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Abstract 

 
In this work we extend a total Lagrangian formulation applied to the dynamical analysis of 
plane frames containing sliding connections (prismatic and cylindrical joints) to include 
frictional dissipation. An improvement in the friction force model is proposed to smooth the 
force transition from rest to motion states, allowing the proper modelling of residual 
displacements at the joints. Friction dissipation is added to the total mechanical energy for the 
achievement of the equations of motion by the Principle of Stationary Total Energy. The 
resulting nonlinear equations are solved by the Newton-Raphson method. Some examples are 
presented to show the formulation effectiveness. 
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Introduction 

 
In the dynamical analysis of structures and mechanisms conservative systems simplifications 
are frequently assumed. However, real bodies present dissipation due to several sources. The 
frictional dissipation effect, in particular, is important to be considered when relative motion 
from parts of the body exists. This is the case of sliding connections, such as prismatic and 
cylindrical joints, that by introducing translational movement among body members allows 
friction forces to develop along their surfaces contact. 
 
The friction phenomena itself has a very complex nature that mathematical models try to 
describe, with more or less accuracy, depending on which aspects of the friction force the 
proposed expressions intent to consider. The models become more detailed and representative 
at the cost of more parameters. A comprehensive surveys on friction models can be found in 
[1–3]. In the literature, friction models can be classified generally in dynamic or static [3], 
whether the force is, respectively, time dependent or not. Thus, static models, as opposed to 
dynamical models, dismiss the introduction of state variables to the problem, rendering a 
straightforward description of the force expression. Still, static models have difficulties in 
describing the discontinuity of the friction force at null speed, which results in instabilities in 
the numerical solution. Several models try to circumvent this problem [4–9] commonly 
assuming null friction at null speed, which is not a good approximation when relative motion 
is intermittent, or require additional parameters for the transition between motion and rest 
states.  
 



In this work, we propose a modification on a classic static friction model to be employed in 
sliding connections of plane frame finite elements by positional formulation. The improved 
model is based on the Coulomb friction considering the Stribeck curve and viscous effect. To 
reduce the abrupt transition between rest and motion states, an interpolation of the static 
friction value to the resultant force is employed in a quasi-null relative speed interval. Thus, 
the proposed model intents to represent the force transition in a smooth way, allowing the 
description of residual displacements when the final stop stage is achieved, which is important 
to ensure high precision movements reproduction in structures and mechanisms. 
 
The framework used to model the dynamical system [10,11] is a fully nonlinear finite element 
approach for large deformations based on a total Lagrangian description of the solids which 
uses positions as the main degrees of freedom. The Saint-Venant-Kirchhoff constitutive 
model is adopted to define the plane frame elastic strain energy using the Green-Lagrange 
strain and the second Piola-Kirchhoff stress tensor. Since in this technique velocity and 
acceleration are referred to a Lagrangian inertial reference frame, the Newmark 
approximation is applied to integrate time. The sliding connections, as prismatic and 
cylindrical joints, are introduced in the total energy of the system by means of Lagrange 
multipliers [11]. Moreover, friction dissipation is added to the energy expression to allow 
finding the equations of motion (comprising the frictional effect) by the Principle of 
Stationary Total Energy. The resulting nonlinear system is solved by the Newton-Raphson 
method. 
 
This work is organized as follows. First brief aspects of the nonlinear plane frame element 
need to be presented followed by the kinematical constraints that the sliding connections 
impose. Then, the dynamical equilibrium is obtained. Known the system parameters, the 
friction force can be introduced in its variational form and the improved model is presented. 
Time integration and system solution follows this explanation. Lastly, examples are shown to 
demonstrate the developed formulation. Dyadic notation is preferred throughout this text due 
its brevity; however, index notation is also used to clarify particular aspects when necessary. 
 
Nonlinear finite element kinematics 

 
The plane frame finite element employed is presented thoroughly elsewhere [10,11], however, 
to develop the present work some aspects need to be briefly stated. As the finite element 
behaviour is represented by a total Lagrangian description, its strain field needs to be obtained 
as a function of the initial and current configurations of the solid, restricted to a finite number 
of degrees of freedom.  
 
In the positional approach of the FEM, instead of nodal displacements, the parameters of the 
discretized plane frame are its positions (coordinates) and the cross section angle (Fig. 1). The 

deformation function, f


, depicted in Fig. 2, can be written indirectly as function of the non-
dimensional space and nodal parameters by mappings from the non-dimensional space to the 

initial configuration, 0f


, as: 

 

0 00
1 1 1

0 00
2 2 2

( ) cos ( )
2

( ) sin ( )
2

h
f x X

h
f x X

     

     

     

     


  


  

  (1) 

 and to the current configuration, 1f


, as: 
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where x


 and y


 represents any point on the domain of a finite element in the initial and 
current configuration, respectively. The coordinates for both directions 1, 2i   of each node   

along the reference line in the initial and current configurations are iX   and iY  , respectively. 

The initial nodal value of the cross section angle is 0   and after deformation is denoted as  . 

In addition, the cross section height is 0h ,   is the non-dimensional space variable in the 

direction of the reference line and   follows the height direction. The shape functions ( )   

are obtained by Lagrange polynomials of any order. 
 

 
Fig. 1. Current configuration mapping for a cubic approximation 

 
The deformation function can be written as a composition of the previous mappings, eq. (1) 
and (2), as presented by [12,13], as: 
 1 0 1( )f f f 
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   (3) 

 
Since only the gradient A  of the deformation function, but not the function itself, is necessary 
to obtain the strain field [14], we can write: 
 1 0 1( ) . ( )Grad f  A A A


  (4) 

where, 
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During the iterative solution strategy both 0A  and 1A  are numerical values calculated at the 
integration points resulting in a purely numerical procedure.  
 
Since the Saint-Venant-Kirchhoff constitutive law is employed, the Green-Lagrange strain 
tensor E  have to be calculated. This objective measure is given, for instance, by [14]: 

 
1 1

( ) ( )
2 2

t    E C I A A I   (6) 

where I  is the second order identity tensor and t C A A  is the right Cauchy-Green stretch 
tensor. 
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Fig. 2. Deformation mapping 

 
As there is no relation between the cross section angle and the slope of the reference line, the 
frame kinematic can be regarded as Reissner’s. It should be mentioned that the cross section 
dimensions are maintained the same during motion, thus, to avoid volumetric locking, the 
constitutive equation is relaxed in order to exclude transverse expansions. 
 
Kinematical constraints due to sliding connections 

 
To develop the friction force it is required first to describe how the constraint equations for 
the sliding connections are defined, particularly concerning the curvilinear position, which is 
a new variable introduced in the equations of motion, and at which this force will act. Here 
we summarize the description of the connections as a prismatic or a cylindrical joint. More 
details can be obtained in [11]. 
 
Sliding connections are the ones that constrain relative translations between parts of the body. 
Fig. 3 illustrates both joints and their plane representation. In either case, a sliding node, at 
which the joint exists, is constrained to move over a trajectory comprised of path elements. 
The difference between the prismatic and the cylindrical joint is the relative rotation, which is 
allowed only by the last one. 
 

 
Fig. 3. Sliding connections and its plane representation: a) prismatic and b) cylindrical joints 

 

Fig. 4 depicts the case of a prismatic joint, belonging to node P̂ , and its path contact point P . 
The connection is free to move along the path (s    defined by path finite elements, which, 
although not used in this work, may have an arbitrary roughness profile ( )r s


. The notation 

( )  is used to identify variables related to path elements and ˆ( )  is used for sliding 

elements. The new variable ( )P Ps s   that defines the curvilinear position and the cross 

section orientation of the path point is also illustrated.  
 
The constraint equations, c


, can be written for both types of joints as a single expression: 
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where: i  is the direction ( 1,2,3i   for prismatic joints and 1, 2i   for cylindrical joints); ij  

is the Kronecker delta; 0 0 0ˆ
P P P      is the difference of cross sections orientations at the 

initial configuration, which must be constant during the sliding process of a prismatic joint to 
maintain a fixed relative angle; and the components of the roughness profile, obtained by its 
height function || ( ) ||r s


, are given by: 
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Fig. 4. Sliding connection over an arbitrary path (depicted for a prismatic joint) 

 
It is noteworthy that the curvilinear variable ( )s   represents an arch-length function defined 
by the non-dimensional coordinate   and the path element coordinates. 
 
Unconstrained equations of motion 

 
Using the Law of Conservation of Energy, the dynamical equilibrium of a conservative 
system is obtained by its total energy 0  as: 

 0    (9) 

where   represents the dissipation of a ‘larger’ system of total energy  . Eq. (9) can be 
rewritten as: 
 0     (10) 

or, making explicit the energy parcels of the new larger conservative system: 
          (11) 
where   is the stored elastic strain energy,   is the potential of conservative external forces 
and   is the kinetic energy of the body.  
 
Following Lanczos and others [15–17], it is not always possible to write down closed 
expressions for dissipative parcels but only its infinitesimal change. Thus, the equations of 
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motion are stated from the variation of the energies present in eq. (11), which is understood as 
the Principle of Stationary Total Energy: 
 0               (12) 
in which the symbol   means variation.  
 
The total energy can be stated by writing the known expressions of the energies in eq. (11) as 
function of the current configuration nodal parameters of the discretized body, grouped in the 
vector 


, as: 
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where the specific strain energy u  depends on the strain state E  of the body, eq. (6), which is 

function of the nodal parameters 


, as defined by the gradient of the deformation function in 
eq. (4).  
 
As mentioned before, the Saint-Venant-Kirchhoff constitutive relation is employed due to its 
simplicity and good representation of large displacements on solids that remain in the small to 
moderate strain regimen, which comprehends the majority of the usual applications in 
engineering. For the plane frame utilized, its specific energy is given as: 
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where   is the longitudinal elastic parameter that approaches the Young modulus for small 
strains. The shear elastic modulus is [2(1 )]   , being   a constant that reproduces the 
Poisson ratio for small strains. The second Piola-Kirchhoff stress tensor is easily obtained by 
the energy conjugacy property as: 
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Still in eq. (13), F


 and q


 are the concentrated and distributed conservative external loading, 

respectively. The initial length of the frame reference line is 0s . The material mass density in 

the initial configuration, of volume 0V , is 0 . The material points’ velocity is denoted using 

the over-dot as y
 . External damping dissipation, proportional to the velocity in its differential 

form (Rayleigh damping), is introduced as: 
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in which c  is a proportionality constant. 

 
The equations of motion (geometric nonlinear dynamical equilibrium) are obtained by the 
development of the variations in eq. (13). In a compact form, the equilibrium can be written 
as: 

 int 0F F       M D
       (17) 

where: int ( )F Grad


  is the internal force vector; F


 collects all the external loads; M  is a 

constant mass matrix; cD M  is the external damping matrix; and 
  and 

  are the 

velocity and acceleration vectors of the nodal parameters. More details about the development 
of the variations of eq. (13) can be obtained in [10,11]. 
 



Constrained equations of motion 

 
The dynamical equilibrium stated by eq. (17) is called unconstrained since no restraints, such 
as the ones from the sliding connections, are considered. The literature presents several 
consolidated methodologies to impose constraints such as in [15,18] on mechanical and 
structural applications or in [19–21] which deal with general optimization problems. Here, we 
employ the well-known Lagrange multiplier method along with the Principle of Stationary 
Total Energy to impose the sliding restrictions. In what regards the later introduction of 
friction dissipation, the multipliers are of great value since in Mechanics they might be 
understood as the contact forces between bodies, an essential information for the friction 
model. 
 
The Principle of Stationary Total Energy is extended for the case of holonomic constraints by 
modifying the total energy through the introduction of a new potential  , referred as the 
constraint potential, as: 
            (18) 
 
When using Lagrange multipliers the expression of the new potential is simply given by: 
 c 

 
   (19) 

where 


 represents the vector of multipliers, which are new variables of the system. Eq. (19) 
indicates the presence of a multiplier for each constraint equation in c


. It is worth mentioning 

that the constraint potential is null at the solution, therefore, the total energy is not altered. 
 
Knowing the expression of  , the first variation of the constrained energy, eq. (18), is: 
 0                 (20) 
which, neglecting friction, can be developed in a similar fashion as the unconstrained case 
leading to the constrained equations of motion (constrained geometric nonlinear dynamical 
equilibrium), expressed in a compact form as: 
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in which cF


 represents the restriction forces arriving from the constraint potential. As the 
multipliers are new variables, the variation of   is organized in the following force vector, 

which separates the parameters 


 (including Ps ) and the multipliers: 
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where the tensor c


 represents the Jacobian matrix of the constraint vector. In order to 
shorten this presentation, the derivatives of the constraint equation for the sliding connections, 
eq. (7),  can be found in reference [11]. 
 
Friction force on the sliding connection 

 
The friction force is included in the system directly in the Principle of Stationary Total 
Energy as a dissipative potential. As mentioned previously, dissipative potentials are 
introduced in their differential form since closed expressions might be unknown, as is the case 
for the dissipated friction energy f . However, the variation of this potential can be written as 

the work done by the friction force fF


 on its displacement trajectory d


 as: 

 f
f F d  


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To develop eq. (23), parameters that describes the force displacement must be chosen. For 
that, the coordinates of the sliding node and its path contact point could be picked. However, 
since in the previous formulation the curvilinear position Ps  is already used as an intrinsic 

variable, the displacement along the trajectory is simply the scalar expression 0
p Pd s s  , 

being 0
Ps  an arbitrary initial value, and its variation is pd s  . As the friction force acts 

tangentially to the trajectory, with its value given by fF , the dissipative parcel is introduced 

directly in the curvilinear position as: 
 f f PF s    (24) 

 

To organize the equations of motion system, we make  f
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, the previous equation is 

rewritten as: 
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Considering the correspondence of the friction force vector f


 to the system variables, the 

equations of motion are restated to include frictional dissipation as: 
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Improved friction model 

 
From the manner that the friction force was introduced in the formulation any expression can 
be readily applied without changing the equilibrium equation. In this work, we employ the 
Coulomb model considering the Stribeck effect and viscous friction. Fig. 5 shows the overall 
behaviour of the friction force with the relative velocity among bodies. This model considers 
the stick-slip effect, which is the difference between the friction force at rest (static friction) 
and at motion (kinetic friction), by the Stribeck curve, using the most usual expression 
proposed by Bo e Pavelescu [22]. A linear model represents the viscous friction, which occurs 
if lubricant layers are present on the surfaces. 
 

 
Fig. 5. Friction model representation 

 
The mathematical expression for the friction force due this model is written as: 
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with the static and kinetic friction forces, respectively, given by: 
 S N C Nands kF F F F     (28) 

where, s  and k  are, respectively, the static and kinetic friction coefficients and NF  the 

absolute value of the contact force normal to the trajectory at the joint contact point. In 
addition,   is the viscous friction coefficient and Pv s   is the joint relative velocity 

tangential to the path (directly obtained from the curvilinear position). The Stribeck 
parameters are its decay velocity v  and power  . The sign function is represented by 

sgn( ) . 
 
For null relative velocity, second condition in eq. (27), the tangential resultant force RF  acting 

on the connection is required for comparison with the static friction value. This evaluation 
verifies if there is tendency of motion in case the resultant force is greater than the static 
friction force, or not, otherwise. However, in the transition from motion to rest, the shift from 
one force to another is done abruptly using their smallest value, which, as concern numerical 
simulations, may create instabilities in the system solution and the need to use very small time 
steps. 
 
For this reason, a linear interpolation between the values of the static friction force and the 
resultant force is proposed for the stabilization of the friction force response when there is a 
range 0 0[ , ]v v  of quasi-null velocities, as depicted in Fig. 6. 

 

 
Fig. 6. Improved friction model 

 
The improved friction model is written as: 
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where 0v  is the quasi-null speed limit. One should note that CF  and SF  are always positive 

since they are obtained from the absolute value of the normal force, eq. (28), thus, the sign of 
the friction force in eq. (29) depends on the values and signs of the relative velocity and 
resultant force. 
 
In the proposed approach, RF  is not a constant value, but depends upon the system own force 

state at a given time instant, which can even be null, if applicable. Therefore, the system 
response can be stabilized by means of a smooth transition from the motion state to rest state 
and vice versa. In addition, by taking into account the resulting force, the proposed improved 
friction model is capable to represent residual displacements of the sliding connection. 
 
It should be noted that the quasi-null speed limit value 0v  depends on the adopted time step, 

or, inversely, the chosen time step has to be able to represent the movement when in the 
quasi-null velocity interval. For better convergence of the iterative solution method, the 
recommended value of the limit velocity should be close to the relative stop speed of the 
bodies but not too small to allow the smooth transition among forces at rest. 
 
Known the coefficients of the model, which depends on the materials that make the sliding 
connection and its path, the forces required to calculate the friction force have to be related to 
the variables that describe the joint. The normal force vector NF


 is found from the 

component of the Lagrange multipliers vector due to the translational constraints,  1 2,  


, at the normal direction of the path at the contact point, defined by the normal vector PN


, as: 
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and its absolute value, actually used in the calculation, is: 
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In the plane case, the components of the normal vector are obtained from the tangent vector of 
the path finite element at the contact point, , ( )P

i P iT Y  
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The resultant force, equal to the inertial force at the sliding node, is obtained directly from the 
equilibrium equation (26), considering only the sliding node degrees of freedom (positions 
and curvilinear variable), as: 

 int cRF F F F  
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  (32) 
or, as to identify the terms referred to the degrees of freedom: 
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  (33) 

where F


 represents all the external loads, intF


 the internal force of the sliding element and 
cF


 the connection constraint force. Subscripts 1
PY , 2

PY  and Ps  refer to the sliding node 

position degrees of freedom and the curvilinear position, respectively. In the definition of eq. 



(32), being a quasi-null velocity case, the velocity-proportional external damping was 
neglected. The friction force is also not present since its value is already considered indirectly 
through the constraint force at the curvilinear position direction. As the tangential value of the 
resultant force RF  is required, the tangent vector is used to decompose the Cartesian terms as: 

 
   

1 1 1 2 2 2

int c int c
1 2 c

P P P P P P

P P

P P
Y Y Y Y Y Y

R s s
P

F F F F F FT T
F F F

T

   
     (34) 

 
As expected from the physical significance of the multipliers as contact forces, we have 

1

c
1PY

F   and 
2

c
2PY

F  . This result can be obtained by developing the constraint force given in 

eq. (22) for the constraint equation in (7). 
 
Time integration and nonlinear system solution procedure 

 
For the time discretization and nonlinear system solution, the equations of motion (26) are 
written for a specific time instant as: 

   int c f
1 1 1 1 1 11 1

0, t t t t t tt t
g F F F                   M D

          (35) 

where g


 is the residual of the Newton method (or mechanical unbalanced vector), null when 

1t 


 and 1t 


 are a solution of the system of equations. One can note that 1t 


 only appear in 

the terms c
1tF 


 and f

1t


. 

 
Since the description of the solid is made by a total Lagrangian approach, the inertial force is 
obtained using a constant mass matrix which allows the adoption of the Newmark 
approximations for the material velocity and acceleration vectors, see, for instance, the 
discussion in [23–25]. Those approximations for a time step t , with its usual parameters   
and  , are given by: 

 2
1 1

1

2t t t t tt t      

           

         (36) 

  1 11t t t tt t           
         (37) 

 
Substituting both previous expressions in eq. (35) we arrive at: 

 
  int c

1 1 1 121 1

f
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,
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t t t tt t

t t t t
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
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M D
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   
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  (38) 

in which tT


 and tR


 represents the dynamical contribution of the previous time step as: 

  2

1
1 and 1

2
t t

t t t t tT R t
t t

    
 

           

          (39) 

 
For the friction force calculation, eq. (29), the Newmark expressions are employed to 
approximate the tangential velocity Pv s  . Consequently, this force is entirely defined in a 

time step 1t   by the Lagrange multipliers, curvilinear position and current path finite 
element nodal positions. 
 



Eq. (38) is clearly nonlinear for the variables  1 1,t t  


, thus, a usual first order Taylor 

expansion can be employed to obtain the Newton method as: 

    11 0 0
1 1 1

1

,
t

t t t

t

g


 



  



      
  

H




   (40) 

in which, the correction  1 1,t t   


 is obtained from the trial solution  0 0
1 1,t t  


 and the 

Hessian matrix given by: 
 1 1 1 1t t t tg      e cH H H


  (41) 

 
The Hessian related to the energy potentials due to individual finite elements is called eH  and 
its expressions can be found in [10,11]. The Hessian matrix due the constraint potential of the 
sliding connections is written as: 

 
 

 

 

c

, t

c cF

c


 

   
     

cH
0

  
    (42) 

where,  c 


 is a third order tensor that can be understood as the set of Hessian matrices 
due to each constraint equation ic , and 0  is the null matrix. 

 
It must be stressed that, however achieved a value for Ps  in the solution process, it is not 

sufficient to update cF


 and the Hessian matrix as the function ( )P Ps   is not explicitly 

written. The solution of this stage is done by adopting a least square method to find the non-
dimensional coordinate from the converged values of the path element and the sliding node as 
described in detail by [11]. Given the numerical value of the non-dimensional variable in the 
dimensionless space, the transitions among path elements is straightforward when its value 
exceeds the space domain. 
 
Examples 

 
Some examples are presented to show the capabilities of the proposed formulation regarding 
the correct description of the friction force and its structural effects. In all simulations, the 
Newmark parameters for the average acceleration in the time step were adopted, .     
and .    , which do not introduce numerical damping in the solution. 
 
Axial vibration with friction dissipation 

 
To validate the improved friction model we employ the structure depicted in Fig. 7 a) which 
consists of a bar with length 1.0mL   submitted to an initial displacement 1.0mmd   at its 
left extremity (proportionally distributed over its extension). A cylindrical joint exists at the 
same end, which is free to move over a finite element with locked degrees of freedom to 
simulate a rigid support. A vertical force 2000 NP   is applied to manifest frictional effects 
on the connection. 
 
Discretizing the bar with one two-noded (linear) frame element results the equivalent mass-
spring system shown in Fig. 7 b). Adopting a squared cross-section with 0 0 0.1mb h   and 

Young modulus 82 10 Pa  , the axial spring stiffness is 0 0 /k b h L  62 10 N/m . The 



shear modulus is half the value of the Young modulus. The equivalent system mass 
5.066 kgm   is lumped at the joint node. Knowing all the system parameters, the mass-spring 

natural frequency is given by / 628.38rad/sn k m   , and its oscillation period is 

2 0.01sn nT     . For this reason, the adopted time increment is 410 st   . 

 

a)   b)   
 Fig. 7. Geometries of the systems: a) continuous and b) mass-spring 

 
The sliding connection displacement for the frictionless case is shown in Fig. 8 where the 
harmonic oscillation with expected period and amplitude values are reached. Also in Fig. 8, 
two cases of friction are simulated: one with dry friction only and the other that adds the 
viscous friction term. Adopted dry friction parameters are 0.05s  , 0.03k  , 0.1m/sv   

and 2  , for the viscous case 100 Ns/m  . The quasi-null speed limit was chosen as 

0v  32 10 m/s . This mass-spring system subjected only to Coulomb kinetic friction has 

analytical solution presented in [26]. In spite of the reference solution have been proposed for 
a simpler case, one can verify in a similar manner that the friction dissipation did not altered 
the system oscillation period. Moreover, the decay envelope for the dry case is liner whereas 
when adding the viscous term the envelope changed to an exponential tendency, as is 
expected from its similarity to a one degree of freedom mass-spring-damper system.  
 

 
Fig. 8. Displacement of the equivalent mass-spring system 

 
With the proposed improved friction model, the residual displacement is correctly captured as 
illustrated in Fig. 9. This displacement occurs when the spring restitution force, i.e., its 
internal force, and the friction force become balanced outside the bar undeformed 
configuration. This effect can only be properly represented since the resultant force is 
calculated in the friction model. 
 
Given the existence of residual displacements, the friction force also has a residual value as 
shown in Fig. 10. For the case with viscous friction the force value at rest is 30.93 N . For 
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this small displacement analysis, from the spring stiffness one can obtain the residual 
displacement as f /F k  21.5465 10 mm  , which is exactly the simulation value in Fig. 9. 

 

 
Fig. 9. Residual displacement for the equivalent mass-spring system 

 

 
Fig. 10. Friction force for the equivalent mass-spring system 

 
The evolution of the strain energy (S.E.) and the kinetic energy (K.E.) are also interesting 
parameters to be observed (Fig. 11). For the frictionless case the sum of those energies is 
constant throughout the analysis. We highlight that, although there is an external load applied, 
no energy is associated to it since there is no displacement in its direction. When friction is 
introduced in the system the energies sum decay with time, faster for the viscous friction case 
than to the dry one as is expected from the higher friction values obtained (Fig. 10). Due the 
existence of residual displacements, there is also a residual energy as presented in the detail of 
Fig. 11 in log scale. The rest energies sum of the viscous friction case is obtained in the 
simulation equal to 0.2392mJ . The same value can be found from the spring strain energy 

2 / 2kd , being d  the residual displacement, revealing that its residual energy value is due 
only to the bar deformation. 
 

 
Fig. 11. Energy time history of the equivalent mass-spring system  
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Increasing the spatial discretization to 10 cubic finite elements, and adopting a mass density 
of 3

0 1250 kg/m  , one achieves the same oscillation period for the mass-spring system. To 

analyse this discretized continuous system, all previous parameters were kept but the quasi-
null speed limit 2

0 3 10 m/sv    and the time step 51.25 10 st    . The time increment was 

chosen to allow a good representation of the passage of the axial displacement wave in the 

domain of each finite element. This wave has velocity 0 0 0/c b h   4000m/s . Fig. 12 

shows the displacement results for both friction cases and the frictionless one. As expected, 
the oscillation period, amplitude and decay type is similar to the equivalent system. 
 

 
Fig. 12. Sliding connection displacement for the discretized continuous system 

 
The improved friction model was able to represent the residual displacement of the sliding 
connection for this continuous system as well (Fig. 13). However, due to the continuity of the 
bar and the only source of dissipation to be due to the joint friction, the remainder of the bar 
keeps vibrating as shown for the bar mid-point displacement history in Fig. 14. The last result 
shows the existence of a stationary wave of axial displacement between the extremity nodes, 
which are at rest, one due the boundary condition and the other due the friction force. 
 

 
Fig. 13. Sliding connection residual displacement for the discretized continuous system 

 

 
Fig. 14. Bar mid-point displacement for the discretized continuous system 
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Fig. 15 depicts the friction force time history for both cases. Oscillations on the value of the 
force during the perceptible displacements agree to the expected response of the discretized 
continuous system and occur due to higher vibrations modes that appear from the temporal 
and spatial resolutions adopted to represent properly the problem. We note that the employed 
model was able to capture the friction force reduction when the sliding connection is at rest 
and, due to the residual wave, its value shows a steady-state response that balances out the 
resultant force arriving from the rest of the body. Lastly, we present the energy time history 
for the continuous case for all the cases studied (Fig. 16). The energies sum decays in the 
presence of friction similarly to the mass-spring system. 
 

a)  

b)  
Fig. 15. Friction force for the discretized continuous system: a) dry friction and b) dry and viscous friction 
 

 
Fig. 16. Energy time history for the discretized continuous system 

 
Driven mechanism with friction 

 
For a more involved application, we propose the mechanism depicted in Fig. 17 subjected to a 
bending moment pulse in its crank. The moment M  increases linearly from zero to 5 N.mk  in 
1s  and decreases to zero in another 1s  interval. To simulate a rigid crank its cross section is 

squared with 0.5m  side and its Young modulus is 132 10 Pa . The other bars are flexible with 
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squared cross section of 0.1m  side and Young modulus equal 108 10 Pa . For all bars, the 

mass density is 38000kg/m  and the shear modulus is half the value of the Young modulus. 
The adopted time step is 0.01s . Six cubic finite elements were used for the discretization. 

Friction parameters are: 0.5s  , 0.3k  , 0.001m/sv  , 1   and 2
0 1 10 m/sv   . No 

viscous friction in considered in the joint. 
 

 
Fig. 17. Mechanism initial configuration 

 
A prismatic joint is employed to connect the arm to a support bar. The sliding connection 
displacements are shown in Fig. 18 for cases with and without friction. The friction effect is 
perceived in the joint motion witch tends towards rest after the second rotation cycle of the 
mechanism, while the frictionless case presents free vibrations after the loading phase. 
 

 
Fig. 18. Sliding connection displacements 

 
The evolution of the curvilinear position (Fig. 19) displays similar results from the joint 
displacements. In Fig. 19 the position resting value is about 1.5 m from its arbitrary initial 
value, adopted as zero. Although expected, the curvilinear results are interesting since they 
can also be noted in the mechanism resting position as illustrated in Fig. 20 (the joint stops 
about ¼ of the arm length). The arm tip displacements (Fig. 21) also display the same 
behaviour. 
 

 
Fig. 19. Curvilinear position evolution 
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Fig. 20. Rest position (in red) of the mechanism when friction is present 

 

 
Fig. 21. Arm tip displacements 

 
Conclusions 

 
Friction dissipation was successfully introduced in sliding connections present in structures 
and mechanisms analysed by a total Lagrangian FEM formulation based on the positional 
description of the plane frame kinematic. Also, an improvement on the classic Coulomb 
friction model with Stribeck effect and viscous friction was proposed for a smoother 
description of the transition between motion and rest states of the joints. The proposed model 
was able to capture residual displacements of the body since the resultant force could be 
calculated properly and no instabilities were present in the friction force at null speed. Future 
studies intent to expand this formulation to 3D applications. 
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