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Abstract 

In this paper, a linearized inverse scattering technique with the aid of the convolution quadrature 

time-domain boundary element method (CQBEM) has been developed for the reconstruction 

of a delamination in carbon fiber reinforced plastic (CFRP) with anisotropic property. The 

CQBEM is utilized to obtain scattered wave data from a delamination in CFRP. The wave forms 

obtained by the CQBEM are adequately treated to implement the shape reconstruction of a 

delamination in CFRP. The Kirchhoff approximation is applied to the unknown delamination 

opening displacement. A far-field approximation of the 2-D fundamental solution in frequency-

domain for general anisotropic elastodynamics is used for the proposed inverse scattering 

formulation. Numerical examples for a delamination in various types of CFRPs are shown to 

verify the proposed method.   
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Introduction 

Some anisotropic materials have attracted lots of interest in the fields of the mechanical and 

civil engineering in recent years. The carbon fiber reinforced plastic (CFRP) is known as one 

of the typical anisotropic materials, and is generally used as a material of construction for 

bridges and aircrafts, because the FRP has the characteristics of high tension strength, corrosive 

resistance and light weight. The ultrasonic non-destructive testing is most widely used in order 

to provide evidence of safety for structural materials. The exact identification of position, size, 

and shape of a defect in materials is an important factor for structural monitoring and health 

diagnostics. Defect shape reconstruction methods for materials have been developed by several 

researchers since several years ago [1][2]. The inverse scattering is an effective defect shape 

reconstruction method, and has been applied to many engineering problems [3][4][5]. However, 

no numerical example using the inverse scattering method can be seen for the reconstruction of 

a defect in CFRP with the anisotropic property. The acoustic anisotropic property makes it 

difficult for the nondestructive engineers to evaluate a defect. Therefore, in this study, an 

inverse scattering technique is developed for a defect shape reconstruction for CFRP with 

anisotropic property. The pure SH wave mode is only considered in this study for simplicity. 

The convolution quadrature time-domain boundary element method (CQBEM) [6][7][8][9] is 

utilized to obtain the scattered wave data from a delamination in a CFRP, which is required for 

the implementation of the inverse scattering formulation. The proposed inverse scattering 

formulation is achieved in the frequency-domain. Therefore, the scattered wave data in 

frequency-domain are calculated by using the Fourier transform of those in time-domain 



obtained by CQBEM. In the following sections, the problem statement and proposed inverse 

scattering formulation are discussed. Some numerical results for the shape reconstruction of a 

delamination in various types of CFRPs are presented. Finally, some comments and our future 

research plans are remarked. 

Problem statement  

The proposed 2-D inverse scattering formulation using pure SH wave is based on the Kirchhoff 

approximation [10]. Some important equations for the study on this inverse scattering for a 

delamination in CFRP are shown in this section, because of the page limitation. In this research, 

we assume that the pure SH wave is generated by the interaction between the incident wave 

𝑢3
in(𝒙, 𝑡) and a delamination 𝑆 in CFRP, as shown in Fig.1, namely, the elastic waves generated 

in CFRP can be decomposed into the pure SH wave and in-plane wave modes. The equation of 

motion and constitutive equation at the position 𝒙 and time 𝑡 for the anisotropic elastodynamics 

are defined as follows: 

 

𝜌𝑢𝑖̈ (𝒙, 𝑡) = 𝜎𝑖𝑗,𝑗(𝒙, 𝑡)  (1) 

𝜎𝑖𝑗(𝒙, 𝑡) = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙(𝒙, 𝑡)  (2) 

 

where 𝜎𝑖𝑗 is the stress, 𝜌 is the density of CFRP, 𝑢𝑖(𝒙, 𝑡) is the displacement, ( ),𝑖 is the partial 

derivative with respect to 𝜕/𝜕𝑥𝑖, and ( ̇ ) is the time derivative. In addition, 𝐶𝑖𝑗𝑘𝑙 is the elastic 

constant. The fourth order elastic constant 𝐶𝑖𝑗𝑘𝑙 is related to the Voigt notation elastic constant 

𝐶𝐼𝐽(𝑖, 𝑗 = 1,… ,6) [10] expressed by 

 

𝐼={
  𝑖                  ∶ 𝑖 = 𝑗

9 − (𝑖 + 𝑗)  ∶ 𝑖 ≠ 𝑗
 ,    𝐽={

  𝑘                  ∶ 𝑘 = 𝑙
9 − (𝑘 + 𝑙)  ∶ 𝑘 ≠ 𝑙

.  
 

(3) 

 

2-D inverse scattering formulation using pure SH wave 

The delamination must be carefully taken into consideration during CFRPs in-service period.           

In the frequency domain, the boundary integral equation for the scattered wave 𝑢3
𝑠𝑐(𝒙, 𝜔) with 

the time-harmonic frequency 𝜔 in infinite domain 𝐷, as shown in Fig.1, can be written as 

follows: 

 

Figure 1 Analysis model. 

 



𝑢3
𝑠𝑐(𝒙,𝜔) = −∫ 𝐶3𝛼3𝛽𝑒𝛼(𝒚)

𝜕𝑈33(𝒙, 𝒚,𝜔)

𝜕𝑦𝛽
[𝑢3(𝒚,𝜔)]𝑑𝑆𝑦

𝑆

 
 

(4) 

 

where [𝑢]3 and 𝑒𝛼 show the delamination opening displacement for anti-plane direction and 

the unit normal vector with respect to the outer normal direction on 𝒚, respectively. In addition, 

𝑈33(𝒙, 𝒚, 𝜔)  denotes the traction fundamental solution for 2-D anti-plane anisotropic 

elastodynamics in frequency-domain. The fundamental solution 𝑈33(𝒙, 𝒚, 𝜔), derived by Wang 

and Achenbach [12], is given as follows: 

 

𝑈33(𝒙, 𝒚, 𝜔) =
1

8𝜋2
∫

1

𝜌𝑐2(𝒏)|𝒏|=1

𝜙(𝑘(𝒏)|𝒏 ⋅ (𝒙 − 𝒚)|)𝑑𝒏 
 

(5) 

 

where 𝑐(𝒏) is the phase velocity with respect to the direction 𝒏 over the unit sphere and 𝑘 is 

the wave number defined by 𝑘(𝒏) = 𝜔/𝑐(𝒏). The fundamental solution 𝑈33(𝒙, 𝒚, 𝜔) involves 

the numerical integration over the unit circle with respect to |𝒏| = 1. The function 𝜙(𝜉) is 

defined by 

  

𝜙(𝜉) = 𝑖𝜋𝑒𝑖𝜉 − 2{cos(𝜉) ci(𝜉) + sin(𝜉) si(𝜉)}. 
 

(6) 

 

In eq. (6), the functions si(ξ) and ci(ξ) are Sine and Cosine integrals, respectively, which are 

defined as follows: 

 

si(ξ) = −∫
sin(𝑠)

𝑠

∞

ξ

𝑑𝑠 , ci(ξ) = −∫
cos(𝑠)

𝑠

∞

ξ

𝑑𝑠. 

 

(7) 

 

The numerical evaluation of the integration over the unit sphere in eq. (5) is very time-

consuming. Therefore, a far-field approximation is introduced to decrease the required 

computational time. In addition, the use of a far-field approximation allows us to achieve the 

inverse scattering formulation. If the observation point 𝒙 is far enough from the source point 𝒚, 

the fundamental solution 𝑈33(𝒙, 𝒚, 𝜔)  can be approximated by using the stationary phase 

method as follows: 

 

𝑈33(𝒙, 𝒚, 𝜔) =
𝑖

𝐶44
√

1

8𝜋𝑘0|𝒙||𝑓′′(𝜑𝑠)|
𝑆2(𝜑𝑠) 

            ⋅ exp [𝑖𝑘0(|𝒙| − �̂� ⋅ 𝒚)𝑓(𝜑
𝑠) + 𝑖

𝜋

4
sgn{𝑓′′(𝜑𝑠)}] 

 

(8) 

 

where  �̂� is the unit vector of 𝒙 and 𝑘0 is given by 𝑘0 = 𝜔/𝑐0. 𝑐0 is given by 𝑐0 = √𝐶44/𝜌. 𝜑𝑠 
and 𝜓  satisfy 𝑓′(𝜑𝑠) = 0  and (cos𝜓, sin𝜓) = (𝒙 − 𝒚)/|𝒙 − 𝒚| , respectively. In addition, 

𝑆(𝜑) = 𝑐0/𝑐(𝜑) and, 𝑓(𝜑) = 𝑆(𝜑)cos (𝜑 − 𝜓). The symbol “sgn” shows the sign function.  

Equation (8) is the far-field approximation of the fundamental solution 𝑈33(𝒙, 𝒚, 𝜔) . 

Substituting eq. (8) into eq. (4), we can obtain 

 



𝑢3
𝑠𝑐(𝒙,𝜔) = −

𝑓(𝜑𝑠)

𝐶44
√

𝑘0
8𝜋|𝒙||𝑓′′(𝜑𝑠)|

𝑆2(𝜑𝑠) 

 ⋅ exp [𝑖𝑘0|𝒙|𝑓(𝜑
𝑠) + 𝑖

𝜋

4
sgn{𝑓′′(𝜑𝑠)}] 

    ⋅ ∫ 𝑒𝛼(𝒚)
𝑆

exp{−𝑖𝑘0𝑓(𝜑
𝑠)�̂� ⋅ 𝒚} [𝑢3(𝒚,𝜔)]𝑑𝑆𝑦. 

 

(9) 

In eq. (9), the delamination opening displacement [𝑢3(𝒚,𝜔)]  is unknown. Therefore, 

[𝑢3(𝒚,𝜔)] can be approximated by using the Kirchhoff approximation, which approximates 

the unknown delamination opening displacement as the sum of the incident wave 𝑢3
𝑖𝑛(𝒙,𝜔) and 

the reflected wave from the delamination. In addition, the singular function 𝛾(𝒚), which has 

the characteristic of 

 

∫ 𝛾(𝒚)𝑑𝑉𝑦 =
𝐷

∫ 𝑑𝑆𝑦
𝑆

, 

 

(10) 

 

is considered. Applying the Kirchhoff approximation to eq. (9), and using both Gauss’s 

divergence theorem and the singular function 𝛾(𝒚) defined in eq. (10) yield the following 

equation: 

 

𝑢3
𝑠𝑐(𝒙,𝜔) =

𝑖𝑓(𝜑𝑠)𝐹(𝜔)

𝐶44
√

𝑘0
2𝜋|𝒙||𝑓′′(𝜑𝑠)|

𝐶3𝛼3𝛽�̂�𝛽𝑆
2(𝜑𝑠)(𝑘0𝑓(𝜑

𝑠)�̂�𝛼 − 𝑘�̂�𝛼
𝑖𝑛) 

 ⋅ exp [𝑖𝑘0|𝒙|𝑓(𝜑
𝑠) + 𝑖

𝜋

4
sgn{𝑓′′(𝜑𝑠)}] 

  ⋅ ∫ 𝛾(𝒚)
𝐷

exp [−𝑖{𝑘0𝑓(𝜑
𝑠)�̂� − 𝑘�̂�𝑖𝑛} ⋅ 𝒚]𝑑𝑉𝑦 

 

(11) 

 

where �̂�in denotes the propagation vector of the incident wave. In eq. (11), the Ricker wavelet 

[13] is considered as the incident wave 𝑢3
𝑖𝑛(𝒙,𝜔). The Ricker wave in frequency-domain, 𝐹(𝜔), 

is defined by 

 

𝐹(ω) = −
√2𝜋𝜔2exp (𝑖𝜔𝑡𝑠)

2exp (𝜔2/𝜔𝑝2)𝜔𝑝
3  

 

(12) 

 

where 𝜔𝑝 and 𝑡𝑠 show the peak frequency and peak location of the Ricker wavelet, respectively. 

In eq. (11), the singular function 𝛾(𝒚) is the Fourier transform with respect to 𝐾 = 𝑘0𝑓(𝜑
𝑠)�̂� −

𝑘�̂�in. Therefore, the singular function 𝛾(𝒚), which shows the delamination surface, can be 

obtained by the inverse Fourier transform as follows: 

 

𝛾(𝒚) = −𝑖𝐶44∫ ∫ [
𝑓(𝜑𝑠)

𝑐0
−
1

𝑐
cos(𝜓 − 𝜓𝑖𝑛)]

∞

0

2𝜋

0

 

    ⋅
𝑢3
𝑠𝑐(𝒙,𝜔)

𝐹(𝜔)𝐶3𝛼3𝛽�̂�𝛽𝑆2(𝜑𝑠)(𝑘0𝑓(𝜑𝑠)�̂�𝛼 − 𝑘�̂�𝛼
𝑖𝑛)

 

 

(13) 



                         ⋅ √
𝑘0|𝒙||𝑓′′(𝜑𝑠)|

8𝜋3
exp [−𝑖𝑘0|𝒙|𝑓(𝜑

𝑠) − 𝑖
𝜋

4
sgn{𝑓′′(𝜑𝑠)}] 

    ∙ exp [𝑖{𝑘0𝑓(𝜑
𝑠)�̂� ⋅ 𝒚 − 𝑘�̂�in ⋅ 𝒚}]𝑑𝜔𝑑𝜓 

 

where 𝜓𝑖𝑛  is the incident wave angle. The shape reconstruction of the delamination is 

implemented by the calculation of the right-hand side of eq. (13). 

 

Numerical results 

In this section, some numerical results for the shape reconstruction of a delamination in two 

types of CFRPs are demonstrated by using the proposed method. The two types of CFRPs are 

unidirectional and quasi-isotropic CFRPs. The elastic constants of them are given in the 

normalized form by 𝐶44 as follows: 

 

Figure 2 Group velocity curves for (a) unidirectional CFRP (b) quasi-isotropic CFRP. 

 

Figure 3 Forward and inverse scattering analysis models (a) downward and (b) upward incidences. 

 



𝐶𝛼𝛽

𝐶44
=

(

 
 
 

45.914 1.829 41.874 0 0 0
3.977 1.829 0 0 0

45.914 0 0 0
1.0 0 0

sym. 2.02 0

1.0)

 
 
 

  (unidirectional CFRP) 

 

 

(14) 

𝑪𝜶𝜷

𝑪𝟒𝟒
=

(

 
 
 

9.63 0.77 4.0 0 0 0
2.54 0.77 0 0 0

9.63 0 0 0
1.0 0 0

sym. 3.24 0

1.0)

 
 
 

 (quasi-isotropic CFRP)  

(15) 

 

Figure 2(a) and (b) show the group velocity curves for unidirectional CFRP and quasi-isotropic 

CFRP, respectively. As shown in Fig.2, three distinct waves, the qP wave (longitudinal wave), 

and qS1 and qS2 waves (shear waves), exist in each CFRP. In addition, the qP wave, which is 

faster than qS1 and qS2 waves, are observed. The velocity of the qP wave for the horizontal 

direction is faster than that for the vertical direction, due to the anisotropic property. In this 

analysis, the qS2 wave, which is called pure SH wave, is used to reconstruct a delamination in 

CFRPs. The scattered wave data 𝑢3
𝑠𝑐(𝒙, 𝜔) of eq. (13) can be calculated by using the Fourier 

transform of 𝑢3
𝑠𝑐(𝒙, 𝑡) obtained by the CQBEM.  

Forward analysis results obtained by CQBEM 

The results for 2-D elastic wave scattering by a delamination with the length 2𝑎 in CFRPs are 

demonstrated in this section. Figure 3 shows the forward analysis model and the scattered waves 

𝑢3
𝑠𝑐(𝒙,𝜔) at several receiver points, which are away from the center of the delamination by 

12𝑎, are calculated with the aid of the CQBEM. In this analysis, two cases which are downward 

and upward incidences for the delamination, as shown in Fig.3(a) and (b), respectively, are 

considered. The delamination is discretized by the piecewise constant boundary elements and 

the number of boundary elements 𝑀  is given by 𝑀 = 20 . The time increment 𝑐0𝑡/𝑎 , the 

number of total time steps 𝑁, and the central frequency of the Ricker wavelet 𝜔𝑝 are given by 

Figure 4 Scattered wave forms 𝒖𝟑
𝒔𝒄(𝒙, 𝒕) obtained by CQBEM for the case of (a) unidirectional CFRP 

(b) quasi-isotropic CFRP. 

 



𝑐0𝑡/𝑎 = 0.02, 𝑁 = 2048, and 𝜔𝑝 = 𝜋, respectively. Figure 4(a) and (b) show time variation 

of scattered wave forms at the receiver points, (𝑟, 𝜃) = (12𝑎, 𝜃 = 3° + 18°𝑛 (𝑛 = 0,… ,9)) in  

Fig.3(a). The unidirectional and quasi-isotropic CFRPs whose elastic constants are given in 

eq.(14) and (15) are considered for Fig.4(a) and (b), respectively. The time-domain transformed 

wave for the Ricker wave defined in eq. (12) is considered for this analysis. We can see that the 

scattered waves 𝑢3
𝑠𝑐(𝒙, 𝑡) arrive at different times for each receiver point, as shown in Fig.4, 

due to the anisotropic property of CFRPs. The shapes of the group velocity curves for both 

CFRPs are elliptical, which are shown by blue lines in Fig.2, and the group velocity of qS2 

(pure SH wave) for horizontal direction is faster than that for vertical one. These scattered wave 

forms 𝑢3
𝑠𝑐(𝒙, 𝑡) can be used for the following inverse scattering analysis. 

Inverse scattering analysis results 

The shape reconstruction results by the proposed method are demonstrated in this section. As 

mentioned before, the scattered wave forms 𝑢3
𝑠𝑐(𝒙, 𝑡) in time-domain can be obtained by using 

the CQBEM. However, scattered wave forms 𝑢3
𝑠𝑐(𝒙, 𝜔) in frequency-domain are required for 

the computation of right-hand side of eq. (13). The scattered wave forms 𝑢3
𝑠𝑐(𝒙,𝜔)  in 

frequency-domain are calculated by using the Fourier transform of those 𝑢3
𝑠𝑐(𝒙, 𝑡) in time-

domain in this research. Figure 5(a) and (b) show the results for the shape reconstruction of the 

delamination in unidirectional and quasi-isotropic CFRPs, respectively. The singular function 

𝛾(𝒚)/𝛾𝑚𝑎𝑥, 𝛾𝑚𝑎𝑥 is the maximum value of 𝛾, is plotted around the delamination. The central 

straight black line in Fig.5 denotes the actual delamination shape and position. The scattered 

wave forms 𝑢3
𝑠𝑐(𝒙, 𝑡) at the receiver points (𝑟, 𝜃) = (12𝑎, 𝜃 = 3° + 18°𝑛 (𝑛 = 0,… ,9)) for 

the downward incidence and (𝑟, 𝜃) = (12𝑎, 𝜃 = 183° + 18°𝑛 (𝑛 = 0,… ,9))  for upward 

incidence, as shown in Fig.3 (a) and (b), respectively, are used for this inverse scattering 

analysis for the delamination. We can see that the singular function  𝛾(𝒚)/𝛾𝑚𝑎𝑥 shows large 

values around the delamination in Fig.5. Therefore, our proposed inverse scattering technique 

has the potential to realize the identification of an unknown delamination in various types of 

CFRP with anisotropic property.    

 

 

 

 

Figure 5 Shape reconstruction results using the proposed inverse scattering technique 

for the delamination in (a) unidirectional CFRP (b) quasi-isotropic CFRP. 

 



Conclusions 

In this study, the inverse scattering technique for the reconstruction of a delamination in CFRP 

was proposed. The mathematical formulation for the proposed technique was derived, and 

tested numerically to verify the proposed method by solving the fundamental inverse scattering 

problem for the delamination in various types of CFRPs. In this study, only the pure SH wave 

(qS2 wave) was used for the reconstruction of the delamination in CFRPs. Therefore, in the 

future, we will try to implement the shape reconstruction using the qP wave. In addition, the 

extension to 3-D problem is also our next challenge. 
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