
Fractional Order Derivative Computation with a Small Number of Discrete
Input Values

Dariusz W. Brzeziński
Institute of Applied Computer Science, Lodz University of Technology, Poland.

Corresponding & presenting author: dbrzezinski@iis.p.lodz.pl

Abstract

High-accurate computer approximation of fractional derivatives and integrals by applying the
Grünwald-Letnikov formula requires generally a high number of input values. If required
amount can not be supplied, the accuracy of approximation drops drastically. In the paper we
solve a difficult and crucial problem in this scope, i.e. when input data consist only of a small
number of discrete values. Furthermore, some of the values may be unusable for computational
purposes. Our problem solution include appropriate method of input data preprocessing, an in-
terpolation algorithm with extrapolation abilities, central point function discretization schema,
recurrent computational method of coefficients and the application of Horner’s schema for the
core of the Grünwald-Letnikov method: coefficients and function’s values multiplication. Nu-
merical method presented in the paper enables computing fractional derivatives and integrals of
complicated functions with much higher accuracy than it is possible when the default approach
to the Grünwald-Letnikov method computer implementation is applied. This new method usu-
ally takes only 10% of function’s values required by the default approach for the same compu-
tations and it is much less restrictive for their quality. The general novelty of the method is an
efficient configuration of existing numerical methods and an enhancement of their abilities by
applying modern programming language - Python and arbitrary precision for computations.

Keywords: Numerical Methods, Finite Differences, Fractional Order Derivatives and In-
tegrals, Accuracy of Numerical Calculations, Arbitrary Precision.

1 Introduction

Fractional calculus (FC) or more aptly calculus of any order has been successfully applied for
many areas of technical sciences including electrical engineering, electronics and control sys-
tems as well as signals analysis and processing. The application for close-loop control systems
require computations to be conducted with high accuracy and in precisely provided time. Oth-
erwise, the system control fails.

The time factor of the computations requires the application of mathematical formulas en-
abling developing fast and compact computer programs. Despite the existence of numerous for-
mulas for numerical approximation of fractional order derivatives and integrals (FOD/I) [1–6],
only the popular Grünwald-Letnikov formula (GL) [7–11] fulfills this requirement. Therefore
it became the first choice for the purpose of systems control.

The algorithm of this method consists of multiplication of some coefficients (weights) and
function’s values.

Figure 1 presents first few subsequent coefficients values of the two utmost fractional orders
of derivatives/integrals: 0.2 and 0.8.

The remaining orders between 0 and 1 can be deduced from this figure: the first coefficient
has always value 1, the second one has a value of an fractional order (negative for derivatives,
positive for integrals). The rest of the coefficients decrease their sum to 0.



N

-1.0

-0.5

0.0

0.5

1.0

Value

(a)

N

-1.0

-0.5

0.0

0.5

1.0

Value

(b)

N

-1.0

-0.5

0.0

0.5

1.0

Value

(c)

N

-1.0

-0.5

0.0

0.5

1.0

Value

(d)

Figure 1: Ten first coefficients for FOD of order: 0.2 (a), 0.8 (b) and FOI 0.2 (c), 0.8 (d).

The values of subsequent coefficients depend on the fractional order value, i.e. higher or-
ders’ coefficients assume higher values than lower orders do. Their amount applied for compu-
tation have a direct impact on approximation accuracy.

Our previous research on GL method [12] proved that coefficient amount required for cer-
tain level of FOD/I approximation accuracy is determined by “the shape of function”. This
term describes a behavior of a function in terms of values of its derivatives: (1st and 2nd and
higher). If they assume high values, coefficients requirements increase enormously. In this
scope: figure 2 presents an indicative number of coefficients (in thousands) required for FOD/I
computation of monotonically increasing, monotonically decreasing and constant function in
the range (0, 1〉 with accuracy up to 1.0e−04 (measured as relative error) by applying a common
approach to GL method implementation.

(a) (b)

Figure 2: An indicative number of coefficients N required by respective functions and orders ν
for FOI (a) and FOD (b) computation with accuracy up to 1.0e−04.

The selection of functions in figure 2 is on purpose: it shows that computation of lower
order FOD/I of simple monotonically increasing functions with accuracy (expressed as relative
error calculated in respect to the exact value) as high as four significant decimal places requires
application of 600 of coefficients. For higher accuracy of computation and more complicated
functions, there are required many hundreds of thousands of them. In fact, calculation with high
accuracy (i.e. with more than four significant decimal places) of a low fractional order of FOD
for a high frequency periodic function which bounding box is either constant or decreasing,
requires over 2 billion of coefficients. This can become a difficult task even for a state-of-the-
art computer. This is pictured in figure 3 with the coefficient requirements for exponential and
periodical functions and their combination for an arbitrary selected fractional order 0.45.



Figure 3: An indicative number of coefficients N required by respective functions and orders ν
for FOD and FOI computation with accuracy up to 1.0e−04.

Long computation time associated with processing of high number of coefficients and multi-
plying them by function’s values makes real-time application difficult. Therefore, our research
on GL method was associated from the very beginning with the increase of its efficiency by
generally reducing requirements for a number of coefficients for requested accuracy of FOD/I
computations. In papers [13,14] we presented successful attempts achieved by modifying com-
monly applied form of GL formula with the well known Horner’s schema of polynomial’s
value calculation. Application for real-time computation of an equivalent form of GL formula
(Horner’s form) enabled us removing from computation up to 20% of coefficients required by
application of default approach while still maintaining target accuracy. We refer to it as calcu-
lation tail of variable length technique.

Furthermore, in paper [15] we presented another successful approach to the research on
general accuracy and efficiency increase of GL formula by evaluating some alternative to the
commonly applied formulas for coefficients computation and some other forms of GL formula.
We also assessed application usefulness for efficiency increase of forward and central point
discretization schemas as well as the use of three-point discretization schema.

All the efforts resulted in significant efficiency increase of GL method.
Additional results presented in the same paper showed that the magnitude of errors which

influence negatively computational accuracy of scientific calculations can be mitigated or often
even eliminated by applying a right form of a mathematical formula and by careful selection of a
programing language for its implementation. It usually led to the replacement of the commonly
used double precision computer arithmetic with “arbitrary precision” for computation (this term
is explained in Section 3).

The following paper presents some interesting results of our latest research on GL formula
aimed at solving a practical problem - computation of FOD/I with a small number (often not
sufficient for target accuracy) of discrete input data. The number may decrease if some of the
data are unusable for calculations with computer. This includes infinite and NaN (not a number)
values. In such situation computational accuracy can drop below two digit error expressed in
percent. Therefore, for the following research we aimed at increasing computational accuracy
to at least two decimal places with the same data amount supplied.

The paper is divided into the following sections: At first there are presented several forms
of GL formula which are applied for FOD/I computation. This section also includes a brief de-
scription of Horner’s form of the GL formula and its application algorithm of “calculation tail”
of variable length. Next, there is explained importance of arbitrary precision over standard dou-



ble precision for computations and its positive impact on their accuracy and reliability. Section
4 contains description of computing tools. Section 5 includes details of conducted numerical
experiment. Last sections 6 and 7 presents concisely results and conclusions.

2 Mathematical Background

The Grünwald-Letnikov FOD/I approximation method can be represented using the following
formula

t0D
(ν)
t f (t) = lim

h→0+

1

hν

N−1∑
i=0

(−1)i
(
ν

i

)
f (t− ih) , (1)

in which ν ∈ R is the order of derivative; fractional integral is defined as derivative evaluated
for negative order −ν < 0, N denotes an amount of steps in summation, t0,t is the interval and
h = t−t0

N
is the subinterval width.

Formula (1) includes ∞ limitation, which thwarts its computer application. The next for-
mula has it removed, which makes it useful for computational purposes. The formula will be
referred as the commonly used form of GL formula for FOD/I computations, in which Γ denotes
Euler’s Gamma function

t0D
(ν)
t f (t) ' h−ν

Γ (−ν)

N−1∑
k=0

Γ (k − ν)

Γ (k + 1)
f (t− kh) . (2)

The formulas (1) and (2) represent backward-difference. GL formula can be applied with
central point discretization schema [16]

t0D
(ν)
t f (t) ' h−ν

Γ (−ν)

N−1∑
k=0

Γ (k − ν)

Γ (k + 1)
f
(
t−
(
k − ν

2

)
h
)

(3)

and with the forward point discretization schema

t0D
(ν)
t f (t) ' h−ν

Γ (−ν)

N−1∑
k=0

Γ (k − ν)

Γ (k + 1)
f (t− (k − ν)h) . (4)

The application of formulas (1)-(4) for computation has some serious restriction: it requires
that t0 = 0.

In paper [17] we can find a formula, which removes these restrictions and it has higher
accuracy order (second instead of first one)

t0D
(ν)
t f (t) ' h−ν

Γ (−ν)

N−1∑
k=0

Γ (k − ν)

Γ (k + 1)
f
(
t−
(
k − ν

2

)
h
)

+
h−ν

Γ (−ν)

(1 + ν)

2
f (t0)N

−1−ν . (5)

Before presenting Horner’s form of the the Grünwald-Letnikov formula we introduce a
discrete version of the formula (2) for h = 1 and t = ih.

For a given discrete-time, real bounded function f (k) = f0, f1, . . . fk−1, fk GL formula of



Fractional Order Backward Difference (FOBD) is defined as

GL
0 ∆

(ν)
k fk =

k∑
i=0

a
(ν)
i fk−i, (6)

where ν is the FOBD order. Fractional Order Backward Sum (FOBS) is defined as the FOBD
evaluated for negative order, fk is a discrete time function and a

(ν)
i are the coefficients for

i = 0, 1, 2, 3 . . . , k − 1, k.
The coefficients a(ν)i can be calculated by applying several formulas, which include the

formula involving factorial function calculation

a
(ν)
i =


0 for i < 0
1 for i = 0

(−1)i ν(ν−1)···(ν−i+1)
i!

for i > 0.

(7)

This formula presents a serious limitation for computational accuracy due to the use of fac-
torial function. It causes the overflow which limits a number coefficients that can be computed
to 170. Therefore the following recurrent formula should be applied instead. It is derived from
the relation between coefficients a(ν)i

a
(ν)
i = a

(ν)
i−1

(
1− 1 + ν

i

)
for i > 0. (8)

The next formula presents the algorithm (7) expressed in a matrix-vector form

GL
0 ∆

(ν)
k f (k) =

[
a
(ν)
0 a

(ν)
1 · · · a

(ν)
k

]
fk
fk−1

...
f0

 . (9)

The Horner form of GL formula is a formula to which the well known Horner’s schema of
polynomial’s value calculation is applied. Horner’s schema possesses some significant compu-
tational advantages, e.g. lower computational complexity and a natural method of data input for
computation.

By applying the same assumptions as in case of the Grünwald-Letnikov definition, intro-
ducing new coefficients c(ν)i

c
(ν)
i =


0 for i < 0
1 for i = 0

1− 1+ν
i

for i > 0
(10)

we apply Horner’s schema to (6). We obtain [18]

H
0 ∆

(ν)
k f (k) = c

(ν)
0

[
fk + c

(ν)
1

[
fk−1 + c

(ν)
2

[
fk−2 + · · ·+ c

(ν)
k−1

[
f1 + c

(ν)
k

[
f0
]]]]]

. (11)

The formulas (6) and (11) are equivalent, i.e.

GL
0 ∆

(ν)
k fk =H

0 ∆
(ν)
k fk.



However,
lim
i→∞

a
(ν)
i = 0,

lim
i→∞

c
(ν)
i = 1, (12)

and for some i > k − L
a
(ν)
i ≈ 0,

c
(ν)
i ≈ 1

We can use the property of c(ν)i coefficients to modify the formula (11)

Hs
0 ∆

(ν)
k,L f (k)

=

 c
(ν)
0

[
fk + c

(ν)
1

[
fk−1 + c

(ν)
2

[
fk−2 + · · ·+ c

(ν)
k−1

[
f1 + c

(ν)
k

[
f0
]]]]]

for k ≤ L

c
(ν)
0

[
fk + c

(ν)
1

[
fk−1 + · · ·+ c

(ν)
k−L

[∑L
i=0 fi

]]]
for k > L.

(13)

Application of formula (13) enables reducing up to 20% requirements for an amount of
coefficients during FOD/I computation, i.e. for samples k > L we assume c(ν)i = 1 and replace
multiplication with summation of the remaining function values.

The L value is an arbitrary number and is to be set empirically. However, its value must be
selected carefully, i.e. the removal of L coefficients is not to decrease accuracy of calculations
over a permissible error.

Based on our past experience, we apply L = 20% less coefficients required for FOD/I
computation with target accuracy by the default approach (see as examples numbers of coeffi-
cients presented in Figures 2 and 3), e.g. if a function requires 600 coefficients for the accuracy
1.0e−04, then we calculate 20% of this number (which in the case is 120). From now on,
L = 480 for the use with formula (13). After this operation, there are applied 600− 120 = 480
coefficients.

For full reasoning and procedure description how to set L, please refer to the papers men-
tioned in introduction.

The next table presents computational accuracy decrease over 1.0e−04 after removal of L =
20% of former number of coefficients required for this accuracy (see again Figures 2 and 3) by
applying formula (13).

Table 1: Relative error increase over 1.0e−04 after removal of L = 20% of coefficients number
required for this accuracy for selected fractional orders ν (positive - FOD, negative - FOI).

Function f (t)
t 1− t 1 (t) e−2t sin (8πt) cos (4πt)

0.1 0.28 0.02 2.49 4.39 0.1
0.5 2.15 0.08 2 1.05 0.25
0.9 5.25 0.04 0.53 0.09 0.17
−0.1 0.22 0 2.44 8.84 0.17
−0.5 0.6 0.04 1.74 7.32 1.79
−0.9 0.19 0.01 0.42 3.16 7.96



3 The Importance of Arbitrary Precision

Limiting factor to the accuracy of computation by applying the formulas (2)-(5) is a precision
which uses the computer to store data that are being supplied to it.

Consider calculating the value of Γ (z) for large values of z. At z = 171 the approximate
value provided by the computer programmed to use standard double precision arithmetic is
7.26e306. At z = 171 the computer begins to refer to the value of Γ (z) as ’Inf’. Hence, for the
formulas (1)-(2) there is no practical use of calculating coefficients beyond the 171st.

The above example of overflow occurrence shows that the selection of uniform C++ equipped
with the standard mathematical library as a main programming tool is not enough nowadays to
take full advantage of available hardware. The application of arbitrary precision computing
for increasing the accuracy and the correctness of numerical calculations and Nvidia CUDA
parallelization technology for their effectiveness, are the best examples in this context [19].

Application of arbitrary precision makes it possible for the user to choose precision for
calculation and for each variable storing a value. It is not machine-depended or IEEE standard
types. With its help we can - among the others - increase general accuracy of mathematical
computations. However, its application purpose is above all to increase accuracy of numerical
calculations, e.g. by eliminating under- and overflows, increasing accuracy of a polynomial
zeros finding and derivative and integral calculating.

The importance of elimination of limited precision in computer calculations was aptly pre-
sented by Toshio Fukushima in The Astronomical Journal in 2001 by giving the following
example: “In the days of powerful computers, the errors of numerical integration are the main
limitation in the research of complex dynamical systems, such as the long-term stability of
our solar system and of some exoplanets [...]” and gives an example where using double pre-
cision leads to an accumulated round-off error of more than 1 radian for angular position of
planets [20].

Double precision computer arithmetic is optimized for speed and has many flaws which
negatively influence the accuracy of computations, e.g. limitations of number values which
double precision variables can hold or no programmer influence on mathematical operations
rounding.

However, it is the lack of clarity in handling of intermediate results which troubles the most,
i.e. the floating-point standard [21] only defines that the results must be rounded correctly to
the destination’s precision and fails to define the precision of destination variable. This choice
is commonly made by a system or a programming language. The user can not influence it in
any way. Therefore, the same program can return significantly different results depending on
the implementation of the IEEE standard.

Arbitrary precision application is applied in conjunction with special libraries which include
their own data structures and mathematical functions.

There are many programming languages, which can be used with arbitrary precision. They
include Python. Python is an object oriented script language, which achieves a higher abstract
level than for example C++, i.e. an individual programmer can achieve the same results in a
much shorter time and with far fewer lines of code. It also has especially clean and straightfor-
ward syntax. It can lead to programs’ shorter executing time.

An important advantage of programming using Python is availability of ready to use li-
braries. They enable solving a scientific problem by focusing rather on selecting the right tools
and by adopting them if necessary instead of designing a new algorithm from ground up. There-
fore, we selected it as the main programming language for our research.



4 Tools for the Problem Solving

The requirement of an efficient solution to the problem presented in the introduction includes
constructing an interpolation polynomial using supplied values. It is crucial for arbitrary selec-
tion of a discretization point schema, i.e. central (10) or forward (11) one or the one with three
points.

We applied SciPy - an open source Python library for scientific and technical computing.
SciPy provides a module for interpolation based on the FITPACK library of FORTRAN func-
tions, which is assumed as reliable.

Central point discretization formula (3) requires at least one point beyond t to be accessible
for the interpolation. Unfortunately standard routines in SciPy do not allow to include any
points from outside the interpolation range. At first our solution to make scipy.interpolate give
an extrapolated result beyond the input range included modifying an interpolating algorithm
based on spline interpolation by adding:

• Constant extrapolation: extrapolating left and right values as constant beyond the range

• Linear extrapolation: writing a wrapper around an interpolation function, which does
linear extrapolation

• Manually inserted points and values to the initial array

• scipy.interpolate.splrep (with degree 1 and no smoothing)

Due to unsatisfactory accuracy and speed concerns, we have decided to apply Interpolat-
edUnivariateSpline from the same library scipy.interpolate instead. It does interpolation and
extrapolation and can be applied in conjunction with mpmath. mpmath is a free (BSD licensed)
Python library for real and complex floating-point arithmetic with arbitrary precision. It is
based on GNU GMP and GNU MPFR libraries. It enables switching from double to arbitrary
precision computation by applying Python programming language.

The mathematical library mapmath is required not only to increase overall exactness of com-
putations, but also due to accessibility of excellent implementations of gamma and reciprocal
gamma functions required for FOD/I calculations by applying formulas (2)-(5).

5 Details to the Numerical Experiment

In our previous numerical experiments with GL method the number of coefficients (and func-
tion’s values at the same time) was commonly limited to 600, because we applied such an
amount for real-time calculations (in our case the maximum number of coefficients was deter-
mined by amount of available memory in a test DSP-system).

However, to present high efficiency of FOD/I computing method presented in the paper, our
experiment was conducted with only 60 values as an input. Additionally, up to 20% of them
were randomly assigned ∞ and NaN values to mimic unsuitability for computation, which
often occur if experiment data were collected without the knowledge of computing input data
requirements.

Unlike simple, monotonically increasing, decreasing or constant functions, which require
relatively moderate number of coefficients (up to 600) for accuracy up to four significant deci-
mal places, high-frequency, exponential and periodical functions, which have “dramatical shape
changes” require millions or more of them. For this reason, general efficiency and accuracy of
the method was assessed against two sets of functions.

Set one included constant, monotonically increasing and decreasing functions:



f1 f (t) = 1 (t) ∈ (0, 1)

f2 f (t) = tt− t, t ∈ (0, 1)

f3 f (t) = t0.1, t ∈ (0, 1).

Set two included more complicated functions:

f4 f (t) = te−t, t ∈ (0, 10)

f5 f (t) = e−2t cos 8π, t ∈ (0, 1)

f6 f (t) = e−2t, t ∈ (0, 1)

f7 f (t) = et sin t, t ∈ (0, π)

f8 f (t) = 1.5 cos 2t+ 2.2 cos 4t, t ∈ (0, 2π)

f9 f (t) = sin 2π cos t, t ∈ (0, 5).

The functions were tabulated before supplying them to the program, i.e. the actual input to
a program was in form of a vector with discrete values.

At first we applied interpolation method described in section 4 to construct an interpolation
polynomial using the vector with the supplied values. Next, we interpolated 600 values for
FOD/I calculations using central (3) and forward (4) discretization schemas. Finally FOD/I
were computed.

For comparison purposes, FOD/I were computed by applying the commonly used reference
formula (6) with 60 values as well to present the real-life accuracy.

The FOD/I exact values required for accuracy assessment were computed by applying an-
alytical formulas (if available) or by using high-accuracy integration method [22, 23]. This
method involves Gauss-Jacobi Quadrature application for integration and is reliable for com-
putation of FOD/I using Riemann-Liouville and Caputo formulas [24] with accuracy up to 120
significant decimal places.

6 Results

FOD/I computational accuracy is assessed as the relative error

er (m) =

∣∣∣∣1− vc
ve

∣∣∣∣ , (14)

in which: vc is a calculated value, ve is a value assumed as exact and m denotes a number of
source input values for FOD/I computation.

Figures 4-8 present accuracy of FOD/I computation denoted as relative error (14) for: GL
- a classical Grünwald-Letnikov formula (2) applied with m = 60 function’s values (to present
the accuracy of computations, which can be expected by applying only real supplied functions’
values); Γ denotes computations by applying the formula (5) and Hs - the formula (13) - both
with 600 interpolated values, which are computed by applying the combination of techniques
described in the paper (to present the accuracy which can be obtained despite the only 60 sup-
plied real function’s values).



0.1 0.5 0.9

10−8

10−6

10−4

10−2

100

ν

Relative Error

GL Γ Hs

(a)

0.1 0.5 0.9

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

ν

Relative Error

GL Γ Hs

(b)

Figure 4: Computational accuracy of FD, order ν for: (a) f1 and (b) f2.

0.1 0.5 0.9

10−3

10−2

10−1

ν

Relative Error

GL Γ Hs

(a)

0.1 0.5 0.9

10−5

10−4

10−3

10−2

10−1

ν

Relative Error

GL Γ Hs

(b)

Figure 5: Computational accuracy of FD, order ν for: (a) f3 and (b) f4.

0.1 0.5 0.9

10−1

100

ν

Relative Error

GL Γ Hs

(a)

0.1 0.5 0.9

10−6

10−5

10−4

10−3

10−2

10−1

100

101

ν

Relative Error

GL Γ Hs

(b)

Figure 6: Computational accuracy of FD, order ν for: (a) f5 and (b) f6.



0.1 0.5 0.9

10−5

10−4

10−3

10−2

10−1

100

ν

Relative Error

GL Γ Hs

(a)

0.1 0.5 0.9

10−1

100

ν

Relative Error

GL Γ Hs

(b)

Figure 7: Computational accuracy of FD, order ν for: (a) f7 and (b) f8.

0.1 0.5 0.9

10−2

10−1

100

ν

Relative Error

GL Γ Hs

Figure 8: Computational accuracy of FD, order ν for f9.

7 Conclusions

The Grünwald-Letnikov method requires a high number input values for high accuracy FOD/I
computation. If required number of values can not be supplied, the accuracy of computation
drops drastically, particularly for complicated functions.

To solve this deficiency problem we proposed a new numerical method combining existing
numerical techniques, arbitrary precision computation and modern programming language.

The method presented in the paper enables computation of FOD/I with similar or higher ac-
curacy with only 10% of input values required by the traditional approach to FOD/I computation
by applying the Grünwald-Letnikov method.

Application of the simplified Horner’s form of the Grünwald-Letnikov formula for the core
of the method (multiplication of the coefficients and function’s values) decreases again by up
to 20% of those 10% the requirements for input values during computation without noticeable
accuracy drop over the assumed level.

Additionally, the developed method enables ”repairing” input values unusable for computa-
tional purposes.

The computational method described in the paper combines several programming tech-
niques that include application of Python programming language and accompanying mathe-
matical library (mpmath) for arbitrary precision of computations. This combination enables



elimination of common errors associated with double precision computer mathematics and in-
creases significantly accuracy and reliability of scientific computation.

Acknowledgement

The work was created as a result of the research project no. 2016/23/D/ST6/01709 financed
from the funds of the National Science Center, Poland.

References

[1] R. Herrmann. Fractional Calculus. An Introduction for Physicists, 2nd. ed. World Scien-
tific, Singapore, 2014.

[2] D. Baleanu, K. Diethlem, E. Scalas, and J.J. Trujillo. Fractional Calculus. Models and
Numerical Methods. World Scientific, Singapore, 2012.

[3] J. T. Machado. Numerical calculation of the left and right fractional derivatives. Journal
of Computational Physics, 293:96–103, 2015.

[4] L. Debnath and D. Bhatta. Integral Transforms and Their Applications, Third Edition.
CRC Press, Taylor & Francis Group, Boca Raton London New York, 2015.

[5] P. J. Nahin. Inside Interesting Integrals. Springer-Verlag, NY, 2015.

[6] C. Li and F. Zeng. Numerical Methods for Fractional Calculus. Chapman & Hall, 2015.

[7] I. Podlubny. Fractional Differential Equations. Academic Press, INC, San Diego Ca,
1999.

[8] M. D. Ortigueira, J. A. T. Machado, and J. Sa da Costa. Which differintegration? Pro-
ceedings - Vision, Image and Signal Processing, 152(6), 2005.

[9] M. D. Ortigueira. Fractional central differences and derivatives. Journal of Vibration and
Control, 14(9-10):1255–1266, 2008.

[10] M.D. Ortigueira. Fractional Calculus for Scientists and Engineers. Springer-Verlag, NY,
2011.

[11] M. D. Ortigueira and J. A. T. Machado. What is a fractional derivative. J.Comput. Phys,
2014.

[12] D. W. Brzeziński and P. Ostalczyk. About utility of the simplified grünwald-letnikov
formula equivalent horner form. Discontinuity, Nonlinearity, and Complexity. Special
Issue: ”Fractional Dynamics and Systems with Power-Law Memory” (Eds. M.Edelman
and J. Tenreiro Machado), 4(4), 2015.

[13] D. W. Brzeziński and P. Ostalczyk. The grünwald-letnikov formula and its horner’s equiv-
alent form accuracy comparison and evaluation for application to fractional order pid con-
troler. In IEEE Explore Digital Library: IEEE Conference Publications-17th International
Conference On Methods and Models In Automation and Robotics (MMAR), pages 579–
584, 2012.



[14] P. Ostalczyk, D. W. Brzeziński, P. Duch, M. Łaski, and D. Sankowski. The variable,
fractional-order discrete-time pd controller in the iisv1.3 robot arm control. Central Euro-
pean Journal of Physics, 11(6):750–759, 2013.

[15] D. W. Brzeziński and P. Ostalczyk. About accuracy increase of fractional order derivative
and integral computations by applying the grünwald-letnikov formula. Communications
in Nonlinear Science and Numerical Simulation, 40:151–162, 2016.

[16] K. Oldham and J. Spanier. The Fractional Calculus. Theory and Applications of Differen-
tiation and Integration to Arbitrary Order. Academic Press, INC, San Diego Ca, 1974.

[17] Y. Takeuchi and R. Suda. New numerical computation formula and error analysis of
some existing formulae in fractional derivatives and integrals. In Proceedings to the Fifth
Symposium on Fractional Differentiation and its Applications, Hohai University, Nanjing,
China, 2012.

[18] P. Ostalczyk. Fractional-order backward difference equivalent forms. In Fractional Differ-
entiation and Its Applications. Systems Analysis, Implementation and Simulation, System
Identification and Control. 1995.

[19] J. M. Müller, N. Brisebarre, F. De Dinechin, C. P. Jeannerod, V. Lefevre, G. Melquiond,
N. Revol, D. Stehle, and S. Torres. Handbook of Floating-Point Arithmetic. Birkhauser,
New York, NY, 2010.

[20] K. R. Ghazi, V. Lefevre, P. Theveny, and P. Zimmermann. Why and how to use arbitrary
precision. IEEE Computer Society, 12(3):1–5, 2001.

[21] Microprocessor Standards Committee. IEEE Standard for Floating-Point Arithmetic,
2008. http//dox.doi.org/10.1109/IEEESTD.2008.4610935.

[22] D. W. Brzeziński and P. Ostalczyk. High-accuracy numerical integration methods for
fractional order derivatives and integrals computations. Bulletin of the Polish Academy of
Sciences Technical Sciences, 62(4):723–733, 2014.

[23] D. W. Brzeziński. Accuracy problems of numerical calculation of fractional order deriva-
tives and integrals applying the riemann-liouville/caputo formulas. Applied Mathematics
and Nonlinear Sciences, 1(1):23–43, 2016.

[24] D. W. Brzeziński. Comparison of fractional order derivatives computational accuracy -
right hand vs left hand definition. Applied Mathematics and Nonlinear Sciences, 2(1):237–
248, 2017.


	Introduction
	Mathematical Background
	The Importance of Arbitrary Precision
	Tools for the Problem Solving
	Details to the Numerical Experiment
	Results
	Conclusions

