three numerical schemes for the numerical simulation of 
unsteady compressible flow: WENO, central difference with Garnier filter, and central 
difference with LF filter.  
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Numerical Schemes 

In this section, three numerical methods are explained, and the Euler equations is expressed 
for the conservative dependent variable vector : 
 

            (1) 
 
where the flux is , and the equation of state is  

. 
Eq. (1) is semi-discretized in space with the third-order Runge-Kutta algorithm for 

temporal integration[1]: 
 

       (2) 

 
where the time step  is restricted by CFL(Courant-Friedrichs-Lewy) condition. The 
numerical flux in Eq. (2) is computed with WENO and central difference methods. 
 

WENO Scheme 

The CW(characteristic-wise)-WENO method consists of the following algorithm[1]: 
1. Projection to the characteristic field 
2. Lax-Friedrichs flux splitting 
3. WENO reconstruction 
4. Transform back into physical projection 

 
The left eigen-vector matrix from the Roe-averaged Jacobian matrix at the right face of the 

computational cell[5],  is used for the projection to the characteristics field. 

 
     (3) 

          (4) 

 
Using Lax-Friedrichs flux splitting, the maximum eigen-value is calculated for the region of 
influence in the hyperbolic partial differential equation system, Eq. (1). The WENO 
interpolation applies the convex sum of weighted average in the numerical stencil.  The 
weights are coefficients expressed as a function of smooth indicators and optimal coefficients 
for the finite difference.  The weighted combination of ENO flux results in odd numbered 
order of spatial accuracy.  In the last process, Eqs. (3-4) are transformed back to the primitive 
variables.  The scheme is implemented as a fifth order of spatial accuracy in the present study. 
 

Central Difference Schemes 

The central difference flux is applied in Eq. (2), and it is filtered at the last procedure in each 
time marching: 
 

                (5) 
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where  is the spatial operator applying a low numerical viscosity filter, which can be 
controlled selectively for the large-gradient region with ACM switch function[2]. 
   The numerical viscosity that is very similar with a flux in Eq. (5),  can be modelled with 
various methods. Garnier filter[3] subtracts the central difference flux component,  from the 
WENO characteristic flux, which is similar with upwind method. 
 
            (6) 

 

Kim and Kwon[4] designed a new filter based on the Lax-Friedrichs numerical viscosity 
using characteristic-wise WENO method as a filter. 
 
          (7) 

 
where  denotes the maximum eigen values. 
 

Convergence Test 

Eq. (1) under an initial condition,  and is solved for the 
convergence test with three methods described in the previous section.  Errors and orders are 
given in Table 1 for the number of cells,  in the domain of . The order of accuracy 
satisfies fifth order at =160 for all schemes. 
 

Table 1. Result of convergence test 
Numerical 

Method N  error  error  order  order 

WENO5 

10 1.222E-02 1.757E-02 - - 
20 6.495E-04 1.002E-03 4.23 4.13 
40 2.075E-05 3.735E-05 4.97 4.75 
80 6.479E-07 1.198E-06 5.00 4.96 

160 2.017E-08 3.640E-08 5.01 5.05 

Central 
Difference 
with 
Garnier 
Filter 

10 3.915E-03 5.377E-03 - - 
20 1.060E-04 1.657E-04 5.21 5.02 
40 2.500E-06 5.387E-06 5.41 4.94 
80 3.948E-08 1.338E-07 5.98 5.33 

160 1.151E-09 3.612E-09 5.10 5.21 

Central 
Difference 
with 
LF 
Filter 

10 3.915E-03 5.377E-03 - - 
20 3.072E-04 5.085E-04 3.67 3.40 
40 9.784E-06 1.955E-05 4.97 4.70 
80 3.058E-07 5.760E-07 5.00 5.09 

160 8.942E-09 1.504E-08 5.10 5.26 
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Figure 1. Comparison of CPU times 

 

Computational Cost 

The computational cost for the same problem with the same number of grids is compared in 
Fig. 1, which gives data from various schemes. The minimum time cost is achieved from the 
central difference with Garnier filter.  It shows that the LF filter consumes only 1.7% 
computational time more than the minimum, but, however, the characteristic-wise WENO 
consumes about 6.8 times of time because it must perform the matrix inversion to transform 
back from Eq. (3-4).  The time cost of WENO increases about 6.8 times because it should 
perform the matrix inversion at each intermediate Runge-Kutta time step, and the 
performance of LF filter is almost similar with Garnier model. 
 

Summary 

Three numerical methods are implemented for the computation of unsteady compressible 
flow: characteristic-wise WENO and central difference method with Garnier and LF filters. 
From the convergence test, all of them achieved the fifth-order spatial accuracy. The Garnier 
filter shows the best performance in the convergence test and the CPU cost. However, the test 
for more complicated problem related with shock and discontinuity waves can differ from the 
present simple benchmark problem. 
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Abstract 

The seismic performance of timber shear walls is studied in this work, with focus on the energy 

dissipation ensured by sheathing-to-framing connections. Numerical non-linear analyses are 

carried out using a parametric numerical model developed in OpenSees and varying some basic 

design variables affecting the overall racking capacity of the wall, namely: aspect ratio, nails 

spacing and number of vertical studs. The equivalent viscous damping has been assessed by 

estimating the damping factor η through the Capacity Spectrum Method. 

Keywords: Timber shear walls; racking capacity; energy dissipation; equivalent viscous 

damping; Capacity Spectrum Method. 

 

Introduction 

Timber light-framed constructions are widely used in North America, New Zealand and 

Northern Europe. These structural systems are very attractive for several reasons, including 

aesthetic pleasure, sustainability and rapid assembly of the elements. Moreover, they present a 

fairly good earthquake resistance, basically attributable to the high strength-to-density ratio of 

timber and to the remarkable ductility of joints with metal fasteners, which ensure reduced 

inertia forces and good energy dissipation, respectively.  

Within this framework, a large amount of research on timber shear walls was carried out in the 

last decades. In fact, early researches on their mechanical performances date back to 1927 [1]. 

Existing studies on racking resistance, stiffness and ductility conducted by means of 

experimental, numerical and analytical methods have demonstrated the good mechanical 

performances of light-frame wall assemblies. Generally, timber has a poor dissipative capacity, 

unless it is properly reinforced [2], while the steel connections can ensure a good amount of 

plastic deformation and, as a consequence, a significant energy dissipation. In order to take into 

account this aspect, the designers can refer to the force-based design method proposed by 

EuroCode 8 [3], which allows to reduce the demand of the elastic acceleration spectrum by 

applying a reduction factor. Two approaches are commonly employed to this end, namely the 

N2 method [4] and the Capacity Spectrum Method [5][6]. The latter was considered in Ref. [7] 

to correlate structural damping and drift in timber-framed buildings. Overall, few efforts have 

been spent so far to analyze the mechanical behaviour and the energy dissipation of a single 

wall, and few parametric analyses are available that consider different wall configurations 

[8][9][10]. Therefore, an original parametric FE model has been implemented in the present 

work by means of the open-source software OpenSees [11] in order to assess the equivalent 

viscous damping of timber light-frame shear walls by estimating the damping factor η through 

the Capacity Spectrum Method. 

 

ICCM2018, 6th-10th August 2018, Rome, Italy

929

mailto:giorgia.digangi@uniroma1.it


Timber light-frame shear walls 

Timber light-frame shear walls are employed in platform framing buildings. It is pointed out 

that only partially anchored walls will be investigated in this study. Details related to the 

classifications of timber shear walls can be found in [12] and [8] whereas the interested reader 

can refer to [13], [14] and [15] for detailed explanations about the differences between balloon 

and platform framing buildings. A timber light-frame shear wall is composed by vertical studs 

and horizontal joists (which belong to the frame) connected at their ends with internal 

constraints (typically modeled as hinges). This integrated system is braced by means of a 

sheathing panel, linked to the frame by using metal fasteners such as nails, screws and staples. 

The sheathing panel, in turn, can be built using different materials, like OSB, ply-wood, 

gypsum, glued laminated Guadua bamboo [16] and so on. The size of the sheathing panel, 

which could be used to brace one or both sides of the wall, sets the dimension of the frame. A 

typical size of a shear wall is 1.22 m × 2.44 m or 2.44 m × 2.44 m, whereas the framing elements 

cross-sections are about 38 mm × 89 mm and 38 mm × 140 mm for internal and external wall 

studs, respectively [17]. A typical configuration with both sides braced with a sheathing panel 

is shown in Fig. 1. 

 

    
 

Figure 1. A typical configuration of a fully anchored timber light-frame shear wall 

braced on both sides, with further layers to improve thermal performances and  

fire-vapor resistances. 

 

This integrated system is conceived to resist to different static, quasi-static and dynamic actions 

and its performances related to thermal insulation and fire-vapor resistances are often improved 

by adding further specific layers exploiting the thickness of external wall studs. Typically, the 

connections between framing elements and sheathing panels are made by means of 6D, 8D and 

10D nails with thick shank placed on perimeter framing elements (the usual spacing is 50 mm, 

75 mm or 100 mm) and intermediate studs. In the latter case, the spacing could be two or three 

times that on the perimeter studs because, as pointed out in Ref. [18], nails on the intermediate 

studs are only meant to prevent buckling of the sheathing panel and do not contribute to the 
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racking capacity of the wall. In the so-called fully anchored timber shear wall, the connections 

with either the foundation or the lower storey shear wall are made by means of steel brackets, 

which prevent both lifting and horizontal relative sliding. The effects induced on the overall 

mechanical response by sheathing-to-framing connections have been investigated in 

[19][20][21]. Further details about base and stud-joist connections can be found in [22] and 

[20], respectively. 
 

Numerical modeling and validation 

To the best authors’ knowledge, the finite element (FE) model developed in this work is the 

first numerical model of timber light-frame shear wall implemented in the open-source software 

OpenSees [11]. The model has been implemented in the TCL environment in such a way to 

allow rapid definition of all geometric parameters affecting the racking capacity of the shear 

walls, namely: i) panel size, ii) horizontal and vertical nails spacing, iii) number of vertical 

studs. Once these parameters are defined, the number of nodes and elements are updated 

automatically. For this FE model, it is assumed that the base and height of the shear wall are 

aligned with the x-axis and the z-axis, respectively. The frame has been modeled using elastic 

beam column elements, whereas non-linear coupled zero-length link elements are adopted to 

represent sheathing-to-framing connections. The sheathing panels are modeled by means of 

ShellMITC4 elements, whose mesh size depends on the nails spacing. In order to consider the 

constraints at the ends of framing elements acting as hinges, zero-length elements with a low 

stiffness value for the rotational degree of freedom along the y-axis have been used. Fully-fixed 

boundary constraints are assumed at the bottom corner nodes, as shown in Fig. 2, in order to 

assess the energy dissipation of the wall ensured only by the sheathing-to-framing connections. 

 

 
 

Figure 2. FE model implemented in OpenSees  

(5 × 3 nodes are considered in this scheme). 
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The reference wall configuration is the one considered in Ref. [23], which has the following 

geometrical features: width 1.8 m, height 2.6 m, nails spacing 50 mm, 4 vertical studs with 

internal releases (specimen PLS8). The mechanical characteristics used for the framing 

elements are referred to red spruce wood species with strength class C24, according to EN 

14081-1 [24] and UNI EN 338 [25]. The SAWS mechanical model, originally proposed  

by Ref. [26] and developed in Ref. [27], has been adopted to simulate the behaviour of 

sheathing-to-framing connections. The corresponding model parameters are identified against 

the experimental result given for a single nail Φ 2.8 by Ref. [23]. In doing so, the non-classical 

identification methods presented in Ref. [28] have been used, adopting the following objective 

function: 

 
 

 
2

exp
1

1
( ) ( )

var

S
m exp

s s

s

f F F
S F 

 


x x   (1) 

where x is the vector collecting the model parameters whereas Fs
m and Fs

exp are predicted and 

experimental force values, respectively. Moreover, s is the generic sample (S denotes the total 

number of samples) and var(Fs
exp) is the variance of the experimental force values. The 

comparison between experimental and identified force-displacement curves of a single nail is 

shown in Fig. 3, together with the comparison between experimental and predicted  

load-displacement curves of the reference wall. It is possible to observe that racking capacity 

and hysteretic cycles evaluated using the proposed numerical FE model are in good agreement 

with the outcomes of the experimental tests shown in Ref. [23]. 

 

  
 

Figure 3. Identification of SAWS model parameters for the sheathing-to-framing 

connections and validation of the FE model: comparison between experimental and 

identified force-displacement curves of a single nail (left), comparison between 

experimental and predicted load-displacement curves for the reference wall (right). 

 

Sensitivity analysis 

Once identified the constitutive law of the sheathing-to-framing connections, the overall 

response in terms of hysteretic damping and racking capacity of different timber light-frame 

shear walls has been evaluated. A horizontal cyclic loading under displacement-controlled 

conditions has been applied. Aspect ratio (i.e., height-to-width ratio), horizontal and vertical 

nails spacing and number of vertical studs have been varied in order to quantify their influence. 

As pointed out in Ref. [8], the aspect ratio strongly influences the response of partially- and 

non-anchored walls. The contribution of shear deformation to storey displacements increases if 
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the base of the shear wall is significantly larger than its height, as pointed out in Ref. [29]. 

Conversely, if the base is about 30% of the height, then the flexural behaviour is dominant. By 

observing the overall behaviour of the wall in parallel with the local behaviour of each nail, the 

following definitions are given:  

1) the Life Safety Limit State is recognized to occur in correspondence of the racking 

strength peak, when all nails along the perimeter framing elements are yielded;  

2) the Collapse Limit State is recognized to occur when the most stressed nail, usually at 

the bottom corner, reaches its failure displacement.  

As a consequence, the following criterion was adopted: the amount of dissipated energy is 

evaluated from the force-displacement curve of a certain configuration of shear wall once the 

first nail reached a resistance decrement equal to 65%, according to the experimental data in  

Ref. [23]. 

 

 
Figure 4. Influence of aspect ratio on the overall response of the wall:  

1.4 (solid line, reference configuration),  

1.0 (dashed line, square wall),  

0.7 (dotted line, squat wall).  
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Figure 5. Influence of nails spacing on the overall response of the wall:  

50 mm spacing (solid line, reference configuration),  

75 mm spacing (dashed line),  

100 mm spacing (dotted line). 

 
Figure 6. Influence of number of vertical studs on the overall response of the wall:  

3 studs (dashed line),  

4 studs (solid line, reference configuration),  

5 studs (dotted line). 
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As shown in Fig. 4, the lower the aspect ratio, the higher the hysteretic damping and racking 

capacity. The relative rigid rotation of the sheathing panel with respect to the frame mostly 

stresses the nails near the corners, whereas the others remain in the elastic range. By varying 

horizontals and vertical nails spacing from 50 mm to 100 mm, it is possible to observe a 

reduction of the racking capacity (Fig. 5). Particularly, the reduced number of nails on the 

perimeter studs makes the overall system more flexible but leaving the ductility unchanged. 

Finally, the influence of the studs’ number is shown in Fig. 6.  

 

Equivalent viscous damping 

A simplified way to take into account ductility or dissipative capacity of a structure in modern 

seismic design codes is based on the reduction of the elastic spectrum demand. The scaling of 

the elastic spectrum is function of an additional equivalent viscous damping eq , which is 

computed as follows: 

 
04

D
eq

s

E

E



   (2) 

where ED is the dissipated energy in a single cycle, normalized to the elastic strain energy in a 

half cycle, Es0. The total equivalent viscous damping ξtot is obtained by adding the inherent 

viscous damping ξ0.05 
(equal to 5%): 

 0.05tot eq    . (3) 

The reduced spectrum is then obtained by using the damping correction factor η, which is 

computed as follows [3]: 

 
10

5 tot







 . (4) 

The equivalent viscous damping as function of the drift value (defined as the ratio between 

horizontal displacement and wall height) for different wall configurations is given in Fig. 7. 

 

 
Figure 7. Equivalent viscous damping as function of drift for different wall 

configurations. The solid black line indicates the reference configuration:  

aspect ratio equal to 1.4, nails spacing equal to 50 mm and 4 vertical studs. 
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As shown in Fig. 7, the linear variation observed by Ref. [7] for wood framed buildings is fairly 

confirmed for timber walls as well. It can also be inferred that the energy dissipation strongly 

depends on the aspect ratio, thereby confirming the results in Ref. [8]. However, it is worth 

highlighting that the larger the wall size, the larger the number of vertical studs and the overall 

number of vertical nails: the resultant global system is stiffened. This is due to the fact that a 

lower plasticity level is reached by increasing the number of vertical studs and, consequently, 

the overall number of nails. Conversely, the number of yielded nails grows by reducing the 

number of vertical studs, and thus a higher amount of dissipated energy is achieved. 

Particularly, a higher amount of nails, especially on the intermediate studs, makes the overall 

system more resistant, preventing buckling of the sheathing panel, without providing a 

contribution in terms of plastic deformation and energy dissipation. By reducing the nails 

spacing, a stiffer wall is observed but a slightly lower value of the equivalent viscous damping 

is obtained. For the reference configuration (aspect ratio equal to 1.4, nails spacing equal to 50 

mm, 4 vertical studs), the equivalent viscous damping is about 23%. This means that the value 

of the total equivalent viscous damping required to estimate the reduction of the elastic demand 

spectrum is about of 28% (assuming an inherent viscous damping equal to 5%). Hence, the 

resulting η factor is about 0.55. A summary of the results related to the variation of racking 

capacity, total equivalent viscous damping and damping factor, with respect to the geometric 

input parameters used in the parametric analyses, is shown in Fig. 8. 
 

 
Figure 8. Variation of racking capacity (red), total equivalent viscous 

damping (blue) and damping factor η for different values of aspect 

ratio, nails spacing and number of vertical studs.  

The reference configuration has aspect ratio equal to 1.4, nails spacing 

equal to 50 mm and 4 vertical studs  

(the corresponding values are marked with the symbol *). 

 

Conclusions 

In this work an original parametric FE model for timber light-frame shear walls implemented 

in OpenSees is presented. It includes the following elements: i) elastic beam column for the 

framing elements, ii) non-linear coupled zero-length link elements for the sheathing-to-framing 
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connections, iii) zero-length elements for joints connecting framing elements, and  

iv) ShellMITC4 elements for the sheathing panels. 

The numerical model has been validated considering the data carried out from experimental 

tests presented in Ref. [23]. The SAWS mechanical model, originally proposed by Ref. [26] 

and developed in Ref. [27], has been calibrated using the available experimental data and then 

implemented in order to simulate the behaviour of a single nail. Parametric analyses have been 

used to assess the influence of some basic design variables on racking capacity and equivalent 

viscous damping. Final results have demonstrated that the proposed model can be effectively 

used to carry out non-linear analyses and to calibrate the damping factor η in use within the 

Capacity Spectrum Method. 
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Abstract

The deformable image registration (DIR) is a class of optimization methods and is com-
monly used to compute the spatial displacements between different regions of interest.
When the process of an anatomical change whose mechanism is not comprehended analyt-
ically, the change of such system can be studied through tracing the spatial displacements
between the static images and the deformed images. The diffusion of spatial transforma-
tion between the profiles of target object between nth treatment and (n+ 1)th treatment
can be estimated. The volumetric analysis and the positional changes of the target object
can be monitored and adaptive medical strategies can be applied during the course of
treatment.

The present paper aims to set up a kernel-based collocation scheme in order to obtain
a possible optimum deformable image registration. The proposed computational scheme
will incorporate the meshless reciprocal multiquadric function. Its meshless configuration
provides with a simple formulation and also significantly reduces the time used and the
cost in setting up the computational algorithm. The computational result of the proposed
scheme is verified with a real liver cancer medical imaging dataset. The influence of
collocating different number of data points on the performance of the numerical results
will also be explored and analyzed in this paper.

Keywords: Deformable image, Meshless RBF, Kernel collocation.

Introduction

Deformable image registration (DIR) is a common process in the medical image analysis.
The DIR helps to trace the tumor growth, confine the treatment to a well-defined target
region and avoid damage to healthy organs. All these factors are very important for
medical treatment decision. For instance, the intended outcome of the medical treatment
is to inhibit the tumor growth and minimize the side effects to the patient. In order
to optimize the image-guided radiation therapy (IGRT) as discussed in [1], a partition
deformable image registration (DIR) is used to delineate the region on the computed
tomography (CT) images obtained during the radiation treatment.

The purpose of the deformable image registration is to find out the displacements of the
deformed target region. The precision of the measurement of the region of interest depends
tremendously on the accuracy of the registered image. Sotira et al. [2] had carried out
a detailed survey and reviewed of the recent developments on the field of DIR. Over the
last decade, DIR has been recognized a significant influence on the medical field, thus this
topic still remains a challenging topic. A number of researchers from different disciplines
contributed efforts to find optimal performance of deformable image registration.
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The basic idea of the image registration problem is formulated as an optimization model.
Suppose the target object of interest has undergone some changes from times t0 to t1.
Given the static image s(x, y) and deformed image m(x, y) at time t0 and t1 respec-
tively, the spatial displacements between the static image s(xi, yi) and the deformed image
m(xi, yi) can be predicted using an appropriate DIR scheme.

The proposed scheme presented in this study is applied to solve the classical Demon’s
DIR model which is a well established DIR model. The system of Demon’s model has
taken account of those dynamic and physical effects that occurred from the process of
transformation.

The computational scheme is constructed based on the kernel radial basis function col-
location method and use it to approximate the spatial displacements between the two
deformable images. Radial basis function (RBF) is a novel interpolation method and has
been proved to be effective in solving various kinds of differential equations. The meshless
configuration of RBF also offers us with an ease and flexible design of the computational
algorithm.

The Classical Deformable Image Registration Model

Several forms of deformable image registration models are established in different numeri-
cal methods. One of the classical DIR models is called Demon’s algorithm developed by [3]
in 1996. The basic deformation model are derived from Navier nonlinear elastic model.
Let D(x, y) = (ux, uy)

T be the displacements matrix between the static and deformed
images. The results of D can be generated by the differential equations equations

D(x, y) =
(m− s)∇s(x, y)

|∇s(x,y)|2 + (m− s)2
, (1)

where m is moving image and s is the static image, (m − s) is the differential forces
between the moving image and deformed images. ∇s is the gradient operator of the
static image defined by

∇s(x, y) =
(
∂s(x,y)
∂x

, ∂s(x,y)
∂y

)
.

The equation in (1) can be rearranged to a homogeneous partial differential equation as

D
(
|∇s|2 + (m− s)2

)
− (m− s)∇s = 0

subject to the given initial conditions s0 = 0 and m0 = 0.

Cachier et al [4] in 1999 revised model to improves the registration convergence rate and
stability. The improved model is defined by

D =
(m− s)∇s(x, y)

|∇s(x, y)|2 + ξ2 |(m− s)|2
+

(m− s)∇m(x, y)

|∇s(x, y)|2 + ξ2 |(m− s)|2
. (2)

This revised model includes the image edge forces of the deformed image. The normal-
ization factor ξ is added to adjust the force strengths. This attempts to normalize the
relations between the moving and static image so as to improve the image registration.
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Kernel-based Collocation Method

This paper discusses a class of kernel-based approximation methods in the form of ra-
dial basis function (RBF). The proposed scheme will be used to solve the deformable
image registration model. The kernel-based approximation method has been refined and
diversified for facilitating the needs of various types of differential equations. The RBF ap-
proximation was originally devised for scattered geographical data interpolation by Hardy
[5], who introduced a class of RBF called multiquadric function in the early 1970’s.

This study aims to determine an optimum spatial displacements between the deformable
images. Let the displacements of DIR model be D(x, y) = (ux, uy)

T between the static
and deformed images defined in the equation (1). The basic idea of the kernel-basis
RBF interpolation is used to approximate this unknown displacements {D(x) : x ∈ Ω}
by a RBF interpolant, say {f(x) : x ∈ Ω} at a given set of N distinct points X =
{xi ∈ Ω : i = 1, 2, · · · , N}.
The general form of the kernel-based RBF interpolation is a finite linear combination by
the following equation

f(x) = α1φ1(‖x− x̃1‖) + · · ·+ αNφN(‖x− x̃N‖)

=
N∑
i=1

αiφ(‖x− x̃i‖), x and x̃i ∈ Ω, (3)

where φ refers to a specific choice of RBF functions that is solely dependent on the
Euclidean distance r = ‖x− x̃i‖ between x and a fixed centre x̃i ∈ Ω. The unknown
coeffi cients {αi : i = 1, 2, · · · , N} can be determined by collocating

f(xi) = D(xi), for i = 1, 2, . . . , N, (4)

at a set of N distinct data points {xi ∈ Ω, 1, 2, · · · , N}. This yields a system of linear
equations which can be expressed in the following matrix form

[Aφ] [α] = [D] , (5)

where

[α] =


α1
α2
...
αN

 and [D] =


D(x1)
D(x2)
...

D(xN)


are N × 1 column matrices. The [Aφ] = [φ(‖xi − xj‖)]Ni,j=1 is an N ×N matrix given by

[Aφ] =


φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xN‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xN‖)

...
...

. . .
...

φ(‖xN − x1‖) φ(‖xN − x2‖) · · · φ(‖xN − xN‖)

 . (6)

Generally, the interpolation points in interior and boundaries are distinct and a specific
choice of RBF φ(‖x− xj‖) is positive definite, the matrix [Aφ] is always non-singular, so
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the linear system in (5) has a unique solution as proved by [6]. The unknown coeffi cients
[α] can then be determined uniquely by solving the system of linear equations by

[α] = [Aφ]−1 [D] .

The approximated displacement matrix [D] can be evaluated once the unknown coeffi -
cients [α] are found.

The most popular types of radial basis functions are listed below:

φ(rj) =



r3 Cubic (a)
(r2j ) log rj, Thin plate splines in R2 (b)

e−σr
2
j , Gaussian, σ > 0 (c)

(r2j + c2)
1
2 , Multiquadric R (d)

(r2j + c2)−
1
2 , Reciprocal multiquadric R (e)


, (7)

where {rj = ‖x− xj‖ , j = 1, 2, · · · , N} is the Euclidean distance between x and xj ∈ Rd
and c2is called the shape parameter of the functions in (d) & (e). This shape parameter
uses to control the fitting of a smooth surface to the data and could be greatly influence of
the intended results. A recent study by Luh [7] in 2012 has developed a concrete function
which could help to determine an optimal shape parameter.

The RBF collocation scheme is a well defined effi cient scheme, however, there are two
crucial issues of RBF always be questioned.

(1) Is there always a unique solution to the system of equations in (5)?

(2) What type of conditions on {φ(ri,j) : i, j = 1, · · · , N} can guarantee the invertibility
of the interpolation matrix [Aφ]?

Answering these questions is not simple. A full description can involve a number of prop-
erties and conditions. In this present study, the kernel-based RBF model is formulated
by adding a finite polynomials {qk(x), k = 1, 2, · · · ,M} into the interpolation system in
(3). The purpose is to avoid having singularity in solving the system matrix. The RBFs
interpolant in (3) is now extended to the sum of finite series equation as below:

f(x) =
N∑
i=1

αiφ (‖x− x̃i‖) +
M∑
k=1

bkqk(x), x ∈ R2,R2, 0 ≤M < N, (8)

where {αi} and {bk} are the unknown coeffi cients to be determined. Given a set of N
distinct nodes X = {xi ∈ Ω, i = 1, 2, · · · , N} ⊆ Rd, the approximation function in (8)
will definitely produce a unique solution if the system satisfies the following condition

f(xi) = D(xi), i = 1, 2, · · · , N (9)

and the constraints

N∑
i=i

αiqk(x) = 0, k = 1, 2, · · · ,M and i = 1, 2, · · · , N.
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The resulting system can be written in matrix form as,[
Aφ Q
QT 0

] [
α
b

]
=

[
D
0

]
, (10)

where [Aφ] is the same coeffi cient matrix and [α] is the unknowns as defined in (5). The
matrix [Q] = [qk(xi)] is an N ×M matrix and [b] is an M × 1 column matrix for the
finite polynomials. They are defined as

[Q] =


q1(x1) q2(x1) · · · qM(x1)
q1(x2) q2(x2) · · · qM(x2)
...

...
. . .

...
q1(xN) q2(xN) · · · qM(xN)

 , [b] =


b1
b2
...
bM

 .
The interpolation problem in equation (9) is solvable if the matrix of this system is

[Φ̃] =

[
Aφ Q
QT 0

]

is non-singular. The unknowns
[
α
b

]
can then be determined by inverting the coeffi cient

matrix as [
α
b

]
=

[
Aφ Q
QT 0

]−1 [
D
0

]
.

The values of the displacement function (D) can be determined uniquely once the unknown
vectors [α] and [b] are determined.

The Computational Algorithm

The computational scheme of this paper is established according to the basic idea of
Demon’s algorithm. The equations of Demon’s model are discretized by using finite dif-
ference scheme. The incremental displacements Dj(x, y) for the jth iteration is simulated
iteratively by the following equation:

Dj(x, y) = Dj−1(x, y)− (mj−1(x, y)− s0(x, y))∇s0

‖∇s0(x, y)‖2 + [mj−1(x, y)− s0(x, y)]2
(11)

for j = 1, 2, . . . N . In the present algorithm, where the result of displacement Dj−1(x, y)
is generated by using the kernel RBF approximation by

Dj−1(x, y) =

(
N∑
i=1

αj−1i φ(‖r‖) +
M∑
k=1

bkq
j−1
k (x)

)
,

where ‖r‖ = ‖x− x̃j‖ is the Euclidean distance between x and xj ∈ R2. The computation
requires the input of the following initial values

D0(x, y) = 0,

m0(x, y) = m̃0(x, y),

s0(x, y) = s̃0(x, y).
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The spatial derivatives ∇s0 = (∇s0x,∇s0y) of the static image are the distance between
two neighbourhood pixels is taken to be 1. Therefore, the spatial gradients ∇s0x and ∇s0y
can be determined according to the following n× n matrices.

∇s0x =

 s01,2 − s01,1 s01,3 − s01,2 · · · s01,n − s01,n−1 s01,n − s01,n−1
... · · · · · · ...

...
s0n,2 − s0n,1 s0n,3 − s0n,2 · · · s0n,n − s0n,n−1 s0n,n − s0n,n−1

 ,
and

∇s0y =


s02,1 − s01,1 s02,2 − s01,2 · · · s02,n − s01,n

... · · · · · · ...
s0n,1 − s0n−1,1 s0n,2 − s0n−1,2 · · · s0n,n − s0n−1,n
s0n,1 − s0n−1,1 s0n,2 − s0n−1,2 · · · s0n,n − s0n−1,n

 .
The deformed image m∗j at the jth iteration can be updated by substituting Dj−1 and
m∗j−1 into the following forward iterative scheme

m∗j(x, y) = m∗j−1(x, y) +Dj−1(x, y)∇s0, (12)

= m∗j−1(x, y) +

(
N∑
i=1

αj−1i φ(||r||) +
M∑
k=1

bkq
j−1
k (x)

)
∇s0.

In the numerical experiments, a normalized global reciprocal multiquadric function is
used. The numerical results could be improved and more stable by adding a weighted
factor λ2. The normalized reciprocal MQ is defined by

φ(||x− xj||) =
1√

c2 + λ2
[(x−xj

511

)2
+
(y−yj
511

)2] .

Our previous study reported in paper [8], the chosen of different factor λ2 had been
considered in the numerical experiments, it was found that the optimal result reached at
choose λ = 100.

In the computation, the required stopping criteria is set by∥∥Dj(x, y)−Dj−1(x, y)
∥∥ < ε ≤ 0.002,

where ε is the preset upper bound of iterative error. The quality of the computed image
m∗(x, y) by RBFs is examined and compared with those results by Thirion and Cachier
Demon’s algorithm. For comparison, the root mean square errors of the deformed image
m∗j are analyzed by the equation

RMSE =

√√√√ 1

n

∑
x,y

(
m∗(x, y)−m(x, y)

m(x, y)

)2
. (13)

To illustrate the computational algorithm, the MATLAB code of the deformable image
registration kernel-based RBF scheme is outlined below:
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Algorithm: Demon’s algorithm using kernel based RBF
1. Input data : static image s0, deformed image m, error tolerance ε
2. Result : DN , mN , RMSE
3. Initialization: Dj ← 0 , m0 ←m, N ← 1
4. Compute ∇s0

while
∣∣∇s0∣∣2 + (mN−1 − s0)2 6= 0 and

∥∥DN −DN−1∥∥ ≥ ε and N < 500 do

Dj :=
n∑
i=1

(
αjiφ(||r||)

)
+

M∑
k=1

bkq
j
k(x)

Compute DN ← DN−1 − (mN−1 − s0)∇s0

|∇s0|2 + (mN−1 − s0)2
Solve αNi from DN

Compute mN ←mN−1 +DN−1 (∇s0)
N = N + 1

END

Case Study: Tracing Liver Cancer Growth

A real-life deformable image registration from a patient with liver cancer is used as a
reference case study. One of the original static registered images is depicted in Figure 1
at time t1 and the deformed images are obtained from two different treatment periods at
time t2 and t3.

time = t
3

time = t
2

time = t
1

Figure 1 The growth of liver tumor as indicated by an arrow from different time t1, t2 and t3,for
t1 < t2 < t3

The local ethics committee approval was obtained for a waiver of informed consented for retrospective

analysis. The CT images were collected from collaborative hospital in year 2010.

The computational region is set up according to the original registered image. The geomet-
rical structure of the original static image contains 512× 512 pixels. The computational
region is simplified by removing the insignificant backgrounds. These include the air with
intensity equals to 0, and the bone with intensity equals to 1. The remaining valid pixels
in the computational region are 82, 633.

The objective of the present study is to use a kernel-based RBF collocation method to
measure the tumor changes in time t3 by using the known information given by the
deformable image registration obtained from t1 and t2. Similarly, the subsequent changes
of tumor can be predicted by using the deformed relationship obtained in t2 and t3.

Our model aims to give a optimum estimation of object change so that an appropriate
medical treatment can be applied according to the stage of the cancer. For example, the
cancer is at early stage, say at stage A when diagnosed, a complete medical treatment
may be possible by means of using radiotherapy treatment.
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Numerical Results

The effectiveness of RBF scheme is very dependent on the choice of number of collocation
points on the studied region. It is generally known that the global RBF scheme will be
very computational expensive if a high number of data points is collocated in the study
region. In the numerical experiments, the level of accuracy and the effi ciency are also
considered. The computed image results based on n = 128 and on n = 256 collocation
points are illustrated in Table 1. According to the experimental results, the RMSE of
using 256 collocation points is clearly lower than that of using 128 collocation points.
This indicates that a high degree of accuracy can also be obtained by using an intensive
collocation points in the computational region.

Table 1: Reciprocal global MQ function with Finite Polynomial Collocation Scheme

Root Mean Square Errors (RMSE) for the image at time t4
Collocation points Shape parameter: RMSE CPU times required

Case 1: 256 points c = 0.79 0.0162 317 seconds
Case 2 : 128 points c = 0.65 0.07273 87 seconds

To compare the performance of the proposed kernel collocation scheme, the Thirion and
Cachier Demon’s iterative finite difference schemes are set up to simulate the DIR result
of the same problem. The analysis of RMSE of the Thirion and Cachier Demon’s model
is summarized in Table 2.

Table 2: Classical Demon’s Algorithm with Finite Different Scheme

Root Mean Square Errors (RMSE) for the image at time t4
RMSE

Thirion’s Demon Model, 1996 0.0738
Cachier’s Demon Model, 1999 0.0733

The rate of convergence of Thirion and Cachier Demon’s algorithm are compared graph-
ically in Figure 2.

Figure. 2: The convergence of the two Demons algorithms.

The error analysis showed the optimum results of Thirion Demon’s algorithm could be
achieved in about 100 iterations, while Cachier Demon’s algorithm produced an even faster
convergent rate, the stopping criteria can be reached by less than 70 iterations. From the
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comparison of the numerical results, we convinced that the kernel RBF collocation scheme
could achieve a higher level of accuracy and stability than the Demon’s finite difference
scheme.

The simulation for tracing the propagation of tumor, the computed (registered) image at
time t3 and at time t4 of the region of interest are illustrated in Figure 3 and Figure 4.

Time = t1
Static image

Time = t2
Deformed imaged

Get registered image  at time = t3

Registered image at

time = t3

Difference between Registered

and deformed image

Apply Demon Algorithm

Figure 3 The computed (registered) image at time t3

Time = t2
Static image

Time = t3
Deformed image

Registered image at

time = t4

Difference between Registered

and deformed image

Get registered image  at time = t4

Apply Demon Algorithm

Figure 4 The computed (registered) image at time t4

The displacements of these images can be identified through the deformation grid as shown
in Figure 4. The difference between the computed registered image and the deformed CT
image is also shown in the above Figures. As observed from the diagrams the overall
difference is insignificant.
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Conclusions

We have developed a kernel RBF collocation scheme to approximate the deformation
image registration. In order to prevent the singularity problem, a finite polynomial term
has been added into the RBF interpolant. The proposed algorithm based on a global
reciprocal multiquadric function is applied to solve the classical Demon’s DIR model.
The computational region was set up based on a real-life deformable image registration
in tracing the growth of a liver tumor. The computational effi ciency and accuracy as
well as the number of supporting points of the kernel approximation were explored. The
computed images were calibrated with the real set of image registration.

In order to compare the capability of the proposed kernel RBF scheme, the two reference
DIR models formulated by Thirion’s and Cachier’s Demon model were set up using finite
difference scheme. The error analysis has shown that the proposed kernel RBF scheme
produced a high level of accuracy. Regarding the issue of computational effi ciency, our
experiments showed that the computation of the kernel RBF scheme was clearly less
effi cient than the classical Demon’s finite difference scheme. This was due to the defeat
of the global supports of the kernel function setting. Indeed the numerical results lead an
important role in the overall simulation of the DIR, thus the trade-off between numerical
accuracy of the simulation results and computational effi ciency has to be measured when
using these schemes.
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Abstract 

The work is devoted to optimization of the joint working area of 6-DOF relative manipulation 

mechanism, which include flat 3-RRR mechanism that rotates around the z axis and translates 

along the x and y axes of the lower platforms, and a tripod that provides movement of the tool 

along the z axis and its rotation around the x and y axes. The method of nonuniform covering 

is used to build the working area. As a result of the work of the method, external and internal 

approximations are obtained, given as a set of parallelepipeds. The paper presents the results 

of a computational experiment. The results of modeling the working areas of each of the 

relative manipulation modules and other parallel mechanisms, such as the flat 2-DOF 

DexTAR robot, are presented. The joint work area at moveable coordinate system is obtained. 

Moveable coordinate system is located in center of lower mechanism. The algorithms are 

implemented in C ++ using the Snowgoose library.  

Keywords: Approximation, relative manipulation, working area, parallel robot. 

 

Introduction 

The paper considers a parallel robot consisting of two mechanisms of relative manipulation 

(Fig. 1): 

1. Upper mechanism is a tripod, which provide move along the z axis and rotate around 

the x and y axes. 

2. Lower planar 3-RRR mechanism, which provide a rotation around the z axis and 

translational movement along the x and y axes. 

Thus, the mechanism has 6 degrees of freedom. The mechanism will be designed to perform 

machining operations of details and other operations if the working tool is fixed to the mobile 

platform. 

The main problem for parallel mechanisms is the small size of the working area and the 

presence of the singularity zones.  

The task is approximation of the working area on the basis of optimization algorithms. 

 

 

ICCM2018, 6th-10th August 2018, Rome, Italy

949



 

Figure 1.  A 3D-model of the robot: 1 – the tool installation module, 2 –the tool, 3 – the 

detail machining module. 

DexTAR working area approximation based on the method of nonuniform covering 

The paper suggests the use of the method of nonuniform covering (Fig. 2) to solve the 

problem of approximation of the working area. The method is based on works [1,2]. This 

method allows approximating the solutions set of the equalities or inequalities systems 

describing the robot working area. The external and internal approximation sets are 

constructed. The internal approximation set is included in the set of solutions of the 

inequalities system. Both sets are represented as unions of n-dimensional parallelepipeds. 

Mathematical transformation of the coupling equations of some robots allows you to reduce 

the dimension, and hence the computation time. Using the parallelepipeds of large dimension 

avoids significant mathematical transformations, and then project them onto the coordinate 

axes necessary for the imaging. 

Interval estimates using the developed Snowgoose library in C++ can be used to find the 

maximum and minimum of functions in parallelepipeds. The grid approximation method is 

used for cases of multiple occurrence of variables where errors can affect the result. 

Method is development and tested on models of robots with 2 and 3 degrees of freedom 

within the framework of the Russian Science Foundation project, the agreement number 16-

19-00148. 
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Figure 2.  Illustration of the method. 

 

The method was successfully applied to the 2-DOF robot DexTAR (Fig. 3). It is a planar 

parallel four-link mechanism, controlled by two engines. Result is presented in [3]. 

 

 

Figure 3. DexTAR robot scheme  

Equations describing the motion: 

 

 

 

 

(1) 

Equations have 6 variables: 

•  Input coordinates: 𝑞1, 𝑞2 

•  Output Coordinates: 𝑥𝑝, 𝑦𝑝 
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•  Intermediate coordinates: 𝑞3, 𝑞4 

Interval estimates are used to search for extrema. Under conditions of a single occurrence of 

variables in the expression, the interval estimates coincide with the extrema of the function on 

the parallelepiped, i.e. cannot be improved. However, the calculation time was 39 minutes 40 

seconds, which is due to the large dimensionality of the problem (6-dimensional 

parallelepiped). Results of simulation is presented on Fig. 4, 5.  

 

  

Figure 4. Results of simulation DexTAR 

working area 

Figure 5. Singularity zone on an enlarged 

scale 

 

 

Dimensionality of the problem was lowered and the grid approximation method was applied, 

due to the multiple occurrence of variables in expressions. The Fig. 6 shows the results of 

modeling the working area, Fig. 7 is the singularity zone on an enlarged scale. The calculation 

time, decreased by 10.35 times, while the accuracy of calculations increased by 10 times.  

 

  

Figure 6. Results of simulation DexTAR 

working area 

Figure 7. Singularity zone on an enlarged 

scale 

Modeling the working area of the relative manipulation mechanism 

Consider the construction of the working area of the robot with relative manipulation 

mechanisms (Fig. 1). Definition the working area of the upper mechanism - the tripod (Fig. 8) 

was developed within the framework of the Russian Science Foundation project, the 

agreement number 16-19-00148. The tripod consists of three link of variable length, which 

are connected by rotational hinges to the base and spherical hinges to the working platform. 

The base and the working platform are equilateral triangles. As a result of changing the 
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lengths of the rods, the working platform moves along the z axis and rotates along the x and y 

axes. 

 

Figure 8. Tripod scheme 

The center of the tripod mobile platform, in addition to the basic three basic degrees of 

freedom, has small displacements, which can be found by the following formulas [4]: 

𝜑 = 𝑇𝑎𝑛−1(
𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜓+𝑐𝑜𝑠𝜃
), where φ – rotation angle around z axis, θ – around y axis, ψ – around 

x axis 

𝑦 = −𝑟𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑, where y – displacement on y axis, r – radius of moveable platform 

                              

𝑥 =
𝑟

2
(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 − 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜑), where x – displacement on x axis. 

The rotation matrix for the transition from the coordinate system located in the center of the 

fixed platform to the coordinate system located in the center of the moving platform: 

𝑅𝑝 = [
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] [
1 0 0
0 𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓
0 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

] [
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑 0
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0

0 0 1
] 

 

 

(2) 

𝑅𝑝 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓
𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜓

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓
]

= [

𝑅𝑝11 𝑅𝑝12 𝑅𝑝13
𝑅𝑝21 𝑅𝑝22 𝑅𝑝23
𝑅𝑝31 𝑅𝑝32 𝑅𝑝33

] 

 

 

(3) 

 

The main criterion for determining the occurrence of a point in the working area is the 

occurrence of each of the link lengths in the permissible range. The generalized formula for 

link lengths: 

𝐿𝑖 = √(𝑥𝐴𝑖 − 𝑥𝐵𝑖)2 + (𝑦𝐴𝑖 − 𝑦𝐵𝑖)2+(𝑧𝐴𝑖 − 𝑧𝐵𝑖)2 (4) 

The links lengths can be determined as follows: 

𝐿1 = √(𝑥 + 𝑟 · 𝑅𝑝11 − 𝑅)2 + (𝑧 + 𝑟 · 𝑅𝑝31)2, 

 

(5) 

𝐿2 = ((𝑥 + 0,5𝑟(𝑅𝑝11 + √3𝑅𝑝12) − 0,5𝑅)
2

+ (𝑦 − 0,5𝑟(𝑅𝑝21 + √3𝑅𝑝22) +

√3

2
𝑅)

2

+ (𝑧 − 0,5𝑟(𝑅𝑝31 + √3𝑅𝑝32))
2

)
0,5

, 

 

 

(6) 
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𝐿3 = ((𝑥 − 0,5𝑟(𝑅𝑝11 − √3𝑅𝑝12) + 0,5𝑅)
2

+ (𝑦 − 0,5𝑟(𝑅𝑝21 − √3𝑅𝑝22) −

√3

2
𝑅)

2

+ (𝑧 − 0,5𝑟(𝑅𝑝31 − √3𝑅𝑝32))
2

)
0,5

, 

 

 

(7) 

where z – moving along the z axis. 

Given a list of parallelepipeds ℙ1 , which initially includes one parallelepiped 𝑄1  in the 

moving coordinate system, which is guaranteed to include the work area. During the 

execution of the algorithm (Fig. 9), the link length functions are calculated. If at least one of 

the calculated lengths is out of the allowable range at all points of the parallelepiped, then this 

parallelepiped is not included in the working area and added in the list of external 

approximations. If in all points of a parallelepiped all the functions of the link lengths are in 

the permissible range or the diameter of the parallelepiped d(𝑄𝑖) is smaller than the accuracy 

of the approximation δ, then this parallelepiped enters the working area and added in the list 

of inner approximation. In other cases, the parallelepiped is divided in half along the maximal 

length of the edge and 2 parallelepipeds are added to the end of the list ℙ1   for further 

consideration. The following geometric parameters were chosen for simulation:  

𝐿𝑖,𝑚𝑖𝑛 = 70 𝑚𝑚 

𝐿𝑖,𝑚𝑎𝑥 = 130 𝑚𝑚 

𝑅 = 𝑟 = 50 𝑚𝑚 
Results of simulation is presented on Fig. 10, 11. 

 
Figure 9. Algorithm for tripod 
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Figure 10. The working area in projection 

on yz plane 

Figure 11. The working area in 

projection on xz plane 

 

 

Definition the working area of the lower mechanism - a planar robot (Fig. 12) was developed 

within the framework of the Russian Science Foundation project, the agreement number 17-

79-10512. This mechanism consists of three chains containing three rotational kinematic pairs 

Oi, Ai, Bi (i=1,2,3). The axes of rotation of all pairs are parallel to each other and 

perpendicular to the plane in which the mechanism moves. Rotary pairs Аi are fixed on a base, 

and their position is given by the coordinates xi, yi in a fixed rectangular coordinate system. 

The position of the output link of the mechanism is given by the position of the point D and is 

described by the coordinates x and y as well as the angle of rotation φ of this link with respect 

to some initial position. The displacement of the output link is carried out due to the rotation 

of the driving (input) pairs Аi. The angles of rotation θi of these pairs are generalized 

coordinates for the given mechanism. R and r – the radii of the circles described the triangles 

О1О2О3 and В1В2В3 respectively.   

The geometry of the output link, i.e. the mutual arrangement of points С1, С2, С3 and D is 

given by angles γi as well as distances СiD . 

 

Figure 12. Scheme of a planar 3-RRR mechanism 
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The criterion of a planar mechanism is the permissible range of rotation angles of drive pairs. 

The formulas to calculate the angles 𝜃𝑖 are: 

  

(8) 

 

 

 

(9) 

 

 

(10) 

 

 

 

(11) 

 

 

(12) 

 

 

Planar mechanism algorithm (Fig. 13) is developed. It is similar to the tripod algorithm. The 

following geometric parameters were chosen for simulation: 

𝑙1𝑖 = 𝑙2𝑖 = 𝑙3𝑖 = 𝑟 = 50 𝑚𝑚, 

𝑅 = 100 𝑚𝑚, 

𝜃𝑂,𝑚𝑖𝑛 = −45°, 

𝜃𝑂,𝑚𝑎𝑥 = 45°. 

Results of simulation is presented on Fig. 14. 
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Figure 13. Algorithm for planar 3-RRR. 

 

Figure 14. Results of simulation  
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Consider the scheme of a complicated mechanism which include the tripod and flat 3-RRR 

mechanism. 

 
Figure 15. Kinematic scheme of the robot with relative handling modules 

Development of an algorithm for approximating a joint working area 

Algorithm for approximating a joint working area in a moving coordinate system is developed 

within the framework of the Russian Science Foundation project, the agreement number 17-

79-10512. The algorithm is described below: 

1. 2 fixed coordinate systems: 𝑥0𝑦0𝑧0 is located in the center of the joint 𝐴1, 𝑥1𝑦1𝑧1 in the 

center of the upper fixed platform 𝑂1. 

2. The moving coordinate system 𝑥2𝑦2𝑧2 of the planar mechanism is placed in the center of 

the planar mechanism platform 𝑂2. 

3. Let`s use the working area parallelepiped lists of the upper mechanism ℙ1,𝐼 and the lower 

mechanism ℙ2,𝐼. 

4. Given a list of parallelepipeds ℙ, which initially includes one parallelepiped 𝑄1  in the 

moving coordinate system, which is guaranteed to include the work area. 

5. Apply a grid 𝐴1 to this parallelepiped. 

6. Apply the grid 𝐴2 to the parallelepipeds from list ℙ2,𝐼 of the flat mechanism. 

7. For each of the grid A1 nodes of the parallelepiped 𝑄𝑖 , calculate the rotation and 

displacement matrices of the transition from the coordinate system 𝑥2𝑦2𝑧2 to the coordinate 

system 𝑥1𝑦1𝑧1, This matrices have variable values equal to the coordinates of the grid 𝐴2 

nodes in the coordinate system 𝑥0𝑦0𝑧0. 

9. If all nodes of the grid 𝐴1 after the transition do not belong to the working area ℙ1,𝐼  , then 

the parallelepiped 𝑄𝑖 is added to the ℙ𝐸 list of parallelepipeds of the external approximation. 

10. If all nodes of the grid 𝐴1  after the transition belong to the working area ℙ1,𝐼  or the 

diameter of the parallelepiped d(𝑄𝑖) is smaller than the accuracy of the approximation δ, then 

the parallelepiped 𝑄𝑖 is added to the list ℙ𝐼 of parallelepipeds of internal approximation. 

11. In other cases, the parallelepiped is divided in half along a larger edge and added to the 

end of the list ℙ. 

12. Repeating items 5-11 is performed before check the last parallelepiped in list ℙ. 

 

Results of simulation with projection on different plane is presented on Fig. 17. 
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Figure 16. Algorithm for joint working area 

 

 
  

a) b) c) 

Figure 17. The working area in projection on a) xz plane, b) yz plane, c) xy plane 
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Conclusions 

The applied algorithm showed its efficiency. The computation time for accuracy of 

approximation δ = 6mm and the dimension of the grid for enumerating the calculation of 

functions 64x64x64 on a personal computer was 2 hours and 45 minutes. The accuracy of the 

approximation (δ = 6 mm) of given complicated robot with 6 degrees of freedom in 

comparison with planar mechanisms with three degrees of freedom (δ = 0.006-0.06 mm) is 

reduced in 100-1000 times, which is due to increase in the dimensionality of the problem and 

significant computing resources are required to increase accuracy. The resulting work area has 

fuzzy boundaries, which may be due to insufficient computational power and the presence of 

singularity zones. 

 

Conclusions 

This work was supported by the Russian Science Foundation, the agreement number 16-19-

00148, the agreement number 17-79-10512 
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Abstract 

In actual oil exploration process, vortex-induced vibration (VIV) is the main source of 

structural fatigue damage of the risers. In this paper, VIV of a flexible cylinder experiencing 

combined uniform and oscillatory flow is investigated numerically. All investigations are 

carried out by the in-house CFD code viv-FOAM-SJTU, which is developed basing on the 

pimplyDyMFOAM solver attached to the open source OpenFOAM. The effects of flow ratio 

on VIV are concentrated, while the flow ratio α is defined as the proportion of the uniform 

flow velocity in the total velocity. Main parameters of the cylinder are as follows: the mass 

ratio * 1.53m  , the diameter 0.024D  , the length 4L  and the Keulegan–Carpenter (KC) 

number KC=178. The flow ratio varies from 0 to 1 with an interval of 0.2. The modal analysis 

method and the wavelet analysis method are used to study the effect of flow ratio to VIV 

response of the cylinder in combined flow. 

 

Keywords: vortex-induced vibration (VIV); viv-FOAM-SJTU solver; strip method; flow 

ratio 

 

Introduction 

Vortex-induced vibration (VIV) of a flexible cylinder in steady flow has been investigated 

extensively during the past decades through experimental and numerical methods, such as 

Chaplin et al[3][4], Lie and Kaasen[9], Willden and Graham [13][14] and Yamamoto et al[16]. 

Chaplin et al[3] carried out benchmark experiments of VIV of a long flexible vertical tension 

cylinder in stepped flow. The modal analysis method is used to obtain modal weights of each 

vibration mode and determine the dominant vibration mode of the cylinder. Lie and Kaasen[9] 

also used the modal analysis method to analyze the vibration feature of a flexible cylinder in 

sheared flow. And they chose to solve modal amplitudes through the least-square sense with 

the existence of some modal amplitudes that are not physical with regard to the frequency 

content. Willden and Graham[13] and Yamamoto et al[16] carried out numerical studies of 

VIV of a flexible cylinder in uniform flow adopting strip method. Numerical results were in 

good agreements with experiments and the strip method was appropriate for solving VIV 

problems. 

 

In order to study the vibration features of a circular cylinder around oscillatory flow, 

comprehensive researches have been carried out by Bearman[1][2], Kozakiewicz et al[8], 

Sarpkaya[11][12], Williamson[15], and Zhao et al[17]-[19]. Williamson[15] and 

Sarpkaya[11][12] conducted a series of experiments to investigate motions of vortices around 

a single cylinder in relative oscillatory flow. And several vortex regimes were identified 

within particular ranges of Keulegan-Carpenter (KC) Numbers: the attached vortices regime 
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(0<KC<7), where no major vortices shed during a cycle; the single pair regime (7<KC<15); 

the double pairs regime (15<KC<24); the three pairs regime (24<KC<32) and ect. For further 

KC regimes, the number of vortices pairs shed in each oscillating period would be increased 

by one each time the KC regime changed to a higher one. Kozakiewicz et al[8] and Zhao et 

al[17] carried out experiments and numerical simulations of a cylinder exposed to oscillatory 

flow for two KC numbers of 10 and 20 respectively. Kozakiewicz et al[8] found that the 

cross-flow vibration of the cylinder changed the vortex shedding trail and the number of 

vortices generated over one oscillating cycle comparing with the fixed cylinder. Zhao et al[17] 

found that the reduced velocity had significant effects to the XY- trajectory mode of the 

cylinder and the VIV frequency decreased with the increase of reduced velocity. And when 

the reduced velocity was extremely large, the vibration amplitude in the cross-flow direction 

was negligible smaller than that of the inline direction. Basing on the previous simulations, 

Zhao et al[19] carried out simulations of a circular cylinder experiencing combined oscillatory 

flow and steady flow at KC=10. They found that the lock-in regime was widened due to the 

combination of oscillatory and steady flow and the widest lock-in regime were twice as wide 

as that in the pure oscillatory or pure steady flow. For flexible cylinder condition, Fu[7] 

carried out a series of experiments of a flexible cylinder in relative oscillatory flow at 

KC=178. They proposed the VIV development process of “Build up—Lock in—Die out” in 

each half oscillating period. And Moreau and Huang[10] conducted experiments of cross-flow 

vortex-induced vibration in combined in-line current and oscillatory flow, including 12 

different combinations of flow and cylinder conditions in total. He found that the VIV 

amplitude response was much reduced in the combined flow comparing with the pure steady 

flow at a given reduced velocity. 

 

In this paper, VIV of a flexible cylinder experiencing combined oscillatory and uniform flow 

is investigated. All numerical simulations are carried out by the in-house CFD code 

viv-FOAM-SJTU, which is developed basing on the strip theory method and the 

pimpleDyMFOAM solver attached to the open source code OpenFOAM. The effect of flow 

ratio is concerned and the numerical model refers to the experiments of Fu et al[7]. The flow 

ratio α is defined as the proportion of the uniform flow velocity in the total velocity. The flow 

ratio varies from 0 to 1 with an interval of 0.2. Firstly, the validation is conducted at the pure 

oscillatory flow condition comparing results of cross-flow vibration history and dominant 

vibration frequency with Fu et al[7]. Then modal analysis and wavelet analysis methods are 

used to study the effect of flow ratio to VIV response. 

 

This paper is organized as follows: the first section gives a brief introduction to the referenced 

experiments and the numerical methodology. The second section presents the results and the 

final section concludes the paper. 

 

Method 

Hydrodynamics Governing Equations 

The flow field is supposed to be incompressible, with constant dynamic viscosity μ and 

constant density ρ. The Reynolds-averaged Navier-Stokes equations are used as the 

hydrodynamics governing equations as follow: 

0
i

iu

x





                                 (1) 
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ij j i t ij iju u S k         , where t is the turbulent viscosity and

 1/ 2 i ik u u  is the turbulent energy, computing from the fluctuating velocity field. 

 

Structural Dynamic Governing Equations 

In order to form the relatively oscillatory flow, the supporting frame is forced to oscillate 

harmonically during the investigations. The oscillation can be expressed as: 

2
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                             (5) 

where A is the oscillating amplitude，T is the oscillating period, xs  is the oscillating 

displacement，Us is the oscillating velocity ，Um is the amplitude of the oscillating velocity ，

D is the diameter of the cylinder。 

 

Fu[6]
 
uses the support excitation method combined with the Bernoulli–Euler bending beam 

theory to obtain the structural response of the cylinder. The in-line displacement of the 

cylinder is the sum of support frame motion and the relative in-line vibration of the cylinder: 

 t sx x x                                 (6) 

where 𝑥𝑡 is the in-line displacement, 𝑥𝑠 is the support displacement and 𝑥 is the relative 

in-line displacement. 

 

The equilibrium of forces for this system can be written as follow: 

      I D S Hf f f f                               (7) 

where 𝑓𝐼, 𝑓𝐷, 𝑓𝑆, 𝑓𝐻 are the inertial, the damping, the spring, and the hydrodynamic force 

respectively. 

 

Then the equilibrium of forces for the system can be written as: 

 t Hmx cx kx f                               (8) 

H smx cx kx f mx                               (9) 

where 𝑚, 𝑐, 𝑘 are the mass, the damping and the stiffness of the system. 

 

Adopting the finite element method(FEM), the equations can be discretized as: 

-Hx sMx +Cx + Kx = F Mx                          (10) 

HyMy +Cy + Ky = F                            (11) 

where M, C, K are the mass, the damping and the stiffness matrices, while x, xs and y are the 

relative in-line, the support and the cross-flow nodal displacement vectors. FHx and FHy are 

the hydrodynamic force in the in-line and cross-flow direction respectively. 
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Problem Description 

The numerical model used in this paper follows experiments of Fu[7] and the layout of the 

experiments is shown in Fig. 1. Detailed information about main parameters of the cylinder is 

shown in Table 1. 20 strips located equidistantly along the cylinder totally. Fig. 2 shows the 

distribution of flow field strips along the span of the cylinder and the entire computational 

domain and meshes of strips. 

 

 
Figure 1. Layout of the experiments of Fu et al 

 

Table 1: Main parameters of the cylinder 

 
Symbols Values Units 

Mass ratio m∗ 1.53 − 

Diameter D 0.024 m 

Length L 4 m 

Bending stiffness EI 10.5 N ⋅ m2 

Top tension Tt 500 N 

First natural 

frequency 
fn
1 2.68 Hz 

Second natural 

frequency 
fn
2 5.46 Hz 

 

  
(a)                             (b) 

Figure 2. Illustration of multi-strip model and computational domain of a strip 

 

In this paper, VIV of a cylinder in combined uniform and oscillatory flow are investigated. 

The flow ratio α represents the proportion of uniform flow velocity in the total flow velocity. 

According to equations (3) and (4), the total velocity and the flow ratio can be written as 

equations (12) and (13). Detailed computational conditions are shown in Table 2. 

 
2  2  2  

cos ) cos )( (c s m s mU t U U t U A t
T T T

  
                    (12) 
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where 𝑈𝑠 is the uniform flow velocity, 𝑈𝑐 is the total velocity, 𝐴𝑚 is the amplitude of the 

oscillation, 𝑇 is the oscillating period. 

 

Table 2 Computational conditions 

 𝑈𝑐 α 𝑈𝑠 𝐴𝑚 T KC 

Case1 0.2589 0 0 0.68 16.5 178 

Case2 0.2589 0.2 0.05178 0.68 20.6 178 

Case3 0.2589 0.4 0.10356 0.68 27.5 178 

Case4 0.2589 0.6 0.15534 0.68 41.3 178 

Case5 0.2589 0.8 0.20712 0.68 82.5 178 

Case6 0.2589 1 0.2589 0.68 - 178 

 

Strip Theory 

In this paper, numerical investigations are carried out by the viv-FOAM-SJTU solver basing 

on the strip method and the pimpDyMFOAM solver attached to the open source code 

OpenFOAM. The strip method is very appropriate for solving CFD investigations of 

supramaximal computational domain. It owns high computational efficiency and the 

computational accuracy is reliable, The reliability of the viv-FOAM-SJTU solver has been 

testified by Duan[2]
,
 in which the benchmark case has been verified in detail. 

 

For a long flexible cylinder, the direct computation of the three dimensional flow field will 

cost too much resources. Instead of this, we simplify CFD model and obtain the two 

dimensional flow field on strips distributed equably along the cylinder. The hydrodynamic 

force is obtained from each strip, which is then applied to the structural field. The structural 

displacements of all nodes are interpolated to get the boundary motion of dynamic mesh of 

flow field. The strip theory is shown as Fig. 1. 

 

During the numerical investigations, the RANS equations and SST k-ω turbulence model are 

adopted to solve the flow field in each strip, while the whole structure filed is solved through 

Bernoulli–Euler bending beam theory with the finite element method. The fluid-structure 

interaction is carried out by loose coupling strategy. 

 

 
Figure. 3 Schematic diagram of strip theory 
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Results 

Validation 

Fig. 4 shows subplots of non-dimensional cross-flow amplitude of the intermediate node of 

the cylinder between experiment and simulation. From comparison, it can be concluded: (i)the 

development process of “Building-up—Lock-in—Dying-out” of vortex-induced vibration is 

observed in both experiment and numerical simulation; (ii)the lock-in region is 17.3% of the 

half oscillating period in numerical simulation, which is close to the experiment result of 17%; 

(iii)the non-dimensional cross-flow amplitude is 0.37D in half oscillating period, which is 

close to the experiment result of 0.36D. 

 

Fig. 5 are subplots of power spectral density and modal weight of each vibration mode in an 

oscillating period respectively. From these figures, it can be known that the dominant 

vibration frequency is 2.2Hz, which is close to the result of experiments of 2.1Hz. While the 

dominant vibration mode of the cylinder is the 1st mode. 

 

           
(a)Result of Fu et al.                 (b)The present simulation     

Figure 4. Non-dimensional cross-flow vibration amplitude of the intermediate node in 

half an oscillating period 

 

      
(a)                                 (b) 

Figure 5. Cross-flow power spectral density and modal weight of each vibration mode of 

the intermediate node: (a) power spectral density; (b) modal weight 

 

Modal Analysis 

Fig. 6 are subplots of non-dimensional cross-flow vibration amplitude of the intermediate 

node of the cylinder ranging from α=0 to α=1.0 in an oscillating period. Two VIV 

development process of “Building-up—Lock-in—Dying-out” can be observed both in Fig. 

6(a) and 6(b), which shows that the oscillatory flow plays the dominant role in the VIV 

phenomenon of the cylinder. There are two obvious lock-in region in Fig. 7(b) at α=0.2 in an 

oscillating period. When flow velocities are in the same direction, the vibration amplitude is 

0.27D and the lock-in region is 31.4% of the half oscillating period. When flow velocities are 

in the opposite direction, the vibration amplitude is 0.05D and the lock-in region is 13.6% of 
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the half oscillating period. As shown in Fig. 6(c) and 6(d), the obvious VIV phenomenon is 

observed in the half oscillating period where the oscillatory flow velocity and the uniform 

flow velocity are in the same direction. While no obvious VIV phenomenon happens when 

two flow velocities are in opposite direction. Both oscillatory flow and uniform flow have 

non-negligible influence to the VIV of the cylinder. With the increase of flow ratio, the 

proportion of uniform flow velocity in the total flow velocity increases and the dominant 

effect of the uniform flow to VIV of the cylinder becomes obvious. From Fig. 6(e) and 6(f), it 

can be seen that the obvious VIV phenomenon is observed in the whole oscillating period. It 

can be concluded that the vibration feature of the cylinder in combined flow is similar to that 

in pure oscillatory flow (α=0) when flow ration α≤0.2 and similar to that in pure uniform flow 

(α=1.0) when α≥0.8. 

 

Comparing Fig. 6(b) with 6(c), it can be known that the dominant effect of oscillatory flow 

becomes weak with the increase of flow ratio. When flow velocities are in the same direction 

at α=0.4, the reduced velocity is large enough to generate VIV phenomenon in the whole half 

period. When oscillatory flow velocity reverses, the reduced velocity decreases and no VIV 

phenomenon generated in the whole half period. When flow velocity increases to α=0.6 as 

shown in Fig. 7(d), VIV phenomenon occurs in the whole region when flow velocities are in 

the same direction as that of α=0.4 and in the preliminary stage and final stage of the half 

period when flow velocities are in the opposite direction. In these two stages, the oscillatory 

flow velocity is small and the uniform flow still owns dominant effect to the vibration of the 

cylinder. However in the intermediate stage, the increase of oscillatory flow velocity leads to  

the decrease of total flow velocity, then VIV phenomenon becomes weaker and disappears 

finally. When flow velocity increases to α=0.6 as shown in Fig. 7(e), it is found that the 

uniform flow plays dominant role in the cross-flow vibration of the cylinder. And the 

cross-flow vibration amplitude reaches its peak or valley value when the oscillatory velocity 

reaches its peak value. 

 

     
(a)                      (b)                       (c) 

     
(d)                      (e)                       (f) 

Figure 6. Non-dimensional cross-flow vibration amplitude of the intermediate node in an 

oscillating period: (a) α=0; (b) α=0.2; (c) α=0.4; (d) α=0.6; (e) α=0.8; (f) α=1.0 

 

Fig. 7 are subplots of cross-flow modal weight of each vibration mode of the intermediate 

node of the cylinder ranging from α=0 to α=1.0 in an oscillating period. It can be found that 

the first mode is the dominant vibration mode when obvious VIV phenomenon occurs. And 

the disturbance of second mode is too small to change the dominant vibration mode of and 
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only can be observed in pure oscillatory flow and combined flow when flow velocities are in 

the same direction. 

 

     
(a)                      (b)                       (c) 

     
(d)                      (e)                       (f) 

Figure 7. Cross-flow modal weight of each vibration mode of the intermediate node in an 

oscillating period: (a) α=0; (b) α=0.2; (c) α=0.4; (d) α=0.6; (e) α=0.8; (f) α=1.0 
 

Wavelet Analysis 

The wavelet analysis method is used to obtain the dominant cross-flow vibration frequency of 

the cylinder along the time. Fig. 8 shows cross-flow vibration wavelet of different nodes 

along the span of the cylinder. These subplots can be divided into three groups: (A) Fig. 8(a) 

and 8(b); (B) Fig. 8(c) and 8(d); (C) Fig. 8(e) and 8(f). The periodical variation of the 

dominant vibration frequency is obvious from Fig. 8(a) to 8(d).  

 

In Fig. 8(a) and 8(b), the dominant vibration frequency is close to the first natural frequency 

of the cylinder in most of the oscillating period. In the flow ratio range of group A, the 

oscillatory flow has significant effect to the cross-flow vibration frequency. With the increase 

of flow ratio, the proportion of the cross-flow vibration frequency close to the first natural 

frequency decreases. As shown in Fig. 8(c) and 8(d), we can see that the increasing and 

decreasing process of the dominant vibration frequency is similar to the shape of sinusoidal 

function. During the half process of flow velocities in the same direction, the cross-flow 

vibration of the cylinder is drastic which leads to the generation of high vibration frequency 

region. During the half process of flow velocities in the opposite direction, the cross-flow 

vibration of the cylinder is relatively weak which leads to the generation of the low vibration 

frequency region. In the flow ratio range of group B, both oscillatory flow and uniform flow 

influence the cross-flow vibration frequency. From Fig. 8(e) and 8(f), it can be known that the 

variation of dominant vibration frequency is relatively small comparing with other cases. And 

the uniform flow plays the dominant role in this flow ratio range. 
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(a)                      (b)                       (c) 

     
(d)                      (e)                       (f) 

Figure 8. Cross-flow vibration wavelet of different nodes along the span of the cylinder: 

(a) α=0; (b) α=0.2; (c) α=0.4; (d) α=0.6; (e) α=0.8; (f) α=1.0 
 

Cross-flow Vibration Trajectory 

Fig. 9 are subplots of cross-flow vibration trajectory of three nodes along the span of the 

cylinder. With the increase of flow ratio, the trajectory shape of the intermediate node of the 

cylinder changes from the “H” type to the “1” type. For the pure oscillatory flow condition 

(Fig. 9(a)), the cross-flow vibration and the in-line deformation reaches its peak value when 

the cylinder moves across the center, which generate the two sides of the “H”. During the 

preliminary and the final stages, the oscillatory flow velocity reaches its valley value that 

leads to the small cross-flow vibration and in-line deformation of the cylinder, which 

generates the short transverse line of the “H” shape. When the flow ratio increases to 0.2, the 

flow velocity decreases during the process of oscillatory flow and uniform flow velocity in 

opposite direction. And the right side of the trajectory is generated due to the low cross-flow 

vibration amplitude and in-line deformation when the cylinder moves across the center during 

the process. With the flow ratio increasing, the total flow velocity in the process of opposite 
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flow velocities keeps decreasing. Then the cross-flow vibration amplitude and in-line 

deformation becomes smaller than those in flow ratio of 0.2. So the trajectory in the region of 

x≥0 is very small as shown in Fig. 9(c) and 9(d). Meanwhile, the proportion of the total flow 

velocity that generate relatively larger vibration amplitude increases in the process of the 

same flow velocities direction, which lead to the change of trajectory shape from triangle to 

rectangle in the region of x≤0. From Fig. 9(e), it can be concluded that the cross-flow 

vibration and in-line deformation of the cylinder are extremely small in the region of x≥0 and 

the trajectory shape is similar to that in Fig. 9(f), which means that the uniform flow plays the 

dominant role when flow ratio α=0.8. 

 

 
(a)                      (b)                       (c) 

   
(d)                      (e)                       (f) 

Figure 9. Cross-flow vibration trajectory of different nodes along the span of the 

cylinder: (a) α=0; (b) α=0.2; (c) α=0.4; (d) α=0.6; (e) α=0.8; (f) α=1.0 

 

Conclusion 

In this paper, numerical simulations of vortex-induced vibrations of a flexible cylinder 

experiencing combined oscillatory and uniform flow are carried out by the in-house CFD 

code viv-FOAM-SJTU solver. Results of cross-flow displacement history, modal weights, 
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wavelet and vibration trajectory are analyzed in detail. 

 

Results of cross-flow displacement history and modal weights show that the first mode is the 

dominant vibration mode of the cylinder in all flow conditions. The dominant vibration 

frequency of the cylinder is approximately near the first natural frequency through results of 

cross-flow wavelet. With the flow ratio increasing, the vibration trajectory of the cylinder 

changes from the “H” type to the “1” type. The vibration responses of the cylinder in 

combined oscillatory and uniform flow are similar to that in pure oscillatory flow (α=0) when 

flow ration α≤0.2 and similar to that in pure uniform flow (α=1.0) when α≥0.8. 
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Abstract 

The layout of wind turbines has significant effects on the power generating capacity and the 

economic efficiency of the wind farm. How to rationally arrange the wind turbines, minimize 

the mutual interference in the wake, and improve the efficiency of the whole wind farm have 

been paid enough attention. To investigate the aero-hydrodynamic characteristics of floating 

offshore wind turbines (FOWTs) with different layouts, fully coupled simulations for FOWTs 

under variable wind and wave conditions are necessary. In the present work, the unsteady 

actuator line model (UALM) is embedded into in-house CFD solver naoe-FOAM-SJTU to 

establish a fully coupled CFD analysis tool named FOWT-UALM-SJTU for numerical 

simulations of FOWTs. Coupled aero-hydrodynamic simulations of two OC3 Hywindspar 

FOWT models in both tandem and offset configurations under shear wind and regular wave 

conditions are performed. From the simulations, unsteady aerodynamic characteristics 

including the rotor power, thrust, and detailed wake flow information can be obtained, and 

hydrodynamic responses such as the six-degree-of-freedom motions and mooring tensions are 

also available. The coupled aero-hydrodynamic characteristics of FOWTs with different 

layouts are compared and analyzed. Strong wake interaction phenomena are observed and the 

blades of the downstream turbine are subject to a highly asymmetric interaction with the wake 

induced by the upstream turbine in offset configuration. The coupled aero-hydrodynamic 

performance of downstream FOWT is significant influenced by the layout of FOWTs. 

Keywords: Floating offshore wind turbines; Coupled aero-hydrodynamic simulations; 

Layout of wind turbines; FOWT-UALM-SJTU solver 

Introduction 

Along with the growing energy crisis and environmental crisis, the demands of renewable 

energy have become increasing urgent. As one of the most promising non-polluting renewable 

energy, wind energy is developing rapidly in recent years. In addition, the wind turbines that 

are used to convert the wind energy into electricity have also achieved great development. To 

obtain more wind power, the rotor blade of wind turbines have become significant larger. The 

wind turbine sizes have increased to multi-megawatt levels. Additionally, the wind turbine 

have experienced from onshore wind turbines to offshore wind turbines for gaining huge 

amount wind energy. Compared with onshore wind turbines, the offshore wind turbines have 

several advantages. The wind speed from the sea is much stronger and more uniform than it 

from the land, which means the offshore wind turbines can again more wind energy than 

onshore wind turbines. The onshore wind turbines have constraints such as visual impact and 

noise emissions, while the onshore wind turbines can avoid these disadvantages and do not 

take up precious land resources
[1]

. The using of offshore wind turbines has become a trend in 

the development of wind energy, and the offshore wind farms composed of multiple offshore 
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wind turbines for the development of huge amount offshore wind power have attracted a lot of 

attention. 

 

In the offshore wind farms, the layout design has great influence on the initial investment cost, 

annual energy production, operation and maintenance cost during the service life time of wind 

turbines
[2]

. An adequate wind farm layout design would lead to higher than expected wind 

power capture, decreased maintenance costs, longer service time, and so on. Many research 

works focusing on the layout design have been done. Bansal et al.
[3]

 improved the 

biogeography based optimization (BBO) and solved the wind farm layout optimization 

problem with non-uniform hub height and rotor radius based on fitness difference strategy 

(FD-BBO). Compared with numerical experiments on benchmark test problems, the proposed 

FD-BBO was proven to be an efficient optimization algorithm. Wang et al.
[4]

 presented a 

novel control strategy approach for the optimization of a simple square wind farm, and 

optimal wind farm design considering both the wind turbine placement and control were 

studied using three different optimization approaches. Rehman et al.
[5]

 proposed an 

optimization approach based on the cuckoo search (CS) algorithm for wind farm layout 

design. The proposed CS algorithms were compared with genetic and particle swarm 

optimization algorithms, and the comparative results including the yearly power output and 

efficiency showed the CS algorithms outperformed other optimization algorithms. Choi et 

al.
[6][7]

 performed numerical simulations of a 6 MW wind farm consisting of three sets of 

2MW wind turbines in tandem configutation. The influence of the inter-turbine spacing on the 

aerodynamic power output, wake interaction and the dynamic responses of wind turbine was 

studied. They also investigated the aerodynamic performance of a wind farm with two sets of 

2MW class wind turbines using a full 3-D wind turbine model. The effect of separation 

distance between two turbines on power output of the wind farm was studied. Fletcher and 

Brown
[8]

 studied the aerodynamic interaction between two wind turbines in both co-axial and 

offset configurations using vorticity transport model. The influence of horizontal space and 

longitudinal space on the aerodynamic interaction was discussed. Mikkelsen et al.
[9]

 analyzed 

the effect of wake interaction for three in-line model wind turbines in a wind farm based on 

the actuator line technique. Both full wake and half wake situations are considered, and 

detailed unsteady behavior of interacting wakes was captured. 

 

With the progress in offshore wind energy, the floating wind farms are planned for huge 

amount of clean electricity recently. The floating offshore wind turbines (FOWTs) are usually 

clustered in the floating wind farms to decrease the overall installation and maintenance 

expenses, causing an adverse effect that the wind turbines generally experience a significant 

increased turbulence because of wake interaction from surrounding wind turbines
[10]

. 

Considering the fact that the wake interaction between FOWTs has remarkable effects on the 

FOWT’s power output, system dynamic responses and structural loadings, it should be paid 

enough attention. The wake interaction phenomena is observed and investigated originally in 

onshore wind farms, and many researches have been conducted to study the influence of 

complicated wake characteristics on wind turbines in onshore wind farms. Initially, different 

wake field models
[11]-[14]

 are developed for the wake calculations. But detailed turbulence 

characteristics in the wake flow, which have great influence on wake interaction, cannot be 

obtained. To better understand the complicated wake characteristics in wind farms, model 

tests
[15][16]

 are also conducted. The wake characteristics of wind turbines and the wake 

interaction phenomena are investigated based on wind tunnel tests. Considering the influence 

of scale effect on wake flow cannot be avoided in the model tests, CFD techniques that can 

consider turbulence characteristics in wake flow and eliminate the influence of scale effect 

become more and more popular in the study of wake interaction in wind farms. Churchfield et 
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al.
[17]

 investigated the influence of atmospheric stability and surface roughness on wind 

turbine dynamics. Numerical simulations for two wind turbines were conducted to study the 

wake effects under different surface roughness and atmosphere conditions. Troldborg et al.
[18]

 

studied the wake interaction between two wind turbines based on the actuator line model. 

Different ambient turbulence intensities were taken into consideration in the simulations. The 

averaged velocity and turbulence fields as well as the development of wake generated vortex 

structure were extracted to understand the interacting wakes. For floating wind farms, the 

environment loads acting on the FOWTs are complex, and the coupling effects between wind 

turbine and floating platform make the wake interaction more complicated. Dörenkämper et 

al.
[19]

 studied the impact of the stratified atmospheric boundary layer on power production and 

wake effects in offshore wind farms by the means of measurements large-eddy simulations. 

Barthelmie et al.
[20]

 modelled the wake of large wind farms based on computational fluid 

dynamics models and analyzed the power losses due to wakes at offshore wind farms. Above 

all, far limited work have been done to investigate the complicated wake field characteristics 

in floating wind farms. It is necessary to study coupled aero-hydrodynamic responses of 

FOWTs and wake flow filed in floating wind farms for optimal layout design. 

 

In the present paper, the unsteady actuator line model (UALM) is embedded into in-house 

CFD solver naoe-FOAM-SJTU to establish a fully coupled CFD analysis tool named 

FOWT-UALM-SJTU for full-scale simulations of FOWTs. Coupled aero-hydrodynamic 

simulations of two OC3 Hywindspar FOWT models in both tandem and offset configurations 

under shear wind and regular wave conditions are performed. From the simulations, unsteady 

aerodynamic characteristics including the rotor power, thrust, and detailed wake flow 

information can be obtained, and hydrodynamic responses such as the six-degree-of-freedom 

motions and mooring tensions are also available. The coupled aero-hydrodynamic 

characteristics of FOWTs with different layouts are compared and analyzed to study the 

influence of layout of FOWTs. 

Numerical Method 

The Unsteady Actuator Line Model 

The actuator line model (ALM) developed by Sørensen and Shen
[21]

 is a simplified method to 

study the aerodynamic performance of wind turbine. It is an effective way to displace the real 

tower surfaces with virtual actuator lines. In consequence, it acquires a benefit of not 

requiring to solve the blade geometry layer. The body forces distributed along the lines are 

calculated from the local attack angle and a look-up table of airfoil data. The main advantage 

of modeling the rotor of wind turbine using ALM is that the calculation resource can be 

greatly saved. 

 
Fig. 1 Cross-sectional airfoil element 

 

In the present work, modifications should be made to the initial ALM so that it can be used to 

simulate the FOWT. This is accomplished by accounting for the influence of the platform 
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motion (𝑼𝑴 shown in Fig. 1) on the blades. Then the UALM used in this study is developed 

by modifying the initial ALM. To determine the body forces acting on the blades, a blade 

element approach combined with two-dimensional airfoil characteristics is used. As Fig. 1 

shows, a cross-sectional element at radius r defines the airfoil at the (θ, z) plane. Denoting the 

tangential and axial velocity in the inertial frame of reference as 𝑼𝜽 and 𝑼𝒛, respectively. 

𝑼𝑴 represents the added velocity vector induced by the motions of floating support platform, 

which will lead to complicated interactions between the rotor and its wake.  

The integral velocity vector relationship can be described as: 

 𝑼𝑟𝑒𝑙 = 𝑼𝜃 − 𝜴 × 𝒓 + 𝑼𝑧 + 𝑼𝑀 (1) 

Where 𝛺 is the angular velocity of the rotor. The local velocity 𝑈𝑟𝑒𝑙 relative to the rotating 

blade is calculated as: 

 |𝑈𝑟𝑒𝑙| = √(𝑈𝑧 + 𝑈𝑀,𝑧)2 + (𝑈𝜃 − 𝛺𝑟+𝑈𝑀,𝜃)2 (2) 

Here 𝑈𝑀,𝜃 and 𝑈𝑀,𝑍 are the projections of 𝑼𝑀 on (θ, z) plane.  

The attack angle is defined as: 

 𝛼 = 𝜙 − 𝜃𝑡 (3) 

Where 𝜙 = tan−1 (
𝑈𝑧+𝑈𝑀,𝑧

𝑈𝜃−𝛺𝑟+𝑈𝑀,𝜃
) is the inflow angle. 𝜃𝑡 is the local twist angle. And the 

body force can be given by the following equation: 

 𝒇 = (𝑳,𝑫) =
𝜌|𝑈𝑟𝑒𝑙|

2𝑐𝑁𝑏

2𝑟𝑑𝜃𝑑𝑧
(𝐶𝐿𝒆𝐿 + 𝐶𝐷𝒆𝐷) (4) 

Where 𝑐 is the chord length; 𝑁𝑏 is the number of blades; 𝐶𝐿 and 𝐶𝐷 are the lift and drag 

coefficient, respectively; 𝒆𝐿 and 𝒆𝐷 denote the unit vectors in the directions of the lift and 

the drag, respectively. The lift and drag coefficients are determined from measured or 

computed two-dimensional airfoil data that are corrected for three-dimensional effects. 

The body force needs to be smoothed to avoid singular behavior before it is added into the 

momentum equations. 

 𝒇𝜀 = 𝒇⨂𝜂𝜀 (5) 

where 

 𝜂𝜀(𝑑) =
1

𝜀3𝜋3/2
𝑒𝑥𝑝 [−(

𝑑

𝜀
)
2

] (6) 

Here 𝑑 is the distance between the measured point and the initial force points on the rotor. 𝜀 

is a constant which serves to adjust the strength of regularization function, and the influence 

of the parameter 𝜀  has been studied and some experienced conclusions have been 

obtained
[22]

. 

The regularized force pre unit volume force can be written as: 

 𝒇𝜺(𝒙, 𝒚, 𝒛, 𝒕) = ∑ 𝒇(𝒙𝒊, 𝒚𝒊, 𝒛𝒊, 𝒕)
𝟏

𝜺𝟑𝝅𝟑/𝟐
𝑵
𝒊=𝟏 𝒆𝒙𝒑 [−(

𝒅

𝜺
)
𝟐

] (7) 

Then 𝒇𝜀 is added into the right hand of momentum equations as a source term. 

Six-degree-of-freedom Motions 
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The six-degree-of-freedom motions of the floating support platform are predicted by in-house 

CFD solver naoe-FOAM-SJTU. Two coordinate systems (as shown in Fig. 2) are used in the 

procedure of solving six-degree-of-freedom motion equations. In each time step simulation, 

the motion equations are solved in platform-fixed coordinate system and the forces are 

calculated in earth-fixed coordinate system. And the added velocity induced by the motions of 

floating support platform is updated by the following equation: 

 𝑼𝑀,𝑖 = [𝑱](𝑼𝑐 +𝝎𝑐 ⋅ (𝑥𝑖 − 𝑥𝑐)) (8) 

Where [𝑱]  is the transformation matrix defined from the platform-fixed coordinate to 

earth-fixed coordinate; 𝑼𝑐 and 𝝎𝑐 donate the translation velocity and the angular velocity 

of the rotating center, respectively; 𝑥𝑐 is the position coordinate of the rotating center. 

 
 

Fig. 2 Two coordinate systems Fig. 3 Frame diagram of FOWT-UALM-SJTU 

 

Coupled Aero-hydrodynamic Analysis Method 

In the present work, the UALM is embedded into naoe-FOAM-SJTU to establish a fully 

coupled CFD analysis tool named FOWT-UALM-SJTU to study the coupled 

aero-hydrodynamic characteristics of FOWTs. As Fig. 3 shows, the aerodynamic forces can 

be got by the UALM, and the six-degree-of-freedom motions are predicted by the 

naoe-FOAM-SJTU. Moreover, the piecewise extrapolating method (PEM) is used to study the 

performance of the mooring system. It is static analysis method. The gravity and tensile 

deformation of mooring lines are both taken into consideration in the calculation of mooring 

tensions. 

 

In FOWT-UALM-SJTU solver, VOF (Volume of Fluid) method with bounded compression 

technique is used to solve two-phase flow problem with free surface. The k-ω SST turbulence 

model is applied to solve the RANS equation. And the governing equations can be written as: 

 𝛻 ⋅ 𝑼 = 0 (9) 

𝜕𝜌𝑼

𝜕𝑡
+ ∇ ⋅ (𝜌(𝑼 − 𝑼𝑔))𝑼 = −∇𝑝𝑑 − 𝒈 ⋅ 𝑥∇𝜌 + ∇ ⋅ (𝜇𝑒𝑓𝑓∇𝑼) + (𝛻𝑼) ⋅ 𝛻𝜇𝑒𝑓𝑓 + 𝒇𝜎 + 𝒇𝑠 + 𝒇𝜀(10) 

Where 𝑼 is velocity of field; 𝑼𝑔 is the velocity of mesh points; 𝑝𝑑 = 𝑝 − 𝜌𝒈 ⋅ 𝑥 is the 

dynamic pressure, subtracting hydrostatic component from total pressure; 𝒈 is the gravity of 

acceleration vector; 𝜌 is the mixture density with two phases; 𝜇𝑒𝑓𝑓 = 𝜌(𝜈 + 𝜈𝑡) is effective 

dynamic viscosity, in which 𝜈  and 𝜈𝑡  are kinematic viscosity and eddy viscosity 

respectively; 𝒇𝜎 is the surface tension term in two phases model and takes effect only on the 

liquid free surface; 𝒇𝑠 is the source term for sponge layer, which is set to avoid the wave 

reflection at the end of the tank and takes effect only in sponge layer; 𝒇𝜀 is the body force 

calculated from UALM, representing the effects of turbine blades on the flow field. 
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The solving procedure of coupled aero-hydrodynamic simulations for the FOWTs is shown in 

Fig. 4. Coupling effects between the wind turbine, floating platform and mooring system are 

considered. It can be found that the calculated motion responses are inputs of UALM. The 

calculation of body force needs the information of the motions of the floating platform. In 

addition, the calculated aerodynamic forces are also inputs of the calculation of 

six-degree-of-freedom (6DoF) motions. It can be seen that the aerodynamic forces obtained 

from the UALM are added into the 6DoF motion equations. 

 
Fig. 4 Solving procedure of coupled aero-hydrodynamic simulations 

 

Simulation Conditions 

Geometric Model 

The FOWT model used in the present work is OC3 Hywindspar FOWT model. General 

arrangement of the FWOT system is shown in Fig. 5. The wind turbine is NERL offshore 

5-MV baseline wind turbine, which is a conventional three-bladed, upwind, variable-speed 

and variable blade-pitch-to-feather controlled turbine. The main specifications of the wind 

turbine are given in Table 1
[23]

. 

Table 1 Specifications of NERL 5-MW turbine 

Rating 5 MW 

Rotor Orientation, Configuration Upwind, 3 Blades 

Control Variable Speed, Collective Pitch 

Drivetrain High Speed, Multiple-Stage Gearbox 

Rotor, Hub Diameter 126 m, 3 m 

Hub Height 90 m 

Cut-in, Rated, Cut-out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 

Cut-in, Rated Rotor Speed  6.9 rpm, 12.1 rpm 

Rated Tip Speed 80 m/s 

Overhang, Shaft Tilt, Precone Angle 5 m, 5°, 2.5° 

Rotor Mass 110,000 kg 
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Nacelle Mass 240,000 kg 

Tower Mass 347,460 kg 

Coordinate Location of Overall Center of Mass  ( -0.2 m, 0.0 m, 64.0 m) 

 

The floating support platform is the spar-buoy concept platform called Hywindspar applied in 

OC3 project, and detailed information is listed in Table 2
[24]

. 

Table 2 Specifications of Hywindspar platform 

Depth to Platform Base Below SWL ( Total Draft ) 120 m 

Elevation to Platform Top (Tower Base) Above SWL 10 m 

Depth to Top of Taper Below SWL 4 m 

Depth to Bottom of Taper Below SWL 12 m 

Platform Diameter Above Taper 6.5 m 

Platform Diameter Below Taper 9.4 m 

Platform Mass, Including Ballast 7,466,330 kg 

CML Location Below SWL Along Platform Center 

Line 

89.9155 m 

Platform Roll Inertia about CM 4,229,230,000 kgm
2
 

Platform Pitch Inertia about CM 4,229,230,000 kgm
2
 

Platform Yaw Inertia about Platform Centerline 164,230,000 kgm
2
 

 

The mooring system consisting of three mooring lines is symmetrically distributed around the 

platform. Main characteristics of the mooring system are shown in Table 3. And the 

arrangement of the mooring lines is shown in Fig. 6. 

Table 3 Parameters of mooring system for OC3-HywindSpar platform 

Number of Mooring Lines 3 

Angle Between Adjacent Lines 120° 

Depth to Anchors Below SWL (water depth) 320 m 

Depth to Fairleads Below SWL 70.0 m 

Radius to Anchors From Platform Centerline 853.87 m 

Radius to Fairleads From Platform Centerline 5.2 m 

Unstretched Mooring line length 902.2 m 

Mooring Line Diameter 0.09 m 

Equivalent Mooring Line Mass Density 77.7066 kg/m 

Equivalent Mooring Line Mass Weight in Water 689.094 N/m 

Equivalent Mooring Line Extensional Stiffness 384,243,000 N 

Additional Yaw Spring Stiffness 98,340,000 Nm/rad 

 

  
Fig.5 Sketch of FOWT system Fig. 6 Mooring system 
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Simulation Conditions 

To investigate the aero-hydrodynamic characteristics of FOWTs with different layouts, fully 

coupled simulations for FOWTs under variable wind and wave conditions are performed. In 

this work, coupled aero-hydrodynamic simulations of two OC3 Hywindspar FOWT models in 

both tandem and offset configurations under shear wind and regular wave conditions are 

conducted. Detailed simulation cases are listed in Table 4.  

 

Wind and wave conditions are kept in the same in these two cases. Wave period and wave 

length are T = 10s and 𝜆 = 156m, respectively. And the wave height is H = 4m. Considering 

the characteristics of height-dependent wind speed, exponential model is used to describe 

wind shear. 

 𝑢𝑍 = 𝑢0 × (
𝑧

90
)
0.143

 (11) 

Where 𝑢𝑍 is the wind velocity at the height of 𝑧, 𝑢0 is the wind velocity at the height of 

hub center. And the wind speed in these case are kept in the same at 𝑢0 = 5 m/s. 

Table 4 Simulation cases 

Case Number Distance along x direction Distance along y direction 

Case 1 (tandem case) 2D 0 

Case 2 (offset case) 2D 0.5D 

*D = 126m is the diameter of the rotor. 

 

Computation Domain and Boundary Condition 

All cases adopt the same computation domain. The length and width of computation domain 

are 5𝜆 and 2𝜆 (𝜆 is wave length), respectively. Considering the expansion effect of turbine 

wake, the height of air phase is 2D (D = 126m is the diameter of the rotor). The depth of 

water phase is set to be 70% of the real water depth (d = 320m), for the effect of the water 

depth on the motion responses can be ignored at that water depth. The length of sponge layer 

before outlet boundary is 100m. The computational domain is shown in Fig. 7. 

 
Fig. 7 Computational domain 
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(a) Tandem configuration (b) Offset configuration 

Fig. 8 Different arrangements of FOWTs 

In these two cases, the distance from the inlet boundary to upstream FOWT is 𝜆. The distance 

from the downstream FOWT to outlet boundary is 5D. For FOWTs in tandem case, the 

longitudinal distance between these two FOWTs is 2D, and the horizontal distance between 

two FOWTs is 0m. For FOWTs in offset case, the longitudinal distance between these two 

FOWTs is also 2D, while the horizontal distance between two FOWTs is 0.5D. Different 

arrangement of FOWTs in shown in Fig. 8. 

 

To capture the wake flow of wind turbine, the refined girds are utilized in the region behind 

the wind turbine. And the grids near the water surface are refined to capture the free surface. 

The grid distribution is shown in Fig. 9 

  
(a) Grid in lengthwise section (b) Grid in cross section 

Fig. 9 Grid distribution 

 

The boundary conditions are shown below: 

(1) Inlet boundary: velocity condition is wave inlet condition, and pressure condition is 

Neumann boundary condition that the normal gradient of pressure is equal to zero; 

(2) Outlet boundary: velocity condition is inletoutlet condition defined in OpenFOAM, and 

pressure condition is Dirichlet boundary condition that the pressure is constant; 

(3) Top boundary: both velocity condition and pressure condition are Dirichlet boundary 

conditions; 

(4) Bottom boundary: both velocity condition and pressure condition are slip conditions; 

(5) Left boundary and right boundary: boundary conditions are defined as symmetry plane 

that directional derivative perpendicular to the boundary is equal to zero; 

(6) Body surface: the moving wall boundary condition is adopted.  

Results and Discussion  

Aerodynamic Loads 

Unsteady aerodynamic loads including the rotor power and thrust are presented here to 

analysis the influence of layout on the aerodynamic performance of FOWTs. The time history 

curves of rotor power and thrust of FOWTs in tandem and offset configurations are shown in 

Fig. 10 and Fig. 11, respectively.  
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The rotor power and thrust of FOWTs in two simulation cases both fluctuate greatly and 

change periodically, and the change period is approximately equal to the incident wave period. 

It indicates that this fluctuation and periodicity of the aerodynamic loads is in a large part due 

to the motions of floating support platform. The platform motions have significant effects on 

the unsteady aerodynamic performance of the FOWTs.  

 

The time-averaged values of aerodynamic loads are listed in table 5. The rotor power and 

thrust of downstream FOWT are obviously smaller than those of upstream FOWT. In tandem 

case, the rotor power and thrust of downstream FOWT are only 30% and 62% compared to 

upstream FOWT. And the rotor power and the thrust of the downstream FOWTs are 78% and 

85% compared to upstream FOWT in offset case, respectively. Due to the wake interaction 

between the FOWTs, the downstream FOWT experiences lower incoming wind velocity and 

higher turbulence intensity compared with the upstream FOWT, resulting in the aerodynamic 

loads decrease of downstream FOWT. It suggests the aerodynamic loads of downstream 

FOWT are affected significantly by the wake from upstream FOWT.  

  
(a) Upstream wind turbine (b) Downstream wind turbine 

Fig. 10 Time history curves of rotor power in tandem and offset configurations 

 

  
(a) Upstream wind turbine (b) Downstream wind turbine 

Fig. 11 Time history curves of thrust in tandem and offset configurations 

 

Table 5 Rotor power and thrust of FOWTs in tandem and offset configurations 

  Power 

(kW) 

Power ratio 

(FOWT2/FOWT1) 

Thrust 

(kN) 

Thrust ratio 

(FOWT2/FOWT1) 

Case 1 
FOWT 1 610 

30% 
193 

62% 
FOWT 2 182 119 

Case 2 
FOWT 1 588 

78% 
189 

85% 
FOWT 2 459 161 
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*FOWT 1 and FOWT 2 represent the upstream FOWT and downstream FOWT, respectively. 

 

Table 6 Comparisons between aerodynamic loads in tandem and offset configurations 

  Power 

(kW) 

Power ratio 

(Case1/Case2) 

Thrust 

(kN) 

Thrust ratio 

(Case1/Case2) 

FOWT 1 
Case 1 610 

96% 
193 

98% 
Case 2 588 189 

FOWT 2 
Case 1 182 

40% 
119 

74% 
Case 2 459 161 

The comparisons between rotor power and thrust in tandem and offset configurations are 

shown in table 6. For upstream FOWT, the time-average aerodynamic loads in tandem case 

are almost identical to those in offset case. And the aerodynamic loads of upstream FOWT in 

different layouts shown in Fig. 10(a) and Fig. 11(a) show little discrepancy. It means that the 

FOWT layouts have little effect on the aerodynamic loads of the upstream FOWT. While the 

situation is quite different for downstream FOWT. The time averaged value of the rotor power 

and thrust of downstream FOWT in tandem case are 40% and 74% compared to those in 

offset case. And notable discrepancy between the aerodynamic loads of downstream FOWT 

in tandem case and offset case can be found in Fig. 10(b) and Fig. 11(b). The variation 

progress of aerodynamic loads in offset case is more complex than that in tandem case. In 

tandem case, the downstream FOWT is in full wake, while the downstream FOWT is in half 

wake in offset case. So the average incoming wind velocity and turbulence intensity for 

downstream FOWT in offset case are larger than those in tandem case, which leads to the 

discrepancy in the aerodynamic loads of downstream FOWT in offset case and tandem case. 

It suggests that FOWT layouts have significant effects on the aerodynamic loads of the 

downstream FOWT. 

 

Above all, it can be found that the aerodynamic loads are greatly influenced by the motions of 

floating support platform. The rotor power and thrust both fluctuate greatly and vary 

periodically. The aerodynamic loads of downstream FOWT are much smaller than those of 

upstream FOWT. The FOWT layouts have little influence on the aerodynamic loads of 

upstream FOWT, and the offset layout of the FOWTs have beneficial effects on the 

aerodynamic loads of downstream FOWT compared with the tandem layout. 

Platform Motions 

The floating support platform is an important part of the FOWT system. The platform 

motions have significant effects on the aerodynamic performance of wind turbine, and the 

aerodynamic forces will act on the floating platform and influence the motion responses in 

turn. There are complicated coupling effects between the floating support platform and wind 

turbine. The motion responses of floating support platforms in different layouts are shown in 

Fig. 12 and Fig. 13. The platform motions are compared and analyzed to investigate the 

influence of layouts on motion responses.  

   
(a) Surge (b) Sway (c) Heave 

ICCM2018, 6th-10th August 2018, Rome, Italy

983



   
(d) Roll (e) Pitch (f) Yaw 

Fig. 12 Motion responses of upstream platform in tandem and offset configurations 

 

   
(a) Surge (b) Sway (c) Heave 

   
(d) Roll (e) Pitch (f) Yaw 

Fig. 13 Motion responses of downstream platform in tandem and offset configurations 

 

For the upstream platform, the six-degree-of-freedom motions in tandem case are much the 

same with the motions in offset case. It is because the loads acting on the upstream platform 

in different cases are almost identical. The loads acting on the floating support platform 

include the aerodynamic forces, wave loads and mooring forces. And these forces acting the 

upstream platform are nearly the same in different cases. It means the motion responses of the 

upstream platform have little difference in different FOWT layouts.  

 

For the downstream platform, there is large difference between the motions in tandem and 

offset configurations. It can be seen that the average value of pitch motion of downstream 

platform in offset case is larger than that in tandem case. This large amplitude of pitch motion 

will lead to serious interaction between the rotor and its wake. As motioned above, the 

aerodynamic forces of downstream FOWT in offset case are larger than those in tandem case, 

and the aerodynamic forces will act on the floating support platform. It indicates the loads 

acting on the downstream platform in offset case are larger than those in tandem case, which 

explains the discrepancy of pitch motions of downstream platform between the tandem case 

and offset case. In addition, the amplitudes of sway and yaw motions of the downstream 

platform in tandem case are much larger than those in offset case. When the FOWTs is in 

offset configuration, the downstream FOWT is in half wake of the upstream FOWT. Affected 

by the wake interaction, the incoming wind velocity of the part of rotor in the wake are much 

larger than that not in the wake. This causes the forces acting on the rotor plane are not 

uniform. So the yaw and sway motions of the downstream platform in offset case are much 
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larger than those in tandem case. For surge, roll and heave motions of the downstream 

platform, there is little discrepancy between the tandem case and the offset case. 

Wake Field 

The wake interaction between the FOWTs in both tandem and offset configurations are 

clearly observed. Detailed wake filed characteristics are presented here to study the wake 

interaction between two FOWTs in different layouts. Fig. 14 shows the contours of the axial 

direction wind velocity in the horizontal plane at the reference height z = 90m (the height of 

the center of rotor) for tandem case and offset case, respectively. The expansion of 

stream-tube is observed in both simulation cases. That the tangential velocity increases with 

decreasing axial direction wind velocity leads to this phenomena. In tandem case, the 

downstream FOWT is in full wake of the upstream FOWT. It can be seen the incoming wind 

velocity of the downstream FOWT decreases greatly compared with that of the upstream 

FOWT, which explains why the aerodynamic loads downstream FOWT are much smaller. In 

offset case, the downstream FOWT is in half wake of the upstream FOWT, so the incoming 

wind velocity of the part of downstream FOWT in the wake is smaller than that not in the 

wake. Furthermore, the asymmetric forces distributed on the rotor plane result in the yaw 

motion of the downstream FOWT. Compared with incoming wind velocity of the downstream 

FOWT in tandem case, the downstream FOWT in offset case experiences larger incoming 

wind velocity. So the aerodynamic loads of downstream FOWT in offset case are bigger than 

those in tandem case.  

  
(a) Tandem configuration (b) Offset configuration 

Fig. 14 Axial direction wind velocity counters in horizontal plane at the reference height 

z =90m 

 

Profiles of the streamwise velocity in horizontal plane through the center of wind turbine rotor 

for different cases are presented in Fig. 15. The velocity profiles before the downstream 

FOWT in different cases are almost the same, while the velocity profile behind the 

downstream FOWT in offset case is quite different with that in tandem case. The velocity 

filed in offset case is more complicated, and the velocity deficit region in offset case is much 

larger. 

  
(a) Tandem configuration (b) Offset configuration 

Fig. 15 Profiles of the streamwise velocity in horizontal plane through the center of wind 
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turbine rotor for different layouts 

 

The evolution of wake vortex at different times of an entire wave circle in coupled case is 

illustrated in Fig. 16. The wave is contoured by wave height and the mooring lines are 

represented by black lines. The second-order invariant of velocity gradient tensor Q is used to 

visualize the wake vortex. Clearly spiral tip vortex from the upstream FOWT can be captured 

in both tandem and offset cases, while this vorticity is quickly diffused in the downstream. 

Affected by the wake of the upstream FOWT, the downstream FOWT experiences increased 

turbulence and the vortex structures become more unstable. In addition, the tip vortex from 

the downstream FOWT in tandem case are different from that in offset case. The tip vortex 

from downstream FOWT is much more affected by the wake of upstream FOWT in tandem 

case. Moreover, the platform motions lead to the interaction between the rotor and its wake 

and increase the instability of wake field. 

Time = 0 T 

  

Time = 0.25 T 

  

Time = 0.5 T 

  

Time = 0.75 T 

  
 (a) Tandem configuration (b) Offset configuration 

Fig. 16 Instantaneous vortex structure of the rotor in tandem and offset cases 

 

Conclusions 

In this study, the unsteady actuator line model (UALM) is embedded into in-house CFD 

solver naoe-FOAM-SJTU to establish a fully coupled CFD analysis tool named 

FOWT-UALM-SJTU for full-scale simulations of FOWTs. Coupled aero-hydrodynamic 
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simulations of two OC3 Hywindspar FOWT models in both tandem and offset configurations 

under shear wind and regular wave conditions are performed. The aerodynamic loads 

including the rotor power and thrust, the six-degree-of-freedom motions and detailed wake 

field characteristics are obtained and analyzed. It can be found that aerodynamic loads are 

greatly influenced by the motions of floating support platform, which causes the rotor power 

and thrust both fluctuate greatly and change periodically. Affected by the wake interaction, 

the aerodynamic loads of downstream FOWT are much smaller than those of upstream 

FOWT. The FOWT layouts have little influence on the aerodynamic loads of upstream 

FOWT, and the offset configuration of the FOWTs have beneficial effects on the 

aerodynamic loads of downstream FOWT compared with the tandem configuration. For 

platform motions, the FOWT layouts have significant effects on the pitch, sway and yaw 

motions of downstream platform. While the surge, roll and heave motions are little influenced. 

The amplitudes of pitch, sway and yaw motions of downstream platform in offset 

configuration are much larger than those in tandem configuration. The wake field becomes 

more complicated affected by the wake interaction between the FOWTs. The tip vortex of 

upstream FOWT is clear, while the vortex structure of downstream FOWT is highly unstable. 

In addition, the wake characteristics of downstream FOWT in tandem configuration are much 

influenced the wake of upstream FOWT. In the future, the influence of inter-turbine spacing 

between FOWTs on wake field characteristics will be studied for the optimal layout design of 

floating wind farms. 

Acknowledgement 

This work is supported by the National Natural Science Foundation of China (51490675, 

11432009, 51579145), Chang Jiang Scholars Program (T2014099), Shanghai Excellent 

Academic Leaders Program (17XD1402300), Program for Professor of Special Appointment 

(Eastern Scholar) at Shanghai Institutions of Higher Learning (2013022), Innovative Special 

Project of Numerical Tank of Ministry of Industry and Information Technology of China 

(2016-23/09) and Lloyd’s Register Foundation for doctoral student, to which the authors are 

most grateful. 

References 

[1] Shen, X., Chen, J., Hu, P., Zhu, X., and Du, Z. (2018) Study of the unsteady aerodynamics of floating wind 
turbines, Energy 145, 793-809. 

[2] Troldborg, N., Larsen, G. C., Madsen, H. A., Hansen, K. S., Sørensen, J. N., and Mikkelsen, R. (2011) 
Numerical simulations of wake interaction between two wind turbines at various inflow conditions, Wind 
Energy 14(7), 859–876. 

[3] Bansal, J. C., Farswan, P., and Nagar, A. K. (2018) Design of wind farm layout with non-uniform turbines 
using fitness difference based BBO, Engineering Applications of Artificial Intelligence 71, 45-59. 

[4] Wang, L., Tan, A., and Gu, Y. (2016) A novel control strategy approach to optimally design a wind farm 
layout, Renewable Energy 95, 10-21. 

[5] Rehman, S., Ali, S. S., and Khan, S. A. (2017) Wind farm layout design using cuckoo search algorithms, 
Applied Artificial Intelligence 30(10), 899-922. 

[6] Choi, N. J., Sang, H. N., Jeong, J. H., and Kim, K. C. (2014) CFD study on aerodynamic power output changes 
with inter-turbine spacing variation for a 6 mw offshore wind farm, Energies 7(11), 7483-7498. 

[7] Choi, N. J., Sang, H. N., Jeong, J. H., and Kim, K. C. (2013) Numerical study on the horizontal axis turbines 
arrangement in a wind farm: effect of separation distance on the turbine aerodynamic power output, Journal of 
Wind Engineering & Industrial Aerodynamics 117(117), 11-17. 

[8] Fletcher, T. M., and Brown, R. E. (2010) Simulation of wind turbine wake interaction using the vorticity 
transport model, Wind Energy 13(7), 587–602. 

[9] Mikkelsen, R., Sørensen, J. N., Øye, Stig, and Troldborg, N. (2007) Analysis of power enhancement for a row 
of wind turbines using the actuator line technique, Journal of Physics Conference Series 75, 012044. 

[10] Kusiak, A., and Song, Z. (2010) Design of wind farm layout for maximum wind energy capture, Renewable 
Energy 35(3), 685-694. 

ICCM2018, 6th-10th August 2018, Rome, Italy

987



[11] Katic, I., Højstrup, J., and Jensen, N. O., A simple model for cluster efficiency, Proceedings European Wind 
Energy Association Conference and Exhibition, Rome, Italy, 1986, 407-409. 

[12] Crespo, A., Manuel, F., and Hernández, J., Numerical modelling of wind turbine wakes, Proceedings of the 
1990 European Communication Wind Energy Conference, Madrid, Spain, 1990, 166. 

[13] Ainslie, J. F., Development of an eddy viscosity model for wind turbine wakes, Proceedings 7th BWEA Wind 
Energy Conference, Oxford, 1985, 61-66. 

[14] Larsen, G. C., Højstrup, J., and Madsen, H. A., Wind fields in wakes, Proceedings 1996 European Union 
Wind Energy Conference, Göteborg, 1996, 764-768. 

[15] Whale, J., Anderson, C. G., An experimental investigation of wind turbine wakes using particle image 
velocimetry, 1993 European Communication Wind Energy Conference and Exhibition, Lübeck-Travemünde, 
Germany, 1993, 457. 

[16] Vermeer, L. J., Sørensen, J. N., and Crespo, A. (2003) Wind turbine wake aerodynamics, Progress in 
Aerospace Science 39(6–7), 467-510. 

[17] Churchfield, M., Sang Lee, John Michalakes, and Moriarty, P. (2012) A numerical study of the effects of 
atmospheric and wake turbulence on wind turbine dynamics, Journal of Turbulence 13(14), 1-32. 

[18] Troldborg, N, Larsen, G. C., Madsen, H. A., Hansen, K. S., Sørensen, J. N., and Mikkelsen, R. (2011) 
Numerical simulations of wake interaction between two wind turbines at various inflow conditions, Wind 
Energy 14(7), 859-876. 

[19] Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D., and Kühn, M. (2015) The impact of stable 
atmospheric boundary layers on wind-turbine wakes within offshore wind farms, Journal of Wind 
Engineering & Industrial Aerodynamics 144, 146-153. 

[20] Barthelmie, R. J., Pryor, S. C., Frandsen, S. T., Hansen, K. S., Schepers, J. G., and Rados, K., et al. (2010) 
Quantifying the impact of wind turbine wakes on power output at offshore wind farms, Journal of 
Atmospheric & Oceanic Technology 27(8), 1302-1317. 

[21] Sorensen, J. N., and Shen, W. Z. (2002) Numerical modeling of wind turbine wakes, Journal of Fluids 
Engineering 124(2), 393. 

[22] Sørensen, J. N., Shen, W. Z., and Munduate, X. (2015) Analysis of wake states by a full‐field actuator disc 
model, Wind Energy 1(2), 73-88. 

[23] Jonkman, J., Butterfield, S., Musial, W., and Scott, G. (2009) Definition of a 5-mw reference wind turbine for 
offshore system development, Office of Scientific & Technical Information Technical Reports, 1–75. 

[24] Jonkman, J., and Musial, W. (2010) Offshore code comparison collaboration (oc3) for IEA wind task 23 
offshore wind technology and deployment, Office of Scientific & Technical Information Technical Reports 
303, 275-3000. 

ICCM2018, 6th-10th August 2018, Rome, Italy

988



 

Numerical Calculations for Smooth Circular Cylinder Flow at 3900 

Reynolds Numbers with SST-IDDES Turbulence Model  

 

Jiawei HE
*
, Weiwen ZHAO, Decheng WAN

‡
 

School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Collaborative 

Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China 
*
Presenting author: jiaweihe@sjtu.edu.cn 

‡
Corresponding author: dcwan@sjtu.edu.cn  

http://dcwan.sjtu.edu.cn  

Abstract 

 

The turbulent flow around a cylinder is simulated and analysed physically at Re =3900, by 

means of hybrid RANS-LES turbulence modelling approaches. The numerical investigations 

are conducted by using naoe-FOAM-SJTU, a viscous flow solver (naoe-FOAM-SJTU) which 

is developed and based on the popular open source toolbox OpenFOAM. To simulate the 

large separated flow in high Reynolds Numbers, turbulence closure has been chosen the Shear 

Stress Transport (SST) based Improved Delay Detached eddy simulation (IDDES). In the 

present study, the benefits of these hybrid approaches have been discussed for capturing the 

vortex dynamics and frequency modes. The coefficients of drag Cd and Strouhal number (St) 

were analyzed and compared with experimental results. Meanwhile， the boundary layer 

transition phenomenon and the flow characteristics were more accurately predicted．The 

good agreement validated the CFD solver naoe-FOAM-SJTU is applicable and reliable to 

study such problems. 

Keywords: Circular Cylinder; Reynolds number; SST-IDDES; CFD. 

 

Introduction 

The fixed smooth cylinder-flow problem is considered to be a prominent research subject in 

computational fluid dynamics (CFD). Despite the reasonably simple geometry and grid-

making, the very complex nature of this flow makes it extremely difficult to calculate. In this 

problem, the boundary layer, free-shear layers, and wake interact and the laminar-turbulent 

transition and boundary-layer separation move as Reynolds number varies. Also, several 

instabilities associated with the shear layers play an important role influencing the flow 

behavior in the different regimes. This particular issue is not only an academic challenge, but 

mainly an important engineering problem, being present in many fields, such as the vortex 

induced motion in the offshore industry. In this field, the vortex-induced vibrations of risers 

and vortex-induced motions of floating units stand out as a very important and current 

demand for which no complete and general solution has been developed.  

As well known, the behavior of flow over a circular cylinder changes dramatically with the 

changes of Reynolds number. At low Reynolds number, the flow is laminar. While in region 

with higher Re, the turbulence appears. With increasing Reynolds number, the onset of 

transition moves upstream towards the separation point and, simultaneously, the large-scale 

vortices are formed closer to the base of the cylinder. The flow over a cylinder has been the 

subject of various experimental
[1–3]

 and numerical studies
[4–11]

. Though，Kravchenko et al
[5]
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argued that the experiment of Lourenco and Shih
[3]

 might have been contaminated by external 

disturbances which led to premature transition of the shear layers and thus to a shorter 

recirculation bubble. Nevertheless，the majority of the computational studies with CFD for 

Re =3900, mainly chosen the experimental data of Lourenco and Shih and Ong and Wallace. 

Dong 
[7]

 investigated the near wake flow of a circular cylinder with PIV and direct numerical 

simulation (DNS) at Re=3900/4000 and 10 000. They present a PIV/DNS comparison of 

mean and turbulent contour maps and focus on shear layer instability with their DNS data. 

WANG
[12]

 has developed a finite-volume TVD numerical model to simulate an unsteady 

incompressible flow around a circular cylinder for subcritical Reynolds numbers of 1000, 

3900 and 1×10
4
. The method presented by WANG is validated by comparing with the 

available experimental data and numerical results. Charles Mockett 
[8]

 presented for the 

detached-eddy simulation (DES) of the flow around a circular cylinder at a high sub-critical 

Reynolds number(1.4×10
5
). Good comparability with PIV experimental field data is 

facilitated by the confined and clearly-defined geometry, although some uncertainty remains 

regarding the free stream turbulence intensity. The combination of DES with an appropriate 

low-dissipative hybrid numerical convection scheme and high temporal resolution delivers 

excellent agreement with the experiment for the time and phase- averaged fields as well as the 

spectral content. Krishnan 
[13]

 used DES97 and DDES to predict the massively separated flow 

around a circular at Reynolds numbers based on the cylinder diameter and freestream velocity 

of 1.4×10
5
 and 8×10

6
. The DES97 and DDES predictions are in reasonable agreement with 

experimental measurements of the pressure coefficient. In a numerical experiment the 

possibility to influence the shear layer dynamics comes through the span-wise domain size 

chosen, the boundary conditions. Enforced the numerical errors inherent to the schemes used, 

the underlying grid. 

 

The main objective of the present paper is to help building confidence of SST-IDDES 

turbulence model for massively separated flows. The recent publications by several authors of 

numerical simulations of the cylinder flow at Re=3900 led us to choose this case for the 

validation of SSTIDDES method in our solver. Flow around a cylinder at subcritical Reynolds 

number (Re=3900) was extensively studied numerically. It has become a benchmarking case 

and good agreements for mean stream-wise velocity obtained at both near wake and far 

downstream compared with the experimental data. To systematically validate the performance 

of SST-IDDES, the widely used hybrid RANS/LES model DDES is also presented in this 

paper for comparison.  

Turbulence Modeling 

Spalart
[14]

proposed the DES Detached Eddy Simulation approach to bridge the gap between 

RANS and LES. DES is a promising concept that could enable full scale engineering 

applications at high Reynolds number to be computed within the resources available today or 

in the near future
[15]

. To address this drawback, delayed-detached eddy simulation (DDES) 

modifies the character length scale to protect the RANS region from being prematurely 

switched into LES region. However, this modification is still incapable of completely 

preventing the occurrence of MSD problem
[16]

. In addition, several variants of the DES model, 

like Delayed DES (DDES) and Improved DDES (IDDES) have been proposed with rather 

different characteristics, making model selection and interpretation of results challenging. 

 

 

SST-DDES 
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SST-DDES is a hybrid Reynolds-Averaged Navier-Stokes (RANS) - Large Eddy Simulation 

(LES) method. It utilizes sub-grid scale model to handle the flow in the free shear flow area 

far away from the wall, and RANS's SST model is used to solve the flow in the boundary 

layer near the wall and other areas. This can guarantee the accuracy of LES solution, but also 

reduce the amount of calculation in the near-wall region of the boundary layer.The SST-

DDES equations are briefly described at first. The governing equations of the SST DDES 

model are as follows: 

 
𝜕𝜌𝑘

𝜕𝑡
+

𝜕(𝜌𝑢𝑗𝑘)

𝜕𝑥𝑗
= 𝑃𝑘 − ρ𝑘

2
3/𝑙𝐷𝐷𝐸𝑆 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡) +

𝜕𝑘

𝜕𝑥𝑗
]                    (1) 

 
𝜕𝜌𝜔

𝜕𝑡
+

𝜕(𝜌𝑢𝑗𝜔)

𝜕𝑥𝑗
= α

𝜌

𝜇𝑡
𝑃𝑘 − 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑡) +

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)𝜌𝜎𝜔2

∇𝑘∙∇𝜔

𝜔
    (2) 

 

where  𝐹1 and  𝐹2 is a blending function which is defined as: 

𝐹1 = tanh(arg1
4)                      (3) 

arg1 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

𝐶𝜇𝜔𝑑𝑤
,

500𝑣

𝑑𝑤
2𝜔

) ,
4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑑𝑤
2]                  (4) 

𝐶𝐷𝑘𝜔 = 𝑎𝑥 (2𝜌𝜎𝜔2
∇𝑘∙∇𝜔

𝜔
, 10−10)                   (5) 

𝐹2 = tanh(arg2
2)                   (6) 

arg2 = 𝑚𝑎𝑥 (
2√𝑘

𝐶𝜇𝜔𝑑𝑤
,

500𝑣

𝑑𝑤
2𝜔

)                    (7) 

Here 𝑑𝑤 is the distance to the nearest wall. The production term 𝑃𝑘 in Equation (1) reads as 

follows: 

𝑃𝑘 = 𝑚𝑖𝑛(𝜇𝑡𝑆2, 10 ∙ 𝐶𝜇𝜌𝑘𝜔)                    (8) 

𝜇𝑡 = 𝜌
𝑎1∙𝑘

𝑚𝑎𝑥(𝑎1∙𝜔,𝐹2∙𝑆)
                    (9) 

 

The DDES length scale in Equation (1) reads as follows: 

 

𝑙𝐷𝐸𝑆 = min{𝑙𝑅𝐴𝑁𝑆, 𝐶𝐷𝐸𝑆ℎ𝑚𝑎𝑥}                    (10) 

𝑙𝐷𝐷𝐸𝑆 = 𝑙𝑅𝐴𝑁𝑆 − 𝒇𝒅max{0, 𝑙𝑅𝐴𝑁𝑆 − 𝐶𝐷𝐸𝑆ℎ𝑚𝑎𝑥}                  (11) 

𝑙𝑅𝐴𝑁𝑆 =
√𝑘

𝐶𝜇𝜔
                     (12) 

𝐶𝐷𝐸𝑆 = 𝐶𝐷𝐸𝑆1 ∙ 𝐹1 + 𝐶𝐷𝐸𝑆2 ∙ (1 − 𝐹1)                    (13) 

Here ℎ𝑚𝑎𝑥 is the maximum edge length of the cell. Finally, the empiric blending function 𝑓𝑑 

in is computed with the use of the following relations: 

𝑓𝑑 = 1 − tanh[(𝐶𝑑1𝑟𝑑)𝐶𝑑2]                    (14) 

𝑟𝑑 =
𝜈+𝜈𝑡

𝜅2𝑑𝑤
2√0.5∙(𝑆2+Ω2)

                     (15) 

 

Here S is the magnitude of the strain rate tensor and Ω is the magnitude of vorticity tensor.  

The model constants read as follows: 

𝐶𝜇 = 0.09，𝜅 = 0.41, 𝑎1 = 0.31, 𝐶𝐷𝐸𝑆1 = 0.78, 𝐶𝐷𝐸𝑆2 = 0.6, 𝐶𝑑1 = 20, 𝐶𝑑2 = 3. 

All the constants are computed by a blend from the corresponding constants of the k-ε and k-

ω model via α = α1 ∙ F1  + α2 ∙ (1 − F1)α2 etc. : 

α1 = 5/9，𝛽1 = 0.075，σ𝑘1 = 0.85，σ𝜔1 = 0.5 

α2 = 0.44，𝛽1 = 0.0828，σ𝑘2 = 1，σ𝜔2 = 0.856 

ICCM2018, 6th-10th August 2018, Rome, Italy

991



SST-IDDES 

The simplified version of IDDES length scale is as follows: 

𝑙𝐼𝐷𝐷𝐸𝑆 = 𝑓�̃�𝑑 + 𝑓�̃�(1 − 𝑓�̃�)𝜓𝐶𝐷𝐸𝑆∆                  (16) 

𝑓�̃� = max{𝑓𝐵, 1 − 𝑓𝑑𝑡𝛥}                  (17) 

The LES length-scale ∆ is defined as: 

∆= 𝑚𝑖𝑛{𝐶𝑤𝑚𝑎𝑥[𝑑𝑤, ℎ𝑚𝑎𝑥], ℎ𝑚𝑎𝑥}                  (18) 

 

𝑓𝑑𝑡 = 1 − tanh[(𝐶𝑑𝑡1𝑟𝑑𝑡)𝐶𝑑𝑡2]                   (19) 

𝑟𝑑𝑡 =
𝜈𝑡

𝜅2𝑑𝑤
2√0.5∙(𝑆2+Ω2)

                   (20) 

𝑓𝐵 = 𝑚𝑖𝑛{2𝑒−9𝛼2
, 1.0}                   (21) 

α = 0.25 − 𝑑𝑤/ℎ𝑚𝑎𝑥                   (22) 

In addition to the model constants in Equations (18) the following constants are introduced in 

the model: 

𝐶𝑤 = 0.15, 𝐶𝑑𝑡1 = 20, 𝐶𝑑𝑡2 = 3 
 

The full version of  SST-IDDES model equations is shown in paper of Gritskevich
[17]

 (2012). 

Computational Domain and Mesh  

The sketch of the computational domain can be seen in Fig.1. The distance spans 20D in 

stream-wise direction, 10D in lateral and 3.14D in vertical direction, respectively. Structured 

grid generation is chosen in this case due to the simple geometry of the cylinder. As shown in 

Fig. 2, the mesh domain of 10D around the cylinder is generated with the O block grids. 

While the rest of mesh domain is generated with orthogonal hexahedral grids. The thickness 

of the first grid near the wall of the cylinder is set as ∆ = 0.005𝐷，corresponding to 

approximately 𝑦+ = 1.5. As indicated by Zhao
[18]

 (2016) and Travin
[19]

 (2000), grid is not 

convergent on DES and LES simulations, i.e., the finest grid didn’t get the best agreement for 

all quantities compared with experiments. Finally, a mesh is generated with the total number 

of grid units being 1.4 million. 

  
Fig. 1 Sketch of the computational domain 
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(a) Global mesh (b) Local mesh 

Fig. 2 Global and local mesh for circular cylinder. (a) Global mesh. (b) Local mesh 

 

Boundary Conditions and Other Computational Details 

 

According to the physics feature of the computation domain, the boundary is marked as the 

inlet, the outlet, the sides, the bottom and top. The surface of the cylinder is considered as a 

no-slip wall. At the inlet boundary, a uniform incoming flow with velocity equal to the free 

stream velocity 𝑈∞ = 0.039𝑚 ∙ 𝑠−1is defined. At the outlet boundary, the pressure gradient is 

set equal to 0. The rest of the boundaries is defined as symmetry boundary for the reason of 

assuming that the height of the cylinder is infinite. 

 

Discretization format 

In this study, the governing equations are the three dimensional incompressible Navier-Stokes 

(N-S) equations. Since the SST-IDDES approaches are employed here. The governing 

equations are discretized using a finite volume method for solving the incompressible Navier–

Stokes equations using solver naoe-FOAM-SJTU, with a newly implemented SST-IDDES 

turbulence model. The time discretization is done using second order implicit Euler scheme. 

A second order Gauss integration is used for spatial gradient calculations. The convection 

operator is discretized using a total variation diminishing (TVD) scheme.  

The physics of the flow is considered as transient, incompressible and turbulent flow. Hence, 

we chose pimpleFoam as the solver for this case. pimpleFoam algorithm uses an inner PISO 

loop to get an initial solution, which is then under relaxed and corrected using an outer 

SIMPLE loop. This method enables unsteady simulations at Courant-Friedrichs-Lewy number 

(CFL) numbers larger than 1. In theory, very large CFL numbers could be maintained if a 

large number of SIMPLE correction loops were applied along with large under-relaxation 

factors. The equation of Courant-Friedrichs-Lewy (CFL) number is as follows: 

CFL =
∆𝑡𝑈∞

∆𝑥
                 (23) 

A too large time step generally smears the solution, regardless of the grid resolution. Hence 

time step is chosen in such a way that CFL is less than 1.  

 

Results and Discussions 
 

Figure3 demonstrates the time histories of the present lift (Cl) and drag (Cd) coefficients for a 

period of 80 vortex shedding cycles. 

The drag non-dimensional forces coefficient is given by: 
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𝐶𝑑(𝑡) =
2𝐹𝑥(𝑡)

𝜌𝐻𝐷𝑈2                                                              (24) 

Where  𝐹𝑥(𝑡) is the force in the in-line direction; 𝑈 is the velocity of flow; ρ is the density of 

water; D, in this case, is the projected length (or characteristic diameter). 

The lift non-dimensional forces coefficient is given by: 

𝐶𝑙(𝑡) =
2𝐹𝑦(𝑡)

𝜌𝐻𝐷𝑈2                                                                (25) 

Where  𝐹𝑦(𝑡) is the force in the transverse direction; 𝑈 is the velocity of flow; ρ is the density 

of water; D, in this case, is the projected length (or characteristic diameter). 

The Reynolds number is defined as: 

𝑅𝑒 =
𝑈𝐷

𝜈
                  (26) 

 
Fig. 3. Fluctuation of Coefficient of Drag(Cd ) and Lift (Cl )Vs Time in second . Upper 

curves, Cd; lower, Cl 

 

Initially the fluctuation goes on increases but after some time period it stabilities and 

fluctuates between the constant values. Further, the time-averaged drag coefficient is Cd 

calculated and listed in Table 1. The values obtained by the SST-DDES and SST-IDDES are 

in good agreement with the experimental data. the analysis of the vortex shedding frequency, or 

the Strouhal number (St ), is obtained and given in Table 1. The values by the SST-DDES and SST-

IDDES agree well with the experimental data. The present SST-IDDES and SST-DDES suggest a 

much longer recirculation bubble (𝐿𝑟𝑒𝑐/𝐷 = 1.5) than that indicated by experimental data of Lourenco 

and Shih
[3]

(1993). 

 
Table 1. Overall flow parameters of the flow past a circular cylinder, Re=3900 

Data Source 𝐶𝑑 -𝐶𝑝𝑏 𝑆𝑡 𝐿𝑟𝑒𝑐/𝐷 𝜃 

PIV Exp. of Lourenco and Shih
[3]

(1993) 0.99 0.88 0.215 1.33 89 

DNS of Ma et al.
[20]

 (2000) 0.84 - 0.220 1.59 - 

SST-DES of Xu et al
[9]

 (2010) 1.08 - 0.220 0.98 - 

DNS of Frederic, Tremblay 
[10]

 (2002) 1.03 0.93 0.220 1.30 85.7 

LES of Frederic, Tremblay 
[10]

 (2002) 1.14 0.99 0.210 1.04 87.3 

LES of Kravchenko
[5]

 (2000) 1.04 0.94 0.210 1.35 88.0 

Present SST-DDES 0.99 0.83 0.207 1.27 87.1 

Present SST-IDDES  0.97 0.87 0.215 1.20 86.5 
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Fig. 4 Time history and Fourier transform result of Coefficient of Lift (Cl) 

 

Figure 4 shows the time history and Fourier transform result of coefficient of lift (Cl ). After 

the Fourier transform processing of data, the vortex shedding periods can be got with 

Tn=0.119s ( i.e. the vortex shedding frequency fn is equal to fn =1/Tn=8.4 Hz. 
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Fig.5 Time-averaged pressure coefficient on the surface of the cylinder with the 

experimental data and the SST-DDES results 

 

 

Figure 5 Shows the time-averaged pressure distribution of SST-IDDES is reasonably below 

the SST-DDES result, and showing a good agreement with the experimental data
[2]

. 
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Time=0.04s Time=0.06s 

  
Time=0.08s Time=0.1s 

  
Time=0.2s Time=0.9s 

Fig. 6 The time evolution of instantaneous vorticity Z contour onto a  horizontal plane 

(z=0) 
 

Figure 6 shows the evolution of instantaneous vorticity Z at different time. The formation of 

the free shear layers from the cylinder surface took place identically for all runs. As the 

boundary layers from the upper and lower parts of the cylinder surface detach, free-shear 

layers are formed. This process is also displayed in Fig. 7. The separating shear layers behind 

the cylinder become unstable, and small-scale vortices can be clearly observed in the shear 

layers.  
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Figure 7 shows the iso-surface of the Q-criterion, flow past a circular cylinder with present 

SST-IDDES simulation. The slight difference vortex street pattern among each plane 

indicating the three dimensional turbulent structures. 

 

Fig. 7 Iso-surface of the Q-criterion, flow past a circular cylinder with present SST-

IDDES simulation.  
 

  
(a) Present SST-IDDES (b) DNS of Frederic, Tremblay[10](2002) 

  
(c) LES dyn of Frederic, Tremblay[10] (2002) (d) LES smago of Frederic, Tremblay[10] (2002) 

Fig. 8 Contours of mean velocity onto a horizontal plane (z=0) 

 

Figure 8 shows contour and streamlines of mean velocity onto a horizontal plane.We again 

notice the shortening of the recirculation length obtained by our SST-IDDES computations as 

compared to the DNS result. We note once again the shorter recirculation bubble of the two 

LES computations by Frederic, Tremblay
[10]

. 
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Fig. 9. Mean crossline velocities �̅�/𝑼∞in different cross-stream profiles of near wake 

behind the cylinder 

 

 
Fig. 10. Mean inline velocities �̅�/𝑼∞ in different cross-stream profiles of near wake 

behind the cylinder  
 

Figure 9 shows mean velocities in different cross-stream profiles of downstream. At x/D = 

1.06, the axial velocity profile exhibits a typical U shape that many others have also found in 

their LES and DNS studies. At x/D = 1.54 and x/D = 2.02, both predictions yield V shaped 

profiles. These cross-stream profiles of the mean axial velocity for both meshes are consistent 

with the observations made earlier with regard to the length of the recirculation bubble. It has 

been discussed by Kravchenko
[5]

 that the difference between a U shape and a V shape of the 

mean streamwise velocity profile in the near wake is mainly due to the shear layer dynamics 
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which affect this region. Figure 10 contains averaged over sufficient time inline velocities 

plots in series of cross-stream profiles along the downstream past the cylinder.  

 

Fig. 11 Mean crossline velocities in different cross-stream profiles of near wake behind 

the cylinder 
 

The normalized mean stream-wise velocity 𝑈/𝑈∞ in the far wake of the cylinder (x/D ≤ 10) 

is plotted in Figure 11. Obviously, SST-IDDES didn’t predicts the minimum value along the 

centerline of the cylinder. It could be due to the rather large grid spacing in the far wake of the 

cylinder.  

 
 

Conclusion and Outlook 
 

The separated turbulent flow around a circular cylinder is investigated using SST-IDDES. 

Some typical results, e.g., the mean pressure and drag coefficients, velocity Profiles and 

Strouhal number are calculated. A detailed validation of the SST-IDDES implementation for 

the turbulent flow around a circular cylinder has been conducted, with impressive levels of 

agreement achieved with experimental PIV data for both time-averaged and instantaneous 

quantities. In general, the prediction of SST-IDDES is satisfactory compared with the 

experiment data. Moreover, the hybrid RANS/LES models are able to simulate small 

turbulence structures and three dimensional effect even with limited computational meshes. 

The good agreement validated the CFD solver naoe-FOAM-SJTU is applicable and reliable to 

study such problems. Nevertheless, high Reynolds number (supercritical Re) flows are still 

challenging for the author to use present SST-IDDES models. Maybe more numerical try will 

need to be carried out in the near future.  
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Abstract 

The phenomena of wave breaking, known as white water, has attracted many researchers 

since its complex mechanism and effects on the performance of ship. The CFD solver naoe-

FOAM-SJTU, is used to investigate the wave breaking phenomena of the bow wave of KCS 

model without sinkage and trim. In the present work, the DES and RANS turbulence model 

are adopted to simulate the bow wave breaking of KCS in different advance speeds, i.e. 

Fr=0.26, 0.30, 0.35. In the simulations, volume of fluid (VOF) is employed to capture the 

free surface. For the Fr=0.26 case, the predicted resistance and wave patterns via both 

turbulence models are in good agreement with the available experiment data. For the Fr = 

0.35 case, the process of overturning and breaking of bow wave were obtained by the both 

turbulence models, and the scars are more visible by the DES approach. The detailed flow 

visualizations obtained through both turbulence models, such as wake profiles, vorticity and 

wave patterns, are presented to illustrate the hydrodynamic performance of high speed 

surface ship. The present simulations give a better understanding of the ability of both 

turbulence models to predict the ship bow waves breaking. 
 

Keywords: wave breaking; KCS; free surface; OpenFOAM, RANS, DES 

Introduction 

Despite of the high accuracy of the resistance prediction, it is still challenging to accurately 

resolve the breaking wave phenomenon, which has long been recognized. Extensive 

experiments have been performed to try to give the physical understanding of the breaking 

wave mechanism and provide experimental data for CFD validation. Dong et al.
[1]

 conducted 

experimental study using particle-image-velocimetry (PIV) measurements to analyze the 

velocity component and vorticity distribution at Fr=0.28 and Fr=0.45. The vorticity and its 

associated lateral flow field are analyzed. Duncan
[2]

 studied the breaking and non-breaking 

wave resistance of a 2-D hydrofoil via the experiments in which they found the drag 

associated with breaking was more than 3 times the drag theoretically obtained with non-

breaking waves. Kayo and Takekuma
[3]

 investigated bow wave breaking phenomenon around 

full ship models by velocity field measurements and by a flow visualization technique. They 

found that there was a shear flow on the free surface. Roth et al.
[4]

 utilized PIV to measure the 

flow structure and turbulence within the bow wave of DDG-51 model 5422. In the 

measurements, they also found that the negative vorticity originated at the toe of the wave 

while the positive vorticity was generated on the crest of the wave. In addition, they 
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discovered that the great energy losses were experienced at the toe. Longo and Stern
[5]

 

performed mean velocity measurements using a five-hole Pitot and wave elevation 

measurements using capacitance wires and point gauges for the static drift condition showing 

the presence of a bow wave breaking induced vortex on the windward side of the model. 

Olivieri et al.
[6]

 studied the bow wave breaking of model DTMB 5415 and they analyzes the 

scars and vortices induced by bow and shoulder wave breaking. In that study, the large 

extents of plunging bow was observed at Fr=0.35and spilling shoulder wave breaking was 

investigated. 

 

Despite the extensive study through experiment, numerical simulation has also been adopted 

to predict and analyze the ship wave breaking phenomena. In the numerical simulation of 

Wilson et al.
[7]

, the unsteady single-phase level set method was adopted to resolve and 

investigate bow wave breaking around a surface combatant advancing in calm water, 

including induced vortices and free surface scars. The velocity component and vorticity 

distribution were in good agreement with the experiment data. Moraga et al.
[8]

 proposed a 

sub-grid model for air entrainment in the bow waves breaking and applied for the simulation 

of naval surface ship DTMB 5415 and Athena. The model compared favorably with data at 

laboratory scale and also presented the right trends at full-scale. Marrone et al.
[9]

 used a 2D+t 

SPH model to analyze the breaking wave pattern of the vessel DTMB 5365, and the 

overturning and breaking of bow wave were captured clearly. Marrone et al.
[10]

 developed a 

3D SPH solver to simulate the bow wave breaking of Alliance vessels. The results achieved 

by the solver were compared with the experimental measurements and numerical results from 

RANS simulation in which the level set method was applied to resolve the free surface. 

Noblesse et al.
[11]

 reviewed the recent results about the overturning and breaking bow wave 

regimes, and the boundary that divides these two basic flow regimes. Questions and 

conjectures about the energy of breaking ship bow waves, and free-surface effects on flow 

circulation, are also noted. 
 
In present work, high resolution Volume of Fluid (VOF) method is used to accurately resolve 

the large deformation of free surface. The main framework of this paper goes as following. 

The first part is the numerical methods, where DES and RANS turbulence models are 

presented. The second part is the geometry model and grid generation. Then comes the 

simulation part, where wave breaking simulations are present at different Froude numbers. In 

this part, extensively comparisons are performed between the results obtained via different 

turbulence models including ship resistance, wave patterns and wake fields at longitudinal 

slices. Finally, a conclusion of this paper is drawn. 

Numerical methods 

Governing equations 

The in-house CFD solver naoe-FOAM-SJTU
[12–14]

, developed on open source platform 

OpenFOAM, is applied in this study and VOF method is used to capture free surface around 

the complex geometry models. The governing equations are written as a mass conservation 

equation and a momentum conservation equation
[15]

: 
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Where, ν is the molecular viscosity, τij is the Reynolds stress tensor or subgrid-scale stress 

tensor. According Boussinesq hypothesis, τij can be expressed as  
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Turbulence Model 

The SST model was proposed by Menter
[16]

 and is a two-equation turbulence model. SST 

combines the k-ε and k-ω models to treat the flow in the boundary layer region of the near 

wall with k-ω and the flow in the free shear flow region with k-ε. This not only preserves the 

ability of the k-ω model to handle the boundary conditions near the wall surface, but also 

avoids the insensitivity of the k-ω model to the inlet parameters in the free shear flow region. 

The DES model assumes the eddy viscosity νt is a function of turbulent kinetic energy k and 

specific turbulence dissipation rate ω, and strain invariant S. 
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In which, the transport equations
[17]

 for the turbulent kinetic energy k and the specific 

turbulent dissipation rate ω are denoted as: 
































j
tk

jDDES

j

x

k

xl

k
G

x j

ku

t

k
)(

~)( 2/3

                                     (5) 







k

j
t

j

j
CDF

xx
S

x j

u

t
)1()(

)(
1

22 






























                        (6) 

The lDDES in k-equation is mixing length scale which control the switch of solution between 

RANS and LES. 

VOF method and surface tension 

For the wave breaking simulations, the free surface capture method plays an important role in 

the accuracy of predicted results. In the present work, VOF method with bounded 

compression technique
 [18]

 is applied to capture free surface and the transport equation is 

expressed as: 

    1 0
t


          

g r
U U U   (7) 

Where  volume of fraction, 0 and 1 represent that the cell is filled with air and water 

respectively and 0 1     stands for the interface between two-phase fluids. 
r

U in Eqn. (7) is 

the velocity field used to compress the interface and it only takes effect on the free surface 

due to the term (1 )  . 

 

According to the literature concerning wave breaking, small scale wave breaking is strongly 

influenced by surface tension. The role played by the surface tension is quite different for 

breaking and non-breaking waves since the surface tension pressure jump depends on the 

magnitude of the radius of curvature of the free surface. In order to reappear the wave 

patterns of the experiment, the surface tension is taken account in the present simulation and 

the surface tension is expressed as:  

 f      (8) 

Where   stands for the surface tension,   is the curvature of free surface and it is defined as: 

 

·

·

f f

f

iV
    

S n

n   (9) 
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iV  represents the volume of cell i , 
f

f

 S  stands for the sum of value on each face of cell. 

Geometry model and grid generation 

Geometry model 

As a full-formed hull, the wave breaking of KRISO Container Ship (KCS) has aroused 

significant interest of researchers. The geometry model that is the 6.0702 m replica with 

rudder in numerical simulations is shown in Fig. 1, and its principle parameters are listed in  

Table 1. Extensive experiments have been conducted for the ship model under various Froude 

numbers except for Fr above 0.30. But the phenomena of wave breaking of KCS will be 

observed clearly at Fr=0.35 according to the previous work in which the study of the effects 

of different speeds on the wave breaking are carried out. In the present work, the wave 

breaking simulations of KCS at Fr= 0.35 are conducted. In the numerical simulation, the 

model is fixed without the sinkage and trim. 
 

 
Fig. 1 Geometry model of KCS (Case 2.10) 

 

Table 1 Principle dimensions of KCS 
Main particulars Full scale Model scale 

Length between perpendiculars Lpp (m) 230 6.0702 

Maximum beam of waterline BWL (m) 32.2 0.8498 

Draft T (m) 10.8 0.2850 

Displacement volume Δ (m
3
) 52030 0.9565 

Wetted surface area (with rudder) S0 (m
2
) 9645 6.7182 

 

Grid Generation  

Due to the high computational costs and fixed ship model condition, only half of the 

computational domain is adopted for the numerical simulations. Fig. 2 shows the 

computational domain and the boundary conditions. 
 

All-hexahedral unstructured grid adopted in the present simulations is generated by the 

software, Hexpress. The grid number in x, y, z direction is 100×30×45, respectively. To better 

resolve the bow wave breaking and free surface wave pattern, several blocks are adopted to 

refine the regions around the hull, bow and local free surface, as shown in Fig. 3. Block 1 is 

the region that wraps the hull surface. The 18.3 million grid scheme is obtained via the 

refinement in several blocks, as listed in Table 2. The scale of the size of the highest-level 

refinement region to Lpp is about 1.56e-3. Fig. 4 presents the global and local profile of grid 

distribution. 
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Fig. 2 Domain and boundary conditions. 

 

 
Fig. 3 Refinement regions. 

 

 
Fig. 4 Profile of grid distribution, global (left), local grid of bow (right) 

 

Table 2 Grid refinement strategy 

Total No. Refinement level (x, y, z) Ratio(/Lpp) (×10
-3

) 

18.3Million 

1 3×3×3 6.25×6.25×6.25 

2 4×4×5 3.125×3.125×1.5625 

3 5×5×5 1.5625×1.5625×1.5625 

 

Analysis of simulation results 

Validation of Numerical Scheme 

The focus of the present study is on the resolution of bow wave breaking of KCS via 

DES and RANS at different speeds, i.e. Fr = 0.26, 0.30, 0.35. The sinkage and trim of the 

hull is not taken into consideration in order to simplify the numerical simulation. The 

condition at Fr = 0.26 is selected to validate the prediction accuracy of the current numerical 

scheme. 
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Table 3 Comparison of experimental and predicted resistance 

Parameters EFD 
CFD 

RANS DES 

U(m/s) 2.017 2.017 2.017 

Sinkage (/Lpp) -2.074e-3 None None 

Trim (deg) -0.1646 None None 

Wetted surface area 

with rudder 
6.6978 6.7449 6.7449 

Ct (×10
3
) 3.835 3.662 3.644 

Error  -4.51% -4.98% 

 

 
Fig. 5 Comparison of resistance obtain at Fr=0.26 via DES and RANS  

 

 
Fig. 6 Comparison of free-surface between experiments (circles) and computational results 

(green: RANS; blue: DES) at different cutting planes. 
 

Fig. 5 shows the time history of total resistance via both turbulence models. As we can see, 

the convergence trends of total resistance via both numerical schemes are consistent. Table 3 

shows the comparison between the predicted resistance and the experiment data. The errors 

via RANS and DES turbulence model are about -4.51% and -4.98%, respectively. Since the 

ignorance of the hull posture, the errors of resistance are acceptable. Fig. 6 shows the wave 

height of the three profiles (y/L = 0.0741, 0.1509, 0.4224), obtained by experiment and both 

numerical simulations schemes. From the near field to the far field, the calculated free surface 

via both numerical schemes are consistent with the experimental measurements. Compared 

with the results via RANS schemes, the results via DES scheme is slightly better agreement 

with the experiment data. The results show that the numerical scheme that DES turbulence 
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model may be more suitable to simulate for capturing the free surface. On the other hand, the 

above results prove that the numerical scheme in the present work are reliable and robust. 

 

Simulation results at Fr=0.35 

According to the simulation results, the bow wave breaking is observed at Fr=0.35, so the 

numerical results at Fr=0.30 is not shown here. In the simulation of bow wave breaking of 

KCS at high speed, the hull also is fixed without trim and sinkage. 

 

The time history of resistance at Fr=0.35 via both numerical schemes are shown in Fig. 7. 

The convergence trends of both lines are consistent and almost same basically. The total 

resistance coefficients achieved via both numerical schemes are compared in Table 4. The 

relative error of both resistances is 0.354% demonstrates the results via the present numerical 

schemes are reliable and robust. 

 

Table 4 Comparison of resistance via DES and RANS 

Parameter U(m/s) Sinkage (/Lpp) Trim (deg) 
Ct (×10

3
) 

RANS DES 

Value 2.701 None None 5.084 5.066 

 

 
Fig. 7 Time history of total resistance via DES and RANS 

 

The wave patterns of free surface via both turbulence models are presented in Fig. 8. As 

depicted in Fig. 8(a), the global profiles are same basically except bow wave. The result 

obtained via RANS approach is smoother than that obtained via DES approach. There are 

more stripes near the hull in the results achieved by the DES turbulence model. Near the bow, 

four scars are observed by DES method while there is only scar achieved by RANS method, 

as shown in Fig. 8 (b). 

 

In the both numerical simulation, the marked difference is observed in the evolution of bow 

wave. Fig. 9 shows the difference between both simulation results more clearly. In the results 

of DES scheme, the nearest scar that is formed by the first overturning of bow wave starts at 

x/L=0.09 and disappears at x/L=0.22. When the bow wave plunges into the below free 

surface secondly, the second scar is formed at x/L=0.16 and it disappears at x/L=0.28. The 

third scar is also observed clearly between x/L=0.21 and x/L=0.30. The farthest scar is not 

visible apparently and it starts at x/L=0.25 and vanishes at x/L=0.34. Through the RANS 

scheme, the only one scar that starts at x/L=0.09 and vanishes at x/L=0.19 is visible clearly. 
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While the abrupt change and breaking of bow wave is very obvious near x/L=0.21 and the 

bow wave captured in the DES scheme seems to have better continuity and smoothness. 

 

 
Fig. 8 Comparison of free surface via RANS (below) and DES (top), a: global profile, b: 

local profile 
 

 

 
Fig. 9 Scar in bow wave breaking (a: DES, b: RANS) 

 

The general view of the vertical structure at Fr=0.35, is given in Fig. 10 which presents an 

isosurface of the dimensionless value Q=10 (Q= (S
2
+Ω

2
)/2, S and Ω being the symmetric and 

antisymmetric component of velocity) colored by the velocity. With the DES approach, three 

vortices near the bow are visible clearly and maintained until the middle of the hull. Except 

the three main vortices, some fragmented vortices occur near the bow wave. The main 

vortices vanish near the middle of the hull. On the other hand, some larger vortices also 
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appear near the middle of the hull. Through the RANS approach, some small intermittent 

vortices are yielded and these vortices vanish rapidly in the wake. 

 

 
Fig. 10 Vortical structure (top: DES, below: RANS) 

 

In order to compare the evolution of vortices more clearly, the axial vorticity distribution at 

different cutting planes are presented in Fig. 11. At x/L=0.05, the axial vorticity distribution 

obtained by both numerical schemes are similar. At the tip of the initial plunger, the axial 

vorticity is positive while the negative vorticity occurs at the high curvature region of the 

overturning bow wave. At x/L=0.07, the initial plunger generated due to the gravitational and 

inertial forces develops outboard and is going to reconnect with the free surface below. 

Although the axial vorticity distribution of both models are similar, the initial plunger yielded 

by DES model is thicker than that yielded by RANS approach. In addition, the initial plunger 

obtained by RANS scheme has shown the indication of breaking. Axial vorticity distribution 

is significantly different at x/L=0.14. The scar yielded by DES approach is clearer than that 

captured by RANS scheme. In the simulation of DES model, the shape of plungers is not 

observed while the second plunger is visible clearly in the prediction of RANS approach. In 

addition, the negative vorticity obtained by DES approach is much larger than that achieved 

by RANS scheme. In the simulation of DES model, the positive vorticity is much larger than 

the other scheme and concentrated on the free surface. A counter-rotating vortex pair is 

generated near the scar and the vortex pair pumps fluid outboard. 

 

Though the comparison of vorticity, the vorticity yielded by both numerical schemes at 

x/L=0.14 differs greatly. In order to analyze the mechanism of bow wave, the wake field at 

x/L=0.14 is presented in Fig. 12. In the axial direction, the velocity distributions from both 

numerical schemes are similar. The variation of axial velocity is concentrated near the bow 

wave. The lowest axial velocity occurs near the wave crest and it increases with increasing 

distance from the hull. The obvious difference mainly due to the wave pattern is concentrated 

near the second plunger. Similar to the axial velocity distribution, the variation of lateral 

velocity is also concentrated near the bow wave. The highest lateral velocity occurs near the 

free surface. And the lateral velocity decreases with increasing distance from the model. The 

vertical velocity shows the obvious difference. The significant variation occurs near the free 

surface. Positive and negative vertical velocity appear alternately in the simulation of DES 

model leads to the counter-rotating flow so that the counter-rotating vortex pair is generated 

near the scar. The result obtained by the RANS approach also has this trend but it is not very 

clear. 
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Fig. 11 Axial vorticity distribution at x/L=0.05(left), 0.07(middle) and 0.14(right) 

(top: DES, below: RANS) 

 

 

 
Fig. 12 Wake field distribution at x/L=0.14 (top: DES, below: RANS) 
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Conclusion  

In the present study, both turbulence models, DES and RANS, are adopted to simulate the 

bow wave breaking of KCS. At low speed, Fr=0.26, in terms of resistance, the predicted 

result of RANS approach is slightly more accurate than DES model. While the prediction of 

wave pattern obtained by the latter is slightly better agreement with experiment dat. At high 

speed, Fr=0.35, the resistance achieved by both turbulence models are almost same basically. 

Though four scars are captured by the DES model, while only one scar is observed via RANS 

approach. In terms of the 3D vortical structure, DES model yields three main vortices and 

more fragmented vortices near the bow and the main vortices vanishes until the mid-ship, 

while RANS approach captures some intermittent vortices that vanish rapidly in the wake. At 

the cutting planes, x/L=0.05, 0.07, the axial vorticity distribution obtained by both numerical 

schemes are similar. At x/L=0.14, the negative vorticity obtained by DES approach is much 

larger than that achieved by RANS scheme. A counter-rotating vortex pair, which induces the 

scar, is generated near the free surface. In the wake field, the axial and lateral velocity do not 

present significant difference. In the results of DES method, positive and negative velocity 

appear alternately in the vertical direction, while RANS approach only provides a fuzzy 

distribution for this trend. In the future work, some small scale features, such as air 

entrainment, capillary wave, should be paid more attention. 
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Abstract 

In present study, a new mesh-less multiphase method is developed based on the IMPS 

(Improved Moving Particle Semi-implicit) method and applied to simulate bubble 

coalescence. In this method, the multiphase system is treated as a multi-density and multi-

viscosity system and special interface treatments are introduced for interface region. The new 

multiphase MPS method is validated through comparisons with data in open literature. In 

particular, the multiphase MPS method is verified against Hysing et al.’s quantitative 

benchmark computations of two-dimensional bubble dynamics. Good agreements achieved 

for the benchmark quantities, including center of mass, and mean rise velocity, which 

demonstrate the accuracy and stability of the present multiphase MPS method. Then, a 

numerical study of the coalescence of bubble pairs is conducted and comparison between 

MPS and experimental results is made. In general, good agreement can be achieved. 

Keywords: Multiphase; MPS; bubble coalescence; CFD 

 

Introduction 

In fluid dynamics, bubbly flow is one of the most important issues and can be found in 

various natural and industrial processes such as chemical reactors, petroleum refining and 

boiling. The rising of bubbles in a viscous liquid due to buoyancy is one of fundamental 

bubbly flow. And when the distances between bubbles become close enough during rising 

process, interactions of bubbles occur and coalescence may be observed, which can greatly 

affect the bubble dynamics. Therefore, in order to obtain sufficient acknowledge of the bubble 

dynamics, the coalescence of bubbles should be primarily investigated. 

 

In recent decades, there have been many experimental and theoretical researches on the 

coalescence of bubbles [1]-[6]. However, both experimental and theoretical approaches have 

their limitations. On the one hand, only a small part of flow information can be obtained due 

to the difficulties in experiments, which results in a limited understanding on coalescence of 

bubbles. On the other hand, theoretical analysis is also not competitive, because approximate 

theoretical solutions can be derived only in the cases of small bubble deformations. Therefore, 

numerical simulations seem to be an effective alternative approach for the study of 

coalescence of bubbles [7]-[10], with the development of computer technology and 

computational fluid dynamics (CFD) in recent years. However, the numerical study of bubble 

coalescence is challenging due to the tracing of largely deformation of multiphase interface. 

For traditional numerical methods which are based on meshes or grids, there is difficulty in 

the maintenance of sharp or fragmented interfaces and the meshes containing the interface 
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need extra and complicated treatments. Besides, the numerical diffusion induced by the 

advection term is also an unavoidable problem when using these methods. 

 

Through the past few years, the mesh-less particle methods, as a new generation of numerical 

methods, have been developed energetically and provide a good solution to the problems 

mentioned above. In the mesh-less particle method, the calculation domain is dispersed by a 

set of particles with Lagrangian description, which means the profile of interface is 

automatically presented by the particles distribution, without need of additional capture or 

tracking procedure. Therefore, particle methods are particularly suitable for problems with 

large deformation of interface or free surface, like the coalescence of bubbles. Furthermore, 

numerical diffusion in the discretization of advection term is eliminated because of the use of 

substantial derivative in governing equations for Lagrangian system. In this paper, the moving 

particles semi-implicit (MPS) method, which is one of the most commonly known mesh-less 

particle methods, is employed to simulate the bubble coalescence. Since its being put forward, 

the MPS method has been successfully applied in a wide range of hydraulic engineering 

problems, including liquid sloshing [11][12], dam breaks [13][14], water entry [15], and fluid-

structure interaction [16]. However, the original MPS method considered only the problems 

with a single fluid and is not applicable to multiphase flows [17]. 

 

A number of significant numerical works have been devoted to extend the MPS method to 

multiphase flows. The first MPS multiphase method is proposed for solid-liquid two-phase 

flows [18]. After that, a hybrid MPS-FVM method is developed for the viscous, 

incompressible, multiphase flows, in which the heavier fluid is represented by moving 

particles while the lighter fluid is defined on the mesh [19]. Shakibaeinia and Jin [20] studied 

the multiphase flows by treating the multiphase system as a multi-viscosity and multi-density 

system, but the unphysical penetration is observed due to the less consideration of interface 

tension force. Khayyer and Gotoh [21] derived a first-order density smoothing scheme for 

multiphase flows characterized by high density ratios, and successfully applied this scheme to 

various multiphase problems including bubble rising. Two multiphase MPS methods, the 

MMPS-HD and MMPS-CA method are developed by Duan et al. [22]. In MMPS-HD method, 

harmonic mean density is utilized to avoid extremely large acceleration at interface. In 

MMPS-CA method, new stable formulations are developed to keep acceleration continuous at 

interface. Chen et al. [23] preformed a two-dimensional numerical simulation of the motion 

and coalescence of bubble pairs rising in the stationary liquid pool, in which the single-phase 

MPS method is utilized and the bubble region is simply regarded as a vacuum. 

 

In present study, a multiphase method is developed based on the IMPS method and special 

treatments on the two-phase interface. In our method, the multiphase system is treated as the 

multi-density and multi-viscosity fluid. The interparticle viscosity defined by the harmonic 

mean viscosity of two particles is firstly adopted to consider the interaction between different 

phases. Then the density smoothing technique is employed to reduce pressure discontinuity 

crossing the interface and obtain the continuous acceleration and velocity fields. The 

influence of surface tension force on the interface is considered through a contoured 

continuum surface force (CCSF) model. The present multiphase MPS is then verified against 

Hysing et al.’s quantitative benchmark computations of two-dimensional bubble dynamics 

[24]. Good agreements are achieved for the benchmark quantities, including center of mass, 

and mean rise velocity, which demonstrates the accuracy and stability of the present 

multiphase MPS method. Finally, a numerical study of the coalescence of bubble pairs is 

conducted and comparison between MPS and experimental results is made. In general, good 

agreement can be achieved. 
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Numerical Methods 

Improved MPS Method 

Due to less accurate formulations, the original MPS method suffered from some non-physical 

fluid motions and pressure oscillations. In this paper, we employed an improved MPS method, 

which includes improved schemes. In IMPS method, the governing equations for 

incompressible viscous fluid in Lagrangian system are employed, which can be expressed by 

continuity and momentum equations: 

   0
D

Dt


  V =  (1) 

 
2D

P
Dt

      f
V

V  (2) 

where V, t, ρ, P, μ and f represent the velocity vector, time, fluid density, pressure, dynamic 

viscosity and the body force, respectively. Similar with the solving strategy adopted by 

Shakibaeinia and Jin [20] and Duan et al. [22], in present method, the governing equations for 

all fluids belonging to liquid or bubble are uniform and solved together, thus the multiphase 

system is treated as a single fluid with multi-density and multi-viscosity. 
 

In particle method, a particle interacts with its neighboring particles covered with kernel 

function W(r). In present study, the kernel function without singularity is employed [25]. 

 
 1         0
0.85 0.15( )

 0                                   

e
e

e

e

r
r r

r rW r

r r


  

 
 

 (3) 

where r is distance between particles and re is the effect radius. 
 

In MPS method, all terms of differential operators on the right hand of governing equations 

are replaced by particle interaction models, including the gradient, divergence and Laplacian 

model, defined as 
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where ϕ is an arbitrary scalar function, Ф is an arbitrary vector, D is the number of space 

dimensions, n
0 

is the particle number density at initial arrangement, λ is a parameter defined 

as 
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which is applied to keep the variance increase equal to that of the analytical solution. 

 

In case of pressure gradient model, direct application of Eq. (4) may bring about the problem 

of tensile instability. In this paper, we employed the modified pressure gradient model [26], 

written as: 

 
_ min
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| |
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i j i j i
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 r r r r

r r
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where Pi_min represents the minimal pressure among neighboring particles of particle i. 

 

Fluid density in MPS method is represented by particle number density. Therefore, the 

incompressible condition can be satisfied by keeping the particle number density constant. 

For this purpose, each time step in MPS method is divided into two stages: In the first stage, 

temporal velocity of particles is obtained using viscous and body forces terms, which can be 

explicitly calculated. In the second stage, pressure term is implicitly calculated by solving the 

Pressure Poisson Equation (PPE), and the velocity and position of particles are updated to 

make the fluid incompressible. The PPE in present MPS solver is defined as 
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where γ is a blending parameter with a value less than 1. The range of 0.01 0.05  is 

recommended according to the numerical tests conducted by Lee et al. [27]. In this paper, 

0.01  is adopted for all simulations. 

 

The kinematic and dynamic free surface boundary conditions should be imposed on the free 

surface particles. The kinematic boundary condition is automatically satisfied in Lagrangian 

method, while the dynamic free surface boundary condition is implemented by setting zero 

pressure on the free surface particles. To impose the dynamic free surface boundary condition, 

free surface particles should be detected at first. In present method, a function [25] based on 

the asymmetric arrangement of neighboring particles of the center particle is defined as: 
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where the vector function F represents the asymmetry of arrangements of neighbor particles. 

Particles satisfying 

 
0| |   0.9 | |i  F F  (11) 

are judged as free surface particles, where 
0

F is the value of F  for surface particles at 

initial arrangement.  

 

Special Treatments for Multi-phase Flows 

To extend the IMPS method into multiphase flows, special treatments are introduced in 

present paper. For multiphase flows, the mathematical discontinuity of density at two-phase 

interface causes a discontinuous acceleration field and accordingly numerical instabilities. In 

present study, the density smoothing scheme [20][21] is adopted for interface particles, which 

is based on a simple spatial averaging as follow: 
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where I include particles i and all its neighboring particles.  
 

In present paper, the multi-viscosity model [20] is employed to deal with viscosity 

discontinuity cross interface. With the multi-viscosity model, the viscous term in Eq. (2) can 

be presented as: 
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where μij represents the interparticle viscosity between particles i and j. It is obvious that μij is 

equal to the real viscosity of one fluid (μij=μi=μi) when particles i and j belong to a same phase. 

 

For multiphase flows, interface tension effects are important when deformations of fluid 

interfaces are involved. One of the most widely used approach for incorporation of interface 

tension effects is the continuum surface force (CSF) method [28]. In this approach, 

surface/interface tension is converted into a body force in a transition region across the 

interface. Therefore, for particles in this transition region, the momentum equation Eq. (2) of 

governing equations transforms into 

 
2

s

D
P

Dt
      f f

V
V  (17) 

 s C f  (18) 

where fs is the interface tension, σ is the surface tension coefficient, κ is the interface 

curvature, C is a color function defined as: 

 
  0             particle  belongs to the specified phase

  1              particle  belongs to the other phase
i

i
C

i


 


 (19) 

The surface tension coefficient σ is known for a certain fluid. Therefore, the most important 

issue in CSF model is the calculation of interface curvature κ, which is also the most difficult 

issue. In present study, the curvature is analytically calculated based on the contour of color 

function [29]. The contour of color function C is approximately regarded as the profile of 

interface. With the contour of color function obtained, the interface curvature can be 

calculated. The calculation process of curvature can be simply divided into four steps. First, 

the value of the color function f at an arbitrary location (x, y) in the vicinity of the target 

particle i can be obtained by performing a spatial weighted averaging of all the neighboring 

particles of particle i, through the implementation of a Gaussian kernel function G: 
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where rs represents the effect radius of the Gaussian kernel function. 

 

Second, f (x, y) is expanded at point i through the Taylor series expansion: 
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where the subscripts x and y represent the partial derivatives with respect to x and y at particle 

i, respectively. The calculation of the partial derivatives can be found in [29]. O(rs
3
) is the 

high order error term which has no influence on the accuracy of curvature calculation and can 

be omitted [29]. 

 

Third, considering that the local contour of color function passing through particle i must 

satisfy f (x, y) = f (xi, yi), we can obtain the equation of the local contour at particle i from Eq. 

(22): 

 
2 2
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1 1
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Finally, the curvature at particle i can be analytically calculated as follow: 
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 (24) 

 

Numerical Validation 

The new multiphase method is verified against Hysing et al.’s quantitative benchmark 

computations of two-dimensional bubble rising [24]. The initial condition and parameters for 

the test case are shown in Fig. 1 and Table 1. On the one hand, the qualitative results of the 

bubble shapes during rising process are compared. On the other hand, some quantitative 

comparisons are also provided, including the center of mass (ybubble) and rise velocity of the 

bubble (ububble), which are defined as below: 

 
bubble

bubble bubble/
N

i

i

y y N
 

  
 
  (25) 
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i

u u N
 

  
 
  (26) 

 

Where Nbubble is the total number of bubble particles, yi is the vertical coordinate of the 

bubble particle i, uyi is the vertical velocity of the bubble particle i. 
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Table 1. Parameters for the simulation of bubble rising 

 

Parameters Value Unit 

Computational domain 1×2 m 

Particle spacing 0.01 m 

Total particle number 25389 / 

Bubble diameter (r0) 0.5 m 

Liquid density 1000 kg/m
3
 

Bubble density 100 kg/m
3
 

Liquid viscosity 10 kg/(m. s) 

Bubble viscosity 1 kg/(m. s) 

Time step size 0.0001 s Figure 1.  Initial condition 

for the validation case Gravitational acceleration -0.98 s/m
2
 

 

In present case, the non-dimensional Bo number can be defined as 

 

2

1 gU L
Bo




  (27) 

where ρ1 refers to the density surrounding heavier fluid, L=2r0 is the characteristic length 

scale, Ug
2
=g2r0 is the gravitational velocity. The Bo number is relatively small in this case, 

equal to 10, which means the surface tension effects are strong enough compared with 

gravitational forces and can hold the bubble together. As shown in Fig. 2, the rising bubble 

ends up in the ellipsoidal regime without break up. The bubble shapes simulated by present 

method at t = 3 s are compared with the benchmarks results, where good agreement are 

obtained. Furthermore, the results of the evolution of center of mass and rise velocity are 

presented in Fig. 4. The bubble rises at a growing speed at the early stage, until a largest 

velocity appears. After that, the rising of the bubble gradually slows down and a steady 

velocity can be finally reached, which can be called terminal velocity. In general, good 

agreements with benchmark results can be observed. Besides, the fluctuations of the rise 

velocity in some other particles methods are not found in present results, due to the improved 

accuracy and stability of the IMPS. 

 

Figure 2: Time evolution of the bubble shapes during rising process. (t = 0 s, 1 s, 2 s, 3 s) 
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Figure 3: Comparison of bubble shapes at t = 3 s for bubble rising 

 

Figure 4: Comparison of center of mass and rise velocity for bubble rising 

 

Numerical Simulation of Bubble Coalescence 

In this section, the bubble coalescence is numerically simulated by the newly developed 

method and comparison between numerical and experimental results is carried out. As shown 

in Fig. 5, two bubbles are initially arranged side by side at horizontal direction. Then the two 

bubbles will rise under the effects of buoyancy. According to the Bernoulli’s lay, the two 

bubbles will move closer to each other during the rising process, due to the faster fluid 

velocity and lower pressure between the two bubbles, and bubble coalescence can occur. The 

initial condition and parameters for the test case are shown in Fig. 5 and Table 2. 

 

Fig. 6 shows the snapshots of the coalescence of two bubbles obtained by present multiphase 

MPS method and observed in experiment [2] at some characteristic time instants. It can be 

seen from Fig. 6 that as the two bubbles rose, they would at first approach and finally get in 

touch with each other. Then a gas-bridge forms between and connected the two bubbles. 

Under the effects of interface tension force, the liquid between two bubbles are rapidly 

excluded and the gas bridge expands in the vertical direction, which results in the coalescence 

of the two bubbles. It can be clearly seen from comparison between Fig. 6(a) and Fig. 6(b) 

that the coalescence processes obtained the MPS simulation and experiment shows good 

accordance in general. 
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Table 2. Parameters for the bubble coalescence 

 

Parameters Value Unit 

Computational domain 0.05×0.1 m 

Particle spacing 0.00025 m 

Total particle number 90489 / 

Bubble diameter (2r0) 0.01 m 

Liquid density 1000 kg/m
3
 

Bubble density 10 kg/m
3
 

Liquid viscosity 1.31×10
-2

 kg/(m. s) 

Bubble viscosity 1.31×10
-4

 kg/(m. s) 

Time step size 0.00000125 s Figure 5.  Initial condition 

for the bubble coalescence Gravitational acceleration 9.8 s/m
2
 

 

 

     

 

t=0 s                 t=0.02 s                t=0.04 s            t=0.09 s         t=0.025 s 

 

(a) 

 

 
 

(b) 

 

Figure 6.  Comparison of coalescence of two bubbles between present MPS simulation 

and experiment in the literature: (a) simulative result; (b) experimental result from 

literature [2]. 
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Conclusions 

In this study, the numerical study of bubble coalescence is carried out by using a newly 

developed multiphase MPS method based on the IMPS method. The present method treats the 

multiphase system as the multi-density and multi-viscosity fluid, thus only a single set of 

equations needs to be solved for all phases. Besides, extra density smoothing technique, 

interparticle viscosity model and surface tension model are included in the present method for 

interface particles. The new method is verified against Hysing et al.’s quantitative benchmark 

computations of two-dimensional bubble dynamics [24]. In general, both the qualitative 

comparison of bubble shapes and quantitative comparisons of center of mass and mean rise 

velocity show good agreement, validating the accuracy and stability of the present multiphase 

MPS method. Then, the newly developed method is applied to simulate bubble coalescence. 

The coalescence process obtained by present method is in good agreement with the 

experimental results observed by Duineveld [2].  
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