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Abstract 

The work theorem establishes an energy relationship between a statically – admissible stress 
field and an independent kinematically – admissible strain field in a local region. The 
Meshless Method with reduced integration (IMFM) is derived through a weighted-residual 
formulation that leads to the work theorem of structures theory. 

In the formulation of the IMFM, the kinematically – admissible strain field is chosen as the 
one corresponding to an arbitrary rigid – body displacement; as a consequence, the domain 
term is canceled out and the work theorem is reduced to regular local boundary terms only. 
The Moving Least Squares (MLS) approximation of the elastic field is used to construct the 
trial function in this local meshless formulation. IMFM has a highly performance in problems 
with irregular nodal arrangement leading to accurate numerical results in two-dimensional 
elasticity problems. 

This paper presents the size effect of the irregularity nodal arrangement (cn) on energy and 

displacement relative error to solve the Timoshenko cantilever beam using different 

parameters of the local support domain (αs), the local quadrature domain (αq) and three 

different nodal discretization. Results are compared with the exact solution and the Meshless 

Local Petrov–Galerkin (MLPG) method and optimal results have been obtained for 2D 

problems plane stress. 

 

Keywords: Meshless Method with reduce integration (IMFM), Meshless Local Petrov-
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Introduction 

Numerical methods based in grid, like Finite Element Method (FEM), are widely used for 

scientific researches. Grid-based methods required high quality meshes to solve fracture 

mechanics problems with material discontinuity, large deformation where excessive mesh 

distortion takes place and other situations. The meshless methods were generated with the 

expectation of providing more adaptive, accurate and stable numerical solutions that can deal 

with problems where conventional methods are not suitable [1]. Generally, their formulation 

is based in the weighted-residual method [2]. 

 

Different meshless methods have been developed during the last 20 years [3]. Some methods 

based on a weighted-residual weak-form formulation were applied in solid mechanics such as 

the Diffuse Element Method (DEM) [4], the Reproducing Kernel Particle Method (RKPM) 

[5], and the Element-free Galerkin (EFG) [6], were the first. After, other methods emerged 

based on local weighted-residual weak forms, such as the Meshless Local Petrov-Galerkin 

Method (MLPG) [7,8], the Meshless Local Boundary Integral Equation (MLBIE) [9], the 

Local Point Interpolation Method (LPIM) [10], Local Radial Point Interpolation Method 
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(LRPIM) [11], the meshless Finite Volume Method (FVM) [12], the Rigid-Body 

Displacement Mesh-Free (RBDMF) and the Generalized-Strain Mesh-Free (GSMF) [13]. 

 

The Meshless Method with reduce integration (IMFM) formulation presented by [14], the 

kinematically – admissible strain field is chosen as the one corresponding to an arbitrary rigid 

– body displacement; as a consequence, the domain term is canceled out and the work 

theorem is reduced to regular local boundary terms only. The Moving Least Squares (MLS) 

approximation of the elastic field is used to construct the trial function in this local meshless 

formulation. IMFM and the popular MLPG using the MLS approximation, this fact allowing 

to have more precise conclusions when comparing the two methods. 

 

This paper is focused on the size effect of the configuration parameters of the local support 

domain (αs), the local quadrature domain (αq) and irregularity nodal arrangement (cn). It 

presents a comparison of the energy and displacement relative error for three different 

irregular nodal distribution to solve the Timoshenko cantilever beam. The results are 

compared with the exact solution and the Meshless Local Petrov–Galerkin (MLPG) method, 

optimal parameters have been determined. 

Methodology  

Let Ω be the domain of a body and Г its boundary subdivided in Гu and Гt that is Г = Гt U Гu, 

as represented in Fig. 1. The general fundamental boundary value problem of linear 

elastostatics aims to determine the distribution of stresses σ, strains ε and displacements u, 

throughout the body, when it has constrained displacements u , on Гu and is loaded by an 

external system of distributed surface and body forces with densities denoted, respectively by 

t , on Гt and b, in Ω. 

 

Figure 1. Meshless discretization of the global domain Ω and the local domains ΩP, ΩQ 

and ΩR, with boundary Г = Гu U Гt represented.  

The solution of these problem is a totally admissible elastic field that simultaneously satisfies 

the kinematic admissibility and the static admissibility. If this solution exists, it can be shown 

that it is unique, provided linearity and stability of the material are admitted [15, 16]. 

In the domain of the body, loaded by a system of external distributed surface and body forces 

with densities denoted, respectively by t , on the boundary Гt and b, in the domain Ω, 

consider a statically admissible stress field σ, that is any stress field that satisfies equilibrium 

with the system of applied external forces which therefore satisfies 



0T + =L σ b  (1) 

in the domain Ω, with boundary conditions  

,= =t nσ t   (2) 

on the static boundary Гt, in which σ: Stress components, L: Matrix differential operator, t: 

represents the traction components, t : Prescribed tractions values, n: Unit normal components 

to the boundary. 

In the domain Ω, with boundary Г = Гt U Гu, consider an arbitrary local domain ΩQ, assigned 

to a reference point Q ϵ ΩQ, with local boundary ГQ = ГQi ∪ ГQt ∪ ГQu, in which ГQi is the 

interior local boundary, while ГQt and ГQu are local boundaries that share the global 

boundaries, respectively the static boundary Гt and the kinematic boundary Гu, as represented 

in Fig. 1. The work theorem is derived as a local form that is valid in an arbitrary domain ΩQ, 

associated to the reference point Q.  

 

The general work theorem of the theory of structures stablishes an energy relationship, valid 

in an arbitrary local domain ΩQ ∪ ГQ ϵ Ω ∪ Г, between two independent elastic fields that can 

be defined in the body which are, respectively a statically admissible stress field that satisfies 

equilibrium with a system of external distributed surface and body forces, and a kinematically 

admissible strain field that satisfies compatibility with a set of constrained displacements. 

Derived as a weighted residual statement, the work theorem serves as a unifying basis for the 

formulation of numerical models Continuum Mechanics [17]. 

Expressed as an integral local form, defined in the local domain ΩQ ∪ ГQ, which can be 

written in a compact form as  

Q Q Q

T T Td d d
  

+  =   
* * *t u b u σ

 

(3) 

in which the stress field σ and the strain field ε* are not linked by any constitutive relationship 

and therefore, they ae independent of each other.  

Kinematic formulations consider, in the work theorem, a particular and convenient 

specification of the kinematically admissible strain field, leading thus to an equation of 

mechanical equilibrium that is used in numerical models, to generate the respective stiffness 

matrix of each model. A simple case of local equilibrium equations, based on a kinematically 

admissible strain field generated by a rigid-body displacement. 

Bearing in mind the key feature of the work theorem, which is the complete independence of 

the statically admissible stress field σ and the kinematically admissible strain field ε*, the 

strain field can be conveniently defined by a rigid-body displacement that is 

*(x) ,=u c
 

(4) 

where c is a constant vector that conveniently leads to null strains that is  

*(x) . = 0  (5)
 

When considered the kinematecally admissible strain field generated by arbitrary rigid-body 

displacement, Eq. (4), the local form of the work theorem, Eq. (3), leads to the next 

expression  

 



              d  d  d 0

Q Qt Qt Q −  

+ +  =  t t b      
(6) 

 

which states an integral form of mechanical equilibrium, of tractions and body forces, in the 

local domain ,Q Q    are represented in Fig. 2. 

 

Figure 2.  Schematic representation of the equilibrium of tractions and body forces, 

pointwisely defined at collocation points of a local form of the work theorem associated 

with a field node Q.  

The modelling strategy adopted in this paper, is based in the application of the work theorem, 

in the set of kinematically admissible strain fields, to solve the actual elastic problem. 

Consider the local form of the work theorem, Eq. (3). To derive the equilibrium equations of 

the numerical model, the kinematic formulation of the local form is carried out through the 

specification of an appropriate kinematically admissible strain field ε*. This paper considers 

the arbitrary rigid-body displacement formulation that leads to the local form of equilibrium 

Eq. (6), in which are then used to generate the stiffness matrix of the meshfree numerical 

model. 

The statically admissible stress field σ, which is required to satisfy equilibrium with a system 

of external forces, is assumed as the stress field that settles in the body, when it is loaded by 

the actual system of external distributed surface and body forces, with the actual displacement 

constraints. 

     Recall that the elastic field that settles in the body is the only totally admissible elastic 

field that satisfies the given problem. Therefore, besides satisfying static admissibility, 

through Eq. (1) and (2), that is the same as satisfying equilibrium through Eq. (6), generated 

by the weak form Eq. (3) of the work theorem, this unique totally admissible elastic field also 

satisfies kinematic admissibility defined as  

       , =Lu  (7) 

in the Defining the Statically Admissible Stress Field domain Ω, with boundary conditions  

     ,=u u  (8) 

on the kinematic boundary Гu, in which the displacement  is assumed continuous with small 

derivatives, to allow for geometrical linearity of the strain field ε. Hence, Eq. (8), which 

specifies the constraints of the actual unique solution of the elastic problem must be fulfilled. 



For the sake of simplicity, this paper considers the formulation of the meshfree numerical 

methods in the absence of body forces. Consequently, the equations of equilibrium are always 

defined only on the boundary of the local domain. 

The essential feature of meshfree numerical methods is that they perform the discretization of 

the problem domain and boundaries with a set of scattered field nodes that do not require any 

mesh for the approximation of the field variables. The meshfree method IMFM, presented in 

this paper, is based on the moving least-squares (MLS) approximation, introduced by [18].  

The MLS approximation is considered to be one of the best methods to approximate data with 

a good accuracy. Circular or rectangular local supports centered at each nodal point can be 

used. In the region of a sampling point X, the domain of definition of MLS approximation is 

the subdomain Ωx, where the approximation is defined, as showed in the Fig. 3 

 

Figure 3. Representation of a global domain Ω and boundary Г in the meshless 

discretization, with Xi nodes distributed within the body. 

In general, this local domain is a circular or rectangular region, centered at the respective node, 

where the rigid-body displacement formulation of the work theorem is defined as a local form 

of mechanical equilibrium. 

The local character of the MLS approximation is a consequence of the compact support of 

each node, where the respective MLS shape functions are defined. The size of the compact 

support, in turn, sets out, in a neighborhood of a sampling point, the respective domain of 

MLS approximation at this point. The domain of definition contains all the nodes whose MLS 

shape functions do not vanish at this sampling point. Therefore, the domain of influence of 

each node, is the union of the MLS domains of definition of all points in the local domain of 

the node. 

Finally, local meshfree formulations use a node-by-node stiffness calculation to generate, in 

the domain of influence of the local node, the respective rows of the global stiffness matrix. 

In the absence of body forces, the local form of the work theorem with the rigid-body 

displacement, Eq. (6), can be written simply as  

 d  d

Q Qt Qt − 

 = −  t t  
(9) 

which represents mechanical equilibrium of boundary tractions of the local domain ΩQ, 

associated with the field node .QQ  



General numerical methods can be effectively formulated through a reduced integration of the 

equilibrium Eq. (9) which, in the simplest linear case, leads to a point-wise discrete, form that 

improves the accuracy and the computational efficiency, as numerical results clearly 

demonstrate. 

Assuming a variation linear of the tractions along each boundary segment of the local domain, 

the local integral form of equilibrium can be evaluated with a single quadrature point, 

centered on each segment of the boundary. Applying this linear integration process in the Eq. 

(9), the following expression is obtained 

x x

1 1

i t

l j

n n

i t

l ji t

L L
t

n n= =

= −  t  
(10) 

In which ni and nt denote the total number of the integration points, one per segment, defined 

on the interior local boundary ,Qi Q Qt Qu =  − − with length Li, and the local static 

boundary Qt , with length Lt. This integrated equation represents a point-wise discrete form of 

the mechanical equilibrium of boundary tractions, evaluated at a set of points on the boundary 

of the local domain ΩQ, as showed in the Fig. 4.  

 

Figure 4. Schematic representation of the equilibrium of tractions and body forces, 

pointwisely defined at collocation points of a local domain associated with a field node Q. 

Consider a meshfree discretization of the body. The local meshless method with reduce 

integration is used to compute the respective system of algebraic equations, in node by node 

process, throughout traction evaluation at each central point of the boundary segments of the 

integrated local form assigned to each node with rectangular local domain. Figure 5 represents 

these local domains with four boundary segments and one point on each segment.  

 

Figure 5. Schematic representation of rectangular local domain with one point on each 

side.    



Discretization of Eq. (10) is carried out with the MLS approximation, for the local domain ΩQ, 

in terms of the nodal unknowns ˆ ,u thus leading to the system of two linear algebraic equations  

x x x

1 1

ˆ
i t

l l j

n n

i t

l ji t

L L

n n= =

= − n DB u t  (11) 

that can be written as 
ˆ

Q Q=K u F
 

(12) 

in which KQ, the nodal stiffness matrix associated with the local ΩQ, is a 2x2n matrix given by  

x x

1

i

l l

n

i
Q

li

L

n =

= K n DB  (13)
 

and FQ is the respective force vector given by 

   
1

.
tn

t
Q

jt

L

n =

= −  jxF t
 (14) 

Consider that the problem has a total of N field nodes Q, each one associated with the 

respective local region ΩQ. Assembling Eq. (15), for all M interior and static – boundary field 

nodes leads to the global system of 2M x 2N equations  

ˆ .=Ku F
 

(15) 

Finally, the remaining equations are obtained from the N – M boundary field nodes on the 

kinematic boundary. For a field node on the kinematic boundary, a direct interpolation 

method is used to impose the Kinematic boundary condition as
 

j j

1

ˆ(x ) (x ) ,
n

k i ik k

i

u u
=

= = u
 (16) 

Or, in matrix form as 
û ,k k k=  =u u

 
(17) 

with k = 1, 2, where ku  is specified nodal displacement component. Equations (17) are 

directly assembled into the global system of equations (15).  

It can be easily anticipated high computational efficiency, with very accurate results, of this 

local formulation with linear reduced integration. As a matter of fact, the nodal stiffness 

matrix is effectively computed, in Eq. (13), with only 4 integration points (1 integration point 

on each side of the local boundary), which basically implies a very short processing time to 

run the analysis. In addition, the reduced integration leads to high accuracy of the results, 

which plays a key role in the behavior of IMFM, since it implies a reduction of the nodal 

stiffness which, in turn, leads to an increase of the solution accuracy and, which is most 

important, presents no instabilities. For more information about the formulation for these 

method, see [14]. 

Parameters of the Meshfree Discretization 

This section presents some numerical results for Cantilever beam and the Plate with a circular 

hole for different nodal configurations. The effects of the size of local support and quadrature 

domain are analyzed and compared with exact solution. 

For a generic node i, the size of the local support ΩS and the local domain of integration Ωq 

are respectively given by  



,S S ir d =
 

(18) 

,q q ir d =
 (19) 

in which di represents the distance of the node i, to the nearest neighboring node; for the 

analysis is performed for two different values of the local support domain size (αs = 2.00 and 

αs = 2.11), and the local quadrature domain size (αq) which vary 0.45 to 0.55 with increments 

0.01. 

Irregular nodal arrangement 

The nodal irregularity is generated by changing randomly the coordinates of the nodal 

regularity distribution by small distance, this movement can be calculated by 

11 1' ,
ii i n xx x c d= 

 (20) 

22 ' ,
ii i n xx x c d= 

 
(21) 

in which Cn is a parameter that controls the nodal irregularity and vary randomly in the range 

of 0.0 and 0.4. For nodes located in the boundary there are restrictions that depend on the 

position of the node.  

Numerical Examples 

Displacement and energy norms can be used for error estimation and can be computed, 

respectively as 

1
2

Tu u ud


 
=  
 
  (22) 

1
2

1

2

T D d  


 
=  
 
  (23) 

 

The relative error for u and  is given, respectively by 

num exact

u

exact

u u
r

u

−
=  (24) 

num exact

exact

r
 



−
=  (25) 

Cantilever Beam                                                       

A Cantilever beam showed in Fig. 6, is subjected to a parabolic traction at the free end. The 

main properties are tabulated in Table 1 and the problem is solved for plane stress case. 

 
Figure 6.  Cantilever beam 



Table 1. Properties of Cantilever Beam 

 

                                               Parameters                              Values 

       

                                               Height, D                                12 m 

                                               Length, L                                48 m 

                                               Thickness, t                             1 m 

                                               Load, P                                    1000 N 

                                               Modulus of Elasticity, E         30 MPa 

                                               Poisson`s Ratio, ν                   0.3 

 

 

The parabolic traction and the moment of inertia is given by  

     
2

2

2 2 2( ) ,
2 4

P D
t x x

I

 
= − − 

 

 (26) 

        
3

12

D
I =  (27) 

 

The exact solution of the problem is given by [19]. The equations for the exact displacement 

are:  

 

( ) ( ) ( )
2

22
1 1 2 1 2, 6 3 2

6 4

Px D
u x x L x x

EI


  
= − − + + −  
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(28) 

         

( ) ( ) ( ) ( )
2

2 21
2 1 2 2 1 1 1, 3 4 5 3

6 4

D xP
u x x x L x L x x

EI
 

 
= − + + + − 

   

(29) 

And the exact stress components are given by 

 

1 2
11 1 2

( )
( , )

P L x x
x x

I


−
= −  

(30) 

2
2

12 1 2 2( , )
2 4

P D
x x x

I


 
= − − 

 
 

(31) 

22 1 2( , ) 0x x =
 

(32) 

 

The IMFM is used for solving this problem, both a regular (cn = 0.0) and irregular (cn = 0.1, 

0.2, 0.3 and 0.4) nodal distribution are employed with a discretization of 21 x 9 = 189 nodes.   

 

In the first discretization the nodes located in the boundary have a regular distribution and 

nodes located inside of the beam have an irregular distribution; it is called Configuration A as 

is showed in Fig. 7 (presented by [20]) and Fig. 8.  

 

 

 



 
Figure 7.  Irregular internal nodal arrangement for the Cantilever beam (MLPG [20]) – 

Configuration A 

 

 

 
Figure 8.  Irregular internal nodal arrangement for the Cantilever beam (IMFM) – 

Configuration A 

 

Second discretization shows all nodes with an irregular distribution called Configuration B as 

is showed in Fig 9. 

 

 
 

Figure 9.  Irregular nodal arrangement for the Cantilever beam (IMFM) – 

Configuration B 

 

Influence of the local support domain size (αs) 

 

This parameter must be greater than 1.0, the algorithm of MLS approximation may be 

singular and the shape function cannot be constructed for the small values. Initially, the 

influence of αs in the solution is obtained for the local quadrature domain fixed (αq = 0.5), this 

value presented an optimal result for regular nodal distribution by [14]. 

 

Figure 10 shows the variation of relative error as a function of the size of the parameter of 

nodal irregularity which vary between 0.0 to 0.4 with 0.1 increments. Results are presented 

for two values of local support domain (αs = 2.00 and αs = 2.11) using both nodal 

configuration (A and B).  

 



 
Figure 10. Effect of irregularity on the nodal arrangement on energy relative error with 

αq = 0.5, carried out with 21 x 9 = 189 nodes.      

  

Figure 10 shows that the value of 2.11 for the local support domain (αs) presents low relative 

energy errors for model performed with both configurations. Additionally, the magnitude of 

the energy relative error increase with the nodal irregularity, presenting a directly proportional 

behavior between the two variables. 

 

The energy relative error for two different methods is presented in Fig. 11, the same irregular 

nodal discretization called Configuration A is showed in the Fig. 7 for MLPG and the Fig. 8 

for IMFM. The energy relative error for MLPG and IMFM have the same expression 

presented in Eq. 26 and 28. These values for MLPG were obtained in [20].    

 

 
Figure 11. Effect of irregularity on the nodal arrangement on energy relative error for 

MLPG and IMFM, carried out with 21 x 9 = 189 nodes.      

 

For the irregular nodal discretization IMFM and MLPG presented similar behavior for the 

configuration A, the IMFM presented more accuracy.   



Influence of the local quadrature domain size (αq) 

 

This parameter must be less than 1.0, the reason is to ensure that the local sub – domains of 

the internal nodes are entirely within the solution domain, without being intersected by the 

global boundary. The influence of αq is obtained for the local support domain fixed (αs = 2.11).  

 

Figure 12 shows the variation of relative error as a function of the size of the local support 

domain which vary between 0.45 to 0.55 with 0.01 increments. Results are presented for four 

values of parameter of nodal irregularity which vary between 0.0 to 0.4 with 0.1 increments; 

using the nodal configuration A.  

 
Figure 12. Effect of irregularity on the nodal arrangement on energy relative error with 

αs = 2.11, carried out with 21 x 9 = 189 nodes.      

 

Figure 12 shows that the value of 0.5 for the local quadrature domain (αq) presents low 

relative energy errors for all values of parameter of nodal irregularity. Similar results are 

obtained for displacement relative error. 

 

Influence nodal discretization  

 

Other different irregular nodal discretization was carried out to know the influence on the 

accuracy on the energy and displacement relative error. Two additional configurations were 

presented with 11 x 5 = 55 nodes and 33 x 17 = 561 nodes.  

 

Figure 13 and 14 show respectively, the variation of energy and displacement relative error as 

a function of the size of the parameter of nodal irregularity which vary between 0.0 to 0.4 

with 0.1 increments. Results are presented for three nodal discretization using values fixed of 

the local support domain (αs = 2.11) and the local quadrature domain (αq = 0.5), using both 

nodal configuration (A and B).  



 
 

Figure 13. Effect of irregularity on the nodal arrangement on energy relative error with 

αs = 2.11 and αq = 0.5, carried out with 11 x 5 = 55 nodes, 21 x 9 = 189 nodes and 33 x 17 

= 561 nodes.   

 
 

Figure 14. Effect of irregularity on the nodal arrangement on displacement relative 

error with αs = 2.11 and αq = 0.5, carried out with 11 x 5 = 55 nodes, 21 x 9 = 189 nodes 

and 33 x 17 = 561 nodes. 

 

The Figure 13 and 14 shows that the energy and displacement relative error decreases with 

finer nodal distributions for both configuration. This result evidences that the meshless 

methods with reduce integration has the potential to be a very method including nodal 

arrangement with greater irregularity. 

Conclusions 

The effect of the nodal irregularity is very little on energy and displacement relative errors for 

different configuration and discretization. This fact reveals that the meshless methods with 

reduce integration (IMFM) and meshless Local Petrov Galerkin (MLPG) are stable for 

irregular nodal arrangements, but the IMFM presented more accuracy.  

 



The nodal irregularity and the energy relative error presented a directly proportional relation 

for the cantilever beam. A similar behavior is showed for different mesh discretization, using 

a fixed value αq = 0.5 on the local quadrature domain. 

 

The local quadrature domain (αq = 0.5) for regular and irregular nodal arrangement, different 

mesh discretization and any value of the local support domain presented the most accurate 

results for the cantilever beam. 

 

The discretization with the nodes located in the boundary have a regular distribution and 

nodes located inside of the beam have an irregular distribution presents lower energy and 

displacement relative error that the discretization which all nodes have an irregular 

distribution. 
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