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Abstract 

In actual oil exploration process, vortex-induced vibration (VIV) is the main source of 

structural fatigue damage of the risers. In this paper, VIV of a flexible cylinder experiencing 

combined uniform and oscillatory flow is investigated numerically. All investigations are 

carried out by the in-house CFD code viv-FOAM-SJTU, which is developed basing on the 

pimplyDyMFOAM solver attached to the open source OpenFOAM. The effects of flow ratio 

on VIV are concentrated, while the flow ratio α is defined as the proportion of the uniform 

flow velocity in the total velocity. Main parameters of the cylinder are as follows: the mass 

ratio * 1.53m  , the diameter 0.024D  , the length 4L  and the Keulegan–Carpenter (KC) 

number KC=178. The flow ratio varies from 0 to 1 with an interval of 0.2. The modal analysis 

method and the wavelet analysis method are used to study the effect of flow ratio to VIV 

response of the cylinder in combined flow. 
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Introduction 

Vortex-induced vibration (VIV) of a flexible cylinder in steady flow has been investigated 

extensively during the past decades through experimental and numerical methods, such as 

Chaplin et al[3][4], Lie and Kaasen[9], Willden and Graham [13][14] and Yamamoto et al[16]. 

Chaplin et al[3] carried out benchmark experiments of VIV of a long flexible vertical tension 

cylinder in stepped flow. The modal analysis method is used to obtain modal weights of each 

vibration mode and determine the dominant vibration mode of the cylinder. Lie and Kaasen[9] 

also used the modal analysis method to analyze the vibration feature of a flexible cylinder in 

sheared flow. And they chose to solve modal amplitudes through the least-square sense with 

the existence of some modal amplitudes that are not physical with regard to the frequency 

content. Willden and Graham[13] and Yamamoto et al[16] carried out numerical studies of 

VIV of a flexible cylinder in uniform flow adopting strip method. Numerical results were in 

good agreements with experiments and the strip method was appropriate for solving VIV 

problems. 

 

In order to study the vibration features of a circular cylinder around oscillatory flow, 

comprehensive researches have been carried out by Bearman[1][2], Kozakiewicz et al[8], 

Sarpkaya[11][12], Williamson[15], and Zhao et al[17]-[19]. Williamson[15] and 

Sarpkaya[11][12] conducted a series of experiments to investigate motions of vortices around 

a single cylinder in relative oscillatory flow. And several vortex regimes were identified 

within particular ranges of Keulegan-Carpenter (KC) Numbers: the attached vortices regime 



(0<KC<7), where no major vortices shed during a cycle; the single pair regime (7<KC<15); 

the double pairs regime (15<KC<24); the three pairs regime (24<KC<32) and ect. For further 

KC regimes, the number of vortices pairs shed in each oscillating period would be increased 

by one each time the KC regime changed to a higher one. Kozakiewicz et al[8] and Zhao et 

al[17] carried out experiments and numerical simulations of a cylinder exposed to oscillatory 

flow for two KC numbers of 10 and 20 respectively. Kozakiewicz et al[8] found that the 

cross-flow vibration of the cylinder changed the vortex shedding trail and the number of 

vortices generated over one oscillating cycle comparing with the fixed cylinder. Zhao et al[17] 

found that the reduced velocity had significant effects to the XY- trajectory mode of the 

cylinder and the VIV frequency decreased with the increase of reduced velocity. And when 

the reduced velocity was extremely large, the vibration amplitude in the cross-flow direction 

was negligible smaller than that of the inline direction. Basing on the previous simulations, 

Zhao et al[19] carried out simulations of a circular cylinder experiencing combined oscillatory 

flow and steady flow at KC=10. They found that the lock-in regime was widened due to the 

combination of oscillatory and steady flow and the widest lock-in regime were twice as wide 

as that in the pure oscillatory or pure steady flow. For flexible cylinder condition, Fu[7] 

carried out a series of experiments of a flexible cylinder in relative oscillatory flow at 

KC=178. They proposed the VIV development process of “Build up—Lock in—Die out” in 

each half oscillating period. And Moreau and Huang[10] conducted experiments of cross-flow 

vortex-induced vibration in combined in-line current and oscillatory flow, including 12 

different combinations of flow and cylinder conditions in total. He found that the VIV 

amplitude response was much reduced in the combined flow comparing with the pure steady 

flow at a given reduced velocity. 

 

In this paper, VIV of a flexible cylinder experiencing combined oscillatory and uniform flow 

is investigated. All numerical simulations are carried out by the in-house CFD code 

viv-FOAM-SJTU, which is developed basing on the strip theory method and the 

pimpleDyMFOAM solver attached to the open source code OpenFOAM. The effect of flow 

ratio is concerned and the numerical model refers to the experiments of Fu et al[7]. The flow 

ratio α is defined as the proportion of the uniform flow velocity in the total velocity. The flow 

ratio varies from 0 to 1 with an interval of 0.2. Firstly, the validation is conducted at the pure 

oscillatory flow condition comparing results of cross-flow vibration history and dominant 

vibration frequency with Fu et al[7]. Then modal analysis and wavelet analysis methods are 

used to study the effect of flow ratio to VIV response. 

 

This paper is organized as follows: the first section gives a brief introduction to the referenced 

experiments and the numerical methodology. The second section presents the results and the 

final section concludes the paper. 

 

Method 

Hydrodynamics Governing Equations 

The flow field is supposed to be incompressible, with constant dynamic viscosity μ and 

constant density ρ. The Reynolds-averaged Navier-Stokes equations are used as the 

hydrodynamics governing equations as follow: 
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Structural Dynamic Governing Equations 

In order to form the relatively oscillatory flow, the supporting frame is forced to oscillate 

harmonically during the investigations. The oscillation can be expressed as: 
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where A is the oscillating amplitude，T is the oscillating period, xs  is the oscillating 

displacement，Us is the oscillating velocity ，Um is the amplitude of the oscillating velocity ，

D is the diameter of the cylinder。 

 

Fu[6]
 
uses the support excitation method combined with the Bernoulli–Euler bending beam 

theory to obtain the structural response of the cylinder. The in-line displacement of the 

cylinder is the sum of support frame motion and the relative in-line vibration of the cylinder: 

 t sx x x                                 (6) 

where 𝑥𝑡 is the in-line displacement, 𝑥𝑠 is the support displacement and 𝑥 is the relative 

in-line displacement. 

 

The equilibrium of forces for this system can be written as follow: 

      I D S Hf f f f                               (7) 

where 𝑓𝐼, 𝑓𝐷, 𝑓𝑆, 𝑓𝐻 are the inertial, the damping, the spring, and the hydrodynamic force 

respectively. 

 

Then the equilibrium of forces for the system can be written as: 

 t Hmx cx kx f                               (8) 

H smx cx kx f mx                               (9) 

where 𝑚, 𝑐, 𝑘 are the mass, the damping and the stiffness of the system. 

 

Adopting the finite element method(FEM), the equations can be discretized as: 

-Hx sMx +Cx + Kx = F Mx                          (10) 

HyMy +Cy + Ky = F                            (11) 

where M, C, K are the mass, the damping and the stiffness matrices, while x, xs and y are the 

relative in-line, the support and the cross-flow nodal displacement vectors. FHx and FHy are 

the hydrodynamic force in the in-line and cross-flow direction respectively. 

 



Problem Description 

The numerical model used in this paper follows experiments of Fu[7] and the layout of the 

experiments is shown in Fig. 1. Detailed information about main parameters of the cylinder is 

shown in Table 1. 20 strips located equidistantly along the cylinder totally. Fig. 2 shows the 

distribution of flow field strips along the span of the cylinder and the entire computational 

domain and meshes of strips. 

 

 
Figure 1. Layout of the experiments of Fu et al 

 

Table 1: Main parameters of the cylinder 

 
Symbols Values Units 

Mass ratio m∗ 1.53 − 

Diameter D 0.024 m 

Length L 4 m 

Bending stiffness EI 10.5 N ⋅ m2 

Top tension Tt 500 N 

First natural 

frequency 
fn
1 2.68 Hz 

Second natural 

frequency 
fn
2 5.46 Hz 

 

  
(a)                             (b) 

Figure 2. Illustration of multi-strip model and computational domain of a strip 

 

In this paper, VIV of a cylinder in combined uniform and oscillatory flow are investigated. 

The flow ratio α represents the proportion of uniform flow velocity in the total flow velocity. 

According to equations (3) and (4), the total velocity and the flow ratio can be written as 

equations (12) and (13). Detailed computational conditions are shown in Table 2. 
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where 𝑈𝑠 is the uniform flow velocity, 𝑈𝑐 is the total velocity, 𝐴𝑚 is the amplitude of the 

oscillation, 𝑇 is the oscillating period. 

 

Table 2 Computational conditions 

 𝑈𝑐 α 𝑈𝑠 𝐴𝑚 T KC 

Case1 0.2589 0 0 0.68 16.5 178 

Case2 0.2589 0.2 0.05178 0.68 20.6 178 

Case3 0.2589 0.4 0.10356 0.68 27.5 178 

Case4 0.2589 0.6 0.15534 0.68 41.3 178 

Case5 0.2589 0.8 0.20712 0.68 82.5 178 

Case6 0.2589 1 0.2589 0.68 - 178 

 

Strip Theory 

In this paper, numerical investigations are carried out by the viv-FOAM-SJTU solver basing 

on the strip method and the pimpDyMFOAM solver attached to the open source code 

OpenFOAM. The strip method is very appropriate for solving CFD investigations of 

supramaximal computational domain. It owns high computational efficiency and the 

computational accuracy is reliable, The reliability of the viv-FOAM-SJTU solver has been 

testified by Duan[2]
,
 in which the benchmark case has been verified in detail. 

 

For a long flexible cylinder, the direct computation of the three dimensional flow field will 

cost too much resources. Instead of this, we simplify CFD model and obtain the two 

dimensional flow field on strips distributed equably along the cylinder. The hydrodynamic 

force is obtained from each strip, which is then applied to the structural field. The structural 

displacements of all nodes are interpolated to get the boundary motion of dynamic mesh of 

flow field. The strip theory is shown as Fig. 1. 

 

During the numerical investigations, the RANS equations and SST k-ω turbulence model are 

adopted to solve the flow field in each strip, while the whole structure filed is solved through 

Bernoulli–Euler bending beam theory with the finite element method. The fluid-structure 

interaction is carried out by loose coupling strategy. 

 

 
Figure. 3 Schematic diagram of strip theory 

 



Results 

Validation 

Fig. 4 shows subplots of non-dimensional cross-flow amplitude of the intermediate node of 

the cylinder between experiment and simulation. From comparison, it can be concluded: (i)the 

development process of “Building-up—Lock-in—Dying-out” of vortex-induced vibration is 

observed in both experiment and numerical simulation; (ii)the lock-in region is 17.3% of the 

half oscillating period in numerical simulation, which is close to the experiment result of 17%; 

(iii)the non-dimensional cross-flow amplitude is 0.37D in half oscillating period, which is 

close to the experiment result of 0.36D. 

 

Fig. 5 are subplots of power spectral density and modal weight of each vibration mode in an 

oscillating period respectively. From these figures, it can be known that the dominant 

vibration frequency is 2.2Hz, which is close to the result of experiments of 2.1Hz. While the 

dominant vibration mode of the cylinder is the 1st mode. 

 

           
(a)Result of Fu et al.                 (b)The present simulation     

Figure 4. Non-dimensional cross-flow vibration amplitude of the intermediate node in 

half an oscillating period 

 

      
(a)                                 (b) 

Figure 5. Cross-flow power spectral density and modal weight of each vibration mode of 

the intermediate node: (a) power spectral density; (b) modal weight 

 

Modal Analysis 

Fig. 6 are subplots of non-dimensional cross-flow vibration amplitude of the intermediate 

node of the cylinder ranging from α=0 to α=1.0 in an oscillating period. Two VIV 

development process of “Building-up—Lock-in—Dying-out” can be observed both in Fig. 

6(a) and 6(b), which shows that the oscillatory flow plays the dominant role in the VIV 

phenomenon of the cylinder. There are two obvious lock-in region in Fig. 7(b) at α=0.2 in an 

oscillating period. When flow velocities are in the same direction, the vibration amplitude is 

0.27D and the lock-in region is 31.4% of the half oscillating period. When flow velocities are 

in the opposite direction, the vibration amplitude is 0.05D and the lock-in region is 13.6% of 



the half oscillating period. As shown in Fig. 6(c) and 6(d), the obvious VIV phenomenon is 

observed in the half oscillating period where the oscillatory flow velocity and the uniform 

flow velocity are in the same direction. While no obvious VIV phenomenon happens when 

two flow velocities are in opposite direction. Both oscillatory flow and uniform flow have 

non-negligible influence to the VIV of the cylinder. With the increase of flow ratio, the 

proportion of uniform flow velocity in the total flow velocity increases and the dominant 

effect of the uniform flow to VIV of the cylinder becomes obvious. From Fig. 6(e) and 6(f), it 

can be seen that the obvious VIV phenomenon is observed in the whole oscillating period. It 

can be concluded that the vibration feature of the cylinder in combined flow is similar to that 

in pure oscillatory flow (α=0) when flow ration α≤0.2 and similar to that in pure uniform flow 

(α=1.0) when α≥0.8. 

 

Comparing Fig. 6(b) with 6(c), it can be known that the dominant effect of oscillatory flow 

becomes weak with the increase of flow ratio. When flow velocities are in the same direction 

at α=0.4, the reduced velocity is large enough to generate VIV phenomenon in the whole half 

period. When oscillatory flow velocity reverses, the reduced velocity decreases and no VIV 

phenomenon generated in the whole half period. When flow velocity increases to α=0.6 as 

shown in Fig. 7(d), VIV phenomenon occurs in the whole region when flow velocities are in 

the same direction as that of α=0.4 and in the preliminary stage and final stage of the half 

period when flow velocities are in the opposite direction. In these two stages, the oscillatory 

flow velocity is small and the uniform flow still owns dominant effect to the vibration of the 

cylinder. However in the intermediate stage, the increase of oscillatory flow velocity leads to  

the decrease of total flow velocity, then VIV phenomenon becomes weaker and disappears 

finally. When flow velocity increases to α=0.6 as shown in Fig. 7(e), it is found that the 

uniform flow plays dominant role in the cross-flow vibration of the cylinder. And the 

cross-flow vibration amplitude reaches its peak or valley value when the oscillatory velocity 

reaches its peak value. 

 

     
(a)                      (b)                       (c) 

     
(d)                      (e)                       (f) 

Figure 6. Non-dimensional cross-flow vibration amplitude of the intermediate node in an 

oscillating period: (a) α=0; (b) α=0.2; (c) α=0.4; (d) α=0.6; (e) α=0.8; (f) α=1.0 

 

Fig. 7 are subplots of cross-flow modal weight of each vibration mode of the intermediate 

node of the cylinder ranging from α=0 to α=1.0 in an oscillating period. It can be found that 

the first mode is the dominant vibration mode when obvious VIV phenomenon occurs. And 

the disturbance of second mode is too small to change the dominant vibration mode of and 



only can be observed in pure oscillatory flow and combined flow when flow velocities are in 

the same direction. 

 

     
(a)                      (b)                       (c) 

     
(d)                      (e)                       (f) 

Figure 7. Cross-flow modal weight of each vibration mode of the intermediate node in an 

oscillating period: (a) α=0; (b) α=0.2; (c) α=0.4; (d) α=0.6; (e) α=0.8; (f) α=1.0 
 

Wavelet Analysis 

The wavelet analysis method is used to obtain the dominant cross-flow vibration frequency of 

the cylinder along the time. Fig. 8 shows cross-flow vibration wavelet of different nodes 

along the span of the cylinder. These subplots can be divided into three groups: (A) Fig. 8(a) 

and 8(b); (B) Fig. 8(c) and 8(d); (C) Fig. 8(e) and 8(f). The periodical variation of the 

dominant vibration frequency is obvious from Fig. 8(a) to 8(d).  

 

In Fig. 8(a) and 8(b), the dominant vibration frequency is close to the first natural frequency 

of the cylinder in most of the oscillating period. In the flow ratio range of group A, the 

oscillatory flow has significant effect to the cross-flow vibration frequency. With the increase 

of flow ratio, the proportion of the cross-flow vibration frequency close to the first natural 

frequency decreases. As shown in Fig. 8(c) and 8(d), we can see that the increasing and 

decreasing process of the dominant vibration frequency is similar to the shape of sinusoidal 

function. During the half process of flow velocities in the same direction, the cross-flow 

vibration of the cylinder is drastic which leads to the generation of high vibration frequency 

region. During the half process of flow velocities in the opposite direction, the cross-flow 

vibration of the cylinder is relatively weak which leads to the generation of the low vibration 

frequency region. In the flow ratio range of group B, both oscillatory flow and uniform flow 

influence the cross-flow vibration frequency. From Fig. 8(e) and 8(f), it can be known that the 

variation of dominant vibration frequency is relatively small comparing with other cases. And 

the uniform flow plays the dominant role in this flow ratio range. 

 

 



     
(a)                      (b)                       (c) 

     
(d)                      (e)                       (f) 

Figure 8. Cross-flow vibration wavelet of different nodes along the span of the cylinder: 

(a) α=0; (b) α=0.2; (c) α=0.4; (d) α=0.6; (e) α=0.8; (f) α=1.0 
 

Cross-flow Vibration Trajectory 

Fig. 9 are subplots of cross-flow vibration trajectory of three nodes along the span of the 

cylinder. With the increase of flow ratio, the trajectory shape of the intermediate node of the 

cylinder changes from the “H” type to the “1” type. For the pure oscillatory flow condition 

(Fig. 9(a)), the cross-flow vibration and the in-line deformation reaches its peak value when 

the cylinder moves across the center, which generate the two sides of the “H”. During the 

preliminary and the final stages, the oscillatory flow velocity reaches its valley value that 

leads to the small cross-flow vibration and in-line deformation of the cylinder, which 

generates the short transverse line of the “H” shape. When the flow ratio increases to 0.2, the 

flow velocity decreases during the process of oscillatory flow and uniform flow velocity in 

opposite direction. And the right side of the trajectory is generated due to the low cross-flow 

vibration amplitude and in-line deformation when the cylinder moves across the center during 

the process. With the flow ratio increasing, the total flow velocity in the process of opposite 



flow velocities keeps decreasing. Then the cross-flow vibration amplitude and in-line 

deformation becomes smaller than those in flow ratio of 0.2. So the trajectory in the region of 

x≥0 is very small as shown in Fig. 9(c) and 9(d). Meanwhile, the proportion of the total flow 

velocity that generate relatively larger vibration amplitude increases in the process of the 

same flow velocities direction, which lead to the change of trajectory shape from triangle to 

rectangle in the region of x≤0. From Fig. 9(e), it can be concluded that the cross-flow 

vibration and in-line deformation of the cylinder are extremely small in the region of x≥0 and 

the trajectory shape is similar to that in Fig. 9(f), which means that the uniform flow plays the 

dominant role when flow ratio α=0.8. 

 

 
(a)                      (b)                       (c) 

   
(d)                      (e)                       (f) 

Figure 9. Cross-flow vibration trajectory of different nodes along the span of the 

cylinder: (a) α=0; (b) α=0.2; (c) α=0.4; (d) α=0.6; (e) α=0.8; (f) α=1.0 

 

Conclusion 

In this paper, numerical simulations of vortex-induced vibrations of a flexible cylinder 

experiencing combined oscillatory and uniform flow are carried out by the in-house CFD 

code viv-FOAM-SJTU solver. Results of cross-flow displacement history, modal weights, 



wavelet and vibration trajectory are analyzed in detail. 

 

Results of cross-flow displacement history and modal weights show that the first mode is the 

dominant vibration mode of the cylinder in all flow conditions. The dominant vibration 

frequency of the cylinder is approximately near the first natural frequency through results of 

cross-flow wavelet. With the flow ratio increasing, the vibration trajectory of the cylinder 

changes from the “H” type to the “1” type. The vibration responses of the cylinder in 

combined oscillatory and uniform flow are similar to that in pure oscillatory flow (α=0) when 

flow ration α≤0.2 and similar to that in pure uniform flow (α=1.0) when α≥0.8. 
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