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Abstract

In this manuscript, our principle aim is to present a new reconstruction of classical Chebyshev-
Halley scheme having optimal fourth and eighth-order convergence for all α unlike the earlier
studies. In addition, we analyze the local convergence of them by using supposition requiring
the first-order derivative of the involved function f and the Lipschitz conditions. The new
approach is not only the extension of earlier studies, but also formulates their theoretical radius
of convergence. Several numerical examples originated from real life problems demonstrate
that they are applicable to a broad range of scalar equations where previous studies cannot be
used. Finally, dynamic study of them also demonstrates that bigger and promising basins of
attractions belongs to our iteration functions.

Keywords: Nonlinear equations, Newton’s method, Complex dynamics, Chebyshev-Halley
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Introduction

Among the most harder and earlier issues of computational methods and numerical analysis are
concerning with the cost-effective and accurate simple zeros of function f(x) in a small number
of iterations with specific degree of accuracy (where f : D ⊂ R→ R is a univariate sufficiently
smooth function in the closed interval D). It is hard to find analytical methods in the available
literature for solving such type of problems. So, there is only one option left for us to find the
approximate solutions by using iterative procedures. One of the best and most famous iterative
procedure is the classical Newton’s method [30, 25]. Several higher-order reconstruction of
Newtons procedure have been constructed at the expense of some other values of function/s
and/or its derivative/s. We have a good number of cubically convergent iterative procedures,
(for the details please see [30]) and one of them is given as below:

xn+1 = xn −
[
1 + 1

2
Lf (xn)

1− αLf (xn)

]
f(xn)
f ′(xn) , α ∈ R, (1)

where Lf (xn) = f ′′(xn)f(xn)
{f ′(xn)}2 . This is a well-known family of Chebyshev-Halley iteration func-

tions [14]. We can easily obtain some popular iteration functions from this family. For example,
the classical Chebyshev’s method [30, 15], Halley’s method [30, 15] and super-Halley method
[30, 15] if we choose α = 0, α = 1

2 and α = 1, respectively. Regardless of cubic convergence,
the scheme (1) is consider less practical from a computational point of view because it is not an
easy task to find the second-order derivative of every problem.

This fact has motivated many scholars to turn towards the approach of multi-point iteration
functions. The principal objective of them is to produce second or higher-order derivative free
iteration functions with maximum convergence order by using certain values of function/s and
or its first-order derivative/s. In 1964, Traub [30] presented the analysis of multi-point iteration



functions with their properties. Recently, Petković et al. [25] also revised and update the facts
about them.

Despite of going in to the detail of them, we have only focused on the higher-order and second
derivative free modifications of the family (1). According to our expertise, many researchers
from worldwide like, Kou and Li [18, 19], Kou [17], Chun [9], Amat et al. [1], Xiaojian [32]
and Arygros et al. [5], proposed higher-order modification of Chebyshev-Halley’s iteration
functions not using the values of second or higher-order derivative/s.

Recently, Li et al. [21], presented an improvement of Chebyshev-Halley iteration functions,
which is defined as follows:

yn = xn −
f(xn)
f ′(xn) ,

zn = xn −
(

1 + f(yn)
f(xn)− 2αf(yn)

)
f(xn)
f ′(xn) , α ∈ R

xn+1 = zn −
f(zn)

f ′(xn) + f ′′(xn)(zn − xn) ,

(2)

where f ′′(xn) = 2f(yn)f ′(xn)2

f(xn)2 . The above scheme has minimum fifth-order convergence and
further reaches at six for α = 1.

Moving ahead in this direction, Sharma [29], also constructed the following new modification
of the above scheme (2):

yn = xn −
f(xn)
f ′(xn) ,

zn = xn −
(

1 + f(yn)
f(xn)− 2αf(yn)

)
f(xn)
f ′(xn) , α ∈ R

xn+1 = zn −
f(zn)

f [zn, yn] + f [zn, yn, xn](zn − yn) + f [zn, yn, xn, xn](zn − yn)(zn − xn) .
(3)

This family (3) has minimum sixth-order convergence and further attains eighth for α = 1. So,
it means that this scheme has an optimal eighth-order convergence but only for α = 1.

Both of the above mentioned schemes namely, (2) and (3), using three values of the considered
function and one derivative of first-order at per step. But, none of them achieved an optimal
convergence for each α. No doubts, Sharma got a little success in this path but that one is
valid only for α = 1, not for other values. According to Kung-Traub conjecture, we can attain
maximum eighth-order convergence by using the same functional evaluations.

While keep all these things in our mind, we intend to propose a new powerful and an optimal
reconstruction of Chebyshev-Halley iteration functions of order four and eight. In addition, we
analyze the local convergence of them by using suppositions requiring first-order derivative of
the involved function f and the Lipschitz conditions. Moreover, we also present their theoretical
radius of convergence which provides guaranteed convergence of them. Further, we will give a
practical exhibition of our iteration functions to many real life situations and conclude that they
perform better than the earlier studies. Finally, the dynamical behavior of them also illustrate
the above consequences to a great extent.



Construction of higher-order optimal schemes

First of all in this section, we propose a new reconstruction of fourth-order Chebyshev-Halley
methods, not requiring the computation of second-order derivative. Then, we extend the same
scheme for eighth-order convergence. For this purpose, we consider the well-known second
order Newton’s method [30], which is given by

yn = xn −
f(xn)
f ′(xn) . (4)

With the help of Taylor series, we will get the following expansions of functions f(yn) andf ′(yn)
about a point x = xn, as follow

f(yn) ≈ (yn − xn)2

2 f ′′(xn), (5)

and
f ′(yn) ≈ f ′(xn) + f ′′(xn)(yn − xn). (6)

By adding the expressions (5) and (6), we get

f(yn) + f ′(yn) ≈ (yn − xn)2

2 f ′′(xn) + f ′(xn) + f ′′(xn)(yn − xn), (7)

which further yields

f ′′(xn) ≈
2[f ′(xn)]2

(
f ′(xn)− f ′(yn)− f(yn)

)
f(xn)

(
2f ′(xn)− f(xn)

) . (8)

However, this new approximation for f ′′(xn) uses four functional evaluations, viz. f(xn),f ′(xn),
f(yn), f ′(yn). Therefore, in order to reduce the number of functional evaluations, we consider
an approximation similar to the King’s approximation [16], which is defined as follows

f ′(yn) = f ′(xn)
(

1 + β1v

1 + β2v

)
, (9)

where v = f(yn)
f(xn) and β1, β2 ∈ R .

Now, using the above expressions (8) and (9) in expression (1), we obtain a new reconstruction
of Chebyshev-Halley family

xn+1 = xn −
[
1 + 1

2
L∗f (xn)

1− αL∗f (xn)

]
f(xn)
f ′(xn) , α ∈ R, (10)

where L∗f (xn) = 2f(yn)[(β1 − β2)u−1 + β2v + 1](
f(xn)− 2f ′(xn)

)(
1 + β2v

) .



In order to attain eighth-order convergence of the scheme (10), we rewrite in the following way:

yn =xn −
f(xn)
f ′(xn) ,

zn =xn −
[
1 + 1

2
L∗f (xn)

1− αL∗f (xn)

]
f(xn)
f ′(xn) , α ∈ R,

xn+1 =xn −
u
(
f(xn)− f(zn)

)
f(yn) + (xn − zn)(v − 1)f(xn)f(zn)

(2v − 1)(xn − zn)f ′(xn)f(zn) +
(
uf [xn, zn]− f(zn)

)
f(yn)

,

(11)

where u = f(xn)
f ′(xn) and v = f(yn)

f(xn) . The next theorem 1 indicates that under what choices on
disposable parameters in (10) and (11), the order of convergence will reach at four and eight,
respectively without using any more functional evaluations.

Theorem 1 Let f : D ⊂ R→ R has a simple zero ξ and is a sufficiently differentiable function
in the closed interval D containing ξ. We also assume that initial guess x = x0 is sufficiently
close to ξ. Then, the iterative schemes (10) and (11) have fourth and eighth-order convergence,
respectively when

β1 = 2(α− 2), β2 = 2(α− 1), (12)

where α ∈ R.

Proof: Let us assume that the error at nth iteration is en = xn− ξ. We expand f(xn) and f ′(xn)
around x = ξ with the help of Taylor’s series expansion. Then, we have

f(xn) = f ′(ξ)
 8∑
j=1

cje
j
n +O(e9

n)
 , (13)

and

f ′(xn) = f ′(ξ)
 8∑
j=1

jcje
j
n +O(e9

n)
 , (14)

where cn = 1
n!
f (n)(ξ)
f ′(ξ) , n = 2, 3, 4, . . . , 8.

By using the equations (13) and (14), we get

u = en − c2e
2
n + 2(c2

2 − c3)e3
n + (7c3c2 − 4c3

2 − 3c4)e4
n + (8c4

2 − 20c3c
2
2 + 10c4c2 + 6c2

3

− 4c5)e5
n +

(
52c3c

3
2 − 16c5

2 − 28c4c
2
2 + (13c5 − 33c2

3)c2 + 17c3c4 − 5c6
)
e6
n +O(e7

n).
(15)

By using the expression (15), we obtain

yn − ξ = c2e
2
n − 2(c2

2 − c3)e3
n + (4c3

2 − 7c3c2 + 3c4)e4
n + (4c5 − 8c4

2 + 20c3c
2
2 − 10c4c2 − 6c2

3)e5
n

+
(
16c5

2 − 52c3c
3
2 + 28c4c

2
2 + (33c2

3 − 13c5)c2 − 17c3c4 + 5c6
)
e6
n − 2

(
16c6

2 − 64c3c
4
2

+ 36c4c
3
2 + 9(7c2

3 − 2c5)c2
2 + (8c6 − 46c3c4)c2 − 9c3

3 + 6c2
4 + 11c3c5 − 3c7

)
e7
n +O(e8

n).
(16)



We have the following expansion of f(yn) about a point x = ξ

f(yn) =f ′(ξ)
[
c2e

2
n + (2c3 − 2c2

2)e3
n + (5c3

2 − 7c3c2 + 3c4)e4 − 2(6c4
2 − 12c3c

2
2 + 5c4c2

+ 3c2
3 − 2c5)e5

n +
(
16c5

2 − 52c3c
3
2 + 28c4c

2
2 + (33c2

3 − 13c5)c2 − 17c3c4 + 5c6
)
e6
n

− 2
(
16c6

2 − 64c3c
4
2 + 36c4c

3
2 + 9(7c2

3 − 2c5)c2
2 − 9c3

3 + (8c6 − 46c3c4)c2 + 6c2
4

+ 11c3c5 − 3c7
)
e7
n +O(e8

n)
]
.

(17)
With the help of expression (13) and (17), we get

v = c2en + (2c3 − 3c2
2)e2

n + (8c3
2 − 10c3c2 + 3c4)e3

n + (37c3c
2
2 − 20c4

2 − 14c4c2 − 8c2
3 + 4c5)e4

n

+
(
48c5

2 − 118c3c
3
2 + 51c4c

2
2 + (55c2

3 − 18c5)c2 − 22c3c4 + 5c6
)
e5
n +

(
344c3c

4
2 − 112c6

2 − 163c4c
3
2

+ (65c5 − 252c2
3)c2

2 + 2(75c3c4 − 11c6)c2 + 26c3
3 − 15c2

4 − 28c3c5 + 6c7
)
e6
n +O(e7

n).
(18)

Using equations (13) – (18), we have

L∗f (xn) = −(β1 − β2)c2en + 1
2
(
2(β1 − β2)(β2 + 3)c2

2 + (−β1 + β2 − 2)c2 + 4(β2 − β1)c3
]
e2
n

+
5∑
r=0

Pre
r+3
n +O(e9

n),

(19)
where Pr = Pr(α, β1, β2, c2, c3, . . . , c8).
By inserting expressions (13) – (19) in the scheme (10), we obtain

en+1 = 1
2(2 + β1 − β2)c2e

2
n +

5∑
r=0

P̄re
r+3
n , (20)

where P̄r = P̄r(α, β1, β2, c2, c3, . . . , c8).
It is clear from the above expression (20) that we obtain at least third-order convergence, when
we choose

β2 = β1 + 2. (21)

Using the expression (21) in P0 = 0, we obtain the following expression

(4 + β1 − 2α)c2
2 = 0, (22)

which further yields
β1 = 2(α− 2). (23)

By substituting the expressions (21) and (23) in (10), we have

en+1 = c2[(α− 1)c2 + c2
2 − c3]e4

n +
5∑
r=2

P̄re
r+3
n +O(e9

n). (24)

Again by using the expressions (13) – (19) and (21) – (23) in (11), we obtain

zn − ξ = P̄1e
4
n + P̄2e

5
n + P̄3e

6
n + P̄4e

7
n + P̄5e

8
n +O(e9

n), (25)

where P̄1 = c2[(α−1)c2+c2
2−c3], P̄2 =

[
2(3−4α+α2)c3

2+ 1
2c

2
2(α+16c3−1)+c2{4(α−1)c3−



2c4}−4c4
2−2c2

3

]
, P̄3 = 1

4

[
−8(7α2−19α+12)c4

2 +2c3
2(2α2−9α−60c3 +7)+c2

2

{
α+16(3α2−

11α+8)c3+48c4−1
}

+4c2
{

2(α−1)c3+6(α−1)c4+18c2
3−3c5

}
+4c3(4(α−1)c3−7c4)+40c5

2

]
,

etc.
We can obtain the following Taylor series expansion from f(zn) about the point ξ with the help
of expression (25)

f(zn) = f ′(ξ)
[
P̄1e

4
n + P̄2e

5
n + P̄3e

6
n + P̄4e

7
n +

(
P̄ 2

1 c2 + P̄5
)
e8
n +O(e9

n)
]
. (26)

By using the equations (13) – (19) and (21) – (23) and (26), we have

u
(
f(xn)− f(zn)

)
f(yn) + (xn − zn)(v − 1)f(xn)f(zn)

(2v − 1)(xn − zn)f ′(xn)f(zn) +
(
uf [xn, zn]− f(zn)

)
f(yn)

= en − c2(c3
2 − 2c3c2 + c4)P1e

8
n +O(e9

n),

(27)
Finally by substituting the above expression in scheme (11), we obtain

en+1 = c2
2

(
(α− 1)c2 + c2

2 − c3
)

(c3
2 − 2c2c3 + c4)e8

n +O(e9
n). (28)

This above expressions (24) and (28) reveal that new constructions of Chebyshev-Halley meth-
ods (10) and (11) reach optimal fourth and eighth-order convergence, respectively. This com-
pletes the proof. �

Local Convergence

The local convergence of method (10) was given using hypotheses up to the fourth derivative
of function f although only the first derivative appears in this method. The local convergence of
method (11) requires the usage of the eighth derivative. These hypotheses limit the applicability
of both methods. As a motivational example, define function f on R, D = [−5

2 ,
1
2 ] by

f(x) =
{
x3lnx2 + x5 − x4, x 6= 0
0, x = 0 .

Let us assume that our desired root is ξ = 1. Then, we have that

f ′(x) = 3x2lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 12xlnx2 + 20x3 − 12x2 + 10x

and
f ′′′(x) = 12lnx2 + 60x2 − 12x+ 22.

Then, obviously, function f ′′′(x) is unbounded on D. Hence, the results in [21, 29], cannot
apply to show the convergence of method (5) or its special cases requiring hypotheses on the
third derivative of function F or higher. Notice that, in-particular there is a plethora of iterative
methods for approximating solutions of nonlinear equations [1-32]. These results show that
if the initial point x0 is sufficiently close to the solution ξ, then the sequence {xn} converges
to ξ. But how close to the solution ξ the initial guess x0 should be? These local results give
no information on the radius of the convergence ball for the corresponding method. The same
technique can be used to other methods.
In this section, we present the local convergence analysis of method (5) using hypotheses only
on the first derivative function f and Lipschitz constants. Similarly, we can the study method



(14). We expand the applicability of these methods in this way. Moreover, we provide com-
putable radius of convergence, error estimates on the distances |xn− ξ| and a uniqueness result.
Let L0 > 0, L > 0, M ≥ 1 and α, β1 β2 ∈ R be given constants. It is convenient for the local
convergence analysis that follows to introduce some functions and parameters. Define functions
g1, p and hp on the interval

[
0, 1

L0

)
, by

g1(t) = Lt

2(1− L0t)
,

p(t) =


(
L0 + 2|β2 − 2α|Mg1(t) + 2M

)
t+

(
|αβ2|+ |α+ β2|

)
M2g1(t)

1− L0
2 t

, if 2|β2 − 2α| > |β2|

(
L0 + 2(|β2|+ 2|α|)|Mg1(t) + 2M

)
t+

(
|αβ2|+ |α+ β2|

)
M2g1(t)

1− L0
2 t

, if 2|β2 − 2α| ≤ |β2|

hp(t) = p(t)− 1,

and parameter r1 by

r1 = 2
2L0 + L

.

Then, we have that r1 <
1
L0

and for each t ∈ [0, r1), 0 ≤ g1(t) < 1. Moreover, we have that

hp(0) = −1 and hp(t)→ +∞ as t→ 1−
L0

. It follows from the intermediate value theorem that

function hp has zeros in the interval
(
0, 1

L0

)
. Denote by rp the smallest such zero. Furthermore,

we also define the following functions g2 and h2 on the interval [0, rp), by

g2(t) = 1
2(1− L0t)

L+
4M3g1(t)

(
|β1 − β2|+ |β2|g1(t)t+ t

)
t

(1− L0
2 t)(1− p(t))

 t,
and

h2(t) = g2(t)− 1.

We get that h2(0) = −1 < 0 and h2(t) → +∞ as t → r−p . Let r2 be the smallest zero of
function h2 on the interval (0, rp).
Set

r = min{r1, r2}. (29)

Then, we have that
0 < r ≤ r1. (30)

and for each t ∈ [0, r),
0 ≤ g1(t) < 1, (31)

0 ≤ p(t) < 1, (32)

and
0 ≤ g2(t) < 1. (33)

Let U(γ, δ), Ū(γ, δ) denote, respectively for the open and closed balls in R, with center γ ∈ R,
and of radius δ > 0. Next, we present the local convergence analysis of method (4), (10) using
the preceding notation.

Theorem 2 Let f : D ⊂ R → R be a differentiable function. Suppose that there exist ξ ∈ D,



L0 > 0, L > 0, M ≥ 1, α, β1, β2 ∈ R such that for each x, y ∈ D,

f(ξ) = 0, f ′(ξ)−1 ∈ L(R, R), (34)

|f ′(ξ)−1(f ′(x)− f ′(ξ)| ≤ L0|x− x0|. (35)

Let us assume that Ω0 = D ∩ U
(
ξ, 1

L0

)
.

|f ′(ξ)−1
(
f ′(x)− f ′(y)

)
| ≤ L|x− y|, foreach x, y ∈ Ω0, (36)

|f ′(ξ)−1f ′(x)| ≤M, foreach x ∈ Ω0, (37)

and
Ū(ξ, r) ⊂ D, (38)

hold, where the convergence radius r is defined by (29). Then, the sequence {xn} generated for
x0 ∈ U(ξ, r)− {ξ} by method (5) is well defined, remains in U(ξ, r) for each n = 0, 1, 2, . . .
and converges to ξ. Moreover, the following estimates hold

|yn − ξ| ≤ g1(|xn − ξ|)|xn − ξ| ≤ |xn − ξ| < r, (39)

and
|zn − ξ| ≤ g2(|xn − ξ|)|xn − ξ| < |xn − ξ|, (40)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

), the limit point ξ
is the only solution of equation f(x) = 0 in Ω1 = Ū(ξ, T ) ∩ D.

Proof: We shall show estimates (39)–(40) using mathematical induction. By hypotheses x0 ∈
U(ξ, r)− {ξ}, (29) and (35), we get

|f ′(ξ)−1(f ′(x0)− f ′(ξ))| ≤ L0|x0 − ξ| < L0r < 1. (41)

It follows from the (41) and the Banach Lemma on invertible functions [3, 4, 26] that f ′(x0) 6= 0
and

|f ′(x0)−1f ′(ξ)| ≤ 1
1− L0|x0 − ξ|

. (42)

Hence, y0 is well defined by the first sub-step of the method (5) for n = 0. Then, we have by
(29), (31), (36) and (42) that

|y0 − ξ| = |x0 − ξ − f ′(x0)−1f(x0)|

≤ |f ′(x0)−1f ′(ξ)||
∫ 1

0 f
′(ξ)−1

[
f ′(ξ + θ(x0 − ξ))− f ′(x0)

]
(x0 − ξ)dθ|

≤ L|x0 − ξ|2

2(1− L0|x0 − ξ|)
= g1(|x0 − ξ|)|x0 − ξ| < |x0 − ξ| < r,

(43)

which shows (39) for n = 0 and y0 ∈ U(ξ, r).
The fraction in (10) can be written for n = 0 as N0

D0
, where N0 = 2f(y0)[(β1 − β2)f ′(x0) +

βf(y0) + f(x0)] and D0 = 1
2f(x0)D1, D1 = 2f(x0) + 2(β2 − 2α)f(y0) − (α+β2)f(y0)f ′(x0)

f(x0) −
αβ2

[f(y0)]2
f(x0) − f

′(x0).



We need to show that f(x0) 6= 0, f(x0) − 2f ′(x0) 6= 0, f(x0) + β2f(y0) 6= 0 and D1 6= 0 for
x0 6= ξ. Using (29), (34) and (35), we have that

|
(
f ′(ξ)(x0 − ξ)

)−1(
f(x0)− f(ξ)− f ′(ξ)(x0 − ξ)

)
| ≤ |x0 − ξ|−1L0

2 |x− ξ|
2 = L0

2 |x0 − ξ| < 1.
(44)

It follows from (44) that f(x0) 6= 0 and

|f ′(x0)−1f ′(ξ)| ≤ 1
|x0 − ξ|

(
1− L0

2 |x0 − ξ|
) . (45)

Then, by (29), (32), (35), (37), (43) and (45), we obtain for 2|β2− 2α| > |β2| and using the first
version of the function p in turn that∣∣∣∣∣f ′(ξ)−1

[
f ′(x0)− f ′(ξ) + αβ2[f(y0)]2

f(x0) + (α + β2)f(y0)f ′(x0)
f(x0) − 2f(x0)− 2(β2 − 2α)f(y0)

]∣∣∣∣∣
≤ L0|x0 − ξ|+

|αβ2|M2|y0 − ξ|
|x0 − ξ|

(
1− L0

2 |x0 − ξ|
) + |α + β2|M2|y0 − ξ|
|x0 − ξ|

(
1− L0

2 |x0 − ξ|
)

+ 2M |x0 − ξ|+ 2|β2 − 2α|M |y0 − ξ|

≤ L0|x0 − ξ|+
|αβ2|M2g1

(
|x0 − ξ|

)
1− L0

2 |x0 − ξ|
+
|α + β2|M2g1

(
|x0 − ξ|

)
1− L0

2 |x0 − ξ|
+ 2

[
M + |β2 − 2α|Mg1

(
|x0 − ξ|

)]
|x0 − ξ|

= p
(
|x0 − ξ|

)
< p(r) < 1.

(46)
Hence, we get that

|D−1
0 f ′(ξ)| ≤ 1

1− p
(
|x0 − ξ|

) . (47)

If we use 2|β2− 2α| ≤ |β2| then the term 2|β2− 2α| can be replaced by 2(|β2|+ 2|α|). For this
condition, we use the second version of the function p. Further, by using (45) and (47) we have
that

|D−1
1 f ′(ξ)| ≤ 2

|x0 − ξ|
(
1− L0

2 |x0 − ξ|
)(

1− p
(
|x0 − ξ|

)) . (48)

Hence, x1 is well defined by (10) for n = 0. We also notice from equation (46) which implies
that f(x0)− 2f ′(x0) 6= 0, f(x0) + β2f(y0) 6= 0. Further, we have

|f ′(ξ)−1
(
f ′(x0)−f ′(ξ)

)
− f(x0)

2 | ≤ L0|x0−ξ|+
M |x0 − ξ|

2 ≤ p(|x0−ξ|) < p(r) < 1, (49)

and
|
(
f ′(ξ)(x0 − ξ)

)−1(
(f(x0)− f(ξ)− f ′(ξ)(x0 − ξ)) + β2f(y0)

)
|

≤ |x0 − ξ|−1
(
L0

2 |x0 − ξ|2 + |β2|M |y0 − ξ|
)

≤ L0

2 |x0 − ξ|+M |β2|g1|
(
|x0 − ξ|

)
≤ p

(
|x0 − ξ|

)
< p(r) < 1,

(50)



for p given by the first formula, if 2|β2−2α| > |β2| and from the second formula if 2|β2−2α| ≤
|β2|.
Now, we need to estimate the following

|N0| ≤ 2|f ′(ξ)−1f(y0)|
[
|β1 − β2|+ |β2||f ′(ξ)−1f(y0)|+ |f ′(ξ)−1f(x0)|

]
≤ 2M |y0 − ξ|

[
|β1 − β2|+ |β2|M |y0 − ξ|+M |x0 − ξ|

]
≤ 2Mg1

(
|x0 − ξ|

)
|x0 − ξ|

[
|β1 − β2|+ |β2|Mg1

(
|x0 − ξ|

)
|x0 − ξ|+M |x0 − ξ|

]
.

(51)

Therefore, by (10) (for n = 0), (30), (33), (37), (42), (43), (45), (47), (48), and (51) we get in
turn that

|x1 − ξ| ≤ |x0 − ξ − f ′(x0)−1f(x0)|+
2M3|y0 − ξ|

(
|β1 − β2|+ |β2||y0 − ξ|+ |x0 − ξ|

)
|x0 − ξ|

(1− L0|x0 − ξ|)
(
1− L0

2 |x0 − ξ|
)(

1− p(|x0 − ξ|)
)
|x0 − ξ|

≤
2M3g1

(
|x0 − ξ|

)[
|β1 − β2|+ |β2|g1

(
|x0 − ξ|

)
|x0 − ξ|+ |x0 − ξ|

]
|x0 − ξ|3

(1− L0|x0 − ξ|)
(
1− L0

2 |x0 − ξ|
)(

1− p(|x0 − ξ|)
)

+ L|x0 − ξ|2

2(1− L0|x0 − ξ|)
= g2

(
|x0 − ξ|

)
|x0 − ξ| < |x0 − ξ| < r,

(52)
which shows (40) for n = 0 and x1 ∈ U(ξ r). By simply replacing x0, y0 by xk, yk in the
preceding estimates we arrive at (39)–(40). Using the estimates ‖xk+1 − ξ‖ < ‖xk − ξ‖ < r,
we deduce that lim

k→∞
xk = ξ and xk+1 ∈ Ω1. Finally, to show the uniqueness part, let Q =∫ 1

0 f
′(y∗ + θ(ξ − y∗))dθ for some y∗ ∈ Ω1 with f(y∗) = 0. Using (35), we get that

‖f ′(ξ)−1(Q− f ′(ξ))‖ ≤ ‖
∫ 1

0 L0|y∗ + θ(ξ − y∗)− ξ‖dθ

≤
∫ 1

0 (1− t)‖y∗ − ξ‖dθ ≤ L0

2 T < 1.
(53)

It follows from (53) that Q is invertible. Then, in view of the identity 0 = f(ξ) − f(y∗) =
Q(ξ − y∗), we conclude that ξ = y∗. �
Remarks

(a) In view of (35) and the estimate

|f ′(ξ)−1f ′(x)| = |f ′(ξ)−1(f ′(x)− f ′(ξ)) + I|

≤ 1 + |f ′(ξ)−1(f ′(x)− f ′(ξ))|

≤ 1 + L0|x0 − ξ|

condition (37) can be dropped and M can be replaced by

M(t) = 1 + L0t

or by M(t) = M = 2, since t ∈ [0, 1
L0

).

(b) The results obtained here can be used for operators f satisfying the autonomous differen-
tial equation [3, 4] of the form

f ′(x) = P (f(x)),



where P is a known continuous operator. Since f ′(ξ) = P (f(ξ)) = P (0), we can apply
the results without actually knowing the solution ξ. Let as an example f(x) = ex − 1.
Then, we can choose P (x) = x+ 1.

(c) The radius r1 was shown in [3, 4] to be the convergence radius for Newton’s method under
conditions (35) and (36). It follows from (31) and the definition of r1 that the convergence
radius r of the method (5) cannot be larger than the convergence radius r1 of the second
order Newton’s method. As already noted in r1 is at least as the convergence ball give by
Rheinboldt [28]

rR = 2
3L.

In particular, for L0 < L we have that

rR < r1

and
rR
r1
→ 1

3 as
L0

L
→ 0.

That is our convergence ball r1 is at most three times larger than Rheinboldt’s. The same
value for rR given by Traub [30].

Numerical experiments

In this section, we want to assert that our proposed an optimal family of Chebyshev Hal-
ley methods perform better than the families of Chebyshev-Halley methods proposed by Li et
al. (2014) and Sharma (2015). Some of the researchers who want to assert that their meth-
ods are superior than the other existing methods available in the literature. Generally, they
consider either some well-known or standard or self made test problem and then mold the ini-
tial approximation to assert that their methods are superior than other methods. Molding the
initial guess mean, let A researcher who wants to compare his/her method/methods with B’s
method/methods by considering a particular test problem with x0 as initial guess. Now, if A’s
method/methods does/do not perform better than B’s method/methods then A changes the ini-
tial guess and continue this process until he/she gets better results than B’s method/methods.
If A does not get success on that particular test problem on any initial guess then A consider
another test problem and continue the same process until A does not get success.

To halt this practice, we consider total six numerical examples out of them first two are chosen
from Li et al. [21], third and fourth from Sharma [29] with same initial guesses which are
mentioned in their papers. Further, fifth and six test examples are taken from Petkovı́c et al.
[25]. The details of chosen test problems or functions are available in the Table 1. Further, the
initial approximations and zeros of the corresponding test functions are also display in the same
table.

To check the effectiveness and validity of the theoretical results, we employ the new optimal
family of Chebyshev–Halley methods (11) (MCHM), with Chebyshev’s method (MCM) (α =
0), Halley’s method (MHM) (α = 1

2) and super-Halley method (MSHM) (α = 1). We shall
compare our schemes with a family of Chebyshev-Halley type methods that is very recently pro-
posed by Li et al. [21], out of them we shall pick their best methods (which are claimed by them
not by us) namely, Chebyshev’s method (LCM) (α = 0), Halley’s method (LHM) (α = 1

2)
and super-Halley method (LSHM) (α = 1). Finally, we shall also compare our schemes with
the improved Chebyshev-Halley methods which is developed by Sharma [29], between them



we shall choose their best methods namely, (α = 0, α = 1
2 , α = 1) denoted by SCM, SHM,

and SSHM , respectively.

In the Table 2, we display the minimum number of iterations are required to get the desire ac-
curacy to the corresponding zeros of the functions f1(x)− f6(x) which are given in Table 1. In
addition, we also exhibit the absolute errors |xn+1 − xn| for first three consecutive approxima-
tions in this table. Further, the meaning of (Ae− h) is (A× 10−h). Furthermore, we also want
to demonstrate the theoretical order of convergence which is proved in section 3. Therefore, to
calculate the computational order of convergence, we use the following formula proposed by
[31], which is defined as follows

ρ ≈ ln |(xn+1 − ξ)/(xn − ξ)|
ln |(xn − ξ)/(xn−1 − ξ)|

.

But, this COC requires the exact root ξ and there are many practical situations where the exact
root is not known in advance. To overcome this problem, Grau-Sánchez et al. [13], given
another definition of COC, which is defined as follows

ρ ≈ ln |ěn+1/ěn|
ln |ěn/ěn−1|

, (54)

where ěn = xn − xn−1.
All computations have been performed by using the programming package Mathematica 9
with multiple precision arithmetic. We use ε = 10−300 as a tolerance error. The following stop-
ping criteria are chosen for computer programs:
(i)|xn+1 − xn| < ε and (ii)|f(xn+1)| < ε.
It is noteworthy from the table 2, that our proposed schemes perform better than the Li et al.
(2014) and Sharma (2015), when the accuracy is tested in the high precision digits. For better
comparison, we give a column by column comparison of different modifications of Chebyshev–
Halley methods, so that we can easily see the exact difference between the proposed modifica-
tions and existing modifications of Chebyshev–Halley methods. Further, the accuracy in nu-
merical values of approximations to the root by the proposed scheme is higher than the recently
improvement of Chebyshev–Halley methods given by Li et al. [21] and Sharma [29]. In gen-
eral, the our optimal family of Chebyshev-Halley methods (MCHM) is superior among all the
other proposed methods. This superiority is in accordance because it is an optimal modification
of Chebyshev-Halley methods according to Kung-Traub conjecture [20], which is discussed in
the previous section. The computational order of convergence (COC) and dynamic study of
these methods also confirmed the above conclusions to a great extent.

Now, we also demonstrate the theoretical results which we proposed in section 4, by the apply-
ing on some other numerical examples, which are defined as follows:

Example 1 Let f be a function defined on D = Ū(0, 1), which is given as follows

f7(x) = ex − 1. (55)

Then the first-derivative is f ′7(x) = ex. We get that L0 = e − 1 < L = e
1

e−1 , α = 1 M = 2,
β1 = 2(α − 2) and β2 = 2(α − 1). By substituting different values of parameters, we get
different radius of convergence which are display in the Table 3.



Table 1: Test problems

f(x) Initial guess Root(ξ)

f1(x) = 10xe−x2 − 1; (see [21]) 1.7 1.67963061042845 . . .

f2(x) = (x+ 2)ex − 1; (see [21]) −0.5 −0.442854401002389 . . .

f3(x) = ex + 2−x + 2 cosx− 6; (see [29]) 3.5 1.82938360193385 . . .

f4(x) = (x− 2)(x10 + x+ 1)e−x−x; (see [29]) 2.5 2

f5(x) = ex2+7x−30 − 1; (see [25]) 3.3 3

f6(x) = (x− 2)2 − log x− 33x; (see [25]) 33 36.9894735829447 . . .

Example 2 Returning back to the motivation example at the introduction on this section, we
have L = L0 = 146.6629073, M = 2, β1 = 2(α − 2) and β2 = 2(α − 1). By substituting
different values of parameters, we get different radius of convergence which are display in the
Table 4.

Example 3 Continuous stirred tank reactor (CSTR)

Let us consider the isothermal continuous stirred tank reactor (CSTR). Components A and R
are fed to the reactor at rates of Q and q − Q, respectively. Then, we obtain the following
reaction scheme in the reactor ( for the details see [10]):

A+R→ B

B +R→ C

C +R→ D

C +R→ E

The problem was analyzed by Douglas [12] in order to design simple feedback control systems.
He presented the following expression for the transfer function of the reactor

KC
2.98(x+ 2.25)

(x+ 1.45)(x+ 2.85)2(x+ 4.35) = −1,

where KC is the gain of the proportional controller. The control system is stable for values of
KC that yields roots of the transfer function having negative real part. If we choose KC = 0 we
get the poles of the open-loop transfer function as roots of the nonlinear equation:

f8(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x+ 51.23266875. (56)

No doubts, the above function f1 has four zeros x∗ = −1.45,−2.85,−2.85,−4.35. However,
our required zero is x∗ = −4.35 for expression (57). Let us also consider D = [−4.5,−4].
Then, we obtain

L0 = L = 2.760568793, M = 2

Now, with the help of different values, we get different radius of convergence displayed in Table
5.



Table 2: (Comparison of different multi-point methods )

f(x) LCM LHM LSHM SCM SHM SSHM MCM MHM MSHM

f1(x)

|x2 − x1| 1.4e−1 7.6e−1 5.9e−1 2.5e−1 1.9e−1 8.1e−1 6.3e−3 3.8e−3 3.2e−2

|x3 − x2| 4.2e−5 4.5e−2 4.2e−3 1.3e−4 1.3e−5 1.4e−10 8.1e−20 1.2e−22 2.9e−14

|x4 − x3| 5.7e−23 4.2e−8 4.2e−6 8.8e−24 2.3e−30 1.4e−80 5.7e−155 1.6e−178 1.1e−110

n 6 7 6 6 6 5 5 5 5

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f2(x)

|x2 − x1| 1.5e−2 1.1e+0 2.1e−1 1.1e−1 9.0e−2 4.8e−2 2.3e−2 2.3e−2 2.6e−2

|x3 − x2| 2.5e−7 2.0e−1 1.4e−2 8.0e−4 1.7e−5 9.0e−8 9.3e−11 1.2e−10 2.9e−10

|x4 − x3| 2.0e−31 1.1e+0 1.6e−9 1.1e−15 2.2e−20 2.7e−53 7.0e−78 7.3e−77 1.1e−73

n 96 6 6 6 6 5 5 5 5

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f3(x)

|x2 − x1| 8.9e−10 3.7e−14 5.4e−12 2.7e−10 6.4e−11 6.2e−15 8.8e−15 6.3e−15 3.9e−15

|x3 − x2| 7.3e−47 4.3e−49 1.4e−69 1.3e−57 5.6e−62 4.0e−115 9.2e−114 4.9e−115 7.2e−117

|x4 − x3| 2.7e−232 9.0e−244 3.9e−415 1.3e−341 2.5e−368 1.1e−916 1.4e−905 1.4e−916 8.8e−931

n 5 5 4 4 4 4 4 4 4

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f4(x)

|x2 − x1| 2.0e−7 8.7e−8 1.2e−9 2.7e−8 6.1e−9 2.4e−12 4.4e−13 1.4e−13 1.5e−13

|x3 − x2| 8.3e−35 7.2e−37 1.4e−55 2.7e−46 8.8e−51 2.3e−95 5.1e−102 1.3e−106 2.8e−106

|x4 − x3| 1.1e−171 2.7e−182 2.8e−331 2.5e−274 7.4e−302 1.6e−759 1.6e−813 9.0e−851 4.4e−848

n 5 5 4 5 4 4 4 4 4

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f5(x)

|x2 − x1| D 1.3e−2 1.1e+0 1.2e−1 1.2e−1 1.0e+0 3.6e−2 3.6e−2 3.7e−2

|x3 − x2| D 9.2e−3 2.9e−1 1.6e−2 8.7e−3 5.7e−4 1.9e−9 2.1e−9 3.1e−9

|x4 − x3| D 5.9e−3 2.3e−6 4.8e−7 4.8e−9 1.4e−21 5.6e−68 1.6e−67 5.2e−66

n D D 7 7 7 6 5 5 5

ρ NC 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

f6(x)

|x2 − x1| 7.2e−4 1.2e−4 1.7e−6 7.2e−4 1.2e−4 1.7e−6 2.4e−6 9.3e−6 1.7e−6

|x3 − x2| 5.7e−26 2.8e−30 9.4e−47 7.8e−27 3.6e−32 7.7e−58 3.8e−47 1.1e−50 7.7e−58

|x4 − x3| 1.5e−136 2.3e−158 2.4e−288 1.3e−164 3.3e−197 1.4e−468 1.8e−381 3.1e−410 1.4e−468

n 5 5 5 5 5 4 4 4 4

ρ 5.000 5.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000
(D: stands for divergence. NC means no need to calculate.)



Table 3: Behavior of scheme (10) on example (1)

α r1 r2 r = min{r1, r2} x0 |x2 − x1| |x3 − x2| |x4 − x3| ρ

α = 0 0.382692 0.066575 0.066575 0.65 3.4e(−6) 2.8e(−23) 1.3e(−91) 4.000
α = 1

2 0.382692 0.0877379 0.0877379 0.85 4.1e(−6) 2.3e(−23) 2.1e(−92) 4.000
α = 1 0.382692 0.0877468 0.0877468 0.86 2.2e(−6) 1.0e(−24) 4.2e(−98) 4.000

Table 4: Behavior of scheme (10) on example (2)

α r1 r2 r = min{r1, r2} x0 |x2 − x1| |x3 − x2| |x4 − x3| ρ

α = 0 0.00454557 0.00109685 0.00109685 1.0009 5.5e(−12) 7.4e(−45) 2.5e(−176) 4.000
α = 1

2 0.00454557 0.00167861 0.00167861 1.0011 1.9e(−11) 1.6e(−42) 7.6e(−167) 4.000
α = 1 0.00454557 0.00167861 0.00167861 1.0011 2.5e(−11) 7.0e(−42) 4.1e(−164) 4.000

Example 4 In the study of the multi-factor effect, the trajectory of an electron in the air gap
between two parallel plates is given by

x(t) =x0 +
(
v0 + e

E0

mω
sin(ωt0 + α)

)
(t− t0) + e

E0

mω2

(
cos(ωt+ α) + sin(ω + α)

)
,

(57)
where e and m are the charge and the mass of the electron at rest, x0 and v0 are the position and
velocity of the electron at time t0 and E0 sin(ωt+α) is the RF electric field between the plates.
We choose the particulars parameters in the expression (57) in order to deal with a simpler
expression, which is defined as follows:

f9(x) = x− 1
2 cos(x) + π

4 . (58)

The required zero of the above function α = −0.309093271541794952741986808924.

Then, we have
L0 = L = M = 1.523542095.

So, we obtain the different radius of convergence which are displayed in Table 6 by using the
above values.

Attractor basins in the complex plane

In this section, we present the dynamics of the proposed method based on visual display of
their basins of attraction when f(x) is a given fixed complex polynomial q(z). We further

Table 5: Behavior of scheme (10) on example (3)

α r1 r2 r = min{r1, r2} x0 |x2 − x1| |x3 − x2| |x4 − x3| ρ

α = 0 0.241496 0.0473699 0.0473699 −4.396 2.1e(−5) 1.1e(−18) 8.4e(−72) 4.000
α = 1

2 0.241496 0.0650116 0.0650116 −4.41 4.5e(−5) 1.9e(−17) 5.9e(−67) 4.000
α = 1 0.241496 0.0650156 0.0650156 −4.41 3.2e(−5) 3.6e(−18) 5.3e(−70) 4.000



Table 6: Behavior of scheme (10) on example (4)

α r1 r2 r = min{r1, r2} x0 |x2 − x1| |x3 − x2| |x4 − x3| ρ

α = 0 0.437577 0.066575 0.066575 −0.374 1.2e(−6) 1.5e(−25) 3.1e(−101) 4.000
α = 1

2 0.437577 0.124466 0.124466 −0.419 4.1e(−6) 7.5e(−24) 8.3e(−95) 4.000
α = 1 0.382692 0.124493 0.124493 −0.419 1.9e(−6) 1.8e(−25) 1.4e(−101) 4.000

investigate some dynamical properties of the attained simple root finders in the complex plane
by analyzing the structure of their basins of attraction. It is known that the corresponding
fractal of an iterative root-finding method is a boundary set in the complex plane, which is
characterized by the iterative method applied to a fixed polynomial q(z) ∈ C, see e.g. [27, 24,
7, 6].

The aim herein is to use basin of attraction as another way for comparing the iterative methods.
Therefore, we here investigate the dynamics of the listed simple root finders in the complex
plane using basins of attraction which gives important information about convergence and sta-
bility of the method. To start with, let us recall some basic concepts which are related to basins
of attractions. To start with, let us recall some basic concepts which are related to basins of
attractions. Let g : C→ C be a rational map on the Riemann sphere. The orbit of a point z ∈ C
under g is defined

{z, g(z), g2(z), . . . , gn(z), . . . },

which consists of successive images of z by the rational map g. The dynamic behavior of
the orbit of a point of g would be characterize by its asymptotic behavior. We first introduce
some notions of a point in the orbit under g: a point z0 ∈ C is known as a fixed point of g, if
g(z0) = z0. In addition, z0 is known as a periodic point of period m > 1, if gm(z0) = z0, where
m is smallest such integer. Further, if z0 is a periodic point of period m then it is a fixed point
for gm. Moreover, there are mainly four types of fixed points of a map g, which are based on
the magnitude of the derivative. A fixed point z0 is known as:

If ξ is a root of f(x), then the basin of attraction of ξ, is the collection of those initial approxi-
mations x0 which converge to ξ. It is mathematically defined as follows:

B(ξ) = {z0 ∈ C : gn(z0)→ ξ as n→∞}.

Arthur Cayley was the first person who considered the concept of the basins of attraction for
Newton’s method in 1879. Initially, he considered this concept for the quadratic polynomial.
After some time, he also considered cubic polynomials, but was unable to find an obvious
division for the basins of attraction as he earlier defined for the quadratic equations. In the early
of 20th century, the French mathematicians Gaston Julia and Pierre Fatou started to understand
the nature of complex cubic polynomials. The Julia set of a nonlinear map g(z), called J(g), is
the closure of the set of its repelling fixed points and establishes the borders between the basins
of attraction. On the other hand, the complement of J(g) is known as the Fatou set F (g). In
simple words, the basins of attraction of any fixed point belongs to the Fatou set F (g) and the
boundaries of these basins of attraction belong to the Julia set J(g). For the details of these
concepts please see [11, 27, 24]. The aim herein is to use the basins of attraction as another way
for characterizing initial approximations converging to the desired root ξ for the listed iteration
algorithms. That is to say, the basins of attraction play a role representing a valuable dynamics



of the iteration schemes under consideration.

In order to achieve a vivid description from a dynamical point of view, we consider a rectan-
gle D = [−3, 3] × [−3, 3] ∈ C with a 400 × 400 grid, and we assign a color to each point
z0 ∈ D according to the simple root at which the corresponding iterative method starting from
z0 converges, and we mark the point as black if the method does not converge. In this section,
we consider the stopping criterion for convergence to be less than 10−4 wherein the maximum
number of full cycles for each method is considered to be 200. In this way, we distinguish the
attraction basins by their colors for different methods. For concrete examples of dynamics of the
listed methods behind the basins of attraction, we present several test problems described below.
Test problem 1. Let p1(z) = (z4+1), having simple zeros {−0.707107−0.707107i, −0.707107+
0.707107i, 0.707107 − 0.707107i, 0.707107 + 0.707107i}. It is straight forward to see from
Fig. 1 – 3 that our methods, namely MCM , MHM and MSHM are the best methods in
terms of less chaotic behavior to obtain the solutions. Further, our methods also have the largest
basins for the solution and is faster in comparison to all the mentioned methods.
Test problem 2. Let p2(z) = (z3 +2z), having simple zeros {0, −1.41421i, 1.41421i}. Based
on Fig. 4 – 6 , it is observe that our proposed methods namely, MCM , MHM and MSHM
are the best methods because they have larger and brighter basin of attraction in comparison to
the methods namely, LCM , LHM , LSHM , SCM , SHM and SSHM , respectively.

Figure 1: The methods LCM , LHM and LSHM , respectively for test problem 1.

Figure 2: The methods SCM , SHM and SSHM , respectively for test problem 1.



Figure 3: The methods MCM , MHM and MSHM , respectively for test problem 1.

Figure 4: The methods LCM , LHM and LSHM , respectively for test problem 2.

Figure 5: The methods SCM , SHM and SSHM , respectively for test problem 2.



Figure 6: The methods MCM , MHM and MSHM , respectively for test problem 2.

Conclusions

The present contribution of this study is not only to increase the order of convergence of
classical Chebyshev-Halley method. But, we also provide theoretical radius of convergence
which guaranteed for the convergence of iterative methods. In addition, our schemes (10) and
(11) can further produce many more new optimal methods of order four and eight, respectively
for each α. On the other hand, Sharma [29] and Li at al. [21] didn’t get guess in order to obtain
optimal methods for each α in their studies. On the accounts of results obtained in the Table 2,
it can be concluded that the proposed methods are highly efficient as compared to the existing
methods in term of computational efficiency and speed. We are claiming the superiority of our
methods because we compare them on the same test problems with same initial approximations
which are they taken in their papers (for detail please see Table 1). We also verify in section 4
that these methods converge to the required root even though the third derivative is not bounded.
Finally, the dynamical behaviors of our methods also demonstrate the superiority to the other
known methods in terms of larger and brighter basin of attraction and less chaotic.
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