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Abstract

A computational homogenization technique has been implemented using the ABAQUS finite
element solver to analyse the behaviour of flax fibre composites subjected to three-point
bending. Macroscale models of bending specimens were coupled with numerically estimated
damage rules for two systems each of flax/polypropylene and flax/epoxy. The results obtained
for the failure strength were between 7.5-11.2% lower than the test average values. Validation
studies were also performed, using geometry and material parameters for a glass/epoxy
composite, and the predicted failure strength was only 12.6% lower than the experimental
average for the glass/epoxy three-point bending specimens.
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Introduction

Composites can be manufactured in a range of different configurations, using short or long
fibres, which are present in either random or oriented manner in the matrix material. For
higher performance applications, it is common to utilise long fibres, which can be obtained in
fabric form. Shown in Figure 1 are the various stages of producing a composite from fabric.
Yarns are composed of several fibres twisted together (Figure 1), which are then woven to
produce fabrics (Figure 1). Layers of fabric are then stacked together and infused with
matrix/resin to form a composite. As shown in the illustration (Figure 1), the multiscale
structure of composites materials results in the response to loading being contributed to by
components at different length scales.
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Figure 1. Illustration of a composite made from yarn fabric - (a) yarn composed of
twisted fibres, (b) fabric from yarn, (c) stack of fabric layers and (d) fabric stack infused
with resin

The heterogeneous and multiscale nature of composite materials causes them to demonstrate
failure behaviour that is quite different from that of metals or other materials which might
have been traditionally used in certain applications. The various failure processes observed
could include fibre fracture and interface failure at the fibre-interface scale [1] (microscale),
matrix cracking and delamination at the yarn-lamina scale (mesoscale)[2]. Local
damages/cracks interact with each other, sometimes synergistically, and finally may lead to
catastrophic failure [3] at the composite level. Macroscale damage may present as
longitudinal splitting, shear crippling or complete rupture, among other modes. Local
phenomena thus indirectly dictate the final failure properties of composites.

Due to the complexity involved in composite failure, coupled multiscale modelling techniques
are necessary to capture the failure mechanisms at the different geometric scales [4, 5]. Such
techniques typically couple local analysis of RVE models with global or macro analysis [6-8].
Most of these techniques can be classified as superposition techniques [9-15] mathematical
homogenization techniques [16-21], domain decomposition techniques [22-26] and multiscale
computational techniques [8, 27-30]. Among the various techniques explored, the approach
taken by Smit et al. [8, 29, 31] is to be noted for being non-intrusive, meaning that it can be
easily implemented with commercial finite element (FE) codes.

Natural fibre composites (NFCs) are also increasingly being adopted [32, 33]in the
automobile and construction industries worldwide. The NATEX (Aligned Natural Fibres and
Textiles for Use in Structural Composite Applications) project [34] funded by the European
Union was a recent example of an effort to progress the knowledge on bio-based resins and
natural fibre fabric precursors. Coordinated efforts were made by research centres and
commercial institutions spread across several countries to develop materials and
manufacturing techniques for NFCs which could be readily adopted by commercial operations
for structural applications. In this context, NFCs are ideal candidates for application of
multiscale techniques to predict mechanical properties, so that greater confidence in their
application in structures can be established.

This paper explores the application of the computational homogenization technique of Smit et
al. [35-37] to predict the behaviour of flax fabric composites subjected to three point bending.
Panels of four different flax-based material systems will be manufactured, and their bending
behaviour determined through tests on specimens from the panels.



Materials and Methods

In this work, we reinforced a thermoplastic polymer and a thermoset polymer separately with
continuous flax fibre reinforcement . For the thermoplastic, Polypropylene (PP) (Moplen
RP241G, Lyondell Basell, New Zealand) was obtained in the form of 0.38 mm and 0.6 mm
sheets. Prime 20 LV, Gurit, New Zealand was used for the thermoset composites. The matrix
polymers properties are listed in Table 1. Unidirectional flax fibre fabric (Belgian flax, /inum
usitassimum) of areal density 190 g/m” was obtained from Libeco, Belgium.

Glass/epoxy composites were also manufactured and tested to validate some of the numerical
models. Glass unidirectional (UD) fabric of areal density 250 g/m” obtained from Gurit, New
Zealand was used to manufacture these composite panels.

Table 1. Properties of the matrix polymers.

Material Property Value
PP Density 0.9 g/cm3
Tensile modulus, £| 1.1 GPa
Yield strength, o, 10 MPa
Epoxy (Prime 20 LV) Density 1.089 g/cm3
Tensile modulus, £| 3.2 GPa
Yield strength, 6, | 73 MPa

Manufacture

Flax/PP panels of two volume fractions, 0.22 and 0.41 were manufactured using a 100 tonne
press. PP sheets and layers of flax fabric were assembled and compacted in a die which was
pre-heated to 190 °C. A pressure of 0.5 MPa was applied for 10 minutes initially, which was
then increased to 0.94 MPa over 5 minutes. The die was then cooled to 100 OC, maintaining
the pressure at 0.94 MPa.

The vacuum-assisted resin transfer moulding (VARTM) process was used to manufacture the
flax/epoxy panels of two different volume fractions, 0.41 and 0.51, and glass/epoxy panels of
volume fraction 0.51. The mould was heated prior to placing the fabric inside. On completing
injection, the mould was heated to 600C to ensure complete curing of the resin.

For further details of both manufacturing processes, the authors’ earlier paper can be referred
to [35]. Designations have been assigned to the composite materials for ease of reference. The
flax/PP composites with 0.22 and 0.41 volume fractions will be referred to as FLPP22 and
FLPP41 respectively. Similarly, the flax/epoxy systems composites with 0.41 and 0.51
volume fractions will be referred to as FLEP41 and FLEPS51 respectively, and the glass/epoxy
system as GLEPS1.

Mechanical tests and analysis

Three-point bending tests were performed to study the macroscale behaviour of the composite
materials, following the ASTM D790 standard. Rectangular specimens 84 mm long by 16
mm wide for three-point bend (flexural) tests were extracted from the panels produced. As per
the ASTM D790 standard, the strain rate applied to flexure specimens was decided based on
initial testing done on a sacrificial specimen. The support span and strain rates for all material
systems were calculated from the dimensions of this specimen, as per the procedure specified
in the standard, and these values are listed in Table 2.



Table 2. Parameters used for three point bend/flexure tests on composite specimens

Material V; | Designation | Support span Strain rate

system [mm] [mm/min]
Flax/PP 0.22| FLPP22 47.85 1.315
Flax/PP 0.41| FLPP41 47.85 1.315
Flax/epoxy [0.41| FLEP41 63.74 1.737
Flax/epoxy [0.51| FLEPS1 63.74 1.750
Glass/epoxy |0.51| GLEP51 63.64 1.728

As part of a previous study [35], we also characterized mechanical properties at the
microscale. The strength of flax fibres under tension was determined using single fibre tensile
tests (SFTTs) performed according to the ASTM C1557 standard, with specimens of four
different gauge lengths of 10, 15, 20 and 25 mm being tested. The normal strength of the
interface between fibres and matrix polymer was also studied for flax/PP and flax/epoxy using
the microbond technique. Transverse tensile strength of composites was determined following
the ASTM D3039 standard to estimate the shear strength of the fibre-matrix interface.

Macroscale properties

Tensile testing of rectangular specimens was performed using a 30 kN Instron 5567 UTM
with a video extensometer to measure strain. As per the ASTM D3039 standard, testing was
performed at a crosshead rate of 2 mm/min. Compressive tests were performed either using
the Instron 5567 UTM or a 100 kN Instron UTM depending on the final load required for the
material system. The ASTM D664 1 standard using a combined loading fixture was employed,
and the test was performed at a crosshead speed of 1.3 mm/min. Rail shear specimens were
tested as per the ASTM D4255 standard. Composite specimens were also tested in flexure by
performing three-point bending tests following the ASTM D790 standard.

Fabric geometry characterization

A Leica MZ16 microscope with a maximum magnification of 220x was used for optical
microscopy measurements. Various optical measurements, such as the centre-to-centre
distance between individual warp yarns and individual weft yarns, were performed on the
fabrics. These parameters are required for the modelling of the yarn paths, crossovers and
spacings, which constitute the architecture of the fabric. For the warp yarns, the distributions
of yarn heights and yarn widths were measured for suitability of fitting to normal, log-normal
and Gumbel distributions. The fabric geometry distributions were applied to construct the
geometric model of the flax fabric using varying yarn geometries [36].

Numerical Modelling

The approach taken to implement the multiscale coupling for this study is illustrated in the
flowchart (Figure 2), including the models involved and the exchange of information between
them.
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Figure 2. Data exchange involved in the multiscale FE framework
Macroscale model of three-point bending

The multiscale coupling in this study was used to analyse the behaviour of flax composite
specimens under three-point bending. As shown in Figure 3, the three-point bending (TPB)
test consisted of a rectangular specimen balanced on top of two steel rollers, and a loading
roller bending the specimen by pushing down its middle section. The test configuration was
represented by a half-symmetry model with solid elements for the beam, and analytical rigid
parts representing the loading and support rollers (Figure 3). The ABAQUS CAE python
scripting interface was used to parametrically generate the models for the different material
systems, and the get/nputs command enabled the collection of the geometry, material and
boundary condition parameters.
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Figure 3. (a) Configuration of the three-point bending test, and (b) representation of the
geometry in the FE model of the system

The rollers were positioned so as to replicate the span length used for the particular material
system (Table 2). Contact definitions were made between each roller and the beam, and
increased mesh refinement was used in areas of the beam closer to the rollers (Figure 3). An
initial step was created, displacing the support roller upwards by a small displacement of 10
> mm to establish contact with the beam. In the subsequent step, the loading roller was
displaced downwards to deflect the beam.



Microstructure RVE FE models

In a previous study [36], we established a methodology to estimate the damage evolution
behaviour in flax/PP and flax/epoxy systems using numerical representative volume element
(RVE) models of flax yarns impregnated with either PP or epoxy. The damage rules obtained
from these models were then combined with meso-FE models [37], which would then be able
to provide the macroscale models with a damage response given the deformation gradient.
The meso-FE models in this case had discrete representation of the fabric geometry in the flax
fabric composites. These are the models referred to as “Microstructure RVE FE models” in
Figure 2. The damage rules which were estimated flax/PP and flax/epoxy systems are as in
Table 3.

Table 3. Polynomial fit parameters for numerical damage evolution

Material Initial g a a a3
system strain

Flax/PP
di1 0.0 0.0466| -11.326 | 6899.025 | -177591.065
d22 0.002 |0.1594| -84.802 | 21261.602 |-1007230.523
d33 0.002 |0.1594| -83.350 | 20546.880 | -986335.330
di2 0.002 |0.1592| -84.657 | 21233.65 |-1005611.546
d13 0.0 0.04 | -0.581 | 5227.291 | -111522.741
d23 0.002 |0.1594| -84.807 | 21262.992 |-1007340.688

Flax/epoxy
dil 0.008 3.950 |-1148.067|104071.570| 2752583.210
d22 0.0065 |0.0627| -14.474 | 670.675 18751.528
d33 0.0065 [0.0672| -15.484 | 731.900 17979.630
di2 0.0065 | 0.072 | -13.301 | 207.513 41757.377
d13 0.01 2.644 | -578.704 | 39704.457 | -803754.974
d23 0.0065 | 0.091 | -21.596 | 1217.099 5652.155

An example of flax composite geometry in the RVEs is shown in Figure 4. From the
compacted geometry representing stacks of flax fabrics (Figure 4), FE models were generated
with elements filling in spaces between the fabric layers to represent the polymer resin
(Figure 4).



(@) (b)

Figure 4. Illustration of (a) section of compacted fabric geometry and (b) RVE of flax
fabric composite

Multiscale coupling

The coupling of scales was performed using a coupled computational homogenization
method [31] because it is relatively easy to implement, and is also non-intrusive. The
term “non-intrusive” indicates that the method does not require access/modifications to the
numerical solver code itself.

In the method, the macroscopic model is solved first, and for each iteration and each
integration point in the elements, the macroscopic deformation gradient /., is obtained. In
the ABAQUS UMAT user subroutine, the deformation gradient is stored in the variable
DFGRDI. The RVE model displacements were calculated from the deformation gradient

using equations of the form
[X —x] = [Fnacro - 1].[x] (1)

where X and x are the positions of a point in the RVE model in the deformed and original
configurations, respectively, and /is the identity matrix. Periodic boundary conditions were
imposed on the boundary nodes of the RVE models. Pilot nodes were used to control the
boundary nodes, due to which displacements only needed to be specified at the pilot nodes.
The RVE model was then solved, followed by volume-averaging of the stress or damage
values in the RVE. The damage in the RVE was set by using the numerically estimated strain-
damage rules (Table 3). The average values were then updated in the corresponding
integration point in the macroscale model. The flow of data between the macroscopic and
microscopic meshes is illustrated in Figure 5.
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Figure 5. Flowchart of steps involved in the computational homogenization scheme of
Smit et al. [31]

The macroscopic meshes used as part of the multiscale coupling in this work were from the
FE models representing the three-point bending test (Figure 3). The composite beams were
modelled as rectangular blocks with isotropic material properties in these. The microscopic or
lower scale models were comprised of the meso-FE RVE models.

Results and Discussion

A hierarchical approach was applied, which includes obtaining material properties at the
micro-scale, linking them to analytical or numerical models, and then feeding the micro-scale
properties into a larger scale model. Fibre properties were determined first, fit to Weibull
distributions, and compared to predictions using the classical laminate theory. The fibre
properties were then used in simulations of the microbond test performed to determine
properties of the interface. The properties of the fibre and the interface were subsequently
used to model the failure of matrix-impregnated flax yarns.

Fabric geometry characterization

The measurements of the cross-sections of flax fibres and flax yarns are indicated as
distributions in Figure 6. Concerning the flax fabrics, the term “crossover” will from now on
mean when a warp yarn passes over a weft yarn or vice-versa. On observation of the fabrics, it
was found that the average distance from the edge of one warp flax yarn to the next was 0.005
mm (within the same crossover), while the corresponding value for weft yarns was 2.85 mm.
For the glass fabric, the glass tows were closely spaced, and were 2.08 mm wide and 0.24 mm
high on average. The tows were bound by polyethylene yarns 0.3 mm wide and 0.2 mm high,
which were spaced 37 mm apart.
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Figure 6. Distributions of fibre and yarn geometries, from optical measurements
Multiscale model results

The simulation results, presented in Figure 7, display reasonably good agreement with the
experimental data for all four systems. For the flax/PP systems, the predicted stresses at
failure matched closely with those obtained from the tests. For the FLPP22 model, with the
numerical damage rule applied, the predicted failure was at 103.10 MPa, which is 8.3% lower
than the average experimental value of 112.40 MPa. However, the failure does seem to occur
early, with the failure strain of 0.028 being less than half the average strain of 0.060 in the
tests. The higher failure strain in the test specimens could be due to the unwinding of the
fibres in the yarn helix, and of the cellulose microfibrils in the fibres. Fractographic analysis
could confirm the occurrence of such a process. However, fractographic analysis of
micromechanics is not a focus of this thesis, and is something that could be investigated as
part of another research work.

The prediction for FLPP41 was at a value of 115.78 MPa, which is 7.7% lower than the test
value. The failure strain of 0.027 was again lower than the average strain of 0.050 in the tests.
Both the stress and strain behaviours predictions were much closer to the average
experimental values for the flax/epoxy systems. In the case of the FLEP41 model, the
predicted strength was 236.36 MPa, 11.2% lower than the experimental average of 296.40
MPa, while for the FLEP51 model, the strength was predicted to be 299.14 MPa, only 7.5%
lower than the test average of 323.4 MPa. The corresponding failure strain prediction of 0.032
was only 7.4% lower than the test average strain of 0.030.
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Figure 7. Results from multiscale simulations of three-point bending behaviour of (a)
FLPP22, (b) FLPP41, (¢c) FLEP41 and (d) FLEP51

Validation with Experiments

The multiscale modelling framework here was demonstrated to yield good results for the four
flax composite systems studied. To ascertain the applicability of this method to other material
systems, the entire set of experiments and simulations leading up to the multiscale simulations
has been repeated for a glass/epoxy material system (GLEP51). Glass/epoxy panels with a
fibre volume fraction of 0.51 were manufactured using resin transfer moulding, as mentioned
before and subjected to three-point bending tests.

Impregnated yarn RVE and damage rule

Using a similar method as described in our previous paper [36] to establish damage evolution
rules for fabric composite systems, discrete models of glass tows impregnated by epoxy resin
were constructed and samples cut out to identify RVEs. Damage was calculated based on the
values of strain with respect to strain values expected at the plastic yield point of the epoxy
and glass fabric. The strength values used for the glass fabric were [38]:

e Longitudinal tensile strength = 2000 MPa

e Longitudinal compressive strength = 1000 MPa
e Transverse tensile strength = 80 MPa

e Transverse compressive strength =250 MPa

e Shear strength = 100 MPa

The strength used to calculate the yield strain for epoxy was 73 MPa (Table 1). The damage
evolution from tensile and compressive loading of the glass/epoxy RVE model were
calculated, and best-fits for their evolution obtained by curve-fitting. The parameters for the
curves thus obtained for the evolution of damage in the glass elements are specified in Table
4.



Table 4. Polynomial fit parameters for numerical damage evolution of glass/epoxy
impregnated yarn

Damage Start a a; a3 a3

variable strain

Tensile
dl1 0.005 |-1.386|365.707|-19,101.067| 333.478.08
d22 0.005 |-1.080|284.011| -14,597.98 | 248,129.125
d33 0.005 |-1.077|283.139|-14,553.156| 247,367.21
di2 0.002 [0.149 | -81.43 | 19,771.52 | -865,447.951
d13 0.002 |0.153 |-86.178 | 20,474.23 | -904,093.44
d23 0.002 |0.148 |-83.358 | 18,810.508 | -796,770.62

Compressive

dil 0.0 0.043 [-39.310| 3,324.354 [1,196,582.368
d22 0.0 0.106 | -5.213 | 1,040.962 | 956,921.524
d33 0.0 0.105 | -3.460 | 1,163.322 | 908,359.764
d12 0.0 0.110 | -5.382 | 1,074.801 | 988,028.244
d13 0.0 0.038 [-40.331| 3,855.576 |1,052,958.606
d23 0.0 -0.009| 25.622 | -2,732.963 | 1,046,119.704

Multiscale three-point bending

A meso-FE model was constructed for the GLEP51 system using the same methodology
utilized to construct meso-FE models for the flax-based systems [37], and the geometry
parameters obtained for the glass fabric. The uncompacted and compacted glass fabric
geometries used in generating the meso-FE models are shown in Figure 8.

(a) (b)

Figure 8. Glass fabric stack (a) before and (b) after compaction

A model representing the three-point bending of glass/epoxy specimens was constructed, with
the initial elastic stiffness of the glass/epoxy composite set to 42.58 GPa. Subsequently,
coupled multiscale studies were undertaken to simulate the three-point bending behaviour of
GLEP51 models. The bending model was coupled with the meso-FE RVE model for
glass/epoxy using FORTRAN code and the UMAT interface in ABAQUS. The bending
behaviour predicted by the model was close to the experimental results in terms of the



stiffness behaviour and the failure strength value, as shown in Figure 9. The failure was
predicted at 898.26 MPa, which is only 12.6% lower than the test average of 1028.17 MPa.
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Figure 9. Stress-strain response from the multiscale simulation of three-point bending
behaviour of GLEPS1, compared to bending test data

Conclusions

A coupled multiscale homogenization technique was implemented to analyze the mechanical
behaviour of flax/PP and flax/epoxy fabric composites using ABAQUS and FORTRAN code.
Two scales were considered, one of which was an FE representation of a three-point bending
specimen. The coupled microscopic meshes or lower scale models were FE models containing
discrete representations of the fabric geometry. The failure of the impregnated yarn elements
in the lower scale models was implemented using strain-damage evolution laws estimated
numerically from the fibre and interface properties. The implementation was used to simulate
the bending behaviour of the composites. The results obtained for the failure strength were
between 7.5-11.2% lower than the test average values.

Validation studies for the technique were also performed, using geometry and material
parameters for a glass/epoxy composite, combined with flexure test data. Numerical damage
evolution laws were obtained for the glass/epoxy system. The coupled homogenization
technique was then applied to the glass/epoxy system, as performed for the flax composites.
The stiffness and strength behaviours were reasonably close to those of the test specimens,
and the predicted failure strength was only 12.6% lower than the experimental average for the
glass/epoxy three-point bending specimens.

Finite element models containing discrete representations of the fabric geometry (meso-FE
models) can be used to predict the tensile failure of natural fibre composites, as demonstrated
using flax fibre-based composites. This was demonstrated for four flax/polymer composite
systems by combining the fabric geometry with the strain-damage evolution rules. These rules
were obtained by constructing FE models from cuboid samples extracted from the
impregnated yarn geometry. Equipped with the fibre, interface and matrix polymer properties,
damage evolution laws can be obtained for any fibre-polymer combination by following the
approach in this work.

The present work establishes the reliability in applying numerical damage rules for multiscale
modelling of natural fibre-based composites. To do so, a coupled multiscale homogenisation
technique was implemented to establish its capability to predict the mechanical behaviour of



natural fibre thermoplastic and thermoset composite materials. This has been demonstrated by
applying the multiscale model to the bending analysis two flax/PP and two flax/epoxy
composite systems, with reasonably accurate results obtained. The multiscale framework was
two-scale, consisting of a homogenised material model at the highest level coupled with a
microstructure model. A validation study was performed to establish the reliability of the
same framework using a glass/epoxy composite material system, which was also able to
predict the composite failure with good accuracy. Overall, these sets of results establish the
confidence in the potential of this multiscale framework implementation in relation to its
applicability for different composite material systems.
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