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Abstract 
To investigate flexural vibration of structures in a fluid, a numerical algorithm was developed to relate the added 
mass and damping effects of the fluid to each mode of vibration. These are separate from the traditional added 
mass associated with rigid body motion, such as the translational motion along Cartesian axes. In this 
formulation, small-amplitude free surface waves were accounted for by using a non-singular implementation of 
the free-surface Green’s function for a potential flow solver based on Boundary Element Method. The 
formulation was applied to the free and forced vibration of structures, namely a hemispherical shell and a 
simplified ship model, to obtain their dynamic response at various excitation frequencies. The results show the 
influence of added damping at lower frequencies as well as the simplicity of relating the fluid added mass to 
mode shapes of the structures. 

 
Keywords: Free Surface Wave, Non-singular Boundary Element Method, Fluid-
Structure Interaction 
 

Introduction 

For a structure interacting with surrounding fluid, any sudden change in the motion, for 
example onset of motion or change in the acceleration, results in additional resistance form 
the fluid in the form of a pressure load. This fluid loading can be represented by an equivalent 
system of mass and damper, which are called added mass and added damping, respectively 
[1]-[9]. Added-mass depends on the geometry of the fluid-structure interface, density of the 
fluid and the type of motion [1]-[3]. Added damping occurs due to the viscosity and condition 
of the free-surface of the fluid if it exists [4]-[9]. 
 
Added-mass and damping have been studied for different geometries of structures, either 
being fully or partially submerged in a fluid domain, under translational rigid-body motion 
[4]-[10][14][19][20]. A few studies were reported about relation between the flexural 
vibration of structures and added mass [21]-[24]. In most of the theoretical studies of 
applications such as offshore mobile structures (ships or submarines), the fluid or sea water is 
typically modeled as an incompressible fluid with negligible viscosity; thus, added-damping 
only arises from the free-surface condition [1][3][5][9][10][14]. 
 
For such a case of potential flow, the typical numerical method for calculating the fluid 
pressure is Boundary Element Method with proper Green’s function [3][12][13][15]-[20][24]. 
The total pressure at the free-surface of the fluid is set to zero. If the pressure head due to the 
gravity is included in the total pressure, the free-surface elevation, and hence the velocity, is 
related to the unsteady pressure which rises from changes in the motion. For small amplitude 
oscillatory flow, this relationship is modeled by the Airy wave equation [25]. To use the 



Boundary Element Method, modification of the Green’s function is required to satisfy the 
free-surface wave condition. Several studies reported the surface-wave Green’s function as an 
analytical expression which includes semi-infinite integral of the modified Bessel functions 
[12][13][15]-[18]. Although several analytical derivations for a limited number of simple 
geometries existed, numerical implementation of this Green’s function is challenging due to 
the singularity of the Bessel function as well as the infinite bound of the integral. The surface-
wave Green’s function results in complex-valued pressure and velocity [11][16][17]. 
 
In this paper, the aim is to investigate the flexural vibration of shell structures interacting with 
fluid modelled as potential flow. A non-singular formulation is proposed for implementing 
the surface-wave Green’s function. Then, by using the modal superposition, the fluid loading 
is calculated for each selected mode shape which are derived for the dry-state of structure. 
The added-mass and damping are represented the real and imaginary parts of the fluid 
loading, respectively. By including these fluid effects in the vibration equation, the flexural 
response of the wet-state of the structure can be calculated. The results show that the proposed 
numerical formulation provides an efficient way of vibration design of ship structures in sea 
water. 

Theory and formulation 

Vibration and modal superposition 

Vibration of structures is governed by the following equation, 

 M�̈�𝒙 + C�̇�𝒙 + D𝒙𝒙 = 𝒈𝒈(𝒙𝒙) + 𝐡𝐡, (1) 

where 𝒙𝒙 is structure displacement vector, M , C and D are the structural mass, damping and 
stiffness matrices, respectively; time differentiation is denoted by the dot ( ̇ ) operator. The 
fluid loading on fluid-structure interface, denoted by 𝒈𝒈, is a function of the displacement of 
the fluid-structure interface. Other external forces are denoted by 𝐡𝐡 . For time harmonic 
response, 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, Eq. (1) is written as follow, 

 (−𝜔𝜔2M− 𝑖𝑖𝜔𝜔C + D)𝑿𝑿 = 𝑮𝑮(𝒙𝒙) + 𝐇𝐇. (2) 

where 𝜔𝜔 is the circular frequency; X, G and H are the corresponding complex amplitudes. To 
determine fluid loading 𝑮𝑮 as a function of displacement, the modal superposition technique is 
applied. First, structure displacement is written as  

 𝑿𝑿 = ∑ 𝝍𝝍𝑗𝑗
𝑁𝑁
𝑗𝑗=0 𝑄𝑄𝑗𝑗 = [𝝍𝝍]{𝑸𝑸}, (3) 

where 𝝍𝝍𝑗𝑗  is the 𝑗𝑗th mode shape of the dry structure, which is called 𝑗𝑗th dry mode-shape 
hereinafter, and 𝝍𝝍𝑗𝑗 is associated with the 𝑗𝑗th dry frequency 𝑓𝑓𝑗𝑗

(𝑑𝑑𝑑𝑑𝑑𝑑).The participation factor of 
the 𝑗𝑗th dry mode in the response is denoted by 𝑄𝑄𝑗𝑗 . In the literature, [𝝍𝝍] and {𝑸𝑸} are also 
known as modal matrix and natural coordinates, respectively. Since the dry mode-shapes are 
linearly independent and orthogonal, a partial fluid loading 𝑭𝑭𝒊𝒊 is calculated for each of them 
by using the Boundary Element Method, as described in the next subsection. Again by 
invoking the concept of modal superposition, the total fluid loading is calculated as follows, 

 𝑮𝑮(𝒙𝒙) = ∑ 𝐹𝐹𝑗𝑗𝑁𝑁
𝑗𝑗=0 𝑄𝑄𝑗𝑗 = [𝑭𝑭]{𝑸𝑸}. (4) 

The fluid loading matrix [𝑭𝑭] can be replaced by the equivalent system of mass and stiffness as 
follows, 

 [𝝍𝝍]𝑇𝑇[𝑭𝑭] = 𝜔𝜔2M𝒂𝒂 + 𝑖𝑖𝜔𝜔C𝒂𝒂 (5) 



where M𝒂𝒂  and C𝒂𝒂  are the modal added mass and damping, respectively, and [𝝍𝝍]𝑇𝑇  is the 
transpose of the modal matrix. The sizes of the added mass and damping matrices are the 
same as the number of selected dry mode-shapes for modal analysis. The advantage of 
calculating modal added mass and damping is that the magnitude of the fluid loading and its 
non-uniform distribution over the interface, for the case of flexural vibration, is reported by a 
single value which appears on the main diagonal of the matrices. The off-diagonal terms 
indicate the interaction between different dry mode-shapes in terms of the fluid loading. 
By pre- and post-multiplying Eq. (2) with [𝝍𝝍] and using Eq. (3), (4) and (5), one can write 

 �−𝜔𝜔2�M�+M𝒂𝒂� − 𝑖𝑖𝜔𝜔�C�+C𝒂𝒂� + D��{𝑸𝑸} = H� (6) 

where M� , C� , D�  and H�  are the modal structural mass, damping, stiffness and loading, 
respectively and M� = [𝝍𝝍]𝑇𝑇M[𝝍𝝍]. For free vibration analysis, damping terms and external load 
are ignored and Eq. (6) becomes  

 �−𝜔𝜔2�M�+M𝒂𝒂� + D��{𝑸𝑸} = 𝟎𝟎. (7) 

Eq. (7) is an eigenvalue problem from which the frequencies and mode shapes of the 
immersed structure, which are called wet frequencies and mode-shapes, can be computed. It is 
noted that the wet mode-shapes are actually calculated by means of the modal superposition 
and the {𝑸𝑸} obtained from Eq. (7). 

Flow simulation with free-surface wave 

For a linear inviscid and incompressible flow, Navier-Stokes equation is reduced to a 
potential flow equation, as follows, 

 ∆𝜑𝜑 = 0 (8) 

 𝑝𝑝 = −𝜌𝜌𝑓𝑓�̇�𝜑 + 𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔 (9) 

 ∇𝜑𝜑 = v = �̇�𝒙 (10) 

where 𝜑𝜑 is the velocity potential, 𝑝𝑝 is the total pressure, 𝜌𝜌𝑓𝑓 is the density of the fluid, 𝑔𝑔 is the 
gravity acceleration and 𝑔𝑔 is the position along the vertical. Eq. (9) is also known as the 
linearized Bernoulli’s equation and indicates the contribution of the unsteady motion (first 
term) and the gravity potential (second term) in the total fluid pressure. On the free surface of 
the fluid (where 𝑝𝑝 = 0) for an oscillatory flow, one can rewrite Eq. (9) by using Eq. (10), as 
follows, 

 −𝑖𝑖𝜔𝜔𝜑𝜑 + 𝑔𝑔
−𝑖𝑖𝑖𝑖

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= 0|@𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑑𝑑𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓, (11) 

or 

 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= 𝑖𝑖2

𝑔𝑔
𝜑𝜑|@𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑑𝑑𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓, (12) 

where 𝑛𝑛 is the unit normal to the free surface which is in the z-direction in this derivation. Eq. 
(12) is known as the Airy wave equation that governs small amplitude wave on the free 
surface of a fluid due to gravity effects on an oscillatory flow. It shows that the velocity 
potential and its normal derivative are related on the free surface. The wavelength of the 
surface wave can be obtained as follows, 

 𝜆𝜆𝑓𝑓 = 2𝜋𝜋
𝛼𝛼

= 2𝜋𝜋
𝑖𝑖2, (13) 



where 𝛼𝛼 is the wavenumber. Eq. (8) can be represented as a Boundary Integral Equation, as 
follow, 

 𝑐𝑐𝑝𝑝𝜑𝜑�𝐱𝐱𝑝𝑝� + ∫
𝜕𝜕𝜕𝜕��𝐱𝐱𝑝𝑝−𝐱𝐱𝑞𝑞��

𝜕𝜕𝜕𝜕�𝑥𝑥𝑞𝑞�S 𝜑𝜑�𝐱𝐱𝑞𝑞�𝑑𝑑S�𝐱𝐱𝑞𝑞� = ∫ 𝐺𝐺��𝐱𝐱𝑝𝑝 − 𝐱𝐱𝑞𝑞��
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
�𝐱𝐱𝑞𝑞�S 𝑑𝑑S�𝐱𝐱𝑞𝑞� (14) 

where 𝐺𝐺��𝐱𝐱𝑝𝑝 − 𝐱𝐱𝑞𝑞�� is the Green’s function, 𝐱𝐱𝑝𝑝 and 𝐱𝐱𝑞𝑞 are the positon vectors of point 𝑝𝑝 and 
𝑞𝑞 , respectively, 𝑐𝑐𝑝𝑝 is the solid-angle constant, which is 0.5 if point p is on the boundary Γ and 
1 if located in the fluid domain. The area of the surface element at point 𝑞𝑞 is denoted by 
𝑑𝑑S�𝐱𝐱𝑞𝑞�. Eq. (13) can be solved by using boundary elements on the fluid-structure interface as 
long as conditions on other boundaries are satisfied by an appropriate Green’s function. A 
modified Green’s function was derived to impose the wave condition without discretizing the 
infinite free-surface [15]-[17]. The analytical expression for this Green’s function, which is 
called the surface-wave Green’s function and denoted by 𝐺𝐺𝑤𝑤, is 

 𝐺𝐺𝑤𝑤 = 1
4𝜋𝜋𝑑𝑑

+ 1
4𝜋𝜋�̅�𝑑

+ 𝑖𝑖𝛼𝛼
2
𝑒𝑒𝛼𝛼�𝑧𝑧𝑝𝑝+𝑧𝑧𝑞𝑞�H0

(1)(𝛼𝛼𝛼𝛼) + 𝐼𝐼∞, (15) 

where 𝛼𝛼 = ��𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑞𝑞�
2

+ �𝑦𝑦𝑝𝑝 − 𝑦𝑦𝑞𝑞�
2
, 𝑟𝑟 = �𝛼𝛼2 + �𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑞𝑞�

2
, �̅�𝑟 = �𝛼𝛼2 + �𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞�

2
, 

 𝐼𝐼∞ = − 1
𝜋𝜋2 ∫

𝛼𝛼K0(𝜂𝜂𝜂𝜂)
𝛼𝛼2+𝜂𝜂2

�𝛼𝛼 cos 𝜂𝜂�𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞� − 𝜂𝜂 sin 𝜂𝜂�𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞��
∞
0 𝑑𝑑𝜂𝜂. (16) 

Here, H0
(1) and K0 are the zeroth order Hankel function of the first kind and modified Bessel 

function of the second kind, respectively [17]. Since K0 is a fast decaying function, the semi-
infinite integral in Eq. (16) is computed by using Gauss quadrature method with 61 Gauss 
points which gives a relative error of less than 0.01%. Also, by using this numerical 
technique, the singularity at 𝜂𝜂 = 0 is also avoided. Since both H0

(1) and K0 are singular at zero, 
the choices of 𝐱𝐱𝑝𝑝 and 𝐱𝐱𝑞𝑞 that gives 𝛼𝛼 = 0 should be treated separately. For this purpose, a 
non-singular series expansion is proposed based on Newman’s derivation to calculate 𝐺𝐺𝑤𝑤 for 
the case of 𝛼𝛼 = 0 [11]. It is noted that the special case of 𝛼𝛼 = 0 occurs when the two points 
are located along a line parallel to the z axis. 
 
From Newman’s series derivation for small distances between the two points 𝑝𝑝 and 𝑞𝑞 [11], an 
alternative formulation was derived to take care of the 𝛼𝛼 = 0  singularity of the Bessel 
functions, as follows, 

 𝐺𝐺𝑤𝑤 = 1
4𝜋𝜋𝑑𝑑

+ 1
4𝜋𝜋�̅�𝑑

+ 𝑖𝑖𝛼𝛼
2
𝑒𝑒𝛼𝛼�𝑧𝑧𝑝𝑝+𝑧𝑧𝑞𝑞�J0(𝛼𝛼𝛼𝛼) + 𝒯𝒯∞         for 𝛼𝛼 < 10−3, (17) 

 𝒯𝒯∞ = − 𝛼𝛼
2𝜋𝜋

J0(𝛼𝛼𝛼𝛼)𝑒𝑒�𝑧𝑧𝑝𝑝+𝑧𝑧𝑞𝑞�Ei �−�𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞�� + 𝒮𝒮∞ (18) 

 𝒮𝒮∞ = ∑ (−1)𝑛𝑛

Γ(𝜕𝜕)2 �
𝜂𝜂

2�𝑧𝑧𝑝𝑝+𝑧𝑧𝑞𝑞�
�
2𝜕𝜕
∑ Γ(2𝑛𝑛 −𝑚𝑚 − 1)(−1)𝑚𝑚�𝑔𝑔𝑝𝑝 + 𝑔𝑔𝑞𝑞�

𝑚𝑚2𝜕𝜕−1
𝑚𝑚=0

∞
𝜕𝜕=1 , (19) 

where J0  is the order zero regular Bessel function, Γ(𝑛𝑛) is the Factorial function, Ei is the 
standard Exponential Integral function, written as follows, 

 Ei(𝑔𝑔) = −𝑃𝑃𝑃𝑃 �∫ 𝑓𝑓−𝑡𝑡

𝑖𝑖
𝑑𝑑𝑑𝑑∞

−𝑧𝑧 � (20) 

with the principal value being denoted by 𝑃𝑃𝑃𝑃 . Eq. (17) to (20) provides a non-singular 
Green’s function for 𝛼𝛼 < 10−3  and are easy to implement since the Bessel, Factorial and 
Exponential Integral functions have standard implementation based on reference [26], and are 
accessible from any standard math library such as GSL for C/C++ programs. It is noted that 



there is an infinite sum in Eq. (19); however, using more than 5 terms for 𝛼𝛼 < 10−3 changes 
the final value of the sum by less than 0.1%. Hence, the infinite sum is truncated to only five 
terms for our computer implementation of the non-singular surface-wave Green’s function. 
 
Since this Green’s function is a complex-valued function, the calculated pressure amplitudes 
on the fluid-structure interface are also complex values. The real and imaginary parts of the 
fluid pressure correspond to the added mass and damping, respectively. By multiplying the 
pressure with surface area, the fluid loading is obtained at the centroid of each element. The 
force is distributed to the nodes equally due to the linear shape function. Partial fluid loading 
for the dry mode shapes are assembled in the same order as the mode shapes to obtain the 
fluid loading matrix [𝑭𝑭].  

Proposed numerical formulation 

To summarize, the steps in the proposed numerical formulation are listed here, as follows. 
• Step 1: Extract N dry mode-shapes by using Finite Element analysis of the structure 
• Step 2: For each dry mode-shape, calculate the fluid pressure loading by using 

Boundary Element Method (Eq. (9), (14), (15) and (17)) 
• Step 3: Extract the equivalent added mass and damping by using Eq. (5) 
• Step 4: Solve the free (or forced) vibration by using Eq. (7) (or (6)) 
• Step 5: Calculate the structure response by using modal superposition, Eq. (3) 

 
The size of the matrices for in Equations (7) and (6) is the same as the number of selected 
mode shapes which is much smaller than the size of the discretized model. By using the 
modified Green’s functions to include the free-surface wave, the size of the fluid problem 
which is solved by Boundary Element Method is also kept to a minimal size. In term of 
computation time, the fluid solver is the most expensive part of this formulation and it is 
performed for all selected dry mode-shapes. 

Simulation Results 

Two case studies, a hemispherical shell and a simplified ship model with internal partitions, 
were considered; numerical results of structural vibration of these two cases based the 
proposed numerical algorithm are presented. The normalized frequency, which is reported in 
this section, is defined as 

 𝑓𝑓𝑗𝑗∗ = 𝑓𝑓𝑗𝑗𝑎𝑎�𝐸𝐸 𝜌𝜌⁄  (2) 

where 𝑓𝑓𝑗𝑗  is the natural frequency of the jth mode, 𝑎𝑎 is a characteristic length of the given 
geometry, and 𝐸𝐸  and 𝜌𝜌  are the mass density and Young modulus of the solid material, 
respectively. Variables with the unit of length are also normalized by the characteristic length 
𝑎𝑎. 

  
(a) (b) 

Figure 1: (a) illustration of a hemispherical shell of radius 𝑎𝑎, immersed partially by 𝑙𝑙 and 



(b) the location of external forces acting on the rim for forced vibration study 

Fig. 1 shows the hemispherical shell (case 1) which is immersed by l/a = 0.9, where the 
immersion depth is denoted by 𝑙𝑙 . The external forces applied to the structure for forced 
vibration study are shown in Fig. 1b as F. The forces are acting on two opposite points on the 
rim in the x direction. 

 
Figure 2: Normalized amplitude of surface elevation along a line segment on the free 

surface of the fluid domain for two cases, with and without free surface wave. Half of the 
shell is illustrated at the left side to demonstrate the relative location of the line segment. 

For each dry mode-shape of the hemispherical shell, the fluid flow was solved for two 
scenarios: with and without accounting for the free-surface wave. To verify the 
implementation of the special Green’s function 𝐺𝐺𝑤𝑤, the normalized amplitude of the surface 
elevation was plotted for a line segment on the free surface, as shown in Fig. 2, for the first 
dry mode shape with two nodal lines associated with 𝑓𝑓1∗ = 2.20 × 10−4 . The free-surface 
wave length was obtained from Eq. (13) to be 1.2𝑎𝑎. The same wavelength can be observed for 
the surface undulations shown in Fig. 2 This implies that the surface condition is satisfied 
automatically by using the special Green’s function. When the surface wave is neglected, the 
surface elevation becomes zero, which is presented in Fig. 2 by a red solid line. 

After calculating the fluid pressure acting on the hemispherical shell, the added mass and 
damping were calculated and subsequently incorporated into the vibration equation to obtain 
the wet frequencies and their associated participation factors from Eq. (7). The wet mode-
shapes were then calculated from Eq. (3), by multiplying the participation factors with the 
modal matrix of the dry structure. Fig. 3 shows the first four dry and wet mode shapes of the 
shell in ascending sequence of their frequencies. It is noted that the axisymmetric shape of the 
shell gives the repeated frequencies, for which the corresponding mode shapes have the same 
number of nodal lines. The same feature was observed for the wet state of the shell, as shown 
in Fig. 3b and 3d for the first repeated frequencies, and Fig. 3f and 3h for the next pair. Dry 
mode-shapes were normalized by the unitary normalization technique. The displacement 
profiles of the wet mode-shapes were derived from the dry mode-shapes and the participation 
factors. It is noted that the wet mode-shapes are similar to the dry ones, implying that the 
chosen dry mode-shapes give an appropriate set of basis function to construct the arbitrary 
response of the shell to any excitation. 
 
As explained in the formulation section, the additional fluid resistance is presented by the 
modal added mass and damping. For free vibration analysis, only the added mass is accounted 
for to obtain the wet natural frequencies. The modal added mass matrix is reported in Table 1. 



For each mode, the values are normalized by the modal structural mass of that mode. The 
reported values are rounded up to two decimal places hereinafter. 

 

  
(a) 1st dry mode shape with 2 nodal lines (b) 1st wet mode shape with 2 nodal lines 

  
(c) 2nd dry mode shape with 2 nodal lines (d) 2nd wet mode shape with 2 nodal lines 

  
(e) 3rd dry mode shape with 3 nodal lines (f) 3rd dry mode shape with 3 nodal lines 

  
(g) 4th dry mode shape with 3 nodal lines (h) 4th wet mode shape with 3 nodal lines 

Figure 3: Panels (a), (c), (e) and (g) are the first four dry mode shapes of a hemispherical 
shell and panels (b), (d), (f) and (h) are their wet counterparts, respectively, for the 

immersion depth of 𝑙𝑙 = 0.9 



It is noted that all the diagonal elements are larger than one, indicating that the modal fluid 
added-mass is larger than structural modal mass. The added mass matrix is not symmetric, 
due to the formulation of Boundary Element Method used for estimating the fluid loading. 
Despite the structural added-mass matrix being symmetric, the total mass matrix is non-
symmetric which results in non-orthogonal eigenvectors. It was also observed that the off-
diagonal elements are smaller than the diagonal ones by at least two orders of magnitude. By 
solving Eq. (7), wet frequencies and participation factors were computed by using an in-house 
Eigenvalue solver. The participation factors for the four mode shapes are reported in Table 2 
to demonstrate the contribution of each dry mode shape in constructing the wet modes of 
vibration.  

Table 1: Normalized modal added mass matrix for the first four mode shapes of the 
hemispherical shell 
[𝑚𝑚𝑠𝑠]𝑗𝑗𝑗𝑗 [𝑚𝑚]𝑗𝑗𝑗𝑗⁄  𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4 

𝑗𝑗 = 1 7.95 -0.04 0.00 -0.01 
𝑗𝑗 = 2 0.03 7.95 -0.02 0.00 
𝑗𝑗 = 3 0.00 -0.02 6.26 -0.01 
𝑗𝑗 = 4 -0.02 0.00 0.01 6.25 

Table 2: Eigen vector of participation factors with their associated wet frequency 
 {𝑸𝑸}1 {𝑸𝑸}2 {𝑸𝑸}3 {𝑸𝑸}4 

�

dry mode 1
dry mode 2
dry mode 3
dry mode 4

� �

-0.73
0.68
0.00
0.00

� �

−0.69
-0.72
0.00
0.00

� �

0.00
0.00
0.61
0.79

� �

0.00
0.00
0.78
−0.62

� 

The vectors of participation factor in Table 2 are linearly independent. The first two dry mode 
shapes which are associated to the first repeated frequency have dominant contributions in the 
first two wet mode shapes. This relationship can be observed in Fig. 3a, 3c and 3b, 3d, 
respectively. Similarly, wet modes 3 and 4 are constructed mainly from the third and fourth 
dry modes. 

Table 3: Ratio between the wet and dry frequencies of the hemispherical shell 
 𝑓𝑓𝑗𝑗∗

(𝑤𝑤𝑓𝑓𝑖𝑖) 𝑓𝑓𝑗𝑗∗
(𝑑𝑑𝑑𝑑𝑑𝑑)�  𝜖𝜖𝑗𝑗 = 100 × �𝑓𝑓𝑗𝑗∗

(𝑑𝑑𝑑𝑑𝑑𝑑) − 𝑓𝑓𝑗𝑗∗
(𝑤𝑤𝑓𝑓𝑖𝑖)� 𝑓𝑓𝑗𝑗∗

(𝑑𝑑𝑑𝑑𝑑𝑑)�  
𝑗𝑗 = 1 0.33 66.65% 
𝑗𝑗 = 2 0.33 66.50% 
𝑗𝑗 = 3 0.37 62.83% 
𝑗𝑗 = 4 0.37 62.92% 

 
The ratio of dry and wet frequencies and the relative downshift 𝜖𝜖𝑗𝑗 in natural frequency due to 
fluid added-mass effect are reported in Table 3. For all the modes, the wet frequencies are 
lower than their dry counterparts, demonstrating the additional resistance from fluid motion 
induced by the deflection of the interface. The considerable reduction in the frequencies 
implies the significant impact of fluid loading on the vibration response of such shell 
structures. 

Table 4: Normalized modal added damping matrix for the first four mode shapes of the 
hemispherical shell 
[𝐶𝐶𝑠𝑠]𝑗𝑗𝑗𝑗 �[𝑚𝑚]𝑗𝑗𝑗𝑗 × 𝑓𝑓𝑗𝑗

(𝑤𝑤𝑓𝑓𝑖𝑖)�⁄  𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4 



𝑗𝑗 = 1 171.93 1.90 -0.03 0.01 
𝑗𝑗 = 2 -2.19 171.12 -0.12 -0.02 
𝑗𝑗 = 3 -0.02 0.10 4.01 0.08 
𝑗𝑗 = 4 0.11 0.03 -0.07 4.04 

 
To study the forced vibration of the shell for the given external loads shown in Fig. 1b, the 
modal added damping, which represents the dissipative effects of the free-surface wave, were 
included. Table 4 shows the modal added damping which are normalized by the critical 
damping [𝐶𝐶𝑠𝑠𝑑𝑑]𝑗𝑗𝑗𝑗 =  [𝑚𝑚]𝑗𝑗𝑗𝑗 × 𝑓𝑓𝑗𝑗

(𝑤𝑤𝑓𝑓𝑖𝑖) with 𝑓𝑓𝑗𝑗
(𝑤𝑤𝑓𝑓𝑖𝑖) being the wet frequency of the 𝑗𝑗th mode. It 

can be seen that for all the four modes, the diagonal elements of the matrix which represent 
the added-damping factors are all greater than one. This implies that the shell is overdamped 
due to the dissipative effect of the free-surface waves. The off-diagonal elements are smaller 
than the diagonal damping factors by at least two orders of magnitude. It is noted that the 
modal damping tends to be larger at lower frequencies, and the added damping is the same for 
mode shapes associated with repeated frequencies. 

 
Figure 4: Forced vibration response of the hemispherical shell subjected to force F at point P, 

as shown in Fig. 1b, with and without including the added damping form the free-surface 
wave effect. 

The displacement response at an observation point P due to the given load over a frequency 
range that contains the two natural frequencies is plotted in Fig. 4. The results are shown for 
two cases, with and without free-surface wave effect, to investigate the added-damping. When 
the surface wave was neglected, strong resonance can be observed when the excitation 
frequency approaches the calculated natural wet frequencies. By including the free-surface 
wave and hence its added-damping effect, the vibration response shows that the system is in 
the overdamped state as the free-surface wave carried energy away from the shell. This 
implies that resonance will not occur in this frequency range as long as the shell is partially 
submerged in a fluid. 

For the next case study, a simplified ship model was developed for analysis, as shown in Fig. 
5. The model dimensions are 200m (length) × 30m (width)  × 15m (height). Three plate 
partitions with 10 m height were placed inside hull at 40, 100 and 160 m. The ship draft is 
considered to be 10 m, which is illustrated by a horizontal line on the ship hull. Two equal 
and opposite forces shown in Fig. 5b are exerted on the sides of ship hull for forced vibration 
analysis. 



 

 

(a) (b) 
Figure 5: (a) schematic illustration of a simplified ship model, immersed partially by 𝑙𝑙 and 

(b) the location of external forces acting on the side walls for forced vibration study 

The first four dry frequencies and mode-shapes of the ship model were obtained using finite 
element analysis. Similar to the previous case, the fluid loading was calculated for each dry 
mode-shape by using the Boundary Element Method, with and without including the free-
surface wave effects. After deriving the added mass matrix, the free vibration of the wet ship 
model was solved to obtain the wet mode-shapes and natural frequencies. It is noted the 
internal plates in the model were not considered in fluid flow simulation, since only the fluid-
solid interface is required. However, the stiffeners affect the dry mode shapes and 
consequently the fluid pressure experienced by the ship structure. 

Fig. 6 shows the first four dry and wet mode-shapes of the ship model. The first four wet 
modes were closely related to the corresponding first four dry modes, indicated by the 
dominant contributing factor. Direct correspondence between the dry and wet mode-shapes 
shows that the choice of modes for modal superposition is appropriate and no further iteration 
is required in this numerical algorithm. The normalized frequencies are also reported for each 
mode. As expected, the wet frequencies are lower than the dry ones by one order of 
magnitude. This implies that the impact of the fluid added-mass is considerable for this type 
of structure. 

 
Fig. 7 shows the response of the ship at an observation point P due to the given excitation 
force over a range of frequencies. In the first scenario, the free-surface wave is neglected to 
detect the resonance occurrence by performing a frequency sweep, as shown by the blue solid 
line and markers. The second scenario with the damping from the free-surface wave was then 
conducted with the forced vibration analysis. The displacement results show slightly lower 
displacement amplitudes compared to the undamped case, indicating that the structure is 
underdamped. It can be inferred that the free-surface wave only dissipates a small fraction of 
the vibration energy from the ship within this range of excitation frequencies. This is in 
contrast with the overdamped case of the hemisphere discussed previously. Thus, it is 
concluded that including the free-surface wave may result in either underdamped, critically 
damped, or overdamped vibration, depending on the displacement profile of the mode-shapes. 
From Table 5, it can be verified that the forced vibration response of the ship is indeed 
underdamped since all the added damping factors are smaller than one. 
 
 



  
(a) 1st dry mode shape, 𝑓𝑓𝑗𝑗∗ = 8.56 × 10−5 (b) 1st wet mode shape, 𝑓𝑓𝑗𝑗∗ = 7.28 × 10−6 

  
(c) 2nd dry mode shape, 𝑓𝑓𝑗𝑗∗ = 9.37 × 10−5 (d) 2nd wet mode shape, 𝑓𝑓𝑗𝑗∗ = 8.39 × 10−6 

  
(e) 3rd dry mode shape, 𝑓𝑓𝑗𝑗∗ = 11.1 × 10−5 (f) 3rd dry mode shape, 𝑓𝑓𝑗𝑗∗ = 13.54 × 10−6 

  
(g) 4th dry mode shape, 𝑓𝑓𝑗𝑗∗ = 12.5 × 10−5 (h) 4th wet mode shape, 𝑓𝑓𝑗𝑗∗ = 16.90 × 10−6 

Figure 6: Panels (a), (c), (e) and (g) are the first four dry mode shapes of a simplified ship 
model with internal plate partitions and panels (b), (d), (f) and (h) are their wet 

counterparts, respectively, for the immersion depth of 𝑙𝑙 = 2 3⁄  

 

 
 



 
Figure 7: Forced vibration response of the simplified ship model subjected to force F at point 
P, as shown in Fig. 5b, with and without including the added damping form the free-surface 

wave effect. 
Table 5: Normalized modal added damping matrix for the first four mode shapes of the 
simplified ship model 
[𝐶𝐶𝑠𝑠]𝑗𝑗𝑗𝑗 �[𝑚𝑚]𝑗𝑗𝑗𝑗 × 𝑓𝑓𝑗𝑗

(𝑤𝑤𝑓𝑓𝑖𝑖)�⁄  𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4 
𝑗𝑗 = 1 5.3×10-3 -0.03 0.00 0.01 
𝑗𝑗 = 2 -0.02 0.20 0.02 -0.06 
𝑗𝑗 = 3 0.00 0.01 1.5×10-3 0.00 
𝑗𝑗 = 4 0.00 -0.05 0.00 0.02 

 

Discussion 

The added damping due to the free-surface wave represents a part of vibrational energy that is 
carried away from the structure. The added-damping may be neglected for free vibration 
analysis since the purpose is to determine only the natural frequencies. The natural 
frequencies are functions of mass and stiffness only. However, for steady-state forced 
vibration analysis, it is necessary to include the added-damping effect.  

Conclusions 

The proposed numerical algorithm for structural vibration interacting with a fluid combines 
the use of finite element method, boundary element method and modal superposition. Finite 
element solver is used to derive the mode-shapes of structure in the absence of fluid (dry 
modes). Modal superposition is applied to reduce the problem size and calculate the partial 
fluid loading. The boundary element method is used to calculate the fluid loading, for two 
scenarios of with and without free-surface waves. A numerical implementation of the 
modified Green’s function was proposed to impose the free-surface wave condition 
automatically. This ensures that only the fluid-structure interface needs to be discretized for 
the Boundary Element simulation, leading to a much smaller problem-size. 
 
The proposed numerical scheme was used to study the vibration response of a partially 
submerged hemispherical shell and simplified ship structure. The results showed the impact 
of modal added mass on lowering the natural frequencies of vibration. It was also shown that 
added-damping is large for the hemisphere at low frequencies. The simplified model of a ship 



structure was used to study the effects of fluid added-mass and damping for more practical 
applications. It was demonstrated that the fluid added-mass is significantly larger than the 
structural modal mass, especially for the lower modes. The proposed formulation provides an 
efficient algorithm for solving forced vibration problems of fluid-structure interaction since 
the problem size is reduced to the number of selected mode shapes. 
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