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Abstract

This paper presents numerical solution to a shape identification problem to control temperature
distribution to a target distribution in sub-domains of unsteady heat convection fields. The
square error integral between the actual temperature distributions and the target temperature
distributions in the sub-domains during the specified period of time is used as the objective
functional. Shape gradient of the shape identification problem is derived theoretically using
the Lagrange multiplier method, adjoint variable method, and the formulae of the material
derivative. Reshaping is carried out by the traction method proposed as an approach to solv-
ing shape optimization problems. Numerical analyses program for the shape identification is
developed based on FreeFem++, and the validity of proposed method is confirmed by results
of 2D numerical analyses.

Keywords: Inverse problem, Shape identification, Optimum design, Flow control, Traction
method

Introduction

Shape design problems that improve the characteristics of heat transfer in thermal convection
fields are an important subject in engineering. A typical example of such a problem can be seen
in the design process used to create a heat exchanger. In this problem, the shape of the heat
exchanger is optimized to maximize the heat discharge on the sub-boundaries of the convection
field. Moreover, the problem of determining the boundary shape that can achieve the desired
state distribution function of temperature or flow velocity on specified sub-boundaries, or in
specified sub-domains, in a heat convection field is known as an inverse problem. If we regard
the inverse problem as designing the shape needed to minimize the integrated squared error
between the state distribution function of the actual temperature distribution and the target
distribution function, then it can be treated as one optimization problem. This study discusses
the solution of the inverse problem and the shape optimization problem with regard to the
shape design of the heat convection field domain.

The theory of shape optimization for incompressible viscous flow fields was initiated by Piron-
neau [Pironneau(1973; 1974; 1984)], who formulated a shape optimization problem for an iso-
lated body located in a uniform viscous flow field to minimize the drag power on this body. The
distributed shape sensitivity, which is called the shape gradient, was derived with respect to
the domain variation by means of an adjoint variable method based on optimal control theory.
The adjoint variable method introduces adjoint variables into variational forms of the govern-
ing equations as variational variables; it also determines the adjoint variables using adjoint
equations derived from criteria defining an optimality condition with respect to the domain
variation.
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Figure 1: Heat convection field

The present authors have proposed an approach for the shape optimization of such channels or
bodies based on a gradient method using the distributed shape sensitivity. In previous studies,
the present authors presented a numerical method for the minimization of the dissipation energy
of steady-state viscous flow fields [Katamine and Azegami(1995); Katamine et al.(2005)] and
extended this method to 3D problems [Katamine et al.(2009)]. Also, the present authors applied
this method to the shape optimization solution for the drag minimization and lift maximization
of an isolated body located in a uniform viscous flow field [Katamine and Matsui(2012)] and the
shape identification problem of flow velocity distribution prescribed problem in sub-domains of
steady-state viscous flow fields [Katamine and Kanai(2016)].

The present study describes the extension of this method for solving a shape identification
problem of unsteady forced heat convection fields to control temperature distribution to target
distribution in sub-domains of the fields. Reshaping is accomplished using the traction method
[Azegami el al.(1995; 1997); Azegami(2000)], which was proposed as a means of solving bound-
ary shape optimization problems of domains. In the traction method, domain variations that
minimize the objective functional are obtained as solutions of pseudo-linear elastic problems
for continua defined in the design domain. These continua are loaded with pseudo-distributed
traction in proportion to the shape gradient in the design domain.

In this study, the shape identification problem is formulated in the unsteady heat convection
fields. The square error integral between the actual temperature distributions and the target
temperature distributions in the sub-domains during the specified period of time is used as the
objective functional. Shape gradient of the shape identification problem is derived theoretically
using the Lagrange multiplier method, adjoint variable method, and the formulae of the ma-
terial derivative. Reshaping is carried out by the traction method proposed as an approach to
solving shape optimization problems. Numerical analyses program for the shape identification
is developed based on FreeFem++, and the validity of proposed method is confirmed by results
of 2D numerical analyses.

Governing equations for unsteady heat convection fields
Consider the unsteady heat convection field in the region Ω of Rd(d = 2, 3) in time interval
[0, T ]. Consider determining the flow velocity u(x⃗, t) = (ui(x⃗, t))i=1,d, pressure p(x⃗, t) and
temperature θ(x⃗, t) at x⃗ ∈ Ω and time t ∈ [0, T ]. The dimensionless forms of the Navier–Stokes
equation, continuity equation, and energy equation are the governing equations for unsteady
heat convection fields. They can be expressed as follows:

∂ui

∂t
+ ujui,j = −p,i +

1

Re
ui,jj, (x⃗, t) ∈ Ω× [0, T ], (1)

ui,i = 0, (x⃗, t) ∈ Ω× [0, T ], (2)

∂θ

∂t
+ ujθ,j =

1

RePr
θ,jj, (x⃗, t) ∈ Ω× [0, T ], (3)



where the boundary Γ = ∂Ω = Γu ∪ Γσ = Γθ ∪ Γq ∪ Γh, are Figure 1. Tensors described in
this study use the Einstein summation convention and differentiation ( · ),i = ∂( · )/∂xi. The
boundary conditions and initial conditions are described below:

ui(x⃗, t) = ûi(x⃗, t), t ∈ [0, T ], x⃗ ∈ Γu, (4)

σi(x⃗, t) = σ̂i(x⃗, t) = (−pδij +
1

Re
ui,j)nj = 0, t ∈ [0, T ], x⃗ ∈ Γσ (5)

θ(x⃗, t) = θ̂(x⃗, t), t ∈ [0, T ], x⃗ ∈ Γθ, (6)

− 1

RePr
θ(x⃗, t),jnj = q̂(x⃗, t), t ∈ [0, T ], x⃗ ∈ Γq, (7)

− 1

RePr
θ(x⃗, t),jnj = ĥ(θ(x⃗, t)− θ̂f ), t ∈ [0, T ], x⃗ ∈ Γh, (8)

ui(x⃗, 0) = uiini
(x⃗), x⃗ ∈ Ω, (9)

p(x⃗, 0) = pini(x⃗), x⃗ ∈ Ω, (10)

θ(x⃗, 0) = θini(x⃗), x⃗ ∈ Ω. (11)

Here, q̂ represents the heat flux, ĥ represents the coefficient of heat transfer, θ̂f represents the
external temperature, δij represents the Kronecker delta, Re is the Reynolds number, and Pr

is Prandtl number. ˆ( · ) represents the known function on the boundary. n⃗ is an outward unit
normal vector to the boundary. Also, uiini

represents the initial flow velocity, pini represents
the initial pressure, and θini represents the initial temperature.

The weak forms of the respective governing equations (1)-(3) can be expressed with adjoint
flow velocity w(x⃗, t) = (wi(x⃗, t))i=1,d, adjoint pressure q(x⃗, t), and adjoint temperature ξ(x⃗, t)
as follows:∫ T

0

{
tV (u,t, w) + aV (u,w) + bV (u, u, w) + c(w, p)− l(w)

}
dt = 0, ∀w ∈ W, (12)∫ T

0

{
c(u, q)

}
dt = 0, ∀q ∈ Q, (13)∫ T

0

{
tH(θ,t, ξ) + aH(θ, ξ) + bH(u, θ, ξ) + fH

q (ξ) + fH
h (θ, ξ)− fH

hf (ξ)
}
dt = 0, ∀ξ ∈ Ξ.

(14)

Furthermore, tV (u,t, w), tH(θ,t, ξ), aV (u,w)，bV (v, u, w), c(w, p), l(w), aH(θ, ξ), bH(u, θ, ξ),
fH
q (ξ), fH

h (θ, ξ), and fH
hf (ξ) are defined as follows:

tV (u,t, w) =

∫
Ω

wi
∂ui

∂t
dx, tH(θ,t, ξ) =

∫
Ω

ξ
∂θ

∂t
dx,

aV (u,w) =

∫
Ω

1

Re
wi,jui,jdx, bV (v, u, w) =

∫
Ω

wivjui,jdx,

c(w, p) = −
∫
Ω

wi,ipdx, l(w) =

∫
Γσ

wiσ̂i dΓ,

aH(θ, ξ) =

∫
Ω

1

RePr
ξ,iθ,idx, bH(u, θ, ξ) =

∫
Ω

ξujθ,jdx, fH
q (ξ) =

∫
Γq

ξq̂ dΓ,

fH
h (θ, ξ) =

∫
Γh

ĥξθ dΓ, fH
hf (ξ) =

∫
Γh

ĥξθ̂f dΓ. (15)



Here, ( · ),t expresses the time derivative of the function. The flow velocity u, its adjoint w, and
the other variables are considered to be elements of the following functional spaces:

U = {u(x⃗, t) ∈ H1(Ω× [0, T ]) | u satisfies (4) and (9)}, (16)

Q = {q(x⃗, t) ∈ L2(Ω× [0, T ]) (

∫
Ω

q dx = 0 (if measure(Γσ) = 0))}, (17)

Θ = {θ(x⃗, t) ∈ H1(Ω× [0, T ]) | θ satisfies (6) and (11)}, (18)

W = {wi(x⃗, t) ∈ H1(Ω× [0, T ]) | wi(x⃗, t) = 0, t ∈ [0, T ], x⃗ ∈ Γu, wi(x⃗, T ) = 0, x⃗ ∈ Ω},
(19)

Ξ = {ξ(x⃗, t) ∈ H1(Ω× [0, T ]) | ξ(x⃗, t) = 0, t ∈ [0, T ], x⃗ ∈ Γθ, ξ(x⃗, T ) = 0, x⃗ ∈ Ω}. (20)

Prescribing temperature in sub-domain in unsteady heat convection fields

In this section, the problem of minimizing the square integration errors between the actual
temperature θ|ΩD×[t1,t2] from time t = t1 ∈ [0, T ] to t = t2 ∈ [0, T ] and the target temperature
θD|ΩD×[t1,t2] in sub-domain ΩD ⊂ Ω is formulated. We assume t1 < t2. The domain transfor-

mation of this heat convection field region Ω is denoted by T⃗s, and the domain Ω is assumed to
vary to reach Ωs = T⃗s(Ω)[Azegami el al.(1995; 1997)]. For simplicity, we assume that the sub-

domains ΩD and Γσ are invariable, that is T⃗s(ΩD) = ΩD and T⃗s(Γσ) = Γσ or domain variation.
The square integration error problem for temperature distribution from time t = t1 to t = t2 is
formulated as follows:

Given Ω find Ωs that minimizes

∫ t2

t1

EΩD
(θ) dt subject to (12)− (14) and∫

Ω

dx ≤ βVM. (21)

where βV is a coefficient related to the initial domain measure M , and

EΩD
(θ) =

∫
ΩD

(θ − θD)
2 dx. (22)

The Lagrange function L(ui, p, θ, wi, q, ξ,Λ) for this problem is given as follows:

L =

∫ t2

t1

EΩD
(θ) dt

−
∫ T

0

{
tV (u,t, w) + aV (u,w) + bV (u, u, w) + c(w, p)− l(w)

}
dt−

∫ T

0

{
c(u, q)

}
dt

−
∫ T

0

{
tH(θ,t, ξ) + aH(θ, ξ) + bH(u, θ, ξ) + fH

q (ξ) + fH
h (θ, ξ)− fH

hf (ξ)
}
dt

+Λ(

∫
Ω

dx− βVM). (23)

where w ∈ W , q ∈ Q, and ξ ∈ Ξ were introduced as Lagrange multiplier functions or the
adjoint functions with respect to the weak forms. The non-negative real constant number Λ is
the Lagrange multiplier with respect to the volume constraint. The derivative of L with respect



to domain variation is derived using the velocity field V⃗ (Ωs) = ∂T⃗s(Ω)/∂s = ∂T⃗s, /∂s(T⃗
−1
s (Ωs)),

as follows [Azegami el al.(1995; 1997)]:

L̇ = −
∫ T

0

{
tV (u,t, w

′) + aV (u,w′) + bV (u, u, w′) + c(w′, p)− l(w′) + c(u, q′)
}
dt

−
∫ T

0

{
tH(θ,t, ξ

′) + aH(θ, ξ′) + bH(u, θ, ξ′) + fH
q (ξ′) + fH

h (θ, ξ′)− fH
hf (ξ

′)
}
dt

−
∫ T

0

{
tV (u′

,t, w) + aV (u′, w) + bV (u′, u, w) + bV (u, u′, w) + c(u′, q) + bH(u′, θ, ξ) + c(w, p′)
}
dt

−
∫ T

0

{
tH(θ′,t, ξ) + aH(θ′, ξ) + bH(u, θ′, ξ) + fH

h (θ′, ξ)
}
dt+

∫ t2

t1

EΩD
(θ′) dt

+Λ̇

(∫
Ω

dx− βVM

)
+ lG(V⃗ ). (24)

Here, ( · )′ represents the derivative with respect to domain variation of the function fixed on
the spatial coordinates, and

lG(V⃗ ) =

∫
Γ

Gn⃗ · V⃗ dΓ, (25)

and assuming that the flow velocity satisfies ui = 0 at the design boundary,

G = G0 +G1Λ,

G0 =

∫ T

0

{
− 1

Re
wi,jui,j −

∂θ

∂t
ξ − 1

RePr
ξ,iθ,i

−∇n(ξq̂)− (ξq̂)κ−∇n(ĥξθ)− (ĥξθ)κ+∇n(ĥξθ̂f ) + (ĥξθ̂f )κ
}
dt

G1 = 1, (26)

where ∇n( · ) ≡ ∇( · ) · n⃗, and κ denotes the quantity (d − 1) times the mean curvature of
boundary, and ui, p, θ, wi, q, ξ, and Λ are determined by the following conditions:∫ T

0

{
tV (u,t, w

′) + aV (u,w′) + bV (u, u, w′) + c(w′, p)− l(w′) + c(u, q′)
}
dt = 0

∀w′ ∈ W, ∀q′ ∈ Q (27)∫ T

0

{
tH(θ,t, ξ

′) + aH(θ, ξ′) + bH(u, θ, ξ′) + fH
q (ξ′) + fH

h (θ, ξ′)− fH
hf (ξ

′)
}
dt = 0 ∀ξ′ ∈ Ξ

(28)∫ T

0

{
−tV (u′, w,t) + aV (u′, w) + bV (u′, u, w) + bV (u, u′, w) + c(u′, q)

+bH(u′, θ, ξ) + c(w, p′)
}
dt = 0 ∀u′ ∈ U, ∀p′ ∈ Q

(29)∫ T

0

{
−tH(θ′, ξ,t) + aH(θ′, ξ) + bH(u, θ′, ξ) + fH

h (θ′, ξ)
}
dt−

∫ t2

t1

EΩD
(θ′) dt = 0 ∀θ′ ∈ Θ

(30)

Λ ≥ 0,

∫
Ω

dx ≤ βVM, Λ(

∫
Ω

dx− βVM) = 0. (31)
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Figure 2: Numerical model: Branch channel, prescribing temperature distribution
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Figure 3: Numerical results: Mesh and temperature distribution at final time (t=400) for initial
shape

(a) Mesh (b) Temperature

Figure 4: Numerical results: Mesh and temperature distribution at final time (t=400) for the
identified shape

The derivative of the Lagrange function agrees with the derivative of the evaluation function,
establishing the following relationship:

L̇|ui,p,θ,wi,q,ξ,Λ = ĖΩD
|ui,p,θ,wi,q,ξ,Λ = lG(V⃗ ). (32)

Since Gn⃗ in equation (25) is a coefficient function of the velocity field V⃗ that provides minute
variations in the domain, Gn⃗ is referred to as a sensitivity function or shape gradient function.
Furthermore, the scalar function G is referred to as the shape gradient density function.

Equation (27) is a weak form of the Navier–Stokes equation and the continuity equation (28) is
a weak form of the energy equation in the state equation. Equation (29) is a weak form of the
Navier–Stokes equation and continuous state equation for the adjoint problem, equation (30)
is a weak form of the energy equation in the state equation for the adjoint problem, and (31)
is a constraint equation related to the Lagrange multiplier Λ.

The traction method can be applied if the shape gradient function can be evaluated by analyzing
ui, p, θ, wi, q, ξ, and Λ based on these equations.

Numerical results

A shape identification problem for prescribing the temperature distribution θ|ΩD×[t1,t2] in an
unsteady heat convection field was analyzed for the branch channel model shown in Fig.2.
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Figure 5: Numerical results: Temperature history in sub-domain ΩD1 and iterative history of
objective functional

The hot thermal fluid flows in from a boundary Γu and flows out from two boundaries Γσ.
The purpose of shape identification in this analysis is to unify the temperature distribution
history near two outlet boundaries Γσ during the specified period of time. The temperature
distribution history in sub-domain ΩD2 was set in the target distribution θD in Eq.(21), and
the shape identification problem that the temperature distribution history in sub-domain ΩD1

agrees with the temperature distribution history in sub-domain ΩD2 was analyzed.

The flow boundary conditions included Poiseuille flow on an inlet boundary Γu and a natural
boundary on two outlet boundaries Γσ. The temperature boundary conditions were as follows:
θ̂ = 1 on the inlet boundary Γθ, insulation boundary on the two outlet boundaries Γq, and
the wall boundaries were heat transfer boundaries Γh1 and Γh2, with a heat transfer coefficient
ĥ = 1, and an external temperature θ̂f = 0. The Reynolds number was Re=100 and the
Prandtl number was Pr= 100. The initial conditions of the entire domain were set to θini = 0
and uiini

= 0. The pressure was uniquely set to achieve an average of 0. The time was set to
t1 = 0 and t2 = T , and time integration was performed from t = 0 to t = T = 400 with a
∆t = 0.4 time increment. The two heat transfer boundaries Γh1 of BC and HA were considered
to be design boundaries Γdesign. Other boundaries were constrained with respect to domain
variation. The coefficient βV , which restrains the size of the domain, was set for βV = 1.
The heat transfer terms were not considered for the evaluation of the shape gradient density
function in Eq.(26).

In this numerical analysis, the flow field velocity u⃗, pressure p, temperature θ, adjoint flow
velocity w⃗, adjoint pressure q, adjoint temperature ξ, and shape updating analysis (velocity

field V⃗ ) were all performed using FreeFem++[Ootsuka and Takaishi (2014)], [Hect (2012)]. The
mesh and temperature θ at the end time t = T= 400 for the initial shape and the identified
shape are shown in Fig.3 and Fig.4, respectively. Figure 5(a) shows the temperature history in
the initial shape, a target temperature history, and the temperature history for the identified
shape in sub-domain ΩD1. Figure 5(b) shows the iterative history for the objective functional.
Based on a comparison between Fig.3 and Fig.4, it was observed that the position of branch
in the channel moved to upper part in the identified shape so that the temperature history
of the two outlet boundaries agreed. In fact, it was confirmed that the temperature history
in the sub-domain ΩD1 in the identification shape agreed with the target temperature history,
and the objective functional approached zero from the result of Fig.5. According to this basic
problem, the validity of the proposed method for the shape identification of the unsteady heat
convection fields was confirmed.



Conclusions

In the present study, we formulated a shape identification problem in which the square error
integral between the actual temperature distributions and the target temperature distributions
on the prescribed sub-domains during the specified period of time on unsteady heat convection
fields is used as the objective functional. The shape gradient of the shape identification problem
was derived theoretically. The validity of the proposed method was confirmed based on the
results of a 2D numerical analysis. The present study was supported in part by The OGAWA
Science and Technology Foundation in Japan.
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