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Abstract 
In this paper, inverse determination of the absorption coefficient in spot laser welding by 
using a sequential method is presented. The advantages of this method are that the functional 
form for the unknown absorption coefficient is not necessary to preselect and nonlinear least-
square do not need in the algorithm. Two examples have been fulfilled to demonstrate the 
proposed method. The obtained results can be concluded that the proposed method is an 
accurate and stable method to inversely determine the absorption coefficient in the spot laser 
welding. 
Keywords: Inverse Problem, Absorption Coefficient, Spot Laser Welding. 
 
Introduction 
In recent years, the rapid development of the laser welding technology has gradually replaced 
the traditional welding techniques. Comparing the conventional welding process, laser 
welding was used widely because of its good behaviors such as high efficiency, narrow heat 
affected zone (HAZ), and high welding speed. Thus, the applications of laser welding have 
been broadened in modern industries including the aerospace and automotive industries, the 
microelectronics industry and the medical instrument industry nowadays [1, 2]. 
As shown in the literature, the absorption coefficient is an important factor in laser welding 
processing. The absorption coefficient depends on optical material properties, laser 
wavelength, surface temperature, and surface condition [3, 4]. Nevertheless, numerous studies 
in laser welding-related problems were assumed that the absorption coefficient is constant [5-
7]. The effect of the absorption coefficient on the weld pool shape and on the temperature 
distribution was investigated by Bannour et al. [8]. The results showed that the peak 
temperature reaches 1250K for using the constant absorption coefficient and 1300k for the 
case of the temperature-dependent absorption coefficient. Furthermore, the results in Bannour 
et al. [8] also evidenced that the molten pool formation and temperature distribution 
significantly influenced by the absorption coefficient comparing with other parameters such 
as heat capacity, density and shielding gas. In other words, the use of appropriate absorption 
coefficients is significant in solving laser welding-related problems, especially the transient 
laser welding-related problems like spot laser welding and segment laser welding. 
In fact, the direct measurement of the absorption coefficient during the laser welding process 
is not easy. As results, the inverse method is one of the good way to measure this coefficient. 
Sun et al. [9] used the direct sensitivity coefficient method to inversely estimate the 
absorptivity by implementing a two-dimensional quasi-static IHCP in laser hardening process. 
Chen et al. [10] proposed a hybrid technique of the Laplace transform and finite-difference 
methods to estimate the absorptivity in the laser surface heating process. Wang et al. [11] 
estimated the surface absorption coefficient in the laser surface hardening by using the 
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conjugate gradient method with the temperature-dependent thermal properties. However, 
these studies only deal with in the laser surface hardening in which the maximum temperature 
of the substrate is less than melting temperature. Thus, this result is no longer correct when 
the temperature field in the substrate reaches and exceeds the melting temperature in the 
welding process because the phase change of the laser welding process was not considered in 
the work. Furthermore, as our knowledge, only a few published papers implement and 
propose an effective method to determine the absorption coefficient in the spot laser welding 
until now. 
In this paper, a robust and stable method is presented to determine the absorption coefficient 
in the spot laser welding process. In the proposed method, a modified Newton-Raphson 
method combined with the concept of the future time is used to solve the problem step by step 
[12-14]. The estimation of absorption coefficient in spot laser welding process at each time 
step consists of two phases: the process of direct analysis and the process of inverse analysis. 
In the process of direct analysis, the absorption coefficient and the boundary conditions are 
assumed as specified values and then the temperature field is solved by finite element method 
[15]. In finite element method, the effective heat capacity method [16, 17] are applied to take 
the latent heat into account due to the phase change in laser welding. Solution from this 
process are inputted to the sensitivity analysis and integrated with the measured temperature 
at the sensor’s position. Thus, a set of nonlinear equations is formulated for the process of the 
inverse estimation. In the process of inverse analysis, an iterative method is used to guide the 
exploring points systematically to obtain the unknown variables. Then, the intermediate 
values are substituted for the unknown variables for the following analysis. That way, several 
iterations are performed to achieve the undetermined parameters. The advantage of this 
inverse method does not adopt the nonlinear least-squares error to formulate the inverse 
problem, but it is implemented a direct comparison between the measured temperature and the 
computed melting temperature. 
 
Problem Statement 
Considering the three-dimensional cylindrical workpiece, its top surface is heated by an 
incident laser beam with the laser beam radius of br . The rest of workpiece surface is cover 
by an adiabatic material to avoid the energy lost to the surroundings. The thermocouple is 
embedded inside the workpiece to capture the temperature history (as Figure 1).  

 
Figure 1: The model of spot laser welding. 

The aim of this work is to propose the efficient method to estimate inversely the absortion 
coefficient in the spot laser welding. To simplify, the heat conduction-based method for this 
welding problem is thus considered. Due to the symmetry of cylindrical workpiece, the 
governing equation of transient heat conduction in two-dimensional cylindrical coordinates is 
given by: 
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where, k(T), C(T) , ( )Tr are respectively the thermal conductivity, heat capacity, and density; 
( , , )T r z t is the temperature field; 0T is the initial temperature; ( )q r is the laser heat flux; n is 

the normal vector. In this work, the heat source model proposed by Friedman [18] is 
considered and it can expressed as following:  
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where, P is the laser power;  η is the absorption coefficient, br is the effective radius of laser 
beam. 
When the absorption coefficient, the boundary conditions and other input parameters are 
known, the temperature distribution in the domain can be solved numerically by the finite 
element method [15]. Furthermore, the effective heat capacity method is considered in the 
finite element method to take account of the latent heat of the phase change in laser welding 
[16, 17].  
The inverse problem is to estimate the absorption coefficient in the process of spot laser 
welding when the temperature history is measured at mx x= . Thus, a sequential method is 
proposed in the next section. 
 
Methodology 
The proposed method consists of the forward problem, the sensitivity problem, the 
operational algorithm, and the stopping criterion. The direct problem is implemented to obtain 
the temperature field, and the sensitivity problem is utilized to find out the search step in the 
inverse problem. Next, the operational algorithm is used to satisfy the process of the inverse 
analysis when the solution of both direct and sensitivity problems is available. Finally, the 
stopping criterion is shown to decide the termination of the iterative process. 
 
Forward problem 
The proposed method is based on a sequential algorithm in which the inverse solution is 
solved at each time step. Accordingly, Eqs. (1-4) are restricted to only one temporal step and 
the transient problem at mt t=  is governed by the equations as follows: 
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where, ˆmη is the unknown absorption coefficient at mt t= .  
In the present work, the proposed method formulates the problem from the difference between 
the calculated temperature and the one measured directly. As well, instead of the optimization 
algorithm, the equation solver solves the inverse problem. 
When the estimation is at mt t= , the estimated condition from 1t t=  to 1mt t −= has been 
evaluated, and the problem is to estimate the laser heat flux at mt t= . In order to guarantee the 
stability of estimated results in the inverse algorithm, several future values of the estimation 
are temporally assumed to be constant or linear relation in the subsequent procedure [19]. 
Then, the unknown conditions are presented as follows: 
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where, τ is the number of the future time; ξ=0 is constant relation and ξ=1 is linear 
combination. 
The forward problem, Eqs. (6-10) are solved in τ  steps (from mt t= to mt t τ+= )  and the 
undetermined absorption coefficient are set by Eq. (11). 
 
Sensitivity problem 
In the proposed method, a modified Newton-Raphson method is adapted to solve the inverse 
problem in which the sensitivity analysis is necessary to achieve the search step in each 
iteration. The derivative ˆ/ mη∂ ∂  is taken at both sides of Eqs. (6-10). Furthermore, because of 
the small number of future time step and the small temporal increment, we can assume that 
the thermal properties at the estimating step mt  are constant. Then, we have: 
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Eqs. (12-15) describe the mathematical equations for sensitivity coefficient, Xm, which can be 
explicitly solved. These equations are the linear equations and the dependent variable, Xm, 
with respect to independent variables, x, y, z and t. Therefore, the sensitive solution can be 
obtained directly through by the finite element method. 
 
Modified Newton-Raphson method 
A modified Newton-Raphson method [14] is necessary in the proposed method to deal with 
the inverse problem with solving a set of nonlinear equations. This set of nonlinear equations 
is directly formulated the problem from the comparison between the computed temperature 
and the preselected temperature at the measurement locations. Therefore, the measured 
temperature j

measY  and the calculated temperature j
cY  are evaluated first. Then estimation of 

the absorption coefficient, ˆmη , at each time step can be recast as the solution of a set of 
nonlinear equations: 



 0j j
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where, , 1,...,j m m m τ= + +  is the number of equations which is equal to the number of the 
future times τ .  
The derivative of Y  with respect to ˆmη is solved through Eqs. (12-15) and can be expressed as 
following: 
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where, X  is the sensitivity matrix 
With the starting 0ˆmη and the above derivations from Eq. (17), we have the following equation: 
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where, k∆ is a linear least-squares solution for a set of over-determined linear equations and it 
can be derived as following: 
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The preceding derivation is applied at each time step. This method can be carried out in the 
multi-sensor’s measurement. Under this condition, the number of elements in Eq. (16) is 
based on the number of future time step and the number of measured positions. 
 
The stopping criteria 
The modified Newton-Raphson method (Eqs. (16-19)) is used to determine the unknown 
value of the absorption coefficient at the m-th time step, ˆmη . The step size k∆  goes from ˆk

mη  
to 1ˆk

mη
+ , and it is determined from Eq. (19). Once k∆  has been calculated, the iterative to 

determine 1ˆk
mη
+ is executed until the stopping criterion is satisfied. 

The discrepancy principle [20] is widely used to evaluate the value of the stopping criterion in 
the inverse technique. Nevertheless, the convergence of the inverse solution is not guaranteed 
by the stopping criterion created by the discrepancy principle. Therefore, two criteria 
proposed by Frank and Wolfe [21] are chosen to assure the convergence and to stop iteration: 
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where, ε  and δ  are small positive value known as the convergence tolerances. 
 
Computational algorithm 
 We choose the number of the future time, r, the mesh configuration of the problem 
domain, and the temporal size, t∆  first. Given overall convergence tolerance ε  and δ , and 
the initial guess 0ˆmη . The value of ˆk

mη  is known at the k-th iteration. 
Step 1: Let j = m and 1(r, , )jT z t − is known. 

 Step 2: Collect the measured temperature, j
measY . 

 Step 3: Calculate the sensitivity matrix, X , by Eqs. (12-15). 



 Step 4: Solve the direct problem by Eqs. (6-10), and then obtain the calculated 
temperature j

cΦ . 
 Step 5: Construct Y  by j

measY  and j
cY . 

 Step 6: Knowing Y  and X , determine the step size k∆ by Eq. (19). 
 Step 7: Knowing k∆ and ˆk

mη , calculate 1ˆk
mη
+  through Eq. (18). 

 Step 9: Terminate the iteration if the stopping criterion (Eqs. (20-21)) is satisfied. 
Otherwise, return to step 5. 
 Step 10: Stop the process if the final time step is attached. Otherwise, let j=m+1 return 
to step 2. 
 
Results and Discussion 
Two simples are presented to demonstrate that the proposed method can estimate accurately 
the absorption coefficient in spot laser welding. In two examples, the cylindrical substrate has 
the height of 5[ ]H mm= and the diameter of 20[ ]d mm= . The material used for these 
examples is commercial AISI304 which thermal properties are temperature-dependent and are 
taken from Sabarikanth [22]. The latent heat of fusion is 272[kJ/kg]L = , and the melting 
temperature range is from solidus temperature 1673[K]sT =  to liquidus temperature 

1773[K]lT = . A thermocouple is located at (0, 1[mm])mx − . In addition, the measured 
temperature is generated from Eqs. (1-4) when the input parameters are preselected and it is 
presumed to have measurement errors. In other work, the random errors of measurement are 
added to the exact temperature. It can be achieved in the following equation: 

 meas exactT T λs= +  (23) 
where, exactT is the exact temperature, measT is the measured temperature, λ is random numbers 
calculated by the IMSL subroutine DRNNOR [23] and chosen over the range 

2.576 2.756λ− ≤ ≤ , which presents the 99% confidence bond for the measured temperature. 
The mesh in all cases is fine at the incident laser beam with 52.10x −∆ ≈ [mm] and is coarse at 
away with 31.5.10x −∆ ≈ [mm] (as Figure 2). As well, the time increment is 0.02[ ]t s∆ = . 

 
Figure 2: The mesh configuration 

To investigate the deviation of the estimated results from the exact solution, the relative 
average error for the estimated solutions is defined as following: 
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where, f is the estimated results with measurement errors, f̂ is the exact results, and tN  is 
the number of the temporal step. It is declared that a smaller value of µ  indicates a better 
estimation and vice versa. 
Example 1: A constant absorption coefficient of 0.3 is assumed in this example. The 
workpiece is initially at a uniform temperature T0 = 27[0C], and then is heated by a laser beam 
with its effective radius of rb=0.63[mm] and power of P=400[W]. In general, the laser heat 
source can be obtained as follows: 
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The estimated results of the absorption coefficient in the case of measurement error-free are 
shown in Figure 3 and Figure 4 shown the exact and computed temperature at the sensor 
position ( (0, 1[mm])mx − ). As shown, when 0s = , these estimated results are an excellent 
approximation of the exact solution for both constant and linear type of future time. 
In the case of the measurement errors, the estimated results largely diverge from the exact 
solution (as Figure 4). Table 1 illustrates the relative average errors of the estimated results 
when the measurement errors are included. In general, the relative average errors are small in 
all cases. As shown in Table 1, even though the large measurement error of 1.5s = , this value 
for the constant type of future time is 0.01. Furthermore, the relative average errors reduce 
with the increase of the number of future time step and the decrease of the measurement error. 
For example, the relative average error moderates from 0.0053 to 0.0022 about 58% as the 
number of future time steps increase from 2τ =  to 4τ =  for the linear type of future time and 
reduces from 0.01 to 0.0066 about 66% as the measurement error decrease from 1.5s =  to 

1s = for the constant assumption of future time.  
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Figure 3: Estimated absorption coefficient in example 1 with 2r =  and 0s = with two 
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Figure 5: Estimated absorption coefficient in the example 1 with 2τ =  and 1.5s = with 

two function kinds of future time 
Additionally, the effect of the function type of future time on the estimated results is 
compared. As mentioned above, two kinds of future time description are considered in this 
work. One is constant type and the other is linear type. The results showed that the accuracy 
of estimated results for linear function of the future time is better than that for the constant 
function of the future time (Table 1). The estimated absorption coefficients with 2τ =  and 

1.5s = for both constant and linear functions of future time are shown in Figure 5. The results 
in this profile show that the estimated results for the linear combination of future time can 
close to the exact solution compared with that for the constant type of future time. In other 
words, the linear function of future time decreases the relative average error effectively (as 
Table 1). 



 
Table 1: Relative average errors of example 1 

Cases Future time step  
 τ =2 τ =4 
Linear   
s=1 0.0053 0.0022 
s=1.5 0.008 0.0033 
Constant   
s=1 0.0066 0.0041 
s=1.5 0.01 0.0044 

 
Example 2: In this example, the time variation of the absorption coefficient  

is assumed as follows: 

 1( ) 0.3(1 6.5 10 exp( (t 2) / 0.75)tη −= − × − −  (26) 
The estimated results of the absorption coefficient in the example 2 are shown in Figure 6. 
Once again, Figure 6 shows that the estimated results have good approximation in the case of 
measurement free-error.  
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Figure 6: Estimation of laser heat flux in example 2 with 2τ =  and 0s = with two 

function kinds of future time 

Figure 7 and Figure 8 illustrate the estimated results with the measurement errors for the 
linear assumption of the future time in the cases of 2τ = and 4τ = , respectively. From Figure 
7 and Figure 8, in general, the estimated results have a good approximation to the exact 
solution with the measurement errors included.  
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Figure 7: Estimated absorption coefficient in the example 2 with the measurement 

errors for the linear assumption of future time and τ =2. 
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Figure 8: Estimated absorption coefficient in the example 2 with the measurement 

errors for the linear assumption of future time and τ =4. 

Table 2 presents the relative average errors with the different measurement errors and future 
time steps in the example 2. Table 2 shows that the relative average errors reduce as the 
measurement errors decrease. It can be noted that, in example 2, the relative average errors do 
not reduce when the number of the future time step increase. This phenomena is called the 
“leading error” as has been described by Lin [24, 25]. It appears in these results because of the 
temporary assumption in the constant and linear types of future time in Eq. (11), as these 
assumptions might not exactly match the form of unknown absorption coefficient. 
Furthermore, with the form of undetermined absorption coefficient in the example 2, the 



linear combination of future time has a better approximation than the constant assumption of 
future time. Thus, the relative averages errors for the linear combination of future time is less 
than that for the constant assumption of future time (as Table 2). In general, the relative 
averages errors in all cases are small. This implies that the proposed method estimates 
accurately the absorption coefficient in the spot laser welding. 

Table 2: Relative average errors of example 2 
Cases Future time step  
 τ =2 τ =4 
Linear   
s=0.5 0.0042 0.0061 
s=1 0.0065 0.0072 
s=1.5 0.0089 0.0094 
Constant   
s=0.5 0.0071 0.0121 
s=1 0.0102 0.0134 
s=1.5 0.0133 0.0148 

From the results and discussion above, it can be declared that the proposed method is an 
effective and stable method to estimate the absorption coefficient in the spot laser welding.  
 
Conclusion 
In this paper, the estimation of the absorption coefficient in the spot laser welding was present 
by using a sequential method. As well, the inverse solution at each time step is solved by a 
modified Newton-Raphson method. The advantage of this proposed method is that the 
nonlinear least-squares error is not adopted to formulate the inverse problem, but it is 
implemented a direct comparison of the measured and calculated temperature. In addition, the 
special characteristics of this method are that preselected functional form for the unknown 
absorption coefficient is not necessary. Two examples have been fulfilled to demonstrate the 
proposed method. The accuracy of the estimated results with the different measurement errors 
and number of future time steps is investigated. The results show that the accuracy of the 
estimated results increases when the measurement error decreases and the number of future 
time step increases. Additionally, two kinds of function of future time are also discussed. In 
two examples, the results showed that the estimated results with the linear relation of future 
time is more accurate than that with constant type of future time. In conclusion, from the 
results in the examples, it can be concluded that the proposed method is an accurate and stable 
method to determine the absorption coefficient in the spot laser welding. 
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