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Abstract 

The presence of the microdefects (microcracks, voids, inclusions) in the vicinity of the 

macrocrack tip have a significant effect on the crack propagation. Understanding the influence 

of crack shielding and amplification of microdefects on the SIFs (stress intensity factors) of the 

macrocrack is critical to accurately simulate crack propagation and predict structural life. The 

modeling of macrocrack growth involving multiple microdefects is inconvenient due to the 

different scales and the extension of cracks. In this paper, a multi-level, adaptively refined mesh 

near the macrocrack tip where the microdefects exist is formulated by the combination of virtual 

node polygonal element shape function and quadtree meshes. In the framework of XFEM 

(extended finite element method), the crack growth problem of different scales is unified and 

solved in one set of meshes. Based on the above approach, we numerically investigated the 

influence of different kinds of microdefects on the macrocrack propagation. The effectiveness 

and accuracy of the proposed method are verified by static cracking examples containing 

microdefects. Then, the influences of parameters such as microdefect position and size on the 

macrocrack SIFs and the propagating path are studied. The numerical results can provide a basis 

for component safety assessment. 

Keywords: Adaptively mesh refinement, XFEM, Crack propagation, microdefects, virtual 
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Introduction 

Many engineering structures have a large number of microdefects, such as microcracks, voids, 

inclusions and dislocations. Experimental studies have shown [1-5] that the presence of 

microdefects has a significant effect on the propagation of macrocrack. Due to the difference in 

the position and shape of microdefects, it may cause an amplification or shielding effect to the 

main crack. Accurate analysis of the influence of microdefects on the macrocrack is critical to 

assessing the service life of the structures. In the last century, analytical methods were used to 



study the influence of microdefects on the macrocrack under certain conditions [6-10]. However, 

analytical methods have some limitations and it is difficult to deal with complex forms of 

microdefects. 

In recent decades, numerical simulation methods have been widely used to deal with the 

interaction of the macrocrack and microdefects. There are two main methods commonly used, 

namely the continuum mechanics approaches and the discrete approaches [11, 12]. In the former 

method, the regions containing microdefects were represented as inclusions with effective 

mechanical constants. However, this method may lead to a decrease in computational accuracy, 

and in particular, the local stress concentration caused by microdefects can not be accurately 

modelled. While in discrete methods, microdefects are explicitly modelled, which can better 

analyze the interaction of the macrocrack and microdefects. Based on the widely used FEM, a 

lot of researches have been done on the interaction of the macrocrack and different types of 

microdefects [13-16]. For crack propagation problems with complex structures involving multiple 

microdefects, the conventional FEM is not effective since the remeshing process can not be 

avoided. To overcome the difficulties of remeshing, several methods have been developed, such 

as the boundary element method [17], meshless method [18], extended finite element 

method(XFEM) [19]. Among them, the XFEM has gained the most attention due to the feature 

that the discontinuities can be independent of the mesh. 

In our previous work [20], a dynamic multi-level adaptive mesh refinement method and the 

corresponding VP-XFEM for crack propagation problems were proposed. Compared with the 

traditional XFEM and meshless methods, this method can obtain better accuracy, convergence, 

and computational efficiency. Based on the proposed mesh refinement method, the minimum 

mesh size can reach 1/100 of the original size when the refinement level reaches 7. With this 

method, multi-level mesh refinement is only performed on the local region where microdefects 

exist, and the problems at different scales can be unified into a set of mesh without additional 

processing. Therefore, this paper will extend this algorithm to study the influence of 

microdefects on macrocrack propagation. 

The current research mainly focuses on the effect of microcracks on static macrocrack, little 

attention is paid to the interaction of growing macrocrack and microdefects [21].Researches that 

comprehensively consider the effects of microcracks, voids and inclusions on macrocrack 

propagation are quite limited. Therefore, the VP-XFEM algorithm is used in this paper to 

consider the effects of microcracks, microvoids and inclusions on macrocrack propagation. 

Numerical formulation 

In this section, we briefly describe the composition of VPM shape functions and their continuity 

at hanging nodes. According to the properties of the VPM shape function, a multi-level adaptive 

mesh refinement method for microdefects and growing macrocrack is proposed. On this basis, 

the specific form of VP-XFEM is derived. 

VPM shape function and its properties 

Polygon elements have gained wide applications in the field of computational methods due to 



their strong flexibility. The VPM uses polynomials as the approximation function based on the 

partition of unity (PU), which permits the direct usage of the Hammer integral and the Gauss 

integral as employed in standard FEM. This feature makes VPM easy to be applied to XFEM.  

Assuming that a polygon domain Ω whose boundary is enclosed by n nodes {P1, P2,…,Pn} in 

sequence. By introducing the centroid of the polygon Pk (virtual node), the domain can be 

divided into n non-overlapping virtual sub-triangles {T1, T2,…,Tn}. By considering a point Pl 

with the coordinate (x,y), which is located in the virtual sub-triangle Ti, the VPM shape function 

has the following form 

where WI,i and WII,i are the weight functions of the constant strain triangular element (CST) and 

the least-squares method (LSM) in the i-th virtual sub-triangle; φVP(x) and ϕVP(x) are shape 

functions based on the area coordinates of CST and LSM, respectively. The specific 

formulations can be found in Ref. [22]. It is worth mentioning that the virtual node Pk is only 

used for the calculation of the shape function and will not introduce additional degrees of 

freedom. 

VPM shape function continuity test at hanging nodes 

Taking the quadrilateral elements as an example(see Fig. 1), one of the initial four large 

elements is divided into four small elements ①, ⑤, ⑥, and ⑦. Thus the elements ② and 

③ have the hanging nodes of d and e. For the VPM, all elements are considered as polygonal 

elements with n nodes, while n is changeable. In this manner, there are no hanging nodes any 

more. Fig. 1 (b) shows the segmentation of polygonal elements when using the VPM shape 

functions. The handling of the elements of ②  and ③  is just in the same way as other 

elements, except that one more virtual sub-triangle is generated. Fig. 1 (b) and (c) show the 

VPM shape functions at nodes d and e, respectively. It is clearly implied that the VPM shape 

functions possess a good continuity even near the hanging nodes. 

 

Fig. 1 Mesh refinement of quadrilateral element and the continuity test of VPM shape functions: 

(a) mesh refinement and the nodes distribution; (b) element division for the calculation of VPM 

shape functions; (c) the VPM shape function of node d; (d) the VPM shape function of node e. 
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Based on the properties of VPM shape functions, an adaptive mesh refinement method for the 

discontinuities and the corresponding VP-XFEM are proposed by the combination of VPM and 

XFEM. Since VP-XFEM uses the polynomial shape functions of polygonal elements, it is 

distinctly different from other methods. The resultant conforming shape functions as well as 

special integration for sub-elements are not required. 

Adaptively mesh refinement 

In order to accurately simulate the effects of microdefects on the macrocrack, it is necessary to 

set fine meshes at the regions containing microdefects or near the crack tip of the macrocrack. 

Since the size of the microdefects is much smaller than the size of the macrocrack (only 1/100 

or even 1/1000), when the quadtree structure is adopted, the refinement levels will reach 8 to 

10. Due to the difference in the refinement levels, a lot of hanging nodes are generated in the 

transition zone between the coarse mesh and the fine mesh. On the other hand, the area to be 

refined will constantly change because of the crack growth. Therefore, it is also necessary to 

consider dynamic mesh refinement and coarsening. The previous section shows that VPM is 

well suited for dealing with non-uniform meshes with hanging nodes. All of the meshes are 

treated as polygon elements and handled in the same way. 

Based on the properties of the VPM shape function, a dynamic adaptive multi-level mesh 

refinement and coarsening method is proposed in this section. Two sets of meshes are 

introduced to deal with the refinement process. The initial background mesh with coarse 

elements (called the base mesh here) is stored by the first meshing set and keeps the same 

throughout crack growth steps. The second meshing set is created dynamically with growing 

crack tips. In our previous work [20], the mesh refinement method for the crack propagation 

problem has been described in detail, but the microvoids and inclusions were not considered. 

Therefore, the mesh refinement method is further improved for the circular discontinuities 

(inclusion or hole interface). 

Fig. 2 shows a single-step mesh refinement with three circular discontinuities and one main 

crack. In order to clearly show the refined mesh, only the level 3 refinement is shown in this 

example, but the process of refining level 8 and above is exactly the same. For crack 

propagation problem, multiple sub-steps need to be calculated, and each sub-step needs to 

perform a single-step mesh refinement. Fig. 3 presents the flowchart of the multi-step dynamic 

mesh refinement around the discontinuities with VP-XFEM. In each sub-step, meshes around 

the discontinuities are refined based on the initial input mesh. Then in the next sub-step, the 

crack information is updated, and the mesh refinement is performed again based on the new 

positions of the crack tips as well as the initial input mesh. At this time, the elements refined in 

the previous sub-step around the crack tips do not need to be refined due to the moving of the 

crack tips, so these elements can be maintained as the initial coarse elements. In this way, the 

dynamic changing of the refined area around the crack tips can be realized, which fulfills the 

mesh coarsening naturally. Here, a schematic diagram of the refined meshes for the calculation 

of crack growth containing multiple discontinuities is shown in Fig. 4. 



 

Fig. 2 The mesh refinement around the discontinuities: (a) initial mesh and the location of the 

discontinuities; (b) one-level refined mesh; (c) two-level refined mesh; (d) three-level refined 

mesh. 

 

Fig. 3 The flowchart for the multi-step dynamic mesh refinement during a typical crack growth 

simulation in heterogeneous material. 

 

 



Fig. 4 The refined meshes during a typical crack growth simulation in heterogeneous material with 

VP-XFEM. 

VP-XFEM approximation 

By introducing the VPM shape functions into the XFEM displacement approximation with 

cracks, holes and inclusions [23-26], the VP-XFEM approximation for discontinuities in 2-D can 

be written as  

The nodes associated with elements completely cut by the crack are enriched by the Heaviside 

function H(x). H(x) takes the value +1 on one side of the crack and -1 on the other side of the 

crack. βα(x) is the crack tip enrichment function, which is used to enrich the nodes associated 

with elements partially cut by the crack. In the polar coordinate system r and θ of the crack tip, 

βα(x) is defined as below 

The nodes of elements cut by the inclusions and material interfaces are enriched by φ(x) which 

is defined as [25] 

where ϕi is the level set function, Ni(x) is the standard FEM shape function. The nodes of 

elements cut by the holes are enriched by Ψ(x) which takes the value of 1 outside the hole and 

0 inside the hole. 

Numerical results and discussion 

In this section, several numerical examples are given to study the effects of microdefects on the 

propagation of macrocrack. All the examples are solved by VP-XFEM. The material properties 

of the plate in all examples is set as E =50 kPa, ν =0.3. The steady crack propagation of linear 

elastic material under plane strain condition is considered. In order to ensure the accuracy of 

the calculated SIFs at the crack tip, the radius of the integration region is four times the size of 
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the mesh near the crack tip when using the interaction integral. 

Influence of a microcrack on the macrocrack propagation 

In this section, the influence of the position and shape of microcracks on the macrocrack 

propagation is studied. The computational model in Fig. 5 is considered. The length of the 

microcrack is l=1 mm, the distance between the macrocrack tip and the center of the microcrack 

is s=1.25 mm. The upper and lower boundaries of the plate were subjected to a load of σ=1 kPa. 

Studies have shown that [11], the inclination angle φ of the microcrack and its angle θ with the 

macrocrack tip have a great influence on the SIFs at the macrocrack tip. With the change of θ 

and φ, the microcrack can either cause crack shielding or crack amplification. Therefore, the 

angle θ=60°, 90°, 120° are considered, and for each case, the inclination angle φ is increased 

with increment of 30°, φ=0°, 30°, 60°, 90°, 120°, 150°. For the VP-XFEM, an initial mesh of 

19×19 is used. The refinement level is 8 and the refinement radius αr is 0.15. The growth of 

microcrack is not considered in this example. The growth increment of the macrocrack is set to 

Δa0=0.1 mm, and the total number of sub-steps is 20.  

The variation of SIFs at the macrocrack tip during the crack growth process is shown in Fig. 6. 

When θ is 60°, φ has a great influence on the value of K1 at the macrocrack tip. When θ is 90°, 

φ has some influence on the K1 in the early stage of crack propagation, but the influence 

becomes very small in the later stage. When θ is 150°, we can see that the influence of φ on K1 

is really small as the curves are basically overlapping. It can be concluded that only at the front 

region of the macrocrack tip, the inclination angle φ of the microcrack has a great influence on 

the SIFs. 

 

Fig. 5 Sketch of macrocrack growth problem in presence of a microcrack (Unit: mm). 



  

(a) K1 of θ=60° (b) K1 of θ=90° 

  

(c) K1 of θ=120° (d) K2 of θ=60° 

Fig. 6 The variation of SIFs at the macrocrack tip during the crack growth process in presence of a 

microcrack.  

Influence of a microvoid on the macrocrack propagation 

In order to investigate the effect of the microvoid on the macrocrack propagation, the numerical 

example in Fig. 8 is considered. The boundary conditions and material properties are consistent 

with the first example. The diameter d of the microvoid is kept constant at 2 mm. Different a 

values (1.86mm, 2.33mm, 3.00mm) are chosen and θ gradually increases from 0° to 90° in 

increments of 30°. The parameters of the VP-XFEM are set as follows: the initial mesh is 19×19, 

the refinement level is 8, and the refinement radius is 0.15. The increment of crack propagation 

is Δa0 = 0.15 mm, and the total number of sub-steps is 20. When the crack intersects the 

microvoid, the calculation is stopped. 

Fig. 8 shows the variation of K1 at the macrocrack tip during the crack growth process at 

different values of a. It can be seen that the value of a does not change the tendency of the 

microvoid to affect the macrocrack during its propagation process. While microvoid have 

different effects on macrocrack at different values of θ. When the values of θ are 30 and 60 

degrees, the microvoid always enhances the K1 value at the macrocrack tip. But for θ=90°, the 

microvoid causes a shielding effect. When θ=60°, the microvoid causes a amplification effect 

in the early stage of crack propagation, after reaching a certain length, the amplification effect 



changes to a shielding effect.  

 

Fig. 7 Sketch of macrocrack growth problem in presence of a microvoid (Unit: mm). 

  

(a) a=1.86 mm                     (b) a=2.33 mm 

 

(c) a=3.00 mm 

Fig. 8 The variation of K1 at the macrocrack tip during the crack growth process in presence of a 

microvoid. 



Influence of a microinclusion on the macrocrack propagation 

In order to study the influence of microinclusion on macrocrack propagation, consider the 

example shown in Fig. 9. The size and material of the plate, the location of the macrocrack, and 

the boundary conditions remain the same as in the first numerical example. A circular 

microinclusion of diameter d is placed near the macrocrack tip. The distance between the center 

of the microinclusion and the macrocrack tip is s, and the angle of the line connecting the crack 

tip and the center of microinclusion is θ. In order to investigate the influence of different 

materials and different inclusion sizes on the macrocrack propagation, the center of the 

microinclusion is fixed as s=3.0 mm, θ=30°. Inclusion in two sizes and two materials are 

considered, d1=2.0 mm, d2=1.6 mm, and E1=25 kPa, E2=100 kPa. The parameters of the VP-

XFEM are set as follows: the initial mesh is 19×19, the refinement level is 8, and the refinement 

radius is 0.15. The increment of crack propagation is Δa0=0.2 mm, and the total number of sub-

steps is 20. 

Fig. 10 shows the variation of SIFs at the macrocrack tip during the crack growth process. It 

can be seen that the larger the inclusion size, the greater the effect on the macrocrack when the 

elastic modulus of the inclusion is the same. For inclusions of the same size, soft microinclusion 

causes an amplification effect to the K1 of macrocrack in the early stage of crack propagation. 

When the macrocrack expands to a certain length, softe microinclusion causes an shielding 

effect. While the case of hard microinclusion is just the opposite. For the variation of K2, it 

shows a similar pattern. Soft microinclusion will attract the macrocrack to growth in its 

direction. While for hard microinclusion, the crack extends away from its direction. 

 

Fig. 9 Sketch of macrocrack growth problem in presence of a microinclusion (Unit: mm). 

 



  

(a) K1 (b) K2  

Fig. 10 The variation of SIFs at the macrocrack tip during the crack growth process in presence of 

a microinclusion. 

Conclusions 

In this paper, a multi-level, adaptively refined mesh near the macrocrack tip where the 

microdefects exist is formulated by the combination of virtual node polygonal element shape 

function and quadtree meshes. The influence of the nearby microdefects on the macrocrack 

propagation have been numerically investigated by using VP-XFEM. The results show that, the 

location and geometric parameters of the nearby microdefects have great influence on the 

propagation of the macrocrack. Both of the amplification and shielding effect can be seen in 

different kinds of microdefects with different parameters. 
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