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Abstract 

Linear tetrahedral elements with four nodes (Te4) are currently the simplest and most widely 

used in finite element (FE) developed for solving 3D mechanics problems. However, the 

standard Te4 elements cannot be used to simulate accurately the 3D problems with curved 

boundaries, because of the flat surfaces of the standard Te4 elements. In this paper, we 

develop a set of new elements having curved surfaces to simulate the curved boundaries, by 

adding nodes to the standard Te4 elements. These novel elements include five-noded, six-

noded, and seven-noded tetrahedron elements (Te5, Te6, and Te7). Based on the Te4 FE 

mesh, a hybrid mesh can be conveniently built for 3D problems with curved boundaries, in 

which the standard Te4 elements are used for the interior, and Te5, Te6, and Te7 elements are 

used for the curved boundaries. Compared with the standard FEM with Te4 elements, our 

mixing mesh can significantly improve the accuracy of the solution at the curved boundaries. 

Several solid mechanics problems are studied using hybrid meshes to validate the 

effectiveness of the present new elements.  

Keywords: finite element method; curved boundaries; five-noded, six-noded, seven-

noded tetrahedron element 

 

Introduction 

Common three-dimensional element of FEM is linear tetrahedral element with four nodes 

(Te4), which can automatically generate for complex geometries [1]. Due to its high 

efficiency, robustness and adaptability for complex geometries, the Te4 element is the most 

commonly used for general solid mechanics problems. However, the accuracy of FEMs using 

Te4 elements is poor in terms of stress, especially at the curved boundaries. Tetrahedral 

elements with ten nodes (Te10) [2], wedge elements with six nodes (W6) and hexahedron 

elements with eight nodes (H8) are proposed for this problem to obtain higher accuracy, but 

the computational cost is too large. Considering the above characteristics of the Te4, the Te10 

and the higher order element, we propose a hybrid class of multi-node tetrahedral elements.     

 

For the 3D problem domain with curved surfaces, some of the edges of tetrahedron boundary 

elements locate on the curved boundaries. If the edge is on the curved boundaries, we use a 

curved edge instead of the straight edge used in the standard Te4 element. Then we add a new 

node in the middle point of the curved edge to accurately simulate the changing trend. We 

analyze the type of the boundary elements, and put forward three kinds of new tetrahedron 

elements which are five-noded, six-noded and seven-noded tetrahedron (Te5, Te6, and Te7) 

elements. 



The shape functions of the Te5, Te6 and Te7 elements for FEM 

Then we construct the shape functions for the Te5, Te6 and Te7 elements. Figure 1(a) is a Te5 

element that one additional node was added on the middle node of the curved edge. By using 

shape functions of the four-noded triangular (Tr4) element which can be found in [3], we can 

construct the shape function of a standard five-noded tetrahedron element in the natural 

system, which can be seen in Figure 1(b). 

 

 

(a) (b) 

Figure 1. (a) The five-noded tetrahedron element; (b) the five-noded tetrahedron 

element in natural system. 

For any triangular 
1 2 3    paralleled to the triangular 123 , the displacement can be 

approximated using  
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where the shape function of the Tr4 ,
1 2 3   , can be written as 
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Invoking the simple fact that 
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where i jl   is the distance between two points i and j. So we have the relationships as listed: 
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Therefore, the displacement in the standard five-noded tetrahedron element can be evaluated 

using the following formulation 
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(5) 

Substitute Eq.(2) into the above equation, the shape functions  1,2,3,4,5iN i   of the 

standard Te5 element can be formulated as  
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where the parameters  0,1  ,  0,1  ,  0,1  . 

 

Figure 2(a) is a Te6 element that two additional nodes were added on the middle node of each 

curved edge. 

 

 

(a) (b) 

Figure 2.  (a) The six-node tetrahedron element; (b) the standard six-node 

tetrahedron element in the natural system. 

Similarly, the shape functions  1,2,3, 4,5,6iN i   of the standard Te6 element, which can be 

seen in Figure 2(b), can be formulated as  
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where the parameters  0,1  ,  0,1  ,  0,1  . 

 

Figure 3(a) is a Te7 element that three additional nodes were added on the middle node of 

each curved edge. 

 

 

(a) (b) 

Figure 3.  (a) The seven-node tetrahedron element; (b) the standard seven-node 

tetrahedron element in the natural system. 

Similarly, the shape functions  1, 2,3, 4,5,6,7iN i   of the Te7 element, which can be seen in 

Figure 3(b), can be formulated as  
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where the parameters  0,1  ,  0,1  ,  0,1  . 



Numerical simulation 

The domain of the hollow sphere is defined as Ω = B(0, 2)/B(0, 1.0), which the origin O(0, 0, 

0), inner radius a = 1.0m, and outer radius b = 2.0m. The hollow sphere is subjected to an 

internal pressure P=1 N/m
2
 on the inner spherical surface. Because of the symmetric 

characteristics of the problem, only one-eighth of hollow sphere needs to be modeled as 

shown in Figure 1, and symmetric conditions are imposed on the symmetric planes. 

 

Figure 1.  one-eighth of hollow sphere discretized using Te4 elements 

 

Table1. Relative errors in displacement component u of the added nodes in the curved 

edges for the inner surface 

Mesh 62 nodes 371 nodes 770 nodes 1482 nodes 

FEM-Te4 0.2429 0.0532 0.0331 0.0140 

FEM-HM 0.1796 0.0361 0.0246 0.0086 

 

We use FEM-Te4 to represent the finite element method using Te4 elements and FEM-HM to 

represent the finite element method using a hybrid mesh with Te4, Te5, Te6 and Te7 elements. 

Table1 gives the relative errors in displacement component u of the added nodes in the curved 

edges for the inner surfaces using different elements and mesh sizes. The results show that the 

hybrid mesh with Te4, Te5, Te6 and Te7 elements can improve the accuracy of the 

displacement result on the curved boundaries, compared to the mesh with Te4 elements. 

 

Figure 2 shows relative errors in radial stress r  of Point A (marked in Figure 1) against 

mesh sizes using different elements, which obtains the maximum radial stress easily observed 

in the analytical solution. It is clearly seen that the hybrid mesh with Te4, Te5, Te6 and Te7 

elements stands out in the radial stress, compared the mesh with Te4 elements. 

 



Figure 2. Relative errors of the radial stress of Point A against mesh sizes using 

different elements for 3D Lame problem. 

Conclusions 

In this paper, we present a novel hybrid mesh using Te5, Te6, and Te7 elements to accurately 

approximate the curved boundaries of problem domains. The hybrid mesh not only remains 

the advantages of the linear tetrahedral element, but also greatly improves the accuracy of the 

stress solution. Based on the shape functions of the standard Tr4 element, the standard Tr5 

element and the standard Tr7 element, we formulate the shape functions for Te5, Te6, and 

Te7 elements separately. Through intensive numerical examples, it is concluded that our 

novel hybrid mesh with the multi-node tetrahedral element can simulate the curved 

boundaries efficiently and accurately. 
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