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Abstract 
Two new computational algorithms for the Limit Analysis (LA) of large-scale 3D truss-frame 
structures recently proposed by the authors are reconsidered and adapted for a comparison 
prediction of the elastoplastic response of a strategic beautiful historic infrastructure, namely 
the Paderno d’Adda bridge, a riveted wrought iron railway viaduct that was built in northern 
Italy in 1889. The first LA algorithm traces a fully exact evolutive piece-wise linear 
elastoplastic response of the structure, up to collapse, by reconstructing the true sequence of 
activation of made-available plastic joints (as a generalization of plastic hinges), in the true 
spirit of LA. The second LA algorithm develops an independent kinematic iterative approach 
apt to directly determine the plastic collapse state, in terms of collapse load multiplier and 
plastic mechanism, based on the upper-bound theorem of LA. Specifically, the marvelous 
doubly-built-in parabolic arch of the bridge is analyzed, under a static loading configuration at 
try-out stage, and its elastoplastic response is investigated, in terms of evolutive load-
displacement curve, collapse load multiplier and plastic collapse mechanism. The two LA 
algorithms are found to much effectively run and perform, despite for the rather large size of 
the computational model, with a number of dofs in the order of four thousand, by achieving 
good corresponding matches in terms of the estimate of the load-bearing capacity and of the 
collapse characteristics of the arch substructure, showing this to constitute a well-set structural 
element. Moreover, the direct kinematic method displays a rather dramatic performance, in 
truly precipitating from above on the collapse load multiplier and rapidly adjusting to the 
collapse mode, in very few iterations, by a considerable saving of computational time, with 
respect to the complete evolutive elastoplastic analysis. This shall open up the way for a 
further adoption of such advanced LA tools, with LA regaining a new momentum within the 
optimization analysis of structural design and form-finding problems. 
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1. Introduction 

Limit Analysis (LA) constitutes by today a well-established and consolidated discipline, for 
evaluating consistent bounds on the collapse (limit) loads acting on engineering structures 
characterized by a mechanical behavior that may be idealized as perfectly plastic, subjected to 
constant permanent loads and increasing live loads. 
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LA may be considered as a milestone in the more recent history of structural mechanics and 
provides a rather powerful tool for structural design and assessment purposes, within a wide 
variety of engineering situations. It has acquired its rational formulation thanks to the 
contribution by Drucker et al. [1], who have formulated and demonstrated the fundamental 
theorems of LA for a continuum. More recent consolidated contributions, such as those by 
Massonet and Save [2], Kaliszky [3], Lubliner [4], Jirasek and Bazant [5], and many others, 
as those quoted in Maier et al. [6], have further made the theory and the methods of LA rather 
fundamental in various applications of mechanics of solids and structures, becoming by now 
classical references on the topic. LA of frames has also been revived in recent years, with 
several interesting applications (see e.g. Cocchetti and Maier [7], Tangaramvong and Tin-
Loi [8], Lògò et al. [9], Skordeli and Bisbos [10], Bleyer and Buhan [11], Nikolaou 
et al. [12]), despite, basically being employed at an academic level, somehow still far from 
implementations within the engineering profession. 
A new impetus toward the application of the LA discipline within structural engineering has 
been recently targeted by the authors by two different proposals, respectively in 
Ferrari et al. [13,14] and in Ferrari et al. [15], with reference to the structural elastoplastic 
analysis of large-scale 3D truss-frame structures. The effort was motivated by the goal of 
performing an effective LA of the collapse state of a strategic and historic truss-frame 
infrastructure, as described below. In former contribution Ferrari et al. [13,14], a 
computational algorithm for tracing the “exact” piece-wise linear evolutive elastoplastic 
response of the structure up to collapse in the true spirit of LA has been formulated and 
implemented. In latter attempt Ferrari et al. [15], a kinematic upper-bound LA direct method 
of computational analysis has been proposed, allowing to iteratively converge on the collapse 
state in terms of collapse load multiplier and plastic mechanism. 
In the work herein presented, such two new approaches are employed toward the LA analysis 
of a large truss-frame substructure displaying a rather considerable complexity, namely 
a 3D model of the box-formed doubly-built-in parabolic arch of the Paderno d’Adda 
bridge (1889), a beautiful monumental infrastructure in the local territory. This roughly 
involves 1,050 beam finite elements with potentially active plastic joints and more 
than 4,000 degrees of freedom. 
In the paper, it is shown that the kinematic algorithm rapidly converges onto the collapse 
state, as also traced by the full evolutive elastoplastic analysis, with a kinematic load 
multiplier that quickly precipitates from above on the sought collapse load amplifier and a 
plastic mechanism that rapidly adjusts to the true collapse one. The kinematic algorithm has 
proven to display a saving of more than 96% of the computational time employed for the 
evolutive elastoplastic analysis, which additionally reconstructs the whole sequence of 
activation of the plastic joints and traces a rather ductile piece-wise linear load-displacement 
curve, showing the arch to constitute a beautiful well-designed structural element, in terms of 
load-carrying capacity up to the limit state of plastic collapse. 
The present paper is structured as follows. Section 2 briefly introduces the two developed LA 
algorithms. Section 3 illustrates the results achieved from the numerical analyses conducted 
on the truss-frame parabolic arch of the Paderno d’Adda bridge. Brief comments on the 
various computational aspects and the effectiveness of the performed simulations are 
concisely pointed out in the Conclusions. 
 

2. Limit Analysis formulation 

The two computational formulations herein adopted are based on the same underlying 
hypotheses, as briefly listed here. Perfectly-plastic joints have been located at the two edges 
of each beam finite element composing the model structure; a piece-wise linear yield domain, 
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specifically an uncoupled Rankine-type boxed-form yield domain in the space of the static 
variables (i.e. beam internal actions), is chosen. Linear kinematics is assumed, namely 
second-order non-linear geometrical effects are ruled out and equilibrium is enforced in the 
initial (unstressed) configuration of the structure. Permanent (i.e. gravity) loads and a set of 
(basic) loads amplified by a common (“load multiplier”) factor are considered. 
Both formulations have been implemented within MATLAB®, with specific computer 
programs exploiting 3D beam finite elements. Exact time integration is one of the main 
characteristics of the evolutive elastoplastic formulation (see e.g. Ferrari et al. [13,14]). The 
kinematic algorithm of Limit Analysis, discussed in Ferrari et al. [15], and prodromal 
references quoted therein, is based on a kinematic upper-bound approach and is below newly 
applied to a large-scale 3D truss-frame structure, for comparison purposes with the former 
evolutive elastoplastic algorithm. 
 

2.1. Evolutive elastoplastic approach 

The evolutive LA elastoplastic approach proposed in Ferrari et al. [13,14] relies on an 
iterative procedure in which the global elastoplastic matrix of the structure is iteratively 
updated, based on the plastic modes that become active during the increment of the applied 
live loads. In this way, the characteristic non-linear (piece-wise linear) load/displacement 
response curve is estimated, up to collapse.  
A synthesis of the main characteristics of the computational algorithm can be outlined as 
follows. In the approach, the kinematic constraints on the structural system are imposed by 
enforcing the stationary condition of Lagrangian function H : 

 ( ) ( )1,
2

= − − −T T TU R U KU F U R CU VH  (1) 

where vector U collects all the nodal dofs of the system, matrix K is obtained by a classical 
assembly procedure of the finite element stiffness matrices, and vector F is created as the 
assembly of the equivalent nodal force vectors, including only the active loads. In Eq. (1), 
constraint equations CU = V are imposed: matrix C depends only on geometrical quantities, 
vector V collects possible given values of the kinematic quantities, vector R gathers the  
so-called Lagrangian multipliers, which may be interpreted, from a mechanical point of view, 
as the reactions supplied by the constraints. 
The solution of the structural system is derived from Eq. (1), and by applying a Gaussian 
elimination to the system of the constraint equations, in order to eliminate those, among the 
latter, that are just a repetition of others. If this occurs, the elimination procedure leads to a 
reduced system, from which the solution in terms of (independent) displacements (u) can be 
symbolically given by the following expression: 

 1
uu ( )−= +D uu K F F  (2) 

where Kuu is a reduced stiffness matrix and FD and Fu are reduced known-term vectors, 
derived through appropriate mathematical steps, from vector V and vector F, respectively (see 
Ferrari et al. [13] for the details).  
The evolutive approach is based on an incremental procedure that can be outlined as follows: 

(i) At the beginning of the analysis, the structure is not under the effect of loading or of pre-
existing stress states; then, there is no plasticization in the structure (no yield plane is 
active). Afterwards, the following quantity is set acting on the structure: ΔFLi = Δα F, 
where ΔFLi represents the load increment, determined from F through load factor Δα, 
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which is always positive and can be assumed as a chronological variable in the increment 
of F; 

(ii) Given ΔFLi, also quantity ΔFu can be determined. Then, substituting the latter 
into Eq. (2), the incremental solution in terms of displacements Δu is thus provided. It is 
worth to note that at the beginning of the procedure matrix Kuu is totally elastic; 

(iii) Being Δu strictly related to the increment of the static internal variables of each finite 
element (ΔN), the latter can also be computed. Incremental solutions Δu and ΔN do not 
take into account that some modes may be possibly activated during the step; on the other 
hand, it is possible that the extent of incremental load ΔFLi is not enough to determine the 
reaching of at least one internal static variable in a section on the corresponding yield 
limit. Through a comparison between each static internal variable at the beginning of the 
step and the corresponding yield limit, the procedure calculates for each mode, among all 
non-activated ones, the specific scale factor (β) of incremental load ΔFLi leading to 
possible activations. The minimum among all such estimated factors, γ = min{β}, allows 
to get the exact extent of the current step to achieve new activation(s); 

(iv) Through coefficient γ, the original incremental solution is proportionally rescaled, and the 
static and kinematic quantities of the structure at the end of the step are updated; 

(v) At the end of the step some yield planes (at least one) are now activated and stiffness 
matrix Kuu becomes elastoplastic. Its determination is computed through a convenient 
Gaussian elimination procedure, which represents a peculiar feature of the implemented 
evolutive approach (see Ferrari et al. [13] for a comprehensive description of the 
computational formulation). 

The whole procedure assumes an iterative configuration in the repetition of steps (ii)-(v). It 
stops when the collapse of the structure is reached, namely when the minimum eigenvalue of 
global (updated) matrix Kuu calculated within step (ii) vanishes (or it is below a given 
numerical tolerance) and the eigenvector is everywhere associated to a positive load 
dissipation (Ferrari et al. [13]). 
 

2.2. Kinematic upper-bound direct method 

A synopsis of the principal features of the computational algorithm outlined in 
Ferrari et al. [15] is recalled below. 
The direct LA kinematic method is distinguished from other kinematic approaches due to its 
alternative and elegant formulation, which provides a very convenient procedure for the LA 
of truss-frames. According to the upper−bound (kinematic) theorem, the kinematic load 
multiplier is defined as follows: 

 0

g
i e

k
e

L L
L
−

μ =  (3) 

where iL  represents the internal power dissipation of the structure, g
eL  and 0

eL  represent the 
power of the base live loads and the power produced by the permanent loads applied to the 
structure, respectively. A corollary of the upper−bound theorem states that the collapse load 
multiplier is the minimum among the kinematic load multipliers defined for whole set K of 
the kinematically admissible mechanisms, namely { }min .c kμ = μ

K
 Being iL  and eL  

homogeneous functions of order one with respect to the velocity field, 0 1eL =  can always be 
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set for a kinematically admissible mechanism ( )M ; thus, the collapse load multiplier can be 
obtained as the solution to the following constrained optimization problem: 

 ( ) ( ) ( ){ }0min 1g
c i e eM C

L M L M L M
∈

μ = − =  (4) 

If the minimization is limited to a subset of compatible mechanisms C C⊆ , it results: 

 ( ) ( ) ( ){ }0min 1g
c k i e eM C

L M L M L M
∈

μ ≤ μ = − =  (5) 

For instance, with reference to the structure discretization, this can happen when the collapse 
mechanism requires an active plastic joint within one or more beam elements, besides the 
plastic joints at the beam ends. 
The procedure proposed by Ferrari et al. [15] exploits a convenient reshaping of the internal 
power dissipation description of a beam element, in order to adapt an existing efficient 
approach originally presented by Zhang et al. [16], for the LA of continua, within the classical 
FEM analysis based on beam element discretization. In particular, the procedure adopts a 
quadratic form of the internal power dissipation of a beam element, whose expression turns 
out to be defined as follows: 

 ( ) ( )T
iL = q S qq q  (6) 

where vector q  lists the nodal velocities of the structure and matrix ( )S q  is a function of: 
(a) the generalized plastic strains of all the beams that form the structure (the axial and the 
transverse relative rotations and the axial relative displacement, for each joint); (b) the 
corresponding internal actions activating the plastic strains (torque, two bending moments and 
axial force, for each joint). Matrix ( )S q  thus governs the global internal power dissipation of 
the structure; it is symmetric, highly sparse (even narrow-banded with a proper numbering of 
dofs) and positive definite (or positive semidefinite when non-dissipative rigid-body motions 
are allowed by constraints), namely the same properties characterizing the classical global 
stiffness matrix for an elastic FEM frame analysis. 
The direct LA kinematic method is based on an iterative procedure that can be outlined as 
follows: 

(i) At the beginning of the analysis, vector 0q  is set up by a vector of random numbers and 
normalized in order to guarantee that ( )0

0 1eL =q ; 

(ii) Let one now consider iteration n+1. Vector of nodal velocities nq  relevant to the  
n-th iteration (still normalized in order to guarantee that ( )0 1e nL =q ) and corresponding 

load amplification factor n
kμ  are assumed to be known, the last one computed through 

Eq. (3). Then, the iterative process leads to generate a new mechanism, governed by new 
vector 1n+q  that is obtained as the solution of the quadratic constrained minimization 
problem in Eqs. (5)-(6), in which the internal power dissipation, given by Eq. (6), is 
computed through coefficient matrix ( ) ,n nS = S q  related to previous iteration n. The 
resulting constrained minimization problem can be solved by enforcing the stationarity 
condition on a Lagrange function, in this way leading to a set of two equations, each one 
to be a function of an unassigned variable, namely q  and λ , respectively, being the latter 
a Lagrangian multiplier; 
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(iii) Ones variables 1n+q  and 1n+λ  are calculated, according to Eq. (3) a new kinematic load 
multiplier ( 1n

k
+μ ) follows, as well as coefficient matrix 1n+S  governing the global internal 

power dissipation of the structure. 

The whole procedure assumes an iterative configuration in the repetition of steps (ii)-(iii). It 
stops when: (a) the number of “inactive” modes has to remain constant for 10 iterations; 
(b) the relative change of the load multiplier from a step to another is lower than 10–3. 
In Ferrari et al. [15] a comprehensive description of the computational formulation is 
provided, along with the proof of convergence of the iterative procedure and some interesting 
remarks concerning the influence of computing round-off errors on the effectiveness of the 
algorithm. The latter turns out to be essential in order to deal with 3D large-scale macro-
structures, endowed with a large number of dofs and associated potentially active plastic 
joints, as the one herein presented as a benchmark structure. 
 

3. Large-scale structural numerical simulations 

3.1. Benchmark structure 

The benchmark structure considered in the present paper is represented by the parabolic arch 
of the Paderno d’Adda bridge, an iron railway viaduct that crosses the Adda river between 
Paderno d’Adda (LC) and Calusco d’Adda (BG) at a height of approximately 85 m from 
water. It allows for connecting the provinces of Lecco and Bergamo, near Milano, in 
Lombardia, northern Italy (Figure 1). The viaduct, co-aged of most celebrated Tour Eiffel, 
and rather similar to that in contemporary structural features, was quickly constructed 
between 1887 and 1889 and is one of the very first great iron constructions designed through 
the practical application of the so-called “Theory of the Ellipse of Elasticity” (Ferrari and 
Rizzi [17]), a graphic-analytic method of structural analysis that was developed in the 19th 
century. The bridge is made of a wrought iron material; the structural elements are 
interconnected by riveted joints. It is composed of: an elegant and robust doubly-built-in 
parabolic arch of about 150 m of horizontal span and 37.5 m of vertical rise; vertical bearing 
piers with a height up to 31.5 m; an upper continuous beam of 266 m of length. The main 
upper continuous beam, 5 m wide and 6.25 m high, is formed by a metallic truss-frame 
supported by nine bearings, four of which are supported by the arch. Wide documentations on 
the historic bridge are available in Ferrari and Rizzi [17], Ferrari et al. [14] and references 
quoted therein. 
For the finalities of the present paper, the homemade FEM model of the arch of the bridge has 
been extracted from a preassembled FEM model of the bridge, earlier implemented within 
commercial FEM code ABAQUS®. It has been constituted by assembling a 3D truss-frame 
with beam elements, mutually built-in at the nodes. The 3D truss-frame of the arch consists of 
two planar parabolic trusses laying into two inclined planes (of an angle α>±8.63° to the 
vertical), symmetrically located with respect to the vertical longitudinal plane of the viaduct. 
The inclined planes are placed at a relative distance of 5.096 m at the keystone. A single arch 
profile is considered in each inclined plane, with an arch body that accounts for the true 
presence of two secondary twin inclined arches, on the two sides of such an inclined plane. 
The truss nodes are linked to each other through a reticular system that corresponds to the true 
bracing system of the arch. The arch presents some additional reinforcing plates between the 
vertical bars in each of the secondary twin inclined arches, placed at the locations of the 
arch/bearing connections. These plates have not been explicitly represented in the FEM model 
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of the structure. To comply with this, the cross sections of the limiting vertical bars 
contouring the stiffening plates have been endowed with larger geometrical characteristics. 
The FEM model of the arch of the bridge is comprised of 1051 beam elements and 342 nodes 
and is endowed with the following material properties, characteristic of a wrought iron 
material (SNOS [18], Nascè et al. [19]): Young’s modulus E=17∙106 tons/m2>170 GPa; 
Poisson’s ratio ν=0.3 (corresponding shear modulus G=6.54∙106 tons/m2>65.4 GPa); mass 
density ρ=7.7 tons/m3. Despite that yield limit characteristics of the material could be set to 
those that may be typically reported for an iron material (Nascè et al. [19]), the yield limit 
assumed in the present computations has been conservatively taken coincident with the 
allowable working stress imposed by the builder at design stage (SNOS [18]), namely 
σy=6.00 kg/mm2>60 MPa (and τy=σy

1/3=3.46 kg/mm2>34.6 MPa). The FEM model of the 
arch of the Paderno d’Adda bridge is depicted in Figure 2, which forms the basis for the 
elastoplastic model with potentially active plastic joints located at the extremes of each beam 
finite element. 
 

 
Figure 1: Contemporary view of the Paderno d’Adda bridge (1889) from the right bank. 
 

 
Figure 2: FEM model of the arch of the Paderno d’Adda bridge. 

 

3.2. Loading configuration 

The loads considered in the performed numerical simulations have been set with reference to 
the static try-out railway loading conditions on the Paderno d’Adda bridge (SNOS [18], 
Nascè et al. [19]). These tests were carried-out using locomotives with tender, each of 83 tons 
of weight, corresponding to a uniformly distributed load on the beam of about q=5.1 tons/m. 
Such distributed live load leads to elastic reactions on the arch, at its interfaces with the piers 
and the upper beam, equal to P1=163.5 tons, P2=171.3 tons, P3=168.7 tons, P4=171.3 tons, for 
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a total live load of Q=674.8 tons just on the arch (Figure 3). These values of Pi come from the 
elastic solution of a nine-bearing continuous beam, with firm supports, and are here assumed 
to be representative of the load distribution directly lying on the arch, when a uniform load is 
acting on the above upper continuous beam (Ferrari et al. [13]). 
In the numerical simulations, only above-mentioned live loads Pi and associated total load Q 
have been considered to be affected by a load multiplier. The self-weight of the structure has 
instead been treated as a pre-imposed permanent load; namely, this has not been affected by 
the load multiplier. In particular, the self-weight of the upper continuous beam and the piers 
on the arch has been considered through loads directly applied to the arch at the arch/beam 
and arch/pier interfaces. To determine such permanent loads, the upper truss structure has 
been considered as a continuous beam supported by nine bearings, subjected to a uniformly-
distributed load representing the weight of the upper beam and set equal to 6.61 tons/m 
(SNOS [18]). Therefore, vertical reaction forces at the bearings located at the level of the 
arch/pier and arch/beam interfaces have been calculated. The two reactions at the level of the 
arch/beam interfaces (P2 and P3 in Figure 3) have then been directly applied to the arch of the 
bridge, meanwhile the two reactions at the level of the arch/pier interfaces (P1 and P4 in 
Figure 3) have been incremented by the weight of the piers resting on the arch, given equal to 
22 tons (SNOS [18]). Permanent resultants P1-P4 applied to the arch, due only to the self-
weight of the upper continuous beam and the piers on the arch (not affected by the load 
multiplier), therefore result equal to P1=233.9 tons, P2=222.0 tons, P3=218.7 tons, 
P4=244.0 tons. 
 

 
Figure 3: Scheme of the considered static load configuration (view from down-stream), 

with loads Pi applied on the arch structure at the arch/pier and arch/beam 
interfaces. 

 

3.3. Numerical results 

The results in terms of elastoplastic load-carrying capacity of the bridge’s arch obtained with 
the above-discussed (Section 2) numerical algorithms of Limit Analysis are consistently 
shown in Table 1. Moreover, the mechanical elastoplastic response of the arch substructure is 
depicted in Figures 4-6. 
 

Table 1: Collapse load multipliers for the benchmark structure. 

Method Collapse load multiplier Limit state 
Evolutive 4.17 First null eigvenvalue of stiffness matrix
Kinematic 4.22 Formation of a collapse mechanism 
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Figure 4: Representation of the characteristic piece-wise linear load–displacement 

response curve. 
 

 
Figure 5: Collapse mechanism of the arch of the Paderno d’Adda bridge by the 

kinematic algorithm. 

 

 
Figure 6: Collapse load multiplier and plastic mechanism estimation along the kinematic 

iterative procedure. 
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The numerical evaluation of the collapse load multiplier reported in Table 1 shows a minor 
discrepancy between the upper-bound value obtained by the kinematic method and the 
estimated value achieved by the evolutive analysis (a static evaluation, in essence, and as set 
at the very earliest singularity of the tangent stiffness matrix). This difference (likely forming 
a fork delimiting the real numerical collapse load multiplier) may be due to round-off errors 
and adopted numerical tolerances within the kinematic approach, possibly being linked to the 
diffused amount of very small plastic deformations in several deactivated joints, along the 
iterations. This may require further inspections and refinements of the kinematic algorithm, in 
order to handle such large-scale 3D truss-frame structures. 
Figure 4 reports the characteristic piece-wise linear load/displacement response curve of the 
arch obtained from the evolutive algorithm (Section 2.1), showing a considerable global 
structural ductility. In particular, the horizontal axis depicts the vertical displacement (Δ) of 
the node that, in the end, has shown the maximum displacement at incipient collapse; the left 
vertical axis reports total amplified live load P=μQ, where μ is the load multiplier related to 
the incremental solution of the non-linear elastoplastic analysis; the right vertical axis also 
depicts load multiplier μ. Therefore, in the plot, the response curve for the loading 
configuration can be read on the left or on the right axis, equivalently. The end point of the  
P–Δ curve refers to the so-estimated “exact” collapse of the structure in terms of first 
vanishing minimum eigenvalue of the tangent stiffness matrix of the structure (Section 2.1). 
Notice that in this plot the non-zero initial displacement (at P=0) is due to self-weight only, 
namely to a pre-imposed permanent load not affected by the load multiplier. In this case, the 
computing time to achieve the collapse solution was about 1100 s. The algorithm has been 
implemented and run as a non-compiled code within MATLAB®, under a Windows 10 
operating system, on a Dell laptop endowed with an Intel Core i7-6500U Processor, clock at 
2.50 GHz and 16 GB RAM. 
Figure 5 also depicts the deformed configuration of the structure at incipient collapse 
(namely, the plastic collapse mechanism), as obtained by the kinematic LA algorithm 
(Section 2.2), which is rather consistent with that derived from the evolutive program 
(Section 2.1). 
Figure 6 further illustrates the results related to the kinematic algorithm (Section 2.2). It 
displays the collapse load multiplier computed during the iterative procedure, and the 
associated estimated collapse mechanism along the iterations. In the picture, it is possible to 
appreciate how the implemented algorithm is capable to quickly and easily achieve 
convergence. In fact, the collapse mechanism is almost already achieved at the tenth iteration, 
and in already about 40 iterations the kinematic load multiplier precipitates on the collapse 
one; after that, the load multiplier turns out to be almost flat, at an increasing number of 
iterations. In this case, the computing time to achieve the collapse solution by the direct 
kinematic method (in about 350 iterations) was nearly 37 s, on the same computer platform as 
described above, thus with a saving of more than 96% of the computational time employed 
for the corresponding complete evolutive elastoplastic approach (1100 s). 
 

Conclusions 

The present paper has attempted a comprehensive computational elastoplastic structural 
analysis, truly loyal to the principles of Limit Analysis, in the context of large-scale 3D truss-
frame structures, with reference to the elastoplastic response of a strategic historic 
infrastructure within the local territory (Paderno d’Adda bridge, 1889), in order to investigate 
its potential performance in terms of LA limit states, with focus on the supporting parabolic 
arch. 
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Two approaches have been employed, compared and cross-connected, in view of deciphering 
the resources of the fundamental arch-bearing mechanism of the iron bridge, toward the limit 
state of plastic collapse, as follows: a reconstruction of the complete evolutive response up to 
collapse, with the sequence of activation of the plastic joints in the various members of the 
boxed-form arch structure and the associated tracing of the global load-displacement curve; a 
direct determination of the collapse characteristics, in terms of collapse load multiplier and 
plastic mechanism. 
Both LA methods of analysis consistently run and effectively perform, despite for the rather 
considerable number of dofs considered within the computation (more than 4,000). A true 
match is displayed for the predictions of plastic collapse, with the kinematic iterative 
algorithm showing an impressive performance in really precipitating from above onto the 
collapse load multiplier, and with a plastic mechanism that rapidly adjusts, in very few 
iterations, to the collapse mode. 
As for the interpretation of the achieved results on such a crucial and beautiful historic 
infrastructure, the arch is revealed by both methods to constitute a well-set fundamental 
structural element, with considerable resources in terms of plastic collapse, testifying the 
mastering of the methods of structural design and execution by the art of metallic carpentry at 
the time, despite for being directly conceived on the basis of (graphic-analytic) elastic 
methods of analysis only (see Ferrari and Rizzi [17]). This brings really good news, at present 
stage, in terms of debating possible future destinations of the monumental infrastructure. 
These new LA computational methodologies may open up the way for LA to regaining a new, 
considerable momentum in the structural analysis of large-scale structures, of both a new 
design concept and historic, to be preserved, ones, and with new challenging targets in terms 
of structural optimization, as for structural design or form-finding quests, given the prompt 
availability of the mechanical calculation, within a possible optimization loop that may 
consider variable structural characteristics and trace (optimize) the corresponding variation of 
the elastoplastic response and the attached collapse features. 
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