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Abstract 
This paper advances a new finite volume alternative for solving poroelasticity problems 
employing a staggered arrangement for pressure and displacements in an unstructured grid 
framework. By staggering these variables, an improvement is obtained for the pressure-
displacement coupling, which is claimed by the authors to prevent the numerical solution 
from instabilities in the pressure field. The two-dimensional formulation is still under 
development, but preliminary one-dimensional results are presented to demonstrate this 
capability. It is shown that the staggered formulation keeps second order accuracy for both 
pressure and displacement, even for highly non-uniform grids. In addition, the formulation 
does not present any spurious pressure oscillations, a key issue when solving poroelasticity 
problems under undrained conditions. The results suggest that staggering the rock 
displacements related to the pore pressure is a very promising approach to confer robustness 
to the numerical scheme. The novel method is founded on the analogy among pressure-
velocity coupling for the Navier-Stokes equations and pressure-displacement for the 
poroelasticity problems. It is worth to mention that both physics are treated with the same 
conservative method. 
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Introduction 

Several engineering problems are modeled by systems of coupled partial differential 
equations, many of them involving different physics. In geomechanics, in which compacting 
porous media is coupled with the fluid flow, is one example. In this case, a delicate coupling 
between pore-pressure and rock displacement is present, since under certain conditions, as in 
the very beginning of the transient, or at the interface of two materials with different 
permeability, pressure wiggles appear in the numerical solution. Those situations, which 
resemble an undrained condition, impose an almost zero compressibility, which creates the 
condition for this pathology to appear. In the class of Finite Element methods, extensively 
used for solving the rock mechanics in porous media, several remedies for this pathology is 
available, being mixed finite element [1] and discontinuous Galerkin some of the possibilities. 
However, those remedies are at a cost of considerably increasing in computer time. 
Alternatively, some authors [2,3] have proposed stabilization techniques that do not increase 
the computational cost and still eliminate the instabilities, but at a cost of introducing 
numerical diffusion to the solution. Recently, in the context of finite volumes, Honório and 
Maliska [4] have proposed a strategy for avoiding such instabilities, which can be also 
regarded as a stabilization technique. In spite of all these alternatives, a numerical scheme that 
efficiently eliminates the pressure wiggles without increasing computational cost, while 
keeping the same order of accuracy for both pressure and displacements, is still pursued. 



 
An analysis of the coupling between pressure and displacement for poroelasticity, and 
pressure and velocity for Navier-Stokes flows, reveals that they are of the same nature, so it is 
expected that the remedies employed in one class of problems can be applied to the other one 
with success. It should be recalled that the oscillatory pressure fields arising when solving 
incompressible Navier-Stokes flows, and its remedies, is known for more than four decades, 
and can be fully mitigated if a staggered grid approach is employed [5]. This remedy was 
abandoned when unstructured grids were required for solving fluid flows in complex 
geometries, due to the alleged complexity of implementation. This paper addresses this issue, 
advancing a finite volume method using unstructured grids with staggered variables, avoiding 
the oscillatory pressure field that appears in poroelasticity. Another important feature of the 
methodology herein presented is the solution of the both physics, fluid flow and rock 
mechanics, with the same finite volume technique [6].  
 
Firstly, it is presented the mathematical model for the coupled poroelasticity problem. Then, 
the fundamentals of the staggered arrangement of variables are discussed, and a brief analogy 
is established between pressure-displacement in poroelasticity and pressure-velocity for 
Navier-Stokes flows. The model equations are discretized for two-dimensions and results are 
presented for 1D problem for both staggered and collocated arrangements. Finally, a few 
remarks close the work. 

Mathematical Model 

The mechanical behavior of saturated porous media, besides being affected by its mechanical 
properties, it is also influenced by the pressure of the fluid filling its pores. Terzaghi [7] 
introduced the concept of effective stress into the equations of stress equilibrium in order to 
take the pore pressure into account, yielding 

 
pα∇⋅ − ∇ =σ b       (1) 

 
in which ∇  is the nabla operator, σ  is the effective stress tensor, α  is the Biot coefficient, p  
is the pore pressure and b  is a source term. Moreover, considering small strains and a stress-
strain relationship represented by the constitutive matrix £  (Voigt notation), the effective 
stress tensor can be written in terms of the displacement vector u  by the expression 
 

S= ∇σ u£        (2) 
 
with S∇  being the symmetric nabla operator. The closure of the model is ensured by the mass 
conservation equation for deformed porous media, given by 
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in which 1 M  is the Biot module and q  is a source term. Equation (3) is conveniently written 
here in terms of the fluid velocity, fv , and the solid grains velocity, sv , which are 
respectively given by 
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with k  being the absolute permeability tensor and µ  the fluid viscosity. The gravitational 
term in equation (4) has been neglected with no loss of generality. 

Staggered Grid Arrangement 

One of the major challenges faced by the numerical schemes developed to solve equations (1) 
and (3) is how to avoid pressure wiggles that can appear under undrained consolidation. In 
this situation the consolidation process takes place in a much smaller time scale than the fluid 
motion ( s f>>v v ), which yields the following mass conservation equation 
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Equation (6) is very similar to the mass conservation equation that appears when solving the 
Navier-Stokes equations. It is well known that satisfying this equation is of utmost importance 
to avoid the well-known checkerboard pressure problem [8]. The key issue in poroelasticity 
resides on how to determine a displacement field that satisfy both mass and momentum 
equations. For the Navier-Stokes equations the problem is exactly the same, except that the 
unknown variable is the velocity field instead of displacement. 
 
Ensuring mass and momentum conservation is not a trivial task to be accomplished. The 
pioneering work to address this issue is due to Harlow and Welch [5], in the context of finite 
differences.  They staggered the positions of pressure and velocities, such that momentum and 
mass conservation are satisfied for different control volumes but for the same set of variables. 
In this manner, pressure and velocities are directly available where they are required when 
integrating the corresponding partial differential equation in a control volume for mass or 
momentum. This technique is recognized to completely mitigate pressure wiggles for the 
Navier-Stokes equations. Due to the similarity of equation (6) with its counterpart in Navier-
Stokes flows, a staggered grid arrangement between pressure and displacement might have 
strong chances to completely eliminate the pressure wiggles appearing in poroelasticity 
problems. 
  
Finite Volume Formulation 
 
The traditional procedure for obtaining the approximate equations via a finite volume method 
starts by integrating the differential equations over each control volume. Since it is being 
proposed a staggered arrangement for u  and p  the control volumes for pressure and 
displacement must be clearly identified.  In this work, we follow the methodology presented 
by Peters and Maliska [9] for building the staggered control volumes on unstructured grids. 
 
In figure (1a) it is shown the base mesh (the elements) provided by the grid generator. As 
depicted in figure (2b) the control volumes for mass conservation, pΩ , coincides with the 
elements of the base mesh. This control volume is for pressure. For the momentum 
equilibrium, however, the control volumes, Ωu , are built around the edges of the elements by 
connecting the vertices of the edge with the centroids of the two adjacent elements. A control 
volume Ωu  is represented in figure (1c) and the position of ju  is at the midpoint of the edge 



of the element. The key point of this configuration is that the displacements are located at the 
faces of the control volume pΩ  (figure (1b), which will have a direct impact on the 
volumetric strain computation over pΩ , as will be shown later.  
 

 

Figure 1 Geometrical entities: (a) mesh composed by triangular and 
quadrilateral elements; (b) control volume for mass conservation and (c) 

control volume for momentum conservation. 

 

Figure 2 Integration points (a) for mass and (b) for momentum 
 
Mass Conservation Equation 
 
Equation (3) is integrated over a time step, tΔ , along with an implicit first-order backward 
Euler scheme and over the control volume p

iΩ . The divergence theorem is applied to obtain 
the surface integrals. By the midpoint rule, the semi-discretized form of equation (3) is 
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in which the variables evaluated at the previous time level carries the superscript º,  and no 
superscript refers the current time level. Each control volume pΩ is bounded by a set of faces 
(or edges) and at the midpoint of each face is located an integration point ip . The set of 
integration points surrounding p

iΩ  is denoted by p
iΓ , as highlighted in figure (2). Each 

integration point has an area vector, ips , pointing outwards the control volume. In addition, 
the volume of pΩ  is represented by pΔΩ . Recalling equation (5), the mass fluxes crossing 
the faces of pΩ  due to the rock deformation and fluid motion are, respectively, given by 
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The main advantage of staggering pΩ  and Ωu  becomes clear by inspecting equation (8), 
noting that the displacement vectors ipu  and o

ipu  are directly available at the integration points 

of p
iΓ  (see figure (2)), avoiding any kind of interpolation. The benefits of this feature are of 

particular importance during undrained consolidation (equation (6)), where the mass fluxes 
through the control volume's faces is entirely given by sw . This is precisely the point one is 
claiming to be the key point for avoiding the pressure instabilities. 
 
The next step is to choose how to reconstruct the pressure gradient of equation (9) at the 
integration points belonging to pΓ . The literature is abundant on these kind o methods, and 
Cerbato et al. [10] present an extensive analysis of several techniques for gradient 
reconstruction specifically applied to unstructured grids, which could be readily applied here 
to approximate equation (9). The reconstruction could also be done by a Multi-Point Flux 
Approximation (MPFA), as proposed by Aavastmark et al. [11].  
 
Equilibrium Equations 
 
Equation (1) is integrated over the control volume jΩu , as depicted in figure (1c), and the 
divergence theorem is applied to the divergent operator yielding 
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in which jΓu  is the set of integration points surrounding jΩu , as shown in figure (2b), and s  is 
an appropriate arrangement of the area vector components, which for the two-dimensional 
case is 
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The volumetric integral of the pressure gradient in equation (10) is approximated by the 
Green Gauss theorem 
 

 d
j

j j jp p
Ω
∇ Ω ≈∇ ΔΩ∫ u

u u   ,   (12) 

 
Now, it is important to notice that jp∇  is exactly the same as the pressure gradient required 
by equation (9), since a displacement position j  always coincide with an integration point 
belonging to p

iΓ , as it can be seen in figure (2). Therefore, the methodology chosen to 
evaluate equation (9) can be the same used to compute equation (12). 
 



The remaining term to be evaluated in equation (10) is the stress tensor, ipσ , at the integration 

point belonging to jΓu . This is performed using equation (2). The procedure to compute the 

displacement derivatives S∇ u  at the integration points of jΓu  follows the approach presented 
in [9] for computing the velocity derivatives. 
 
One Dimensional Formulation 
 
The corresponding 1D formulation of the methodology just described is now considered. The 
1D formulation simplifies considerably the geometry, but still carries all the ingredients to 
evaluate the ability of the scheme to avoid pressure instabilities.  Therefore, some preliminary 
results of the above formulation using the grid shown in figure (3) are presented. The results 
are compared with the traditional collocated arrangement of variables, as depicted in figure 
(4). It is worth to mention that the grids can be unequally spaced.  
  
 

 

Figure 3 (a) 1D grid, (b) control volume for pressure and (c) control 
volume for displacement. 

 

 

Figure 4: Collocated (coincident) control volumes associated to a 1D grid 
 
1D Staggered Grid Formulation 
 
Integrating equations (3) and (1) over p

iΩ  and jΩu  of figure (3), respectively, results in 
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with the following approximations at the integration points 
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The set of equations (13) and (14), along with equations (15-18), composes a linear system of 
equations for pressure and displacement that is solved in a simultaneous (monolithic) fashion.  
 
Co-located Formulation 
 
The discretization of the equations for a collocated grid is basically the same as the previous 
case, except that the integration for both variables is performed over the same control volume 

iΩ . In this manner, the resulting equations are 
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The approximations at the integration points still hold 
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It can be seen now that equations (19) and (20) require the evaluation of u  and p at the 
integration points, where they are not available, due to the co-located arrangement. In this 
case, we use a linear interpolation of these variables, thus the following relationships are 
employed 
 

2 1
3 3

1
2

1
2

1i ii i

i
i

x p x p
p

x
++ +

+
+

Δ +Δ
≈

Δ
       (25) 



2 1
3 3

1
2

1
2

1i ii i

i
i

x p x p
p

x
−− −

−
−

Δ +Δ
≈

Δ
       (26) 

2 1
3 3

1
2

1
2

1i ii i

i
i

x u x u
u

x
++ +

+
+

Δ +Δ
≈

Δ
       (27) 

2 1
3 3

1
2

1
2

1i ii i

i
i

x u x u
u

x
−− −

−
−

Δ +Δ
≈

Δ
       (28) 

in which 2 1
3 2

1ii ix x x++ +Δ = − , 1 1
3 2

ii ix x x+ +Δ = − , 1 1
3 2

ii ix x x− −Δ = −  and 2 1
3 2

1ii ix x x −− −Δ = − . 

 
These two formulations will be used for solving the classical problem of poroelasticity, the 
Terzaghi’s column, shown in Figure 5, with two main goals, to obtain the order of 
approximation of the staggered scheme, and demonstrate that the co-located grid arrangement 
without a stabilizing scheme is unable to damper the pressure oscillations, while the staggered 
arrangement fully mitigate the pressure oscillations without any stabilizing scheme. 
 

 

Figure 5 Geometry and boundary conditions for the one-dimensional  
consolidation problem (Therzaghi’s column). 

 
Numerical Results 
 
As depicted in figure (5), the domain has its bottom boundary fixed and impermeable, and the 
top boundary is fully-permeable ( 0 kPatopp = ) and subjected to a compressive load of 

10 kPatopσ = . The structure is initially not deformed and the initial pore pressure equals to 

zero. The fluid phase properties are: 3998,2 kg mρ = , 31,002 10  Pa.sµ −= ×  and 
4 1c 1,0 10  MPaf

− −= × . The solid phase properties are: 1,732 MPaG = , 2,597 MPaλ = , 

0,3φ = , 1,0α =  and 41,0 10  m sK −= × , where K  represents the hydraulic conductivity. 
 
The numerical solutions are now checked against analytical solutions for validation purposes, 
followed by an analysis of the order of approximation of the staggered scheme, concluding 
demonstrating that the staggered scheme is efficient in damping the pressure oscillations. 
Slightly and highly non-uniform spaced grids are employed. With a fixed time step size of 0,1 
seconds, the pressure and vertical displacement profiles along the vertical direction are plotted 
against the analytical solution for specified time levels.  
 



 

Figure 6  Pressure and displacement fields. Slightly non-uniform grid 

 

Figure 7 Pressure and displacement fields – Highly non-uniform grid 
 
Figures (6) and (7) show the numerical and analytical solutions for the pressure and 
displacement profiles for slightly and highly non-uniform grids, indicating that the solutions 
are not affected by the non-uniformity of the grid.  
 
Convergence Analysis 
 
The assessment of the convergence characteristics of the staggered scheme is performed 
considering two sets of progressively refined grids. The sets have slightly and highly non-
uniform spaced grids randomly generated. For each set of grids, pressure and displacement 
profiles are taken at 500t =  seconds. These profiles are compared with the analytical 
solutions and the Euclidean norm (L2-norm) of the error vector is computed. Four different 
time step sizes are considered: 0,1, 1, 10 and 100 seconds.  
 



                                                          
   (a)              (b) 

Figure 8 Convergence analysis of the staggered scheme for slightly non-
uniform grid. (a)Pressure and (b) displacement. 

   (a)          (b) 

Figure 9 Convergence analysis of the staggered scheme for highly non-
uniform grids. (a) Pressure and (b) displacement. 

 
The behavior of the pressure and displacement error as the grid is refined is presented in 
figures (8) for slightly non-uniform grids. As can be seen, a second order decay of the error is 
obtained for both pressure and displacement. For highly non-uniform grid Figure (9b) shows 
second order of accuracy for displacement, while Figure (9a) suggests that the pressure is 
somehow affected by the grid non-uniformity, but it still can be regarded as a second order 
approximation. 
 
Numerical Instabilities in the Pressure Field 
 
As shown in the previous section, the staggered formulation is second-order accurate for 
pressure and displacement, even for highly non-uniform grids. It is well known that equal-
order approximations for both pressure and displacement can cause numerical instabilities 
during undrained consolidation, where the fluid velocity is nearly zero. In this section, the 
same problem (Terzaghi’s column) is solved with a time step size of 0,1 seconds and the 



solution taken at 1,0t =  second. In this situation the fluid does not have enough time to move 
as the solid matrix deforms, inducing an undrained consolidation. In fact, pressure instabilities 
are expected for equal-order formulations when the time step size is small enough to violate 
the minimum time step criteria postulated in [12]. This problem is solved with four different 
grids summarized as below 
 

Grid 1 16 nodes Slightly non-
uniform 

Grid 2 16 nodes Highly non-
uniform 

Grid 3 32 nodes Slightly non-
uniform 

Grid 4 32 nodes Highly non-
uniform 

Table 1: Types of grids. 

 
The numerical and analytical profiles are depicted in the figures below. The numerical 
solutions of the pressure and displacement profiles are obtained by both staggered and 
collocated arrangement of variables. Both numerical solutions are compared with the 
analytical one. 
 

 

Figure 10 Pressure and displacement profiles for grid 1 (16 nodes). 
 



 

Figure 11 Pressure and displacement profiles for grid 2 (16 nodes ). 

 

Figure 12 Pressure and displacement profiles for grid 3 (32 nodes). 

 

Figure 13 Pressure and displacement profiles for grid 4 (32 nodes). 
 
As it can be seen in figures (10-13), the collocated formulation shows numerical instabilities 
also for the displacement field, what would be expected, since it directly depends on the 



pressure gradient. For the grids with 16 nodes, figures (10) and (11) show an unacceptable 
solution obtained by the collocate formulation for the vertical displacement, which 
deteriorates even more with the grid non-uniformity.  For the more refined grids (32 nodes), 
the numerical instabilities of the collocated arrangement concentrate along the upper-middle 
of the domain and they also get worse with the grid non-uniformity. 
 
The staggered formulation, by its turn, despite presenting the same order of approximation for 
both pressure and displacement, does not show numerical instabilities at all. Instead, an 
excellent agreement is verified with the analytical solution. In addition, the staggered 
formulation for randomly spaced grids does not introduce any numerical diffusion, which is a 
common drawback of stabilization techniques commonly employed to equal-order 
formulations. 
 
 
Conclusions 
 
In this work, a two-dimensional finite volume formulation has been presented for modeling 
the coupled fluid flow/geomechanics using staggered arrangement of variables for 
unstructured grids. An equivalent one-dimensional formulation for randomly spaced grids has 
been implemented and tested. The results show an overall second order accuracy for both 
pressure and displacement, even for highly non-uniform grids. Despite this fact, it has been 
shown that the staggered formulation does not present any numerical instability during critical 
situations and does not introduce any numerical diffusion to the solution. If this conclusion 
persists for 2D and 3D cases, and we believe it will since the 1D formulations carries the key 
reasons for the stability, the formulation advanced will generate poroelasticity solutions free 
from spurious oscillations, free from numerical diffusion and keeping second order of 
accuracy for both pressure and displacements, all embodied in a conservative scheme for 
mass, momentum and equilibrium equations. 
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