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Abstract 

In this paper, we propose a new family of efficient and optimal iterative methods for multiple roots 

with known multiplicity 1)( m . We use weight function approach involving one and two 

parameters to develop the new family. An extensive convergence analysis is discussed in order to 

demonstrate the optimal eighth-order convergence of the proposed scheme. Finally, numerical and 

dynamical tests are presented which confirm the theoretical results established in this paper and 

illustrate that the proposed family is efficient among the domain of multiple root finding methods.  
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Introduction 

 

The problem of solving nonlinear equation is recognized to be very old in history as many practical 

problems arising in nature are nonlinear. Various one-point and multi-point methods are presented 

to solve nonlinear equation or system of nonlinear equation [17, 18, 21]. The above cited methods 

are designed for the simple root of nonlinear equations but the behavior of these methods are not 

similar when dealing with multiple roots of nonlinear equations. The well known Newton’s 

method with quadratic convergence for simple roots of nonlinear equations decays to first order 

when dealing with multiple roots of nonlinear equations. These problems lead to minor troubles 

such as greater computational cost and severe troubles such as no convergence at all. The prior 

knowledge of multiplicity of roots make it easier to deal with these difficulties. The anomalous 

behavior of the iterative methods while dealing with multiple roots is well known at least since 

19th century when Schröder [20] developed a modification of classical Newton’s method to 

preserve its 2nd order of convergence for multiple roots. The nonlinear equations with multiple 

roots commonly arise from different topics such as complex variables, fractional diffusion or 

image processing, applications to economics and statistics(Lẻvy distributions) etc. By knowing the 

practical nature of multiple root finders, various one-point and multi-point root solvers have been 

developed in recent past [1, 3, 4, 6-9, 11-15, 19, 24]  but most of them are not optimal as defined 

by Kung and Traub [10] which states that an optimal without memory method can achieve its 

convergence order at most 
n2  requiring 1n  evaluations of functions or derivatives. According 

to Ostrowski [17], if O  is the convergence order of an iterative method and n  is the total number 

of functional evaluations per iterative step then the index 
nOE 1/=  is known as efficiency index of 

an iterative method. 

Sharma and Sharma [19] proposed the following optimal fourth order multiple root finder with 

known multiplicity m  as follows: 
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Geum et al. in [7], presented a non-optimal family of two-point sixth-order methods to find 

multiple roots given as follows: 
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Following is a special case of their family: 
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Another non-optimal family of three-point sixth-order methods for multiple roots by Geum et al. 

[8], is given as follows: 
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neighborhood of 0  and 𝐾: ℂ2 → ℂ is holomorphic in a neighborhood of (0,0) . Following is a 

special case of the family (1.4): 
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The families (1.2) and (1.4) require four functional evaluations to produce sixth order convergence 



with the efficiency index 1.5650=64

1

 and therefore are not optimal in the sense of Kung-Traub’s 

conjecture [10]. 

 

Recently, Behl et al. [2] have proposed a family of optimal eighth order iterative methods for 

multiple roots given as: 
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where, the weight functions 𝑄: ℂ → ℂ and 𝐺: ℂ2 → ℂ are analytic functions in a neighborhoods 

of (0)  and (0,0), respectively, with ,
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being 1a  and 2a  are complex non-zero free parameters. 

We take particular case (27) for ( 1a 1= , 1=2a , 0)=02G  of the family by Behl et al. [2] and 

denote it by BM  as follows: 
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Most recently, second optimal eighth order scheme have been proposed by Zafar et al. [22], which 

is given as follows: 
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where 𝐵1, 𝐵2 ∈ ℝare free parameters and the weight functions 𝐻: ℂ → ℂ, 𝑃: ℂ → ℂ and 𝐺: ℂ →

ℂ  are analytic in the neighborhood of 0  with ,
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From the eighth order family of Zafar et al. [22], we consider the following special case denoted by 

ZM : 
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Optimal iterative methods are more significant than the non-optimal ones, regarding their 

efficiency and convergence speed. Therefore, there was a need to develop optimal eighth-order 

schemes for finding multiple zeros ( 1>m ) as well as simple zeros ( 1=m ) because of their better 

efficiencies and order of convergence [17], in addition optimal schemes require a small number of 

iterations to obtain desired accuracy as compare to fourth and sixth-order methods of Sharma and 

Geum [7, 8, 19]. In this paper, our main concern is to find the optimal iterative methods for 

multiple root   with known multiplicity 𝑚 ∈ ℕ  of a sufficiently differentiable nonlinear 

function 𝑓: 𝐼 ⊆ ℝ → ℝ where 𝐼 is an open interval. We, in here, develop an optimal eighth order 

zero finder for multiple roots with known multiplicity 1m . The beauty of the method lies in the 

fact that developed scheme is simple to implement with minimum possible number of functional 

evaluations. The family requires four functional evaluations to obtain eighth-order convergence 

with the efficiency index 1.6817=84

1

. 

 

The rest of the paper is organized as follows: In Section 2, we propose a new family of optimal 

eighth-order iterative methods to find multiple roots of nonlinear equations and discuss its 

convergence analysis. Some special cases are given in Section 3. In Section 4, numerical 

performance and comparison of the proposed schemes with the existing ones are given, dynamical 

analysis is given in section 5.Concluding remarks are given in Section 6. 

 

Development of the scheme 
 

In this section, we propose a new family of eighth-order method for a known multiplicity 1m  of 

the desired multiple root as follows: 
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and the weight function 𝐻: ℂ → ℂ is analytic function in the neighborhood of 0  and weight 

function 𝐿: ℂ2 → ℂ  is holomorphic in the neighborhood of (0,0)  and st,  and u  are 

mtoone   multiple -valued functions. 



In the next theorem, it is demonstrated that the proposed scheme (2.1) achieves the optimal eighth 

order of convergence without increasing the number of functional evaluations. 

 

Theorem 1 Let =x  (say) be a multiple zero with multiplicity 1m  of an analytic function 

𝑓: ℂ → ℂ in the region enclosing a multiple zero   of ).(xf  Then the family of iterative 

methods defined by (2.1) has eighth-order convergence when the following conditions are 

satisfied: 
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Then the proposed scheme (2.1) satisfies the following error equations: 
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Proof. Let =x   be a multiple zero of )(xf . Expanding )( nxf  and )( n

' xf  about =x  by 

the Taylor’s series expansion (with the help of computer algebra software Mathematica), we 

obtain 
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respectively. By using the above expressions (2.4) and (2.5) in the first substep of (2.1), we obtain 
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where 𝐺𝑘 = 𝐺𝑘(𝑚, 𝑐1, 𝑐2, … , 𝑐8)  are expressed in terms of 𝑚, 𝑐1, 𝑐2, … , 𝑐8  where the two 

coefficients 0G and 1G  can be explicitly written as 
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With the help of Taylor’s series expansion, we obtain 
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By using the expressions (2.4) and (2.7), we get 
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Expanding Taylor series of 𝐻(𝑡) about 0  we have: 

 𝐻(𝑡) = 𝐻0 + 𝐻1𝑡 +
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4) (2.9) 

where 𝐻𝑗 = 𝐻𝑗(0) for 0 ≤ 𝑗 ≤ 3. Inserting the expressions (2.6)-(2.9) in the second substep of 

scheme (2.1), we have 
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Now, again by using the Taylor’s series expansion for (2.10), we have 
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 With the help of expressions (2.4) and (2.11), we have  
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+2𝐻₂ − 2𝑚)𝑚𝑐₄) − 120𝑚³(−25 + 3𝐻₂ − 2𝑚)𝑐₂𝑐₃ + 2𝑚𝑐₅} + ((1/(720𝑚⁶)))((102047  

+180𝐻₂² + 204435𝑚 + 187055𝑚² + 81525𝑚³ + 14738𝑚⁴ + 600𝑚⁵ + 40𝐻₃(389498𝑚  

+214𝑚² + 30𝑚³) − 45𝐻₂(1223 + 2030𝑚 + 1353𝑚² + 394𝑚³ + 40𝑚⁴)) − 30𝑚(13629  

+22190𝑚 + 12915𝑚² + 2746𝑚³ + 120𝑚⁴ + 16𝐻₃(83 + 64𝑚 + 12𝑚²) − 6𝐻₂(1015 +
1209𝑚 + 470𝑚² + 56𝑚³)) + 120𝑚²(2063 + 2088𝑚 + 589𝑚2 + 30𝑚3³ + 𝐻3(88 + 30𝑚)  

−18𝐻₂ + (36 + 25𝑚 + 4𝑚²)) + 80𝑚²(2323 + 2348𝑚 + 635𝑚² + 30𝑚³ + 4𝐻₃(289𝑚)  

−3𝐻₂(259 + 173𝑚 + 26𝑚²)) − 2𝑚(303 + 4𝐻₃ + 149𝑚 + 10𝑚² − 9𝐻₂(7 + 2𝑚))  

−720𝑚³((393 + 6𝐻₃ + 178𝑚 + 10𝑚² − 𝐻₂(87 + 22𝑚))] + (−42 + 5𝐻₂ − 5𝑚)𝑚𝑐₅) +
20𝑚³((−473 − 8𝐻3 − 195𝑚 − 10𝑚2 + 12𝐻2(9 + 2𝑚))𝑐₂𝑐₃ + 6𝑚(65 − 8𝐻2 + 5𝑚) 𝑐₂  

+3𝑚((71 − 9𝐻2 + 5𝑚)𝑐₁₀𝑚𝑐₆.  

Since it is clear from (2.8) that u  is of order ne . Therefore, we can expand weight function 

𝐿(𝑠, 𝑢) in the neighborhood of origin by Taylor’s series expansion as follows: 
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 By using the expressions (2.4)-(2.13) in the proposed scheme 

(2.1), we have 
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where the coefficients 𝑀𝑖(2 ≤ 𝑖 ≤ 7) depends generally on m  and the parameters jiL , .For 

obtaining at least fifth-order convergence, we have to choose 1=0,= 1000 LL  and get 
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where the coefficients 𝑀𝑖
̅̅ ̅(6 ≤ 𝑖 ≤ 7) depends generally on m  and the parameters ., jiL To obtain 



eighth order of convergence we choose the following values of parameters: 

 4=2,=2,=1,=0,=36,=2,= 112001100032 LLLLLHH   (2.15) 

which leads us to the following error equation: 
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The above asymptotic error constant (2.16) reveals that the proposed scheme (2.1) reaches at 

optimal eighth-order convergence by using only four functional evaluations (using. 

)(),(),( nn

'

n yfxfxf  and𝑓(𝑧𝑛) )per iteration.  

 

Special Cases of Weight Functions 
 

From Theorem 1, several choices of weight functions can be obtained, we have considered the 

following: 

Case 1: The polynmial form of the weight function satisfying conditions (2.2) can be represented 

as: 

 32 621=)( ttttH   

 242=),( ssuususL   (3.1) 

 

A particular iterative method related to (3.1) is given by: 

 

SM-1: 
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Case 2:  The second suggested form of the weight functions in which )(tk f  is constructed using 

rational weight function satisfying conditions (2.2) is given by: 
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The corresponding iterative method (3.3)can be presented as: 

 

SM-2: 
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Case 3: The third suggested form of the weight function in which )(tK f  is constructed using 

trigonometric weight satisfying conditions (2.2) is given by:  

 𝐻(𝑡) =
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The corresponding iterative method obtained using (3.5) is given by: 

 

SM-3: 
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Numerical tests 

 

In this section, we show the performance of the presented iterative family (2.1) by carrying out 

some numerical tests and comparing the results with existing method for multiple roots. All the 

numerical computations have been performed in Maple 16 programming package using 1000 

significant digits of minimum number of precision. In that case   is not exact, it is replaced by a 

more accurate value which has more number of significant digits than the assigned precision. The 

test functions along with their roots   and multiplicity m  are listed in Table 1 [16]. The 

proposed methods SM-1 (3.2), SM-2 (3.4) and SM-3(3.6) are compared with the methods of Geum 

et al. given in (1.3) and (1.5) denoted by GKM-1 and GKM-2 and with method of Bhel given in 

(1.7) denoted by BM and Zafar et. al method given in (1.9) denoted by ZM respectively. Tables 

2-8 display the errors of approximations to the sought zeros ( nx ) produced by different 

methods at the first three iterations, where )( iE   denotes 
iE 10 . The initial approximation 0x  

for each test function and computational order of convergence (COC) is also included in these 



tables, which is computed by the following expression [23]: 
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It is observed that, the performance of new method SM-2 is same as method of BM for function 1f  

and better than method of ZM for function 2f . The newly developed schemes SM-1, SM-2 and 

SM-3 are not only convergent but also their speed of convergence is better than methods of 

GKM-1 and GKM-2. On the other hand methods of ZM and BM show divergence for function
3f

. For 4f , 5f , 6f  and 7f  the newly developed schemes newly developed schemes SM-1, SM-2 

and SM-3 are comparable with methods of ZM and BM. Hence, we conclude that the proposed 

family is comparable and robust among existing methods for multiple roots. 

 

Table 1: Test functions 

 Test Functions   Exact root    Multiplicity m  

52

1 ))
2

((=)( 


 x
x

cosxf  2.034724896… 5  

2

2 20)(=)(  xexf x  2.842438953… 2  

94

3 2)1)(ln(=)(  xxxf  1.222813963… 9  

3

4 )(=)( xcosxxf   0.7390851332… 3  
503

5 1)1)((=)( xxf  2.0 50  
623

6 10)4(=)(  xxxf  
1.365230013… 6  

82

7 3)2(8=)(  xxexf x  
-1.7903531791… 8  

 

 

Table 2: Comparison of different methods for multiple roots 
f1(x),x0=2.5 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 6.83(-4) 1.11(-3) 2.15(-4) 1.87(-4) 2.03(-4) 1.52(-4) 1.84(-4) 

|𝑥2 − 𝜇| 3.42(-14) 2.53(-18) 2.37(-29) 3.53(-30) 1.25(-29) 9.69(-31) 2.89(-30) 

|𝑥3 − 𝜇| 2.13(-55) 3.58(-106) 5.28(-299) 5.71(-236) 2.53(-231) 2.56(-240) 1.05(-236) 

COC 4.00 6.00 8.00 8.00 8.00 8.00 8.00 

 

Table 3: Comparison of different methods for multiple roots 
f2(x),x0=3.0 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 1.18(-7) 5.27(-6) 2.33(-7) 1.21(-7) 1.90(-7) 1.40(-7) 1.16(-7) 

|𝑥2 − 𝜇| 2.62(-37) 1.15(-32) 1.30(-53) 2.21(-56) 1.99(-54) 1.30(-55) 1.57(-56) 

|𝑥3 − 𝜇| 3.07(-221) 1.25(-192) 1.19(-423) 2.67(-446) 2.87(-430) 7.37(-440) 1.73(-447) 

COC 4.00 6.00 8.00 8.00 8.00 8.00 8.00 



 

Table 4: Comparison of different methods for multiple roots 
f3(x),x0=3.0 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 5.50(-1) 4.29(-2) 1.81(-2) 1.75(-2) 1.79(-2) * * 

|𝑥2 − 𝜇| 3.99(-7) 8.77(-10) 2.82(-15) 9.58(-16) 2.04(-15) * * 

|𝑥3 − 𝜇| 1.13(-27) 7.51(-56) 2.06(-117) 8.21(-122) 6.49(-119) * * 

COC 4.00 6.00 8.00 8.00 8.00 * * 

 

“*” stands for divergence  

 

 Table 5: Comparison of different methods for multiple roots 
f4(x),x0=1.0 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 2.77(-4) 2.55(-5) 6.78(-8) 5.45(-8) 6.29(-8) 4.90(-8) 5.15(-8) 

|𝑥2 − 𝜇| 3.28(-14) 6.83(-36) 7.95(-60) 8.55(-61) 3.83(-60) 4.06(-61) 4.91(-61) 

|𝑥3 − 𝜇| 5.86(-49) 2.51(-213) 2.82(-475) 3.11(-483) 7.18(-478) 8.99(-486) 3.36(-485) 

COC 3.50 6.00 8.00 8.00 8.00 7.99 7.99 

 

 

Table 6: Comparison of different methods for multiple roots 
f5(x),x0=2.1 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 7.68(-5) 1.12(-5) 7.58(-7) 4.85(-7) 6.52(-7) 4.77(-7) 4.65(-7) 

|𝑥2 − 𝜇| 3.49(-17) 5.33(-29) 3.70(-47) 4.10(-49) 8.82(-48) 5.66(-49) 2.72(-49) 

|𝑥3 − 𝜇| 1.46(-66) 6.11(-169) 2.82(-369) 1.06(-385) 9.93(-375) 2.22(-384) 3.79(-387) 

COC 3.99 6.00 8.00 8.00 8.00 7.99 7.99 

 

Table 7: Comparison of different methods for multiple roots 
f6(x),x0=3.0 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 5.44(-2) 1.01(-1) 5.40(-2) 5.30(-2) 5.36(-2) 4.36(-2) 5.39(-2) 

|𝑥2 − 𝜇| 7.40(-7) 5.37(-7) 1.10(-10) 8.60(-11) 8.60(-11) 1.36(-11) 4.92(-11) 

|𝑥3 − 𝜇| 3.54(-26) 1.86(-38) 5.28(-80) 576(-81) 5.76(-81) 1.80(-87) 3.14(-83) 

COC 3.97 5.96 8.00 7.98 7.97 7.97 7.97 

 

Table 8: Comparison of different methods for multiple roots 
f7(x),x0=-1.2 

 GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM 

|𝑥1 − 𝜇| 2.65(-3) 2.15(-3) 4.38(-7) 4.24(-4) 4.32(-7) 3.41(-4) 4.26(-4) 

|𝑥2 − 𝜇| 7.24(-12) 9.63(-17) 4.44(-27) 1.11(-27) 3.11(-27) 3.58(-28) 1.14(-27) 

|𝑥3 − 𝜇| 4.05(-46) 7.81(-97) 4.97(-211) 2.55(-216) 2.28(-212) 5.27(-220) 3.06(-216) 

COC 4.00 6.00 8.00 8.00 8.00 7.99 7.99 

 

Dynamical analysis 

 

Regarding the stability comparison, we use the routines presented in [5] for plotting the dynamical 



planes corresponding to each method (SM-1,SM-2, S-M3, BM and ZM) for the non-linear 

functions 7654321 ,,,,,, fffffff . For this, we define a mesh of 400   400 points, as each point of 

the mesh is an initial guess for the analyzed method on the specific nonlinear function. If the 

sequence of iteration method reaches (closer than 
310
) the multiple root in less than 80 iterations, 

then this point is painted in orange color; if the iterate converges to another thing (strange fixed 

points, cycles, etc.) then the point is painted black. The multiple root is represented in the different 

figures by a white star.  

 

We observe from Figures 1–7 that the only basin of attraction is that of the multiple root (that is, 

the set of initial points converging to it fills all the plotted region of the complex plane), plotted in 

orange in the figures; although in general, convergence to other roots, divergence or even 

convergence to other fixed points that are not roots of the non-linear function (known as strange 

fixed points), can appear. We see in the figures, that the orange region is more bigger and brighter 

for the proposed schemes SM1, SM2 and SM3 than the regions of methods BM and ZM for all 

examples, that confirms their stability and fast convergence speed. 

 

 

 

 

 

 
               SM-1                        SM-2                         SM-3 

 
                    BM                        ZM 

Fig. 1: Basins of attraction of different methods for f1 
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               SM-1                         SM-2                         SM-3  

 
                                BM                          ZM 

Fig. 2: Basins of attraction of different methods for f2 
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                            BM                           ZM 

Fig. 3: Basins of attraction of different methods for f3 
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Fig. 4: Basins of attraction of different methods for f4 
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Fig. 5: Basins of attraction of different methods for f5 
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Fig. 6: Basins of attraction of different methods for f6 
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Fig. 7: Basins of attraction of different methods for f7 

 

 

 

Re{z}

Im
{z

}

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re{z}

Im
{z

}

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re{z}

Im
{z

}

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re{z}

Im
{z

}

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re{z}

Im
{z

}

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re{z}

Im
{z

}

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re{z}

Im
{z

}

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re{z}

Im
{z

}

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re{z}

Im
{z

}

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2



Conclusion 

 

In this paper, we present a new family of optimal eighth-order methods to find multiple roots of 

nonlinear equations. An extensive convergence analysis is done which verifies that the new family 

is optimal eighth order convergent. The proposed family requires four functional evaluations to 

obtain optimal eighth-order convergence with the efficiency index 1.6817=84

1

 which is higher 

than the efficiency index of any of the methods for multiple roots and of the families of Geum et al. 

[7, 8]. Finally, numerical and dynamical tests confirm the theoretical results and show that the 

three members SM-1, SM-2 and SM-3 of the new family are better than existing methods for 

multiple roots. Hence, the proposed family is efficient among the domain of multiple root finding 

methods. 
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