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Abstract 

A simplified method for calculating the seismic responses of the shaft is proposed in this paper. 

First, based on the theory of Winkler elastic foundation beam, the urban shaft is simplified as a 

vertical beam. Secondly, the horizontal soil reaction and vertical shear tractions between the 

shaft circumference and the surrounding soils are considered through horizontal springs and 

rotating springs on the sidewall of the shaft. The translation and rocking motion of the shaft are 

considered through horizontal springs and rotating springs at the bottom of the shaft. Then, the 

dynamic analysis model of the shafts under seismic motion is established, and the control 

equation of the dynamic response of the shaft in frequency domain is deduced. Finally, the 

analytical solution of the steady state response of the shaft is obtained. Considering the 

randomness of the earthquake motion, this method can get the shaft responses under different 

ground motions efficiently. At the same time, the influence of ground motion frequency on the 

dynamic response of shaft can be observed. 
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1. Introduction 

As a subsidiary structure connecting the ground and underground structures, the vertical shaft 

has been widely constructed in the areas of underground transportation system, power system 

and utility tunnel system. At present, round and square are mainly cross section shape of 

existing shafts, which are usually of small cross-section and shallow depth within 40 meters. 

With the exploitation and utilization of deep underground space in urban cities, large-depth 

(more than 40 meters) shafts are now widely used in deep urban drainage systems. Such as the 

Metropolitan Area Outer Underground Discharge Channel in Tokyo and the Deep Storage and 

Drainage Pipe System in Shanghai. Round is the mainly cross section shape of the deep shaft. 

The dynamic responses of the shafts are being studied. 

In order to know the shaft dynamic responses, there are about two methods to calculate the 

dynamic responses: the quasi-static method and the three dimensional dynamic time history 

analysis method. In the quasi-static methods the shafts are usually treated as a vertical beam 



embedded in the soil [1]-[3]. In the dynamic time history analysis the results are more accurate. 

The main differences between the two methods is that the quasi-static method could not 

considering the shaft responses at every moment under the excitation of the earthquake motion, 

while the numerical methods such as three dimensional finite element dynamic time history 

analysis method and so on are usually with low computational efficiency and could not explain 

the dynamic responses from the perspective of mechanical mechanism for engineering design. 

Due to the uncertainty and complexity of the earthquake motion, the ground motion is a 

complicated time process which should be carefully considered when implementing the shaft 

seismic design. Therefore it is essential to propose a simplified method which can not only 

capture the dynamic responses of the shafts but also can calculate efficiently. 

In this paper, a dynamic winkle beam physical model for the shaft is purposed and established 

with considering the horizontal reaction and vertical shear tractions from the surrounding soil 

and horizontal traction springs and rotating springs at the bottom of the shaft for the kinematic 

motion based on the existing quasit-static method. The dynamic equilibrium equation of the 

shaft is derived and the analytic solution of the kinematic equilibrium is solved and presented 

in frequency domain. The dynamic responses of the shafts under stochastic earthquakes 

excitation in time domain would be obtained efficiently through the FFT and iFFT with this 

simplified method. 

2. Physical model 

In the physical model of quasi-static method [3], horizontal reactions and vertical shear tractions 

distributed along the shaft wall are represent by the horizontal spring and the rotation spring. In 

order to reflect the translation motion and rotational motion, the shear spring and rotation spring 

are stetted at the shaft bottom.  

Gerolymos and Gazetas [4]-[6] purposed a winkle four spring model for lateral response of 

rigid caisson foundations in liner soil. Due to the structural and functional characteristics of the 

caisson foundation, the caissons are usually simplified as a rigid body due to its great structural 

stiffness relative to the surrounding soil, while the pile foundations are usually simplified as a 

beam due to the small structural stiffness relative to the surrounding soil. There are many 

differences between the caisson foundation and the deep shaft, especially the structural stiffness, 

the underground deep shafts are hollow structures while the caisson foundations are solid one. 

Chen and Zhang [7] and Mayoral [8] concluded that the large-depth shaft dynamic responses 

in soft soil approximately like a rigid body with translation motion, rotational motion and small 

bending deformation. Considering the structural and functional characteristic of the shaft and 

effect of the soil-structure relative stiffness on the dynamic responses of the underground 

structure. Finally, the shaft is simplified as a beam. In this paper the simplified dynamic analysis 

method for the shaft is proposed with four springs and dashpots and the shaft is simplified a 

beam, as shown in Fig. 1 

A circle in plain shaft embedded in homogeneous isotropic and viscoelastic soil was illustrated 

in Fig. 1. The assumption of model are as follows: the shaft is assumed to be with uniform wall 

thickness and the shaft with linear deformation under the seismic motion; the shaft is perfectly 



glued to the surrounding soils, indicating that there is no slippage or separation along the shaft-

soil interface.  

The parameters of the shaft are as follows: the shaft depth is L, the external diameter is D, the 

inner diameter is d, the Young’s modulus is E, and the density is ρ. The parameters of the soil 

are as follows: the Young’s modulus is Es , the shear modulus is Gs , the density is ρs, the shear 

wave velocity is Vs. The four-spring coefficients purposed by Gazetas [9] is adopted for 

simulating the soil-caisson interaction here and will be introduced in the next session. The 

distributed lateral springs kx and dashpots cx and rotation springs kθ and dashpots cθ are the 

simplified horizontal soil reactions and vertical shear tractions, while the shear translation 

spring kbx and dashpot cbx and base rotation spring kbθ and dashpot cbθ are the simplified 

horizontal shearing force and the moment produced by the base of the shaft.  

 

Figure 1. Schematic diagram of shaft under vertically incident S waves 

3. Explicit representation of the model 

3.1 Shaft kinematic responses equation 

In order to establish the differential equation of the shaft kinematic responses, a shaft element 

is chosen from the physical model in Fig. 1. Fig. 2 illustrates the state of the beam element in a 

viscoelastic soil under the seismic loads. The main loads in horizontal direction are inertia force, 

the soil reaction force and the shear forces from the connecting shaft elements. The main 

moment loads are inertia moment, the moment form the soil vertical tractions, the soil reaction 

moment and the moment from the connecting shaft elements. 



 

Figure 2. Schematic diagram of force acting on the shaft element under seismic motion 

According to the dynamic equilibrium of the transverse forces and the dynamic moment 

equilibrium with respect to the central point O of the shaft element. The two differential 

governing equations for the shaft kinematic responses element in time domain can be expressed 

as 
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where m is the mass of the shaft per length. J is the moment of inertia of the shaft per length. u 

(z, t) is the displacement of the shaft central. dz is the length of the shaft element. uff is the 

displacement of the free field along the depth The formulate of uff in frequency domain can be 

expressed as 
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where uff0 is the displacement of the soil surface. w is the circular frequency. z is the vertical 

coordinate starting from the top central of the shaft. θff is the rotation angle of the free field. The 

formulate of θff in frequency domain can be expressed as 
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The bending moment M at the shaft cross section can be expressed as 
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where I is the area moment of inertia of the shaft cross section. Q is the shear force at the shaft 

cross section 
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θis the rotation angle of the shaft along the shaft depth 

 
du
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Submitting Eq. (1) in Eq. (2), one obtains the final dynamic equilibrium equation of the shaft 

element in frequency domain 
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For express simplification, then name the equation coefficients as Ac, Bc, Cc and Dc. 
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Then the dynamic equilibrium Eq. (8) could be simplified as 
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The analytic solution the Eq. (8) in frequency domain can be expressed as 
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Where C1, C2, C3 and C4 are the four underdetermined parameters, which can be obtained 

through the boundary conditions. The parameters of r can be obtained as 
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The coefficients of the specific solution Ec can be expressed as 

 
2 4( ) ( )

c
c

c c

s s

D
E

w w
C B

V V



 

 (16) 

The boundary condition about the shaft top is free at the shaft head and constraint at the bottom, 

then the boundary conditions can be formulated as follows 
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Submitting the Eq. (14) into the Eq. (17) and (18), then the four undetermined parameters C1, 

C2, C3 and C4 can be obtained by the matric as follows 
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Finally, according to the Eqs. (5), (6), (7) and (14), the rotation angle, the bending moment and 

the shear force of the shaft along the depth in frequency domain can be obtained as follows 
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3.2 Spring and dashpot coefficients 

The four spring and dashpot coefficients are adopted from the coefficients which are proposed 

by Gazetas [9] and Gerolymos [6] and revised by Zhong [10]. They have done the calibration 

of the spring and dashpot coefficients with Novak, Varun and Wolf and verified that the 

coefficients perform well. This coefficients are related with the soil parameters and geometric 

parameters of shaft. The expression of the lateral horizontal spring coefficients kx is as follows 
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where Itw is the horizontal embedment factor of a cylindrical shaft, χewb is the dynamic 

coefficient. 
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The expression of the lateral horizontal dashpot coefficients cx is as follows 
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The expression of the lateral rotation spring coefficients kθ is as follows 
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where Гw is the rocking embedment factor of a cylindrical shaft. 
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The expression of the lateral rotation dashpot coefficients cθ is as follows 
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The expression of the base shear spring coefficient kbx is as follows 
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The expression of the base shear dashpot coefficient cbx is as follows 
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The expression of the base shear spring coefficient kbθ is as follows 
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The expression of the base rotation dashpot coefficient cbθ is as follows 
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4. Solution technique 

Inspect from the above analytical equations, the input parameters uff0 should be in frequency 

domain. In order to know the transient seismic responses of the shaft, the input parameters uff0 

should be transformed into frequency domain which can be achieved by conducting FFT and 

the analytical results u and so on should be transformed into time domain which can be achieved 

by conducting iFFT. There are total three steps to obtain the dynamic responses of the shaft. 

The flowchart of the solve procedure is shown in Fig. 3. 

The first step is to transform the time history of the input ground motion uff0 into frequency 

domain through the FFT method. The ground motion uff0 in frequency domain will be obtained 

with the corresponding frequency w. From the matric Eq. (19) the coefficients C1, C2, C3 and 

C4 can be obtained under the corresponding frequency w. 

The second step is to obtain the shaft dynamic responses along the depth, such as: shaft 

displacement, rotational angle, bending moment and shear force in frequency domain through 

the Eq. (14), (20), (21) and (22). At the same time, the influence of ground motion frequency 

on the dynamic response of shaft can be observed. 

The third step is to transform the shaft’s frequency domain dynamic response parameters into 

time domain by implementing iFFT. 

Repeat the above operations, then the shaft dynamic responses under stochastic earthquakes 

can be achieved with this simplified method. All this procedures can be implemented by 

MATLAB software efficiently.  



 

Figure 3. Flowchart of the solve procedure 

5. Conclusion 

Based on the theory of dynamic Winkle beam on elastic foundation, the shaft dynamic model 

is proposed and the closed-form solution for the dynamic responses of the shaft is established 

in frequency domain with explicit expression. A simplified model for calculating the seismic 

responses of the shaft under stochastic earthquakes is proposed and established. The seismic 

responses of shaft under stochastic earthquakes would be easily solved with the FFT and iFFT 

method between the frequency domain and the time domain. The simplified dynamic Winkle 

beam model could capture and properly reflect the shaft’s dynamic kinematic responses, 

translation, rotational motion and bending curve along the depth with low computational cost 

compared with the three dimensional dynamic time history analysis.  
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