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Materials and Methods 

In this work, we reinforced a thermoplastic polymer and a thermoset polymer separately with 
continuous flax fibre reinforcement . For the thermoplastic, Polypropylene (PP) (Moplen 
RP241G, Lyondell Basell, New Zealand) was obtained in the form of 0.38 mm and 0.6 mm 
sheets. Prime 20 LV, Gurit, New Zealand was used for the thermoset composites. The matrix 
polymers properties are listed in Table 1. Unidirectional flax fibre fabric (Belgian flax, linum 
usitassimum) of areal density 190 g/m2 was obtained from Libeco, Belgium. 

Glass/epoxy composites were also manufactured and tested to validate some of the numerical 
models. Glass unidirectional (UD) fabric of areal density 250 g/m2 obtained from Gurit, New 
Zealand was used to manufacture these composite panels. 

Table 1. Properties of the matrix polymers. 
 

Material Property Value 

PP Density 0.9 g/cm3 
 

Tensile modulus, E 1.1 GPa 
 

Yield strength, σy 10 MPa 

Epoxy (Prime 20 LV) Density 1.089 g/cm3 
 

Tensile modulus, E 3.2 GPa 
 

Yield strength, σy 73 MPa 

Manufacture 

Flax/PP panels of two volume fractions, 0.22 and 0.41 were manufactured using a 100 tonne 
press. PP sheets and layers of flax fabric were assembled and compacted in a die which was 
pre-heated to 190 °C. A pressure of 0.5 MPa was applied for 10 minutes initially, which was 
then increased to 0.94 MPa over 5 minutes. The die was then cooled to 100 ○C, maintaining 
the pressure at 0.94 MPa. 

The vacuum-assisted resin transfer moulding (VARTM) process was used to manufacture the 
flax/epoxy panels of two different volume fractions, 0.41 and 0.51, and glass/epoxy panels of 
volume fraction 0.51. The mould was heated prior to placing the fabric inside. On completing 
injection, the mould was heated to 60○C to ensure complete curing of the resin. 

For further details of both manufacturing processes, the authors’ earlier paper can be referred 
to [35]. Designations have been assigned to the composite materials for ease of reference. The 
flax/PP composites with 0.22 and 0.41 volume fractions will be referred to as FLPP22 and 
FLPP41 respectively. Similarly, the flax/epoxy systems composites with 0.41 and 0.51 
volume fractions will be referred to as FLEP41 and FLEP51 respectively, and the glass/epoxy 
system as GLEP51. 

Mechanical tests and analysis 

Three-point bending tests were performed to study the macroscale behaviour of the composite 
materials, following the ASTM D790 standard. Rectangular specimens 84 mm long by 16 
mm wide for three-point bend (flexural) tests were extracted from the panels produced. As per 
the ASTM D790 standard, the strain rate applied to flexure specimens was decided based on 
initial testing done on a sacrificial specimen. The support span and strain rates for all material 
systems were calculated from the dimensions of this specimen, as per the procedure specified 
in the standard, and these values are listed in Table 2. 

 



Table 2. Parameters used for three point bend/flexure tests on composite specimens 

Material 
system 

Vf Designation Support span 
[mm] 

Strain rate 
[mm/min] 

Flax/PP 0.22 FLPP22 47.85 1.315 

Flax/PP 0.41 FLPP41 47.85 1.315 

Flax/epoxy 0.41 FLEP41 63.74 1.737 

Flax/epoxy 0.51 FLEP51 63.74 1.750 

Glass/epoxy 0.51 GLEP51 63.64 1.728 
 

As part of a previous study [35], we also characterized mechanical properties at the 
microscale. The strength of flax fibres under tension was determined using single fibre tensile 
tests (SFTTs) performed according to the ASTM C1557 standard, with specimens of four 
different gauge lengths of 10, 15, 20 and 25 mm being tested. The normal strength of the 
interface between fibres and matrix polymer was also studied for flax/PP and flax/epoxy using 
the microbond technique. Transverse tensile strength of composites was determined following 
the ASTM D3039 standard to estimate the shear strength of the fibre-matrix interface. 

Macroscale properties 

Tensile testing of rectangular specimens was performed using a 30 kN Instron 5567 UTM 
with a video extensometer to measure strain. As per the ASTM D3039 standard, testing was 
performed at a crosshead rate of 2 mm/min. Compressive tests were performed either using 
the Instron 5567 UTM or a 100 kN Instron UTM depending on the final load required for the 
material system. The ASTM D6641 standard using a combined loading fixture was employed, 
and the test was performed at a crosshead speed of 1.3 mm/min. Rail shear specimens were 
tested as per the ASTM D4255 standard. Composite specimens were also tested in flexure by 
performing three-point bending tests following the ASTM D790 standard. 

Fabric geometry characterization 

A Leica MZ16 microscope with a maximum magnification of 220x was used for optical 
microscopy measurements. Various optical measurements, such as the centre-to-centre 
distance between individual warp yarns and individual weft yarns, were performed on the 
fabrics. These parameters are required for the modelling of the yarn paths, crossovers and 
spacings, which constitute the architecture of the fabric. For the warp yarns, the distributions 
of yarn heights and yarn widths were measured for suitability of fitting to normal, log-normal 
and Gumbel distributions. The fabric geometry distributions were applied to construct the 
geometric model of the flax fabric using varying yarn geometries [36]. 

Numerical Modelling 

The approach taken to implement the multiscale coupling for this study is illustrated in the 
flowchart (Figure 2), including the models involved and the exchange of information between 
them. 
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Microstructure RVE FE models 

In a previous study [36], we established a methodology to estimate the damage evolution 
behaviour in flax/PP and flax/epoxy systems using numerical representative volume element 
(RVE) models of flax yarns impregnated with either PP or epoxy. The damage rules obtained 
from these models were then combined with meso-FE models [37], which would then be able 
to provide the macroscale models with a damage response given the deformation gradient. 
The meso-FE models in this case had discrete representation of the fabric geometry in the flax 
fabric composites. These are the models referred to as “Microstructure RVE FE models” in 
Figure 2. The damage rules which were estimated flax/PP and flax/epoxy systems are as in 
Table 3. 

Table 3. Polynomial fit parameters for numerical damage evolution 

Material 
system 

Initial 
strain 

a0 a1 a2 a3 

Flax/PP      

d11 0.0 0.0466 -11.326 6899.025 -177591.065 

d22 0.002 0.1594 -84.802 21261.602 -1007230.523 

d33 0.002 0.1594 -83.350 20546.880 -986335.330 

d12 0.002 0.1592 -84.657 21233.65 -1005611.546 

d13 0.0 0.04 -0.581 5227.291 -111522.741 

d23 0.002 0.1594 -84.807 21262.992 -1007340.688 

Flax/epoxy      

d11 0.008 3.950 -1148.067 104071.570 2752583.210 

d22 0.0065 0.0627 -14.474 670.675 18751.528 

d33 0.0065 0.0672 -15.484 731.900 17979.630 

d12 0.0065 0.072 -13.301 207.513 41757.377 

d13 0.01 2.644 -578.704 39704.457 -803754.974 

d23 0.0065 0.091 -21.596 1217.099 5652.155 
 

An example of flax composite geometry in the RVEs is shown in Figure 4. From the 
compacted geometry representing stacks of flax fabrics (Figure 4), FE models were generated 
with elements filling in spaces between the fabric layers to represent the polymer resin 
(Figure 4). 
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natural fibre thermoplastic and thermoset composite materials. This has been demonstrated by 
applying the multiscale model to the bending analysis two flax/PP and two flax/epoxy 
composite systems, with reasonably accurate results obtained. The multiscale framework was 
two-scale, consisting of a homogenised material model at the highest level coupled with a 
microstructure model. A validation study was performed to establish the reliability of the 
same framework using a glass/epoxy composite material system, which was also able to 
predict the composite failure with good accuracy. Overall, these sets of results establish the 
confidence in the potential of this multiscale framework implementation in relation to its 
applicability for different composite material systems. 
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