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Abstract

This  work  develops  and  analyzes  an  auto-adaptive  resolution  strategy  applied  to  wave 
equations solved by a Boundary Element Method (BEM). The proposed method is  built using 
two  essential  tools:  a  localized  a  posteriori error  estimate  and  a  H-matrix  compression 
technique. The first one guides a local mesh refinement strategy in order to reduce the error at 
each iteration of the loop. The second one calculates an approximation of the Galerkin matrix 
and thus enables the method to solve problems of high dimension. We show that the H-matrix 
is very efficient to deal with the very refined and heterogeneous meshes obtained from the 
auto-adaptive  algorithm.  Numerical  experiments  in  electromagnetism  tend  to  prove  the 
efficiency  of  this  resolution  strategy.  It  tends  to  be  a  simple  to  use,  reliable  and 
computationally “affordable” method.   
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Introduction

Integral formulations are known to be very efficient at solving wave propagation problems in 
homogeneous  medias.  They are  used  daily  in  various  engineering  fields  such as  antenna 
design, RADAR signature computations or in buildings' acoustic studies. In all these contexts, 
there is a growing need for the control of the quality of the numerical solution. In standard 
Finite Element Method, this is usually done by using a  posteriori error estimates to locally 
refine the mesh. We propose here an adaptation of this strategy to  integral formulations. Two 
major difficulties arise in this case.
First, the sought solution lives in fractional order Sobolev spaces with non local norm [1]. 
The mathematical setting is thus trickier than in standard finite element method. It is possible 
to build an a posteriori error estimate, for instance based on the (classical) residual function. 
However the non local nature of both the fractional norm and the underlying operator make 
the localization of the error on the mesh very difficult. 
The second main difficulty comes from the fact that the Galerkin matrix obtained from the 
BEM method  is  dense.  This  is  an  other  consequence  of  the  non locality  of  the  integral 
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operator.  Thus its storage cost varies in O(n2), with n being the size of the problem. This 
quadratic evolution of the memory cost makes the use of a matrix compression technique 
essential. 

Proposed auto-adaptive procedure

We remind to the reader the global architecture of an auto-adaptive algorithm:

We  propose  the  two  following  methods  in  order  to  overcome  the  difficulties  exposed 
previously.
 
First,  we use the localization of the residual function obtained by [2]. Their work gives a 
reliable indicator of the error on the mesh. Then [3] proved that an auto-adaptive loop built 
with  this  indicator  combined  with  a  Dörfler  selection  technique  [4]  and  a  newest  vertex 
bisection refinement algorithm [5] converges to the exact solution. Howeover, one shall keep 
in mind that the practical computation of this estimator requires a real development effort. 
  
Secondly,  we  choose  here  to  use  a  H-matrix  methodology  [6]  in  order  to  compress  the 
Galerkin matrix. This family of algorithm is expected to be efficient and robust regarding the 
great heterogeneity of the meshes obtained by local refinement.  We numerically prove its 
efficiency in an auto-adaptive context.

Numerical results 

We  validate  the  proposed  auto-adaptive  architecture  with  the  problem  of  a  perfectly 
conducting cube of size 1 meter excited by a plane wave of wave number 5. Here we use an 
Electrical Field Integral Equation (EFIE) formulation. Despite the simplicity of the shape, The 
geometrical singularities (the corners) make it a hard case.      

Convergence of the error estimate 

We show below the evolution  of  the  value  error  estimate  with respect  to  the number  of 
degrees of freedom. The comparison with the uniform refinement proves the pertinence of 
this approach. One shall note that the error's indicator is proportionnal to the actual error. 



The  auto-adaptive  procedure  yields  a  convergence  rate  of  O(N-0,65),  whereas  the  uniform 
refinement  one is  of O(N-0,32)  (N being the number of degrees  of freedom).  For the same 
accuracy  prescrition,  the  uniform refinement  leads  to  a  much  bigger  mesh  than  the  one 
obtained  with  the  auto-adaptive  algorithm.  Howeover  the  latter  needs  more  iterations  to 
converge. One sees that the key to obtain a computationally competitive method is to reduce 
the cost of each iteration. One way do so would be to save the parts of the Galerkin matrix 
which are not modified by the local refinement of the mesh. 

Efficiency of the compression technique

We show here  that  the  H-matrix  compression  used  is  well  adapted  to  the  auto-adaptive 
context. We use the compression rate to measure the quality of the compression. It represents 
the memory cost of the Galerkin matrix expressed in percentage of the memory cost of the 
non compressed matrix. We obtain the following results:

The heterogeneity of the locally refined mesh leads to lower performances of the H-matrix. 
Howeover they keep being acceptable as we get a compression rate of roughly 10 %  for the 
last  iteration.  This  proves  the  robusteness  of  the  method  in  an  auto-adaptive  context.  

This  compression  methods  also  enables  a  quick  computation  of  the  H-matrix  product 
operation. This property is very relevant in a context where an iterative resolution of the linear 
system is required.  
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