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Abstract 

The paper deals with derivation of 2D formulation as well as numerical implementation and 

study of coupling effects in elastic functionally graded material (FGM) plates within the theory 

of stationary thermo-elasticity. Unified formulation is developed with involving the 

assumptions used in the classical Kirchhoff-Love theory for bending of thin elastic plates as 

well as the assumptions used in the shear deformation plate theory of the 1st and 3rd order. The 

governing equations and the boundary conditions for deformations are derived from the 

variational principle, while the formulation for thermal problem is derived by averaging the 3D 

heat conduction formulation with respect to the transversal direction. The strong formulation 

and meshless approximation are developed for the derived formulation. The coupling effects 

are studied by numerical simulations in FGM plates with possible variable thickness and subject 

to three kinds of stationary loading: (i) uniform transversal loading; (ii) simple tension in plane 

of the plate; (iii) prescribed different temperatures on the bottom and top surfaces of the plate.   

Keywords: Stationary thermo-elasticity, continuous inhomogeneity, plate bending, 2D 

formulation, coupling effects, numerical study 

 

Introduction 

Plate structures are attracting attention of engineers, designer and researchers for a long time 

because of their superior properties and new features appearing with development of new 

materials. Due to the small aspect ratio of thickness to in-plane dimensions, in the plate theories 

the 3D formulation of elasticity problem is assumed in semi-integral form with integration 

across the plate thickness, and resulting into simplified 2D problems. In stationary thermo-

elasticity [1], the temperature field is independent of elastic fields, though it is not valid in 

reverse. Thus, the thermal problem can be solved separately in advance and one can utilize the 

obtained temperature field in evaluation of the semi-integral fields occurring in the governing 

equations for bending problem. For this purpose, it is necessary to replace the Hooke law by 

the Duhamel-Neumann constitutive law known from the theory of thermo-elasticity [1]. In 

general, however, we don’t know the temperature field in terms of integrable functions and the 

2D formulation for bending of plates with including thermal effects cannot be derived in closed 

form. Therefore the development of 2D formulation for thermal problems in plates is desired.  

Functional gradation of material coefficients and/or variable thickness of the plate represent 

another reason why the correct formulation for plate problems must be derived for FGM plates 

by performing the integration with respect to the transversal coordinate in the variational 

formulation of the original 3D thermo-elasticity problem. The FGM composites [11-15] have 

significant utilization in design of structural elements not only because of superior properties 

of micro-constituents but also for elimination of interface discontinuities occurring in laminated 

composite structures [16]. The most frequently used modeling of functional variation of 

material coefficients is the rule of mixture where the material coefficients of multiphase 
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materials are related directly to the volume fractions and individual coefficients of the 

constituents. Besides several rather simple models for spatial gradation of volume fractions by 

analytical functions, there have been developed also more sophisticated models (see e.g. [17-

19]) for spatial distribution of volume fractions with including some microstructural aspects of 

constituents of micro/nano-composites. In this paper, we confine to simple power-law 

gradations of material coefficients in two-constituent composites, in order to demonstrate some 

new coupling effects due to gradation of material coefficients and/or plate thickness.    

In the most simplified theory, the Kirchhoff-Love theory (KLT), the shear deformations are 

omitted. There have been developed also generalized shear deformation theories including the 

1st order shear deformation theory (FSDPT) [16, 20] and higher order shear deformation 

theories (HSDPT) [16, 20-23], which account for transverse shear strains and stresses in 

contrast to the KLT. In this paper, starting from the principle of virtual work and assuming the 

power-law gradation in the transversal direction, the dependence of all elasticity fields on the 

transversal coordinate is known a priori and the integrations along the direction of gradation 

can be accomplished analytically in closed form. Thus, the original 3D problems is converted 

to 2D problem with correctly derived governing equations and boundary conditions. In 

stationary thermoelasticity, the temperature field is not influenced by the elasticity fields and 

the thermal problem can be solved separately. In order to get the 2D formulation also for thermal 

problem in plates, we consider the power series expansion of the temperature field with respect 

the transversal coordinate up to the 2nd power, which is physically meaningful as long as the 

plate thickness is significantly smaller than its characteristic length in the mid-plane of the plate. 

Having known the dependence of thermal fields on the transversal coordinate, we can consider 

the 3D heat conduction equation in the averaged sense. This 2D governing equation together 

with the boundary conditions on the bottom and top surfaces of the plate play the role of 

governing equations for primary thermal fields. The complete 2D formulation for plate bending 

in stationary thermo-elasticity is discretized by using the meshless Moving Least Square 

approximation (MLS) [5-8] for spatial variations of all 2D field variables. Since the governing 

equations are represented by the partial differential equations (PDE) with variable coefficients 

and the accuracy of approximation of derivatives is decreasing with increasing their order, we 

decomposed the original PDE of the 4th order into the system of PDE with 2nd order derivatives 

by introducing new field variables, in order to eliminate high order derivatives. To facilitate the 

numerical solution as much as possible for the considered system of the PDE with variable 

coefficient, we propose to use strong formulation, which is free of any integrations and reduces 

the amount of evaluations of shape functions, since the evaluations are localized to nodal points.  

The numerical simulations are employed for study of coupling effects in FGM plates with 

possible variable thickness and subject to three kinds of stationary loading: (i) uniform 

transversal loading; (ii) simple tension in plane of the plate; (iii) prescribed different 

temperatures on the bottom and top surfaces of the plate.    

2D formulation of bending problems for FGM plates in stationary thermo-elasticity 

It is well known that in stationary thermo-elasticity [1], the temperature field is not affected by 

mechanical fields, while in linear theory the thermal strains are proportional to the deviation of 

temperature from its value at the reference state  0( , )kl kle z     x , with   being the linear 

thermal expansion coefficient. Therefore the thermal problem can be solved separately in 

advance and subsequently the elasticity problem can be solved with bearing in mind thermal 

strains known from the solution of thermal problem. Evidently, the thermo-elasticity problem 

is reduced to a pure elasticity problem, if either the temperature is kept on the reference 0  

value or 0  .  

 



It is well known that the original 3D elasticity problem for plate structures can be reduced to 

2D problem because of significantly smaller thickness than the other in-plane length 

dimensions. According to assumptions adopted for deformation of plates, several theories have 

been developed for bending of elastic plates. Among the most frequently applied theories to 

bending of elastic plates, one can name the Kirchhoff-Love theory for bending of thin elastic 

plates (KLT), and the shear deformation theories of the 1st and 3rd order (FSDPT, TSDPT). 

Recall that a unified formulation can be developed for bending of elastic plates with possibility 

to switch between three above mentioned theories by selecting proper values for two key factors 

[2],[3]. Without going into details, we outline the derivation of the unified formulation for 

bending of FGM plates within stationary thermo-elasticity. The three components of 

displacements 3( , )iv xx  can be expressed in terms of the in-plane displacements ( )u x , 

transversal displacements (deflections) ( )w x  and rotations of the normal to the mid-surface 

( ) x as 
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The Latin subscripts can take values 1,2,3 , while the Greek ones  1,2 .  If we denote the 

characteristic length in the mid-surface   as L , the expression (1) is based on the assumption 

/ 1h L . Taking into account the thermal strains and the total strains  , , / 2ij i j j ie v v   

together with Hooke’s law, one can write the stress tensor components as 
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The Young modulus and linear thermal expansion coefficient are allowed to be continuous 

functions of position with assuming the power-law gradation in the transversal direction as 

3 0 3( , ) ( ) ( )H VE x E E E xx x ,    3
3

1
( ) 1

2

p

V

x
E x

h

 

   
 

                                                             (4) 



3 0 3( , ) ( ) ( )H Vx x   x x ,     3
3

1
( ) 1

2

r

V

x
x

h
 

 
   

 
, 

which result from utilization of rule of mixture for two-constituent micro-composite and the 

power-law gradation of volume fractions in the transversal direction. Moreover, the thickness 

of the plate is allowed to be variable on the in-plane coordinates, ( )h x .  

 

Since the dependence of mechanical fields on 3x  is known a priori, the pure elasticity 3D 

problem can be converted to 2D problem. In order to extend such a possibility to thermo-elastic 

problems, we should know also the dependence of temperature on the transversal coordinate 

prior to solving the 3D thermal boundary value problem. In thin structures ( / 1h L ), it is 

physically reasonable to simulate the distribution of the temperature field by using the power 

series expansion   

2
3 0 0 1 2( , ) ( ) ( ) ( )x z z       x x x x ,    3 [ 0.5, 0.5]

x
z

h
                                                       (5) 

in which the new fields ( )s x for ( 0,1,2s  ), are variable in the plate mid-plane. In view of (3) 

and (5), we obtain 
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Now, the variational formulation of the mechanical part of the original 3D thermoelacticity 

problem is given by the principle of virtual work 
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in which the work of external forces is represented by the transversal loading 3( )t x applied on 

the top/bottom surfaces, and ( )t x are in-plane tractions applied on the lateral surfaces of the 

plate. The integration with respect to 3x can be performed analytically and we obtain the 2D 

formulation given by governing equations at x : 
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and boundary restrictions (possible boundary conditions) at x : 
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is the generalized shear force and the following semi-integral fields have been introduced by 

the definitions 
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where the shear correction factor   has been introduced as the Reissner modification of the 

shear stresses in order to be predicted a correct amount of energy in the case of the FSDPT (

1 21 0c c   ). Furthermore, the twisting moment has been introduced as 
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and the jump at a corner point on the oriented boundary edge  is defined as 
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The explicit expressions for semi-integral fields are given in Appendix, since the integrations 

prescribed in (10) can be performed in closed form. Substituting (A.2) into (8) and (9), one 

obtains the governing equations and the possible boundary conditions in terms of primary fields 

and their derivatives.  

Up to now, we have supposed that the temperature is known from the solution of stationary 

thermal problem. Now, we need to derive the governing equations and boundary conditions for 

particular fields ( )s x defined in Eq. (5) with starting from the 3D formulation, where the heat 

conduction equation is given by the PDE 
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in which k is the heat conduction coefficient, which is prescribed by continuous functions in 

FGM. In accordance with above mentioned assumptions, we consider 
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Substituting (5) into (12), we obtain the PDE, which is still dependent on the transversal 

coordinate 3x ,  
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In order to get the pure 2D formulation, we can consider Eq. (14) in averaged sense over the 

plate thickness, which is physically meaningful as long as / 1L h . Performing the integration 

of Eq. (14) over the plate thickness, we obtain the averaged heat conduction equation 
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Obviously, Eq. (15) is the PDE in 2D domain   and two additional equation result from the 

thermal boundary conditions on the bottom and top surfaces of the plate. Usually, we 

distinguish three kinds of thermal boundary conditions, which result into the following 

additional equations 
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in which ( , / 2)h x and ( , / 2)q hx stand for the prescribed temperature and heat flux on the 

top and bottom surfaces of the plate.  

 

Finally, the PDE (15) is to be supplemented with the boundary conditions on the boundary edge 

of the plate. Since 3 0 0( , 0) ( )x    x x , the boundary conditions on  can be given as 
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in which 3( , 0)x x and ( ,0)q x are the prescribed values of the temperature and heat flux, 

respectively, on the boundary edge of the plate. 

Note that the governing equations involve the 4th order derivatives of deflections and 3rd order 

derivatives of in-plane displacements and rotations. Since the accuracy of approximations of 

derivatives is decreasing with increasing the order of derivatives, we propose the decomposition 

of the derived system of the PDE into a set of PDE with derivatives not higher than the 2nd order 

by introducing new field variables [4] as 

 

2( ) : ( )m wx x ,     2( ) : ( )s u x x  ,    2( ) : ( )f x x .                                                     (19) 

Summarizing, the governing equations for thermal problem are given by Eqs. (15) and (17) at 

x  and the possible boundary conditions on  are given by Eq. (18). The governing 



equations for the mechanical part of the thermo-elastic problem are given by Eqs. (8) and (19) 

at x , while the possible boundary conditions can be properly constructed from Eq. (9).  

Numerical implementation 

Although the proposed decomposition of the original system of high-order PDE of elliptic type 

into the system of 2nd order PDE increases the number of field variables and finally the size of 

the matrix of discretized equations, it brings the possibility to solve the system of the 

decomposed PDE using the strong formulation which accelerates the computation significantly 

as compared with the weak formulation especially in case of utilization of meshless 

approximations, because the evaluations of shape functions is localized to nodal points. The 

functional in-plane gradation of material coefficients leads to the PDE with variable coefficients 

and the classical element-based discretization methods are mostly disqualified for efficient 

treatment of such rather complex problems. In order to simplified the mathematical complexity 

as much as possibly with preserving the physical nature of the solved problems, we propose to 

utilize the strong formulation and the meshless approximation of spatial variations of field 

variables, which is in this paper, the Moving Least Square approximation [5]. The nodal points 

are freely distributed in the analyzed domain and on its boundary without creating any 

connectivity among the nodes. Without going into details [6, 7], the approximation of a field 

variable ( )g x and its derivatives around the central approximation node xq  can be expressed by    
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where ( , )a n q a is the global number of the a-th node from the influence domain of xq , qN is 

the number of nodal points in the influence domain, which is smaller than the total number of 

nodes, and ( , ) ( )x
q a is the shape function associated with the node ( , )n q a . This shape function 

is not known in a closed form [8], but it must be evaluated at each point x . Recall that ˆ ag is the 

nodal unknown associated with the node a and is different from the nodal value ( )ag x . The 

central approximation node can be selected as the nearest node to the field point x . For creation 

of shape functions, we have used cubic monomial basis and Gaussian weights.  

 

In the strong formulation, the governing equations are collocated at interior nodes and the 

boundary conditions at boundary nodes.  

Numerical examples 

In numerical investigations, we consider a square plate L L with 1L  and the results are 

presented for dimensionless quantities specified as:  

:
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



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In what follows, we shall omit the superscript * in dimensionless Cartesian coordinates.   

In all numerical computations, we have used a uniform distribution of nodal points (36 x36 

nodes) with  being the distance between two neighbour nodes. The other parameters in the 

MLS-approximation with Gaussian weights have been taken as: the radius of the influence 

domain 3.001a  , shape function parameter ac  , and cubic monomial basis. Note that 



the number of nodes falling into the influence domain of a global node varies from 11 to 27 

depending on the position of the global node.    

Elasto-static simulations  

We start the study of coupling effects due to continuously variable: (i) Young’s modulus in 

transversal direction  3 3( ) 1 1 / 2 /
p

VE x x h   ; (ii) in-plane gradations of Young’s modulus 

  0
0 1( ) 1 /

b
HE x L x ; (iii) variable plate thickness  1( ) 1 /

s
h x L  x .  The Poisson ratio is 

assumed to be constant 0.3  . The boundary edges of the plate are clamped and the plate is 

subjected to uniform transversal loading 3 ( ) 1t x .  

The influence of thickness of the plate on deflections is shown in Fig.1 for homogeneous plate. 

It is seen that the KLT is applicable only to thin plates 0/ 50L h  , when the deviation of the 

KLT results from those by the SDPT is less than 1%. 

 

   
Figure 1. Comparison of deflections by KLT and SDPT: (a) deflections along 1x -axis; (b) 

% deviations vs. ratio of length to thickness 

 

Fig. 2 shows the response of three thin plates (homogeneous and FGM plates with 2 different 

levels of gradation of Young’s modulus, 1   and 3  ) to uniform transversal loading. The 

evidence of coupling between the bending and in-plane deformation modes is clearly seen from 

Fig. 2(c), since finite in-plane displacements arise only in FGM plates.  

 

The influence of the in-plane power-law gradation of Young’s modulus on the response of thick 

plate is shown in Fig. 3. It is seen that deflections are affected more expressively by the level 

of gradation than by the exponent of gradation. This can be explained by the effect of lower 

bulk content of the material with higher value of the Young modulus. The shift of maximal 

deflections toward the softer side of the plate is evident. 



        

 
Figure 2. The response of three plates by various theories. In-plane distribution: (a) 

deflections of thin plate; (b) deflections of thick plate; (c) in-plane displacements 

 

 

    



Figure 3. Influence of in-plane gradation of Young’s modulus on the response of thick 

FGM plate. The effects by: (a) different levels of gradation; (b) different exponents of 

power-law gradation 
 

Form Fig. 4(a), it can be seen that the influence of levels of linear in-plane gradations of plate 

thickness on deflections is more significant than the influence of gradation of Young’s modulus. 

The negative effect of thinning the plate can be compensated or suppressed by parallel gradual 

increasing the Young modulus with resulting in overall reduction of deflection (Fig. 4(b)).  

       
Figure 4. Response of plates with variable parameters of in-plane gradations: (a)   

and/or 0 ; (b)    and/or 0  including combined gradations of Young’s modulus and 

plate thickness 

Now, we shall continue in numerical simulations and study of multi-gradation effects in square 

FGM elastic plates with transversal gradation of Young’s modulus  3 3( ) 1 1 / 2 /
p

VE x x h  

combined with: (i) in-plane gradation of Young’s modulus   0
0 1( ) 1 /

b
HE x L x ; (ii) in-plane 

continuous variation of plate thickness  1( ) 1 /
s

h x L  x ; (iii) simultaneous in-plane 

gradations of Young’s modulus and plate thickness. The plate is subject to uniform in-plane 

tension *
1 1 2 1 0 1 2( 1, ) ( 1, )T x x h h x x 
    , and the boundary conditions on the other edges are 

given as: 1 1 2( 0, ) 0u x x   , 21 1 2( 0, ) 0T x x   , 2 1 2 2 1 2( , 0) ( , 1) 0T x x T x x 
     , with assuming 

two alternatives for bending modes: 

 clamped boundary edges 

*( ) 0w


x ,  
*( )

0
w








x

n
,  ( ) 0




x ,  3 ( ) 0t x  

 simply supported edges 

 *( ) 0w


x , ( )*
( ) ( ) ( ) 0

w
n n M  


x x x , ( )*

( ) ( ) 0n M


 


x x , 3 ( ) 0t x .  

The in-plane loading doesn’t yield finite deflections in homogeneous as well as FGM with only 

transversal gradation of Young’s modulus.  

 



Firstly consider the FGM plates with clamped sliding edges. Fig. 5 show the in-plane 

displacements and deflections in thin FGM plates with combined gradations of Young’s 

modulus for various levels and/or exponents of in-plane gradation. The combined gradation of 

Young’s modulus is sufficient for arising finite deflections in FGM plates subject to in-plane 

tension.  

        

     

Figure 5. Influence of gradation parameters: (a) levels of gradations; (b) exponents of 

gradations on in-plane displacements and deflections in thin FGM plates with combined 

transversal and in-plane gradations of Young’s modulus 

Numerical simulations indicate that similar behavior is observed also in FGM plates with 

transversal gradation of Young’s modulus and continuously variable thickness (Fig. 6). Note 

that the nonlinear gradation of the plate thickness leads to more significant deflection response 

than in the case of linear gradation.   

Note that in the case of thin plates, the KLT results are almost identical with those by SDPT. 

However, in the case of thick plates, it is necessary to use the TSDPT. More remarkable 

deflection response to in-plane loading is observed in the case of thick plates if 1s   (Fig. 7).  

   



     

      

Figure 6. Influence of gradation parameters: (a) levels of gradations; (b) exponents of 

gradations on in-plane displacements and deflections in thin FGM plates with combined 

transversal gradation of Young’s modulus and in-plane variation of plate thickness 

 

    



 

Figure 7. Influence of gradation parameters: (a) levels of gradations; (b) exponents of 

gradations on deflections of thick FGM plates with combined transversal gradation of 

Young’s modulus and in-plane variation of plate thickness 

In the rest of the elastostatical subsection, we shall consider FGM plates with simply supported 

sliding edges. Now, the transversal gradation of Young’s modulus is sufficient for finite 

deflection response, in contrast to the plates with clamped sliding edges (Fig.8). For more 

details, we refer the reader to the work [9]. 

 

       

Figure 8. Influence of the level of linear transversal gradation of Young’s modulus on 

the response of the FGM plates with SSE to in-plane tension: (a) in-plane displacements; 

(b) deflections 

The numerical simulations in the FGM plates with combined gradations and simply supported 

edges (SSE) resembles qualitatively those in the FGM plates with multi-gradation and clamped 

edges (CE). However, the deflection response in FGM plates with SSE is much more expressive 

than that in the FGM plates with multi-gradation and CE. Finally, the results for the FGM plates 

with variable thickness and combined transversal and in-plane gradations of Young’s modulus 

are illustrated in Fig.9.  

 

      



Figure 9. Influence of the multi-gradations of Young’s modulus and plate thickness on 

the response of the FGM plates with SSE to in-plane tension: (a) in-plane displacements; 

(b) deflections 

Thermo-elastic simulations  

In addition to functional gradation of elasticity coefficients, we assume the transversal gradation 

of the linear thermal expansion and the heat conduction coefficients specified by Eqs. (4) and 

(13), and the following in-plane power-law gradations  

  1
1 1( ) 1 /

b
H x L  x ,     2

2 1( ) 1 /
b

Hk x L x . 

The natural thermal boundary conditions are assumed on the bottom and top surfaces of plate 

( , / 2)h   x  with 0 1  , 0 20    ,   0      

and heat flux is assumed to be vanishing on the boundary edges of the plate 

0 0,( ) (0) ( ) ( ) ( ,0) 0H Vk k k n q 


  x x x x . 

Then, the temperature field is distributed uniformly within the mid-plane   and the value of 

the temperature is affected only by the level of gradation of the heat conduction coefficient, 

. The numerical simulations presented in Fig. 10 show that the KLT and TSDPT give different 

response of the FGM plates with clamped edges (CE) to considered thermal loading even if the 

plates are thin. It can be seen from the analysis of the governing equations [10] that there is a 

coupling between deflections and thermal fields in the KLT only if  2 ( ) ( ) 0H HE  x x  while 

in the case of the SDPT such a coupling appears even if  ( ) ( ) 0H HE  x x .  

               

Figure 10. Deflection response to thermal loading in FGM plates with in-plane gradation 

of material coefficients and clamped edges 

The plates with simply supported edges (SSE) exhibit quite different behavior as plates with 

clamped edges. One observes finite deflections also in homogeneous plates with SSE, because 



the thermal contribution to the bending moment, 
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  , on the 

boundary edge is compensated by contribution associated with deflection strains, i.e. 
( )w

n n M


  


is the boundary source for 
2

( ) ( )( )

0

ww www

a

n n M n n C     



  . On the other hand, 

such thermal source is ineffective on the clamped edge.  

 

      

Figure 11. Deflection response to thermal loading in FGM plates with simply supported 

edges and various gradations of material coefficients: (a) transversal gradation; (b) in-

plane gradation 

The influence of gradation of material coefficients on the deflection responses in FGM plates 

with simply supported edges are shown in Fig. 11. It is seen that deflection response is much 

more expressive than in the case of plates with clamped edges.    

Conclusions 

The unified formulation for FGM plates is developed within stationary thermo-elasticity with 

including the assumptions of the Kirchhoff-Love theory as well as the 1st and 3rd order shear 

deformation plate theories. The functional gradation is considered in the transversal and/or in-

plane direction for such material coefficients as: the Young modulus, coefficient of linear 

thermal expansion, and heat conduction coefficient. Moreover, the plate thickness can be 

continuously variable too. For the derived 2D formulation, the numerical implementation is 

developed with making use the strong formulation and meshless approximation of spatial 

variations of field variables. The original system of the governing PDE is decomposed into the 

system of the 2nd order PDE, in order to decrease the order of derivatives in the original system. 

The numerical simulations are employed for study the coupling effects in FGM plates subjected 

to three kinds of stationary loading: (i) uniform transversal mechanical loading; (ii) simple 

tension applied in the plane of plate; (iii) thermal loading. Individual as well as combined 

gradations of material coefficients and the plate thickness are considered. The coupling between 

the bending and in-plane deformation modes is explained and particular coupling effects are 

documented and discussed.    
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Appendix 

The integrations required in definition of semi-integral fields can be performed in closed form 

and expressed in terms of two kinds of integrals 

1/2

(0) 1
1/2

1 ( 1)
:

( 1)2

a
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a a
d z dz

a 
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 
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                                                                                                (A.1) 
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In view of the definitions (10), (3), (6) and (A.1), the semi-integral fields are given as 
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