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Abstract

This study considers the stability of vibration of a rotgtstructure consisting of a rigid hub
and a flexible thin-walled laminated composite beam periognthe additional to-and-fro
motion. The partial differential equations of motion reg@pting a complex elastic deformation
of the blade including bending, shear and twisting effeeigelbeen derived by the Hamilton’s
least action principle. Next, these equations have beesftstemed to a dimensionless ordinary
differential form by adopting the Galerkin method. It is shothe final equation of motion
includes time-varying coefficients that depend on the systegular velocity as well as on the
base excitation frequency. Due to the doubly periodic eseexcitation terms this form of
the governing equation is different from the typical Mathidill's equation. Two numerical
examples are presented to illustrate the influence of selenbdel parameters on the dynamic
stability of the system.
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1. Model of the structure

Let us consider a uniform slender and perfectly elastic-titied composite beam built into
a rigid hub of radiudy as shown in Figure 1. The structure is rotating at a constagnlar
velocity (t) = Q about a vertical axiZp. Moreover, the centroid of the hubis performing
harmonic to-and-fro motion in the rotor plane. Thus, thegenary position of the hub is given
by the translational and angular coordina§és) andy(t), respectively. The beam is clamped
to the hub so that the flapwise bending plane coincides wihdtation plane.

Figure 1: Schematic diagram of a rotating beam with in-planebase movement



1.1. Governing equations

The equations of motion of the beam are derived accordingediamilton’s principle of the
least action .
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wherel is the actionT is the kinetic energyy is the potential energy and operaforepresents
an infinitesimal change of the corresponding functionselas the previous authors research
[1], and confining the analysis to the flapwise bending, shedrprofile twisting, the partial
differential equations of beam motion are as follows:
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In the above relation$3; and b factors depict the inertia terms araij ones corre-
spond to the appropriate beam stiffnesses. The unknown8y, ¢ are the transverse dis-
placement, shear deformation and profile twist, respdgtiihe termTy(x) is defined as
bi(L —x){¢(t) [Ro+3(L+x)] — Ecosy(t)} and it represents system stiffening/softening
force resulting from both transportation motions, whil€x) = (Ba+Bs)/myg - Ty(x). Quantity
Mo is mass of the beam per its unit length ghd a perimeter of the profile cross-section.

The derived system of partial differential governing equa is transformed into ordinary
differential ones taking into account the normal modesemiopn and the associated orthogo-
nality condition. To this aim the Galerkin procedure for finst natural mode is applied. Next,
the system is converted to the dimensionless notation,tenfirtal form is obtained

G+ (a1 + a3Q?) g+ eXov?sin(vT) cog Q1) apg = —aeXov2sin(vT) sin(QT) (5)

whereq is the generalized coordinate corresponding to the stumbegled flexural-torsional
motion. Coefficientsy; (i = 1...,4), ae, ap result from the Galerkin’s projection. The terids
andv are the dimensionless amplitude and frequency of the hualslagonal motion, respec-
tively.

When studying the final equation (5) one observes it contdmgly periodic excitation
terms, namely the parametric and external one. Theretusefdrm of the governing equation
is different from the typical Mathieu-Hill’s equation agefh met in other engineering problems
—e.g. column buckling under time periodic compression odpgums systems.

2. Solution procedure and numerical results

The derived equation of motion (5) is solved to determineank&ability boundaries of the sys-
tem. To this aim the method of multiple scales [2] is adoptadithe uniformly valid expansion
is assumed as

q(T) = A0 (To Ta, T2) + €01 (To, Te, T2) + €202 (To, Ta, T2) + O (€°) (6)



Upon substituting this expansion into the governing equiafb) and equating coefficients
of like powers ofe yields a set of three perturbation equations. Successiwi@o of these
equations is followed by eliminating the troublesome sacahd small divisor terms in higher
order componentg 1), that depend on the system resonant combinations of fretgsenc
As a final result the boundaries separating the stable artdhlagegions on the frequeney
and amplitudeXg plane can be found.

The presented numerical examples involve two simulatiststeén the first experiment the
impact of the rotating speed = ¢y on the location and size of the unstable zone is examined.
In the second one the influence of the fibre orientation amgtbe beam laminate material is
tested. The results are presented in Figures 2 and 3, reghgct
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Figure 2: Primary unstable region of the tested beam — impacbf the rotating speedQ;
Coefficients in(5): a1 = 3.2651, a3 = 0.352719ap = 1.5777, X, = 0.1

Studying Fig. 2 one observes the stabilising impact of thetirng speed?. This is confirmed
by the reduced width of unstable zones for higher rotatingedp. At the same time these
unstable regions undergo the right shift due to the cewfaifgtiffening effect.
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Figure 3: Primary unstable region of the tested beam — impacbf the laminate reinforcing
fibres orientation anglea; Case (a)a = 75° coefficients in(5) a1 = 12.3364 a3 =
0.34987 ap = 1.3217, Case (b) a = 15° coefficients in(5) a; = 3.2651, a3 =
0.352719ap = 1.5777, Excitation amplitude Xo = 0.1

Results presented in Fig. 3 reveal discrepancies in théna/mftunstable zones. The effect is
explained by the different mutual modal bending/twistiogponents ratios that depend on the
reinforcing fibres orientation anglke. This conclusion is further confirmed by the horizontal
shift of the unstable zone as a consequence of significdeteliice in the specimen stiffness.
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