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Abstract 

A new strategy to define source points for the Method of Fundamental Solutions is presented 

based on a quadtree-generated cell system controlled by the boundary of the domain in which 

the partial differential equation is defined. The quadtree (in 3D, octtree) algorithm results in a 

cell system, the spatial density of which decreases rapidly when moving away from the 

boundary. The sources are defined to be the cell centers of the external cells of the quadtree 

subdivision. This makes it possible to build up a multi-level method, where the ‘coarse’ 

sources generate the ‘coarse’ approximation, while the ‘fine’ (i.e. the near-boundary) sources 

provide the ‘fine’ approximation. On each level, the problem is discretized by using the 

sources belonging to the actual level only. Thus, the computational cost can be kept under an 

acceptable limit. Moreover, the problem of severely ill-conditioned linear systems is 

completely avoided. 
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Introduction 

The Method of Fundamental Solutions (MFS, see e.g. [8]) is now a popular computational 

method for solving elliptic partial differential equations due to its simplicity and meshfree 

character and also to the fact that it is a boundary-only technique i.e. no discretization is 

needed inside the domain.  

 

In its original form, the approximate solution is defined as a linear combination of the 

fundamental solution shifted to some external points (source points). Thus, the approximate 

solution exactly satisfies the partial differential equation to be solved. The a priori unknown 

coefficients of the linear combination are calculated by enforcing the boundary conditions at 

some boundary collocation points.  

 

For instance, consider the example of the simplest 2D Laplace equation: 

    ∆𝑢 = 0     (1) 

defined in a bounded 2D domain . Suppose that Equation (1) is equipped with pure Dirichlet 

boundary condition: 

    𝑢|  = 𝑢0 ,     (2) 

where   ≔ 𝜕 , the boundary of the domain . The approximate solution defined by the 

MFS has the form: 



    𝑢(𝑥) ~ ∑ 𝛼𝑗

𝑁

𝑗=1
(𝑥 − 𝑥̃𝑗) ,     (3) 

where  denotes the fundamental solution of the Laplacian (apart from a multiplicative 

constant): 

    (𝑥)  = log ||𝑥||     (4) 

and 𝑥̃1, 𝑥̃2, …, 𝑥̃𝑁 are predefined external source points. Here ||. || denotes the 2D Euclidean 

norm. The coefficients 𝛼1, 𝛼2, …, 𝛼𝑁 can be calculated by requiring the boundary conditions. 

In case of Dirichlet boundary condition, this results in the following linear system of 

equations: 

    ∑ 𝛼𝑗

𝑁

𝑗=1
(𝑥𝑘 − 𝑥̃𝑗) = 𝑢𝑘 ≔ 𝑢0(𝑥𝑘)                       (𝑘 = 1,2, … , 𝑀),     (5) 

where 𝑥1, 𝑥2, … , 𝑥𝑀 are predefined boundary collocation points.  

 

The numbers of sources and the boundary collocation points need not be equal. If 𝑁 ≠ 𝑀, 

Equation (5) should be solved in a generalized sense using e. g. the least squares approach. 

For the sake of simplicity, however, in a lot of practical cases, the numbers 𝑁 and 𝑀 are 

defined to be equal, that is, Equation (5) has a square matrix. Unfortunately, though the MFS 

has excellent accuracy in general (see [10]), in a number of cases, the discretized linear 

system is severely ill-conditioned, especially when the sources are located far from the 

boundary. On the other hand, if they are too close to the boundary, numerical singularities 

appear in the approximate solution. 

 

Another problem of the Method of Fundamental Solutions is the proper definition of the 

locations of sources (preferably in an automated way). In [1], [4], the sources are located 

along a sufficiently large circle; however, this leads to extremely ill-conditioned linear 

systems. In [12], the initial set of points is thinned by several strategies. See also [3], where 

the original boundary is transformed to the boundary of a somewhat larger domain along 

which the source points are located. 

 

A popular technique is to allow the source and boundary collocation points to coincide. Thus, 

the problem of the proper definition of sources is automatically circumvented. However, in 

this approach, some singular terms generally appear, and the main problem is how to evaluate 

these singular terms properly or how to avoid the singularity. To treat this difficulty, a lot of 

special methods have been developed. The boundary knot method [2] utilizes general 

nonsingular solutions instead of the traditional fundamental solutions: thus, the problem of 

singularity is avoided, but the problem of severely ill-conditioned character of the discretized 

system remains the case. The situation is similar, when fundamental solutions concentrated to 

straight lines instead of points are used, see [6]. Using the traditional fundamental solutions, 

the evaluation of singular terms can be performed by special tools (regularization and 

desingularization techniques, see e.g. [7], [9], [11], [13]). 

 

In this paper, we return to the traditional form of the MFS. However, the sources are 

generated in a completely automatic way using the well-known quadtree/octtree subdivision 

technique (see e.g. [5]). This algorithm produces a cell system; the individual cells belong to 

different levels of subdivision. The cell system exhibits automatic local refinements in the 

vicinity of the boundary. Taking the centers of the outer cells as source points, we obtain a 

point set, the spatial density of which decreases rapidly when moving away from the 



boundary. This makes it possible to build up a multi-level discretization in a natural way. The 

method avoids also the problem of solving severely ill-conditioned systems of equations and 

has a relative low computational complexity as well. 

 

A two-level technique 

As a model problem, consider the 2D Dirichlet problem (1) - (2). Suppose that the boundary 

collocation points 𝑥1, 𝑥2, … , 𝑥𝑀  are given. Let 𝑥̃1
𝐹 , 𝑥̃2

𝐹 , … , 𝑥̃𝑁
𝐹  be external source points at a 

distance  from the boundary (more or less equally spaced), they will be considered ‘fine 

level’ sources. Moreover, let 𝑥̃1
𝐶 , 𝑥̃2

𝐶 , … , 𝑥̃𝑁/2
𝐶  be additional (‘coarse level’) sources at a 

distance 2 from the boundary (𝑁 is supposed to be an even number). Define the approximate 

solution of (1) - (2) as follows: 

    𝑢(𝑥) ~ ∑ 𝛼𝑗
𝐹

𝑁

𝑗=1
(𝑥 − 𝑥̃𝑗

𝐹)  +  ∑ 𝛼𝑗
𝐶

𝑁

𝑗=1
(𝑥 − 𝑥̃𝑗

𝐶)     (6) 

Enforcing the boundary condition in the boundary collocation points, we have: 

    ∑ 𝛼𝑗
𝐹

𝑁

𝑗=1
(𝑥𝑘 − 𝑥̃𝑗

𝐹)  +  ∑ 𝛼𝑗
𝐶

𝑁

𝑗=1
(𝑥𝑘 − 𝑥̃𝑗

𝐶) = 𝑢𝑘           (𝑘 = 1,2, … , 𝑀)     (7) 

In a more compact form: 

    𝐴𝐹𝜶𝐹 + 𝐴𝐶𝜶𝐶 = 𝒖     (8) 

where 𝐴𝐹 is an M-by-N and 𝐴𝐶  is an M-by-N/2  matrix with entries: 

    𝐴𝑘𝑗
𝐹 = (𝑥𝑘 − 𝑥̃𝑗

𝐹),      𝐴𝑘𝑗
𝐶 = (𝑥𝑘 − 𝑥̃𝑗

𝐶)      (9) 

The direct solution of Equation (8) is not recommended, since Equation (8) is even more ill-

conditioned than the single-level equation 

    𝐴𝐹𝜶𝐹 = 𝒖      

Instead, it can (and should) be solved in an iterative way (in the sense of least squares) by 

splitting it into a coarse-level and a fine-level subproblem: 

    𝐴𝐶𝜶𝐶 = 𝒖 − 𝐴𝐹𝜶𝐹     (10) 

    𝐴𝐹𝜶𝐹 = 𝒖 − 𝐴𝐶𝜶𝐶     (11) 

The above equations are to be solved in the sense of least squares, i.e. by solving the 

corresponding Gaussian normal equations: 

    (𝐴𝐶)∗𝐴𝐶𝜶𝐶 = (𝐴𝐶)∗(𝒖 − 𝐴𝐹𝜶𝐹)     (12) 

    (𝐴𝐹)∗𝐴𝐹𝜶𝐹 = (𝐴𝐹)∗(𝒖 − 𝐴𝐶𝜶𝐶)     (13) 

The main idea of the method is that if the coarse subproblem is already solved, then, in order 

to solve the fine level subproblem, it is sufficient to apply some steps of the familiar 

(conjugate) gradient method, which significantly reduces the computational complexity. 

 

Remark: Without going into deep details, the idea behind the method is as follows. The 

solution of the coarse level subproblem (nearly) eliminates the low-frequency error 

components from the approximate solution. Thus, the fine level operator maps the subspace of 

the high-frequency components into itself. It can be shown that the fine level operator 



restricted to the high-frequency subspace is uniformly well-conditioned (independently of the 

fineness of the discretization). Thus, though the (conjugate) gradient method converges 

slowly, if the corresponding operator is not well-conditioned, the high-frequency error 

components are damped much more efficiently. 

 

By introducing additional sources on even coarser levels, the method can be extended to a 

multi-level technique in a straightforward way. At the coarsest level, the corresponding 

subproblem should be solved exactly. In practice, it is often sufficient to apply several 

(conjugate) gradient iterations at the coarsest level as well. 

 

Automatic generation of source locations using quadtrees 

To build up a multi-level method outlined above, several groups of sources are needed. The 

greater the distance from the boundary, the lower the spatial density of the sources is. The 

quadtree algorithm produces point sets with exactly the same property. Recall that the 

quadtree subdivision is a systematic, recursively defined subdivision of an initial square 

controlled by a finite set of points (controlling points). A subsquare is divided into four 

congruent subsquares (cells), if the number of controlling points contained in the actual 

subsquare exceeds a predefined minimal value, provided that the level of subdivision remains 

under a predefined maximal level. This results in automatic local refinements in the vicinity 

of the controlling points. By additional subdivisions, it can be assured that the ratio of the 

neighboring cell sizes is at most 2, i.e. no abrupt changes in cell sizes occur. Note that in 3D, 

the procedure is similar: here an initial cube is divided recursively into eight congruent 

subcubes (octtree algorithm). Note also that the obtained cell system is suitable for defining 

simple finite volume schemes as well (see e.g. [5]), however, here it is used to define source 

point locations only. 

In the presented multi-level technique, the quadtree subdivision is controlled by the boundary 

of the domain of the original partial differential equation, more precisely, by the predefined 

boundary collocation points. Having created the quadtree cell system, the source points are 

defined to be the centers of the external cells. The cell centers belonging to low levels of 

subdivision are considered ‘coarse level’ sources, while the (near-boundary) cell centers 

belonging to high levels of subdivision are regarded as “fine level’ sources. 

 

Numerical examples 

The above outline method is demonstrated through two simple examples. 

Example 1. Let  be a circle centered at the midpoint of the unit square with radius 0.3. 

Consider the test solution of the Laplace equation 

   𝑢(𝑥, 𝑦) = 𝑒4𝜋𝑥 ∙ sin 4𝜋𝑦,     (14) 

where the more familiar notations x, y are used for the space variables. The Laplace equation 

(1) is supplied with Dirichlet boundary condition consistent with the above test solution. 

Figure 1 shows the quadtree cell system controlled by the boundary  of the domain and the 

source point locations as well. The maximal subdivision level was 8, i.e. the smallest cell size 

was 1/256. Table 1 shows the relative 𝐿2-errors of the above outlined two-level method for 

different numbers of sources calculated on the boundary of the domain. Here 𝐿𝑐𝑜𝑎𝑟𝑠𝑒  and 

𝐿𝑓𝑖𝑛𝑒 are the quadtree subdivision levels of the coarse and fine sources, respectively, while 



𝑁𝑐𝑜𝑎𝑟𝑠𝑒 and 𝑁𝑓𝑖𝑛𝑒 denote the numbers of sources at the coarse (resp. fine) level. The number 

of boundary collocation points was always = 476 . 

 

The results demonstrate that the accuracy is acceptable. Note, however, that the numerical 

complexity is much less than that of the traditional direct method. 

 

 

Table 1. Two-level MFS, relative boundary 𝑳𝟐-errors. Domain: circle 

  𝐿𝑐𝑜𝑎𝑟𝑠𝑒/𝐿𝑓𝑖𝑛𝑒     3/4    4/5      5/6      6/7 

  𝑁𝑐𝑜𝑎𝑟𝑠𝑒/𝑁𝑓𝑖𝑛𝑒   12/88  88/104  104/216 216/376 

 

 Relative 𝐿2-error (%)  0.16591 0.04687 0.01604 0.02571 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.  A quadtree cell system generated by a circle and the external source points  

 

 

Example 2. Let  be an amoeba-shaped domain contained in the unit square. Figure 2 shows 

the quadtree cell system controlled by the boundary  of the domain and the source point 

locations as well. The maximal subdivision level was again 8. The test solution (14) was the 

same as in Example 1. The number of boundary collocation points was always 𝑀 = 236. 

Table 2 shows the relative 𝐿2-errors of the above outlined two-level method calculated on the 

boundary of the domain. 𝐿𝑐𝑜𝑎𝑟𝑠𝑒 and 𝐿𝑓𝑖𝑛𝑒 are the quadtree subdivision levels of the coarse 

and fine sources, respectively. 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 and 𝑁𝑓𝑖𝑛𝑒 denote the numbers of sources at the coarse 

(resp. fine) level.  Due to the more complicated geometry, the accuracy is now somewhat less 

than in Example 1, but it is still acceptable. 

 

 



Table 2. Two-level MFS, relative boundary 𝑳𝟐-errors. Amoeba-shaped domain 

  𝐿𝑐𝑜𝑎𝑟𝑠𝑒/𝐿𝑓𝑖𝑛𝑒     3/4    4/5      5/6      6/7 

  𝑁𝑐𝑜𝑎𝑟𝑠𝑒/𝑁𝑓𝑖𝑛𝑒   19/70  70/122  122/227 227/480 

 

 Relative 𝐿2-error (%)  1.3801  0.12707 0.10469 0.06078 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.  A quadtree cell system generated by an amoeba-like curve and the external 

source points 

 

 

Summary and conclusions 

The traditional Method of Fundamental Solutions has been revisited. The sources are defined 

in a completely automatic way using the quadtree/octtree subdivision algorithm. This 

algorithm generates sources, the spatial density of which is greater in the vicinity of the 

boundary and becomes low far away from the boundary. These groups of sources result is 

multi-level MFS-based approximations. As a smoothing procedure the classical (conjugate) 

gradient method was used. The number of boundary collocation points was always greater 

than that of the sources at any level, so that the MFS-equations were solved in the sense of 

least squares, i.e. the Gaussian normal equations were taken into account. The accuracy of the 

method has been proved acceptable. At the same time, the computational complexity of the 

method is much less than that of a traditional direct solver. Moreover, the problem of the 

severely ill-conditioned algebraic system is also avoided. 
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