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Abstract 

In this paper, a marker-and-cell based semi-Lagrangian method, which combines the 

advantages of Lagrangian and Eulerian perspective, is introduced to simulate the metal flow 

during casting filling process. This method treats fluid in terms of a vast collection of particles 

with some physical properties that move around, naturally bypass the unique complex free 

interface tracking problem in Eulerian perspective. For the interior of the fluid, the efficient 

Projection method is used to solve the incompressible Navier-Stokes equations. On the other 

hand, the diffusion equation is solved on the background grid by mapping the information 

carried by the particles to the grid, thus avoiding the inconvenience of field description in 

Lagrangian perspective. And the level set method is introduced to describe boundary. In order 

to study the application of this method in the casting field, two examples are given with this 

method and the widely used VOF method. The results show that this method can produce sharp 

and discontinuous fluid interfaces, which is closer to the casting process with high filling speed. 
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Introduction 

In the field of casting, computational fluid dynamics is mainly used to simulate the metal filling 

process and analyze defects that may occur during the filling process, such as cold shut[1] and 

oxide inclusion[2]. The flow front of the molten metal plays a very important role in analyzing 

the filling defects. The mainstream free surface tracking methods in casting simulations use a 

fixed grid. Methods like VOF (Volume-of-Fluid) [3], Level set[4], and CLSVOF (Coupled Level 

Set and Volume-of-Fluid)[5] are widely used. This kind of methods uses continuous functions 

to indicate the free surface, in a pure Eulerian perspective. Traditionally, the main difficulty in 

using these methods has been the maintenance of a sharp boundary[6]. Methods that use separate, 

boundary-fitted grids for each phase[7-9] may offer potentially the highest accuracy, are rarely 

used in casting simulations because of their complexity.  

Another class of methods is the particle-based “meshfree” methods, such as MPS (Moving 

Particles Semi-implicit)[10], SPH (Smoothed Particle Hydrodynamics)[11], DPD (Dissipative 

Particle Dynamics)[12,13]. The absence of a mesh allows Lagrangian simulations, in which the 

particles can move according to their own state. However, when calculating the force of 

particles, we have to find the location of neighboring particles. To avoid being n-body problems, 

some complex data structures such as the multi-grid technique should be applied. Besides, a 

casting is usually very complex in geometry that requires many particles. The relatively low 

computing efficiency makes them very difficult to be applied to casting simulation. 



The MAC (marker-and-cell) method[14] is a semi-lagrangian method that between the fixed grid 

and mesh-free methods. It uses a fixed grid to describe the interior of the fluid, and marker 

particles to indicate fluid configuration. With a structured grid used, it not only has the 

advantage of fixed grids in solving NS equations but also has the advantage of mesh-free 

methods in advancing fluid front. However, it is rarely used in casting simulations although it 

is very popular in the field of computational fluid dynamics. In this paper, the MAC method, 

coupled with the level set approach to describe the complex boundary, is introduced to simulate 

the casting filling process. Through the actual calculation case, the potential applications and 

limitations of this method in the casting filling simulation process are discussed. 

Description of the Method 

Outline of procedure 

The governing equations for viscous incompressible flows are the continuity and the Navier-

Stokes equations as follows[15]:  
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Where  P is the ratio of pressure to density, it is usually referred to as “pressure” simply, 

and the triangular symbol   represents the Laplacian. Using the efficient Proeection 

procedure[16], a Poisson equation for pressure can be obtained: 
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The superscript “n” and “n+1” denotes the cycle number, for example, 1n is the pressure value 

of cycle n+1. Solving Eq.(3) and substitute the pressure back to Eq. (2), then the velocity field 

of cycle n+1 is obtained: 
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The overall procedure is based on the classical Marker-and-Cell method developed by Harlow 

and Welch [14]. For a calculation cycle, there are six steps as follow: 

(1) Compute pressure. Solve the Poisson equation of pressure based on the velocity and liquid 

level set field. 

(2) Update velocity. Update the velocity field by substituting back the new pressure field to the 

Navier-Stokes equation. 

(3) Convection. The marker particles are moved according to the velocity components in their 

vicinities, with temperature interpolated from background cells. Adeustments are made when 

particles across cell boundaries. 

(4) Tracking the free surface. Update the liquid level set value according to the positions of the 

marker particles. 

(5) Compute temperature. Mapping the particle temperature into cells, and exchange the cell 



temperature according to the thermal diffusion. 

(6) Re-distribute particles. Check the particle distribution and re-distribute particles when 

necessary, or put new particles into the inlet region according to the inlet boundary conditions.  

The marker particles introduced into this calculation are only for the purpose of indicating fluid 

configuration, more specifically, helping to compute the liquid level-set value. With the liquid 

level-set value computed, the free surface of the liquid could be described more precisely.  

Lagrangian Interpolation for Free Surface 

When a free surface does not pass through the center of the cell, the second derivative of 

pressure   in Eq. (3) should be taken carefully, the traditional differential process for the 

uniform grid will not be accurate enough. As a brief description, see Fig. 1. Let denotes the 

level set value, the free surface with 0  passes between point 
1kx  and point

kx  , and the 

applied pressure is 
a . As

1kx lies out the liquid, it cannot be applied to decide the grad of at 

point k because of discontinuity. Instead, we use 
ax , 

kx and
1kx to construct a second order 

Lagrangian interpolation for  : 
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and take its second derivative with respect to x gives 
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On the right side of Eq. (7), only
ax is to be decided, which can be estimated by level set value 

of its adeacent cell centers: 
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The Lagrangian interpolation as shown by Eq. (7) and Eq. (8) can be easily extended to two-

dimensional or three-dimensional cases.  

 

 

Fig. 1. One-dimensional schematic for 

free surface passes between cell centers 

 

Fig. 2. Using level set to define oblique wall. 

The value inside the wall is negative while 

positive outside the wall. 



Level set for the wall 

The geometry of the casting is usually very complicated, involving many bevels and complex 

surfaces, which cannot be properly expressed using a simple uniform grid. For example, as Fig. 

2 shows, an oblique wall blocks a dropping particle and deflects it to the right. If a simple 

uniform grid is used, because no oblique wall is defined, the particle will be reflected back up, 

not to the right. To handle this problem, one can preserve a level set field
s for the solid wall, 

which is defined at the cell corner rather than the cell center. 
s is usually a signed distance 

field to the wall surface that computed when meshing the geometry. At the convection step [step 

(3)], whenever a particle runs to a new position
*x


, compute its solid level set value )( *xs


 . If 

this value is negative (
*x


inside the solid ), a reflection operation should be taken: 
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In Eq. (9), the collision coefficient should between 0 and 1. When 1 a completely elastic 

collision strategy is applied, and 1 applies an inelastic collision at the normal direction of 

the wall surface.  

Examples and Applications 

Collapse of a water column 

The collapse of a water column was calculated with the parameters listed in table 1, and the 

geometry is depicted in Fig. 3. This geometry refers to the article of Koshizuka and Oka[10], 

because they had carried out an experiment[17]. In the experiment, a removable board supports 

the initial water column, and then it is pulled up within 0.05s and collapse starts. In our 

calculation, the pulling process of the board is neglected. In addition, we have also calculated 

this case with a VOF (Volume of Fluid) method using the same discrete procedure, and the same 

grid resolution. The results are shown in Fig. 4, cells with fluid are visualized rather than 

particles, in order to make a better comparison to the VOF method. 

As shown in Fig. 4, at the beginning of the collapse, both methods have similar results. At 

t=0.24s, the results of the two calculations are slightly different. The fluid calculated by the 

MAC based method flows a bit faster than the VOF based method. It seems that the fluid 

calculated by VOF based method exhibits a greater viscosity. And by t=0.50s, the fluid interface 

calculated by the two methods is very different. From the MAC based method, we can see that 

the water hits the wall and breaks into pieces, forms very sharp and discontinuous interfaces. 

From the VOF based method, the water has smooth and continuous interfaces, which is not so 

real when referred to the experiment results. 

Table. 1. Calculation parameters 

Parameters Value 

Horizontal grid resolution 292 

Vertical grid resolution 146 

Particles per cell 4 

Particle radius 1.732 x  

Particle collision coefficient 0  

Courant condition 5.0/max xtu   

Maximum time step st 310  



 

Fig. 3. Geometry of collapse of a water column 

 

Fig. 4. Collapse of a water column calculated with MAC based method and VOF based 

method 

Filling of a complex casting 

The filling process of a practical iron casting scheme was calculated to study the application of 

this method. The simulation results were compared to results that calculated by a VOF program. 

Fig. 5(a) shows the geometric model of the investment casting system. The overall dimensions 

of the system are 200mm×100mm×500mm. There are four main sprues, each with 8 castings 

evenly distributed. The grid resolutions are 100×50×250, and there are a total of 1.25 million 

cells on the solution domain. In each cell, only 6 particles are placed for the sake of efficiency. 

Table. 2 shows the calculation parameters. 



Table. 2. Parameters needed for the iron casting 

Parameters Value 

Liquid iron density (kg/m3) 6800 

Liquid iron dynamic viscosity (Pa·s) 4.98e-3 

Liquid iron specific heat (kJ/(kg·K)) 0.82 

Liquidus temperature (℃) 1500 

Solidus temperature (℃) 1429 

Latent heat (kJ/kg) 250 

Acceleration of gravity (m/s2) (0, 0, -9.8)
 

Inlet temperature (℃) 1700 

Inlet velocity (m/s) 0.15 

 

 

Fig. 5. Simulation of a complex casting filling process 

Fig. 5(b) shows the results given by a MAC based method and Fig. 5(c) shows the results given 

by a VOF based method. After flowing into the casting system from the top of the pouring cup, 

the molten metal accelerates down until it hits the wall, and then diverts into two streams and 

continues to accelerate downward along the two inner sprues. Note that the molten metal will 

not fill the sprues at this moment, because the sum of the section areas of the inner sprues is 

larger. When these two streams reach the bottom of the system, they spread out symmetrically 

along the runner, and then enter the two outside sprues under the effect of pressure. At last, the 

castings start to be filled from bottom to top.  



Both methods give the correct results, but the VOF based method gives a coarser stream in the 

early stage of the filling process as if the molten metal suffers a large surface tension, which is 

not so real. The MAC based method gives a better-looking stream. For the temperature filed, 

VOF based method gives a smoother distribution, and the MAC based method gives a mushy 

local temperature distribution, seems that the flow is more turbulent. This phenomenon may be 

caused by the re-distributing process. The particles have a tendency to gather together after a 

long run, and the re-distributing process must be carried out even though extra errors are 

introduced.  

It takes 125 minutes to complete this simulation by the MAC based method using an Intel Core 

i7-6700HQ CPU, with an 8.0GB RAM. While the VOF based method takes only 98 minutes. 

That is to say, keeping track of the particles, takes not only more space, but also more time. 

This is a shortcoming of the MAC based method. However, with the particles tracked, 

something more complicated could be described, such as the oxide inclusions, the rising of 

slags in the mushy phase, which requires further research. 

Conclusion 

In this paper, the marker-and-cell method is introduced to simulate the casting filling process. 

The level set technique is used to enable the description of the complicated free surface and 

wall boundary, in a simple uniform grid. This MAC based method tracks the fluid surface 

directly by the marker particles, requires not only more storage space but also more calculation 

time than the VOF based method. However, it produces very sharp and discontinuous interfaces 

easily, which is a really pleasing property that suits the casting process with high flowing speed. 

Besides, with the particles tracked, some difficult problems like the oxide inclusions and the 

sand washing problems could become easier to be described. 
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