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Department of Applied Mechanics, Lublin University of Technology, Poland

⋆Presenting and corresponding author: j.latalski@pollub.pl
j.warminski@pollub.pl

Abstract

This study considers the stability of vibration of a rotating structure consisting of a rigid hub
and a flexible thin-walled laminated composite beam performing the additional to-and-fro
motion. The partial differential equations of motion representing a complex elastic deformation
of the blade including bending, shear and twisting effects have been derived by the Hamilton’s
least action principle. Next, these equations have been transformed to a dimensionless ordinary
differential form by adopting the Galerkin method. It is shown the final equation of motion
includes time-varying coefficients that depend on the system angular velocity as well as on the
base excitation frequency. Due to the doubly periodic external excitation terms this form of
the governing equation is different from the typical Mathieu-Hill’s equation. Two numerical
examples are presented to illustrate the influence of selected model parameters on the dynamic
stability of the system.
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1. Model of the structure

Let us consider a uniform slender and perfectly elastic thin-walled composite beam built into
a rigid hub of radiusR0 as shown in Figure 1. The structure is rotating at a constant angular
velocity ψ̇(t) = Ω about a vertical axisZ0. Moreover, the centroid of the hubC is performing
harmonic to-and-fro motion in the rotor plane. Thus, the temporary position of the hub is given
by the translational and angular coordinatesξ (t) andψ(t), respectively. The beam is clamped
to the hub so that the flapwise bending plane coincides with the rotation plane.

Figure 1: Schematic diagram of a rotating beam with in-planebase movement



1.1. Governing equations

The equations of motion of the beam are derived according to the Hamilton’s principle of the
least action

δJ =

∫ t2

t1

(

δT −δU
)

dt = 0 (1)

whereJ is the action,T is the kinetic energy,U is the potential energy and operatorδ represents
an infinitesimal change of the corresponding functions. Based on the previous authors research
[1], and confining the analysis to the flapwise bending, shearand profile twisting, the partial
differential equations of beam motion are as follows:
• b1ẅo −2b1u̇o ψ̇(t)−b1woψ̇2(t)−b1(R0+x+uo)ψ̈(t)

+b1ξ̈ sinψ(t)−a55ϑ ′

y −a55w′′

o − (Txw′

o)
′ = 0

(2)
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)
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• B4ϑ̈y −B4ψ̇2(t)ϑy+B4ψ̈(t)+a55(ϑy +w′
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y −a37ϕ ′′ = 0 (3)
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• (B4+B5)ϕ̈ +(B4−B5)ψ̇2(t)ϕ −a37ϑ ′′

y −a77ϕ ′′
− (Trϕ ′)′ = 0 (4)
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In the above relationsBi and bi factors depict the inertia terms andai j ones corre-
spond to the appropriate beam stiffnesses. The unknownsw0,ϑy,ϕ are the transverse dis-
placement, shear deformation and profile twist, respectively. The termTx(x) is defined as
b1(L − x)

{

ψ̇2(t)
[

R0+
1
2(L+ x)

]

− ξ̈ cosψ(t)
}

and it represents system stiffening/softening
force resulting from both transportation motions, whileTr(x) = (B4+B5)/m0β · Tx(x). Quantity
m0 is mass of the beam per its unit length andβ is a perimeter of the profile cross-section.

The derived system of partial differential governing equations is transformed into ordinary
differential ones taking into account the normal modes projection and the associated orthogo-
nality condition. To this aim the Galerkin procedure for thefirst natural mode is applied. Next,
the system is converted to the dimensionless notation, and the final form is obtained

q̈+
(

α1+α3Ω2)q+ εX̃0ν2sin(ντ)cos(Ωτ)αpq =−αeX̃0ν2sin(ντ)sin(Ωτ) (5)

whereq is the generalized coordinate corresponding to the studiedcoupled flexural-torsional
motion. Coefficientsαi (i = 1. . . ,4), αe,αp result from the Galerkin’s projection. The termsX̃0

andν are the dimensionless amplitude and frequency of the hub translational motion, respec-
tively.

When studying the final equation (5) one observes it containsdoubly periodic excitation
terms, namely the parametric and external one. Therefore, this form of the governing equation
is different from the typical Mathieu-Hill’s equation as often met in other engineering problems
– e.g. column buckling under time periodic compression or pendulums systems.

2. Solution procedure and numerical results

The derived equation of motion (5) is solved to determine theinstability boundaries of the sys-
tem. To this aim the method of multiple scales [2] is adopted and the uniformly valid expansion
is assumed as

q(τ) = q(0)(T0,T1,T2)+ εq(1)(T0,T1,T2)+ ε2q(2)(T0,T1,T2)+O(ε3) (6)



Upon substituting this expansion into the governing equation (5) and equating coefficients
of like powers ofε yields a set of three perturbation equations. Successive solution of these
equations is followed by eliminating the troublesome secular and small divisor terms in higher
order componentsq(1),q(2) that depend on the system resonant combinations of frequencies.
As a final result the boundaries separating the stable and unstable regions on the frequencyν
and amplitudeεX0 plane can be found.

The presented numerical examples involve two simulation tests. In the first experiment the
impact of the rotating speedΩ = ψ̇ on the location and size of the unstable zone is examined.
In the second one the influence of the fibre orientation angle in the beam laminate material is
tested. The results are presented in Figures 2 and 3, respectively.

Figure 2: Primary unstable region of the tested beam – impactof the rotating speedΩ;
Coefficients in(5): α1 = 3.2651,α3 = 0.352719,αp = 1.5777, X̃0 = 0.1

Studying Fig. 2 one observes the stabilising impact of the rotating speedΩ. This is confirmed
by the reduced width of unstable zones for higher rotating speeds. At the same time these
unstable regions undergo the right shift due to the centrifugal stiffening effect.

Figure 3: Primary unstable region of the tested beam – impactof the laminate reinforcing
fibres orientation angleα; Case (a)α = 75◦ coefficients in(5) α1 = 12.3364,α3=
0.34987,αp = 1.3217; Case (b) α = 15◦ coefficients in (5) α1 = 3.2651,α3 =
0.352719,αp = 1.5777; Excitation amplitude X0 = 0.1

Results presented in Fig. 3 reveal discrepancies in the widths of unstable zones. The effect is
explained by the different mutual modal bending/twisting components ratios that depend on the
reinforcing fibres orientation angleα. This conclusion is further confirmed by the horizontal
shift of the unstable zone as a consequence of significant difference in the specimen stiffness.
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