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Abstract 

We illustrate an original method for the limit analysis of masonry structures modeled as 

assemblies of dry rigid blocks with Coulomb-type (non-associative) contact interface laws. 

The method resorts to a fictitious system characterized by cohesive-type contact interface 

laws that depend on the axial forces of the real block system. Two theorems establish the 

connection between the collapse state of the real (frictional) block assembly and that of the 

fictitious one. Hence, an alternative problem of mathematical programming is presented to 

evaluate the minimum collapse load multiplier. According to the proposed formulation, the 

complementarity condition is not introduced as constraint but is obtained as Karush-Khun-

Tucker condition. Several numerical results concerning with masonry arches, portals and 

panels are provided to illustrate the application of the proposed approach, which is also 

validated through the comparison with some existing methods. 
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Introduction 

Limit analysis provides an effective framework to study collapse load and failure mechanisms 

of the structures. Among the potential applications, those pertaining to block assemblies in 

presence of friction at the contact surfaces have received several attentions in the last decades 

because of the relevant practical implications. For instance, the collapse load estimation of 

rigid block systems interacting through frictional interfaces is of particular importance for the 

assessment of masonry structures. In this field, Baggio and Trovalusci [1] studied the limit 

analysis of no-tension and frictional three-dimensional discrete systems. In their study, the 

solution of the nonlinear programming problem is obtained by solving a preliminary linear 

programming problem that corresponds to a linearized limit analysis with dilatancy at the 

interfaces. Ferris and Tin-Loi [2] calculated the collapse loads of discrete rigid block systems 

with frictional contact interfaces by formulating a special constrained optimization problem 

and proposed an algorithm based on the relaxation of the complementarity constraint for its 

solution. The relaxation parameter is progressively reduced to zero through a succession of 

nonlinear sub-problems. Orduña and Lourenço [3] presented a model for the limit analysis of 

three-dimensional block assemblages interacting through frictional interfaces and included a 

proposal to take into account torsional failure modes. The model also accounted for limited 

compressive stresses at the interfaces. Gilbert and co-workers [4] illustrated an iterative 

procedure based on the successive solution of linear programming sub-problems. The method 

presented by these authors assumes fictitious values of cohesion and negative angles of 

friction, which are progressively relaxed toward zero. A finite-element-based approach has 



been described by Mihai [5] for the limit analysis of planar systems formed by linear elastic 

bodies in non-penetrative contact with Coulomb friction.  

In the present contribution, we illustrate a new method for the limit analysis of discrete 

systems formed by dry rigid blocks characterized by Coulomb-type (non-associative) contact 

interface laws [6]. The proposed method resorts to a discrete system with fictitious cohesive-

type contact interface laws depending on the axial forces of the real block system. Once the 

connection between the collapse state of the fictitious block assembly and that of the real one 

is demonstrated, a new formulation of the mathematical programming problem intended to 

estimate the collapse load is proposed. In particular, the minimum collapse multiplier is here 

obtained by solving a nonlinear mathematical programming problem where the constraints 

include: (i) equilibrium conditions, (ii) kinematic conditions, and (iii) a further condition 

imposing that the collapse multiplier is kinematically admissible for the fictitious system with 

cohesive-type contact laws. In doing so, the classical complementarity condition is not 

introduced as constraint but is obtained as Karush-Khun-Tucker condition. 

Proposed method for the limit analysis of masonry structures 

An assembly of dry nb blocks is considered. The constituent blocks are rigid and are allowed 

to slide over each other. Moreover, a Coulomb model is assumed to represent the frictional 

contact at the interfaces of the blocks. Contact forces and moments for the jth constituent 

block are defined as shown in Fig. 1.  

 

 
 

Figure 1. Contact forces and moments 
 

The well-known equilibrium equations for the blocks are the following: 
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where j=1,…,nb, 0

j
f  is the jth constant force vector acting on the jth block, 

j

f  is the jth base 

external force vector amplified by the load multiplier α. Moreover, Nk are the normal contact 

forces, Vk are the shear contact forces, Mk are the contact bending moments (nk, tk and k are 

unit vectors). The kth resultant internal force or moment is applied on xck, which is the kth 

contact interface point (with k=1,…,nc) belonging to the boundary ∂B
j
 of the jth block whose 



center of mass is denoted as j

Gx . Based on Eq. (1), the equilibrium of the structure can be 

expressed as follows [2]: 

    0 0f f     A s f f As f 0 ,     (2) 

where  f  and f0 are the vectors collecting the jth forces 
j

f  and 
0

j
f , respectively, whereas sf 

is the vector of the contact forces (internal forces and reactions). It is also introduced a vector 

s that includes the contact forces vector sf and the load multiplier α, namely 
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The following conditions must be fulfilled for such system at each contact interface: 
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where μ is the static friction coefficient and dk>0 is the maximum eccentricity of the resultant 

contact force at the kth contact surface. The conditions in Eq. (4) imply that the axial contact 

forces Nk must be negative or null.  

It is now considered a fictitious (conjugate) block assembly, identical to the real one presented 

before but characterized by cohesive-type contact interface laws. The cohesive strengths in 

such fictitious system are taken equal to −μsN, thus depending on the axial contact forces Nk of 

the real system. Henceforth, S will denote the set that collects the statically admissible 

equilibrium states of the real block assembly whereas K will identify the set of the 

kinematically admissible displacement fields. The following theorems proved in Ref. [6] 

establish the connection between the collapse state of the real block system and that of the 

fictitious one: 

 given any collapse state of the frictional block assembly, the collapse load multiplier 

αc is always equal to the collapse load multiplier αas(sN) of the block assembly with 

fictitious associative-type contact interface laws; 

 given any statically admissible equilibrium state s of the frictional block assembly, if 

the load multiplier α is equal to any kinematically admissible load multiplier 

 K=(u,ξ,sN) of the fictitious system, then s is a collapse state and (u,ξ)K is a 

collapse displacement field of the real system (u collects displacements and rotations 

of the blocks with respect to their centroids j

Gx  whereas ξ collects relative 

displacements and rotations between the blocks).   

Therefore, it is concluded that α=αas(s) if and only if s identifies a collapse state. Hence, the 

minimum collapse load multiplier αc for the frictional (real) block assembly can be 

determined by solving the following mathematical programming problem  [6]: 
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where Nμ=[μI μI 0 0]
T
. Equation (5) provides an original approach for the limit analysis of 

frictional block assemblies. By solving the mathematical programming problem in Eq. (5), the 

minimum collapse load multiplier and the corresponding failure mode can be estimated. As 

far as the resolution technique is concerned, it is important to highlight that the admissible 

domain is not convex because of the last condition in Eq. (5). As a consequence, multiple 

local optima might exist and numerical resolution technique with global search capability is 

needed. In this work, the mathematical programming problem in Eq. (5) is solved by means of 

a genetic algorithm. 

Numerical applications 

An arch structure and two portals are first examined in order to illustrate the application of the 

proposed method. The jth base external force vector and the jth constant force vector are 

       00 0 ,  0 0
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respectively, where W
j
 is the weight of the jth block. The weight per unit of volume of the 

blocks is 1.0 whereas the friction coefficient is 0.5. A unit-width slice of the structures is 

analyzed. Geometry and collapse mechanisms are shown in Figs. 2-4.  

 

 
Figure 2. Geometry of the arch (left) and its collapse mechanism (right) 

 

 
Figure 3. Geometry of the portal with constant thickness (left) and its collapse 

mechanism (right) 
 

As shown in Fig. 2, the collapse of the masonry arch is based on a hinging-dominated 

mechanism (the corresponding collapse load multiplier is 0.63425). By counting the blocks 

from the left, the first hinge occurs at the intrados of the arch, between the third and the fourth 



voussoirs. The second hinge takes place at the extrados of the arch, between the eighth and 

the ninth blocks. Finally, a third hinge occurs at the right impost of the arch, and it is placed 

on the intrados. The left impost also slides along its base and moves toward the outside. 

Combined sliding and hinging collapse modes occur for the two masonry portals, as shown in 

Fig. 3 and Fig. 4 (the corresponding collapse load multipliers are 0.20628 and 0.30148, 

respectively). In both failure mechanisms, a hinge occurs at the base of the left pier, thus 

causing its counterclockwise rotation. Another hinge takes place on the intrados of the arches. 

The sliding collapse mode involves the keystone of the arches and some voussoirs adjacent to 

it. 

 

 
Figure 4. Geometry of the portal with large columns formed by a single block (left) and 

its collapse mechanism (right) 
 

Two masonry panels are finally considered in order to demonstrate the correctness of the 

proposed method by comparing the corresponding collapse load multipliers with those 

estimated by Ferris and Tin-Loi [2], Gilbert et al. [4] and Mihai [5]. These examples are 

concerned with free standing walls supported on a rigid horizontal plane and subjected to in-

plane forces applied to the centroid of each block. The full block size is 4×1.75 whereas the 

half block size is 2×1.75. The friction coefficient is 0.65. Each full block is subjected to a 

vertical body force (oriented downwards), which is calculated by assuming a weight equal to 

1.0. Moreover, each full block is subjected to a unit horizontal live load (directed from left to 

right). One panel is formed by nb=33 blocks whereas the second panel is formed by nb=55 

blocks. The collapse mechanisms of the examined panels are shown in Fig. 5. The 

corresponding collapse load multipliers are listed in Tab. 1, together with reference solutions 

reported in some existing studies. This comparison substantiates the correctness of the 

proposed approach. 

 

Table 1. Collapse load multipliers of the considered walls 

Wall Ref. [2] Ref. [4] Ref. [5] 
Proposed 

approach 

nb=33 0.63898 0.63982 0.63945 0.63911 

nb=55 0.55742 0.56262 0.55751 0.55749 

 



 
Figure 5. Collapse mechanisms of the considered walls 

 

Conclusions 

In the present work, we have illustrated an original strategy to address the limit analysis of 

frictional block assemblies by means of fictitious associative-type interfacial laws. Once the 

connection between the collapse state of the fictitious system and that of the real one has been 

highlighted, an original mathematical programming problem has been presented to estimate 

collapse load multiplier and failure mechanism. Herein, the introduction of the 

complementarity condition as constraint is not required because it is obtained as Karush-

Khun-Tucker condition. Several numerical applications concerning with the limit analysis of 

masonry structures have been also included in order to demonstrate the application of the 

proposed approach and its correctness.  
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