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Abstract

A novel smoothed finite element method (S-FEM) using 10-node tetrahedral (T10) elements,

SelectiveCS-FEM-T10, is proposed. In the proposed method, each T10 element is divided into

T4 subelements and the strain smoothing is performed only within each T10 element, meaning

no strain smoothing across elements. Also, the proposed method utilizes the selective reduced

integration (SRI) technique for the stress integration. As a result, the proposed method avoids

volume locking and pressure checkerboarding in nearly incompressible materials. A few ex-

amples of analysis reveal that the proposed method has good accuracy and robustness in large

deformation analyses of nearly incompressible materials.

Keywords: Smoothed finite element method, Tetrahedral element, Large deformation, Volumet-

ric locking, Pressure checkerboarding, Reaction force oscillation.

Introduction

Because of the difficulties in generating good-quality hexahedral meshes for complex shapes,

finite element analyses with tetrahedral meshes are often demanded. However, it is well known

that the standard tetrahedral elements are less accurate than hexahedral elements and make hard

to obtain reliable results. The simplest tetrahedral element, the standard 4-node tetrahedral (T4)

element, causes issues of shear locking, volume locking, and pressure checkerboarding. Al-

though the standard 10-node tetrahedron (T10) element can resolve the issue of shear locking, it

can not resolve the other issues. Moreover, it brings an additional issue of nodal reaction force

oscillation. The issues of volume locking and pressure checkerboarding appear not only in rubber

materials but also in materials with near incompressibility such as viscoelastic and elastoplastic

materials. It is known that these issues can not be resolved at all by using finer meshes. From

such a background, researches on accurate tetrahedral elements to analyze nearly incompressible

materials are still being carried out actively.

The most widely used formulation as a highly accurate tetrahedral element is the mixed (hybrid)

element [1, 2] based on the mixed variational principle. Various hybrid T4 or T10 elements

have been proposed, but none of them has resolved all the issues above together yet. In addi-

tion, since hybrid elements require additional unknowns such as pressure, they all give rise to

incompatibility with the dynamic explicit method.

On the other hand, the smoothed finite element methods (S-FEM) [3, 4] has recently attracted

attention as the highly accurate tetrahedral formulations based on the pure displacement method

without no additional unknowns. S-FEM is a type of strain smoothing method, and there are

several formulations varied with the domains for strain smoothing: NS-FEM at nodes, ES-FEM

at element edges, CS-FEM at elements and so on. We have proposed SelectiveES/NS-FEM-

T4 [5, 6] combining ES-FEM-T4 and NS-FEM-T4 with the selective reduced integration (SRI)



method and also F-barES-FEM-T4 [7, 8, 9, 10] combining them with the F-bar method [11]. In

particular, F-barES-FEM-T4 has been proved to be a formulation that can resolve all the issues

above in static analysis. However, since our previous methods require strain smoothing across

elements, it is difficult to implement them as user-defined elements of general-purpose FEM

codes, which is a critical problem in practical engineering.

In this research, we propose a new S-FEM formulation with T10 elements, SelectiveCS-FEM-

T10, which does not perform strain smoothing across elements. Following the method of Ostien

et al. [12], a dummy node is introduced at the center of each T10 element, and the element is

divided into twelve T4 subelements. By performing strain smoothing only across the subele-

ments within each element, it is possible to implement the proposed S-FEM formulation as a

user-defined T10 element of general-purpose FEM codes. In addition, SRI is applied in stress

integration to combine the deviatoric and hydrostatic stresses derived from two different ways of

strain smoothing. As a result, the proposed method avoids all the issues above in the analyses

with nearly incompressible materials. In this paper, the outline of the formulation of the pro-

posed method is described in Section 2, and then some results of example analyses are presented

to confirm the effectiveness of the proposed method in Section 3, followed by the conclusion in

Section 4.

Methods

The method proposed in this paper (SelectiveCS-FEM-T10) is a type of cell-based smoothing

finite element method (CS-FEM). One dummy node and twelve T4 subelements are introduced

in each T10 element and the strain smoothing is performed across the subelements within each

element. In contrast to the node-based S-FEM (NS-FEM), edge-based S-FEM (ES-FEM) or face-

based S-FEM (FS-FEM), there is no strain smoothing across elements. The deviatoric stress is

evaluated at each subelement using the smoothed strain. On the other hand, we regard the set

of 12 subelements as a patch to calculate pressure in element, which is similar to the concept

of F-bar Patch method [13, 14]. The final nodal force is calculated by combining them in the

manner of the selective reduced integration (SRI).

Addition of a dummy node

A schematic diagram of a T10 element defined by SelectiveCS-FEM-T10 is shown in Fig. 1.

The exterior 10 nodes (4 corner nodes and 6 intermediate nodes) are the same as the standard

T10 element, but SelectiveCS-FEM-T10 has one additional dummy node at the element center.

The position of the dummy node x10 is defined by the following equation as the average position

of all intermediate nodes.

x10 =
1

6

9∑

P=4

xP, (1)

where xP represents the position vector of the node P. Since the position of the dummy node is a

dependent variable, the number of unknowns does not increase. The total degrees of freedom of

each element is 30: 10 nodes × 3 dimensions. Note that the edges may be bent at the intermediate

nodes although the edges in Fig. 1 are all straight for simplicity.



Table 1: List of the node numbers composing each subelement. Each number denotes an intra-

element subelement/node number.

Subelement Number Node Number

0 0, 4, 6, 7

1 1, 5, 4, 8

2 2, 6, 5, 9

3 3, 7, 9, 8

4 4, 6, 7, 10

5 5, 4, 8, 10

6 6, 5, 9, 10

7 7, 9, 8, 10

8 6, 4, 5, 10

9 7, 8, 4, 10

10 8, 9, 5, 10

11 9, 7, 6, 10

Subdivision of element into subelements

An elements are subdivided into 12 T4 subelements using the 11 nodes including the dummy

one as shown in Fig. 1. Table 1 shows the list of intra-element node numbers composing each

subelement. Subelement 0 to 3 are located at the four corners of the element whereas Subelement

4 to 11 are located in the remaining octahedron. There are 6 edges on each subelement, and there

are 30 edges in an element without duplication.
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Figure 1: Schematic diagram of an element of SelectiveCS-FEM-T10. The numbers 0 to 10 denote

the intra-element node numbers. Node 10 is a dummy node and is located at the average

position of Node 4 to 9. An element is subdivided into 12 T4 subelements. There are 30

edges of the subelements in the element without duplication.



Shape functions of subelements and its derivatives

SelectiveCS-FEM-T10 is a T10 element but is formulated as a set of linear elements, not a

quadratic elements. We consider each subelement as a standard T4 element and calculate a

shape function Sube
N represented by volume coordinates for each subelement. In case of the

subelement using the dummy node, the weight of the dummy node is distributed to the 6 inter-

mediate nodes evenly. As a result, the term of the dummy node can be eliminated from the shape

functions. The spatial derivative of the shape function in the initial state for each subelement
Sube

N
′ini (= dSube

N
ini/dx) is calculated in the same fashion as the standard T4 element. Since

each subelement is considered as a standard T4 element, Sube
N
′ini is constant in each subelement,

Now that Sube
N
′ini is fundamentally derived from the standard T4 element, and thus locking and

pressure checkerboarding occur when we use Sube
N
′ini directly for strain evaluation. Therefore,

SelectiveCS-FEM-T10 smoothes Sube
N
′inis inside the element before strain evaluation.

Smoothed derivatives of shape functions

As SelectiveCS-FEM-T10 adopts SRI, we use two kinds of smoothed spatial derivatives of shape

functions for deviatoric and hydrostatic stress components. The derivative of the shape function

for the deviatoric stress component is defined on each subelement (12 in total), whereas that for

the hydrostatic stress component is defined only on the element. As a result, the spatial order of

the hydrostatic stress is reduced in comparison to the deviatoric stress. The following shows the

derivation of the derivatives.

For the deviatoric stress, we perform a cycle of smoothing. First, in the same fashion as ES-

FEM-T4, the smoothed derivative on each edge (Edge
Ñ
′ini) is derived from Sube

N
′inis as

Edge

h
Ñ′ini

P, j =
1

Edge

h
V ini

∑

k∈
Edge

h
K

Sube
kN
′ini
P, j

Sube
kV

ini/6, (2)

where N′
P, j

is the derivative of the shape function on Node P in the jth direction (= ∂NP/∂x j),
Edge

h
K denotes the set of subelements adjacent to Edge h, Sube

k
V ini is the initial volume of Subele-

ment k, and
Edge

h
V ini is the initial corresponding volume of Edge h (=

∑
k∈

Edge

h
K

Sube
k
V ini/6). Next,

using the obtained Edge
Ñ
′inis, the smoothed derivative in each subelement (Sube

Ñ
′ini) is derived as

Sube
kÑ
′ini
P, j =

∑

h∈Sube
k
H

Edge

h
Ñ′ini

P, j /6, (3)

where Sube
k
H denotes the set of edges adjacent to Subelement k.

For the hydrostatic stress, we perform a smoothing over all subelements. The smoothed deriva-

tive on the element (ElemÑ′ini
P, j ) is derived from Sube

N
′inis as the weighted average of all the subele-

ments:

ElemÑ′ini
P, j =

1
ElemV ini

11∑

k=0

Sube
kN
′ini
P, j

Sube
kV

ini, (4)

where ElemV ini is the total volume of the element (=
∑11

k=0
Sube

k
V ini).



Calculation of nodal internal force

Using the two kinds of smoothed derivatives of shape functions, contributions to the nodal inter-

nal force is calculated by dividing it into two parts.

For the contribution of deviatoric stress, the deformation gradient of each subelement in the trial

state (Sube
F
+) is calculated as

Sube
kF
+
i j =

Sube
kÑ
′ini
P, j x+P:i, (5)

where �+ denotes a trial state and xP:i is the jth coordinate of Node P. Putting Sube
F
+ (and its

history) into the material constitutive equation, the Cauchy stress of each subelement in the trial

state (Sube
T
+) is obtained. The deviatoric component of Sube

T
+ is then given by

Sube
kT

(dev)+

i j
= Sube

kT
+
i j − δi j trace(Sube

kT
+)/3, (6)

where δ represents the Kronecker’s delta. The contribution of the deviatoric stress to the nodal

internal force {Subef int(dev)+} is calculated with the following equation.

Sube
k f

int(dev)+

P:p
= Sube

kÑ
′ini
P, j

Sube
kF
+−1
jl

Sube
kT

(dev)+

lp
Sube

kV
+, (7)

where f int
P:p

represents the internal force of Node P in the pth direction.

For the contribution of hydrostatic stress, the deformation gradient of the element in the trial state

(Elem
F
+) is calculated as

ElemF+i j =
ElemÑ′ini

P, j x+P:i, (8)

Putting ElemF+
i j

(and its history) into the material constitutive equation, the Cauchy stress of the

element in the trial state (Elem
T
+) is obtained. The hydrostatic component of Elem

T
+ is then given

by

ElemT
(hyd)+

i j
= δi j trace(Elem

T
+)/3. (9)

The contribution of the hydrostatic stress to {Subef int(dev)+} is calculated by the following equation.

Elemf
int(hyd)+

P:p
= ElemÑ′ini

P, j
ElemF+−1

jl
ElemT

(hyd)+

lp
ElemV+. (10)

Finally, the total contribution of the element to the nodal internal force is calculated as the sum

of Eq. (7) and (10):

Elemf int+
P:p =

11∑

k=0

(
Sube

k f
int(dev)+

P:p

)
+ Elemf

int(hyd)+

P:p
. (11)

Calculation of tangent stiffness matrix

The tangent stiffness is obtained by calculating ∂{ f int}/∂{x} according to the definition. Details

are omitted due to the limitation of space.



Characteristics in formulation

The characteristics seen in the formulation of SelectiveCS-FEM-T10 are summarized as follows.

• It is a pure displacement-based finite element method.

=⇒ It is applicable to dynamic explicit analysis unlike hybrid elements.

• There is no need to smooth strains across elements.

=⇒ It can be implemented into general-purpose FEM software as a user-defined T10

element.

• The shape functions are all linear (1st-order).

=⇒ It has superior robustness in large deformation; meanwhile, its mesh convergence

is slower than 2nd-order elements in small deformation.

• Selective reduction integration (SRI) is used.

=⇒ It is difficult to deal with material constitutive models considering pressure depen-

dence etc.

According to our numerical experiments, the proposed one cycle strain smoothing for deviatoric

stress is the optimal procedure to achieve accuracy and stability. When we perform only the edge-

based smoothing within the element for deviatoric stress, no smoothing is applied to the edges of

the element outline and thus shear locking occurs. On the contrary, when we repeat the cycle of

strain smoothing more than once, too much smoothing is conducted and thus zero-energy mode

occurs.

Results

Bending of cantilever

A large deflection cantilever bending analysis of a nearly incompressible material is performed.

The analysis domain is a cuboid of 10 × 1 × 1 m, its left end face is perfectly constrained,

and a concentrated load in the vertical downward direction is given to the tip corner point. The

material is a neo-Hookean hyperelastic body with 6 GPa initial Young’s modulus and 0.499 initial

Poisson’s ratio. An unstructured T10 mesh with 0.2 m mesh seed size is used. In addition to the

analysis with SelectiveCS-FEM-T10, analyses with ABAQUS T10 elements (C3D10, C3D10M,

C3D10H, C3D10MH, and C3D10HS) are also performed using the same mesh to compare their

accuracy and stability.

The distribution of Mises stress and pressure when the concentrated load is 2 × 107 N is shown

in Fig. 2. The deformations are almost the same in all methods, which confirms that SelectiveCS-

FEM-T10 avoids volume locking. Only ABAQUS C3D10 suffers from moderate pressure checker-

boarding and the other methods including SelectiveCS-FEM-T10 are free from pressure checker-

boarding. The amount of deformation at the loaded node is somewhat larger in SelectiveCS-

FEM-T10 in comparison with the ABAQUS T10 elements. This might be because SelectiveCS-

FEM-T10 does not use 2nd-order shape functions unlike the ABAQUS T10 and behaves more

softly in large deformation. Note that the superiority or inferiority of these deformation results

is difficult to be determined because of stress singularity.

Barreling of cylinder

A large deformation cylinder barreling analysis of a nearly incompressible material is performed.

The analysis domain is a 1/8 of a cylinder of 1 m radius and 2 m height, symmetric boundary



conditions are applied to the symmetric surfaces, and an enforced displacement to the vertical

downward direction is applied to the top surface with constrains of in-plane displacements. The

material is a neo-Hookean hyperelastic body with 6 GPa initial Young’s modulus and 0.49 initial

Poisson’s ratio. An unstructured T10 mesh with 0.05 m mesh seed size is used. As in the

previous example, analyses with SelectiveCS-FEM-T10 and five ABAQUS C3D10 elements are

performed using the same mesh.

The distributions of Mises stress and pressure at 0.24 m enforced displacement (24% compres-

sion) are shown in Fig. 3. Although the stress distributions near the rim of the top surface are

(a) SelectiveCS-FEM-T10 (b) ABAQUS C3D10

(c) ABAQUS C3D10M (d) ABAQUS C3D10H

(e) ABAQUS C3D10MH (f) ABAQUS C3D10HS

Figure 2: Comparison of Mises stress (left) and pressure (right) distributions in the cantilever bend-

ing analysis.



somewhat different each other due to stress singularity, their deformations and stress distribu-

tions have no much difference among all the methods. Looking at the deformation on the rim

part carefully, we can see that the element edges are largely bent periodically at the intermediate

nodes in the ABAQUS T10 elements. It is well known that the accuracy and stability of T10

elements drop greatly when the position of the intermediate node deviates largely from the mid-

point of the corner nodes. In fact, all of the ABAQUS T10 elements get converge failure around

25% compression. On the other hand, SelectiveCS-FEM-T10 does not show such a bending at

the intermediate nodes owing to the piecewise linear shape functions.

Fig. 4 shows the distribution of the nodal reaction forces on the top surface at the same time.

Typical nodal reaction force oscillations are seen in the results of the non-modified ABAQUS

elements (C3D10, C3D10H and C3D10HS), whereas SelectiveCS-FEM-T10 and the modified

(a) SelectiveCS-FEM-T10 (b) ABAQUS C3D10

(c) ABAQUS C3D10M (d) ABAQUS C3D10H

(e) ABAQUS C3D10MH (f) ABAQUS C3D10HS

Figure 3: Comparison of Mises stress (left) and pressure (right) distributions in the cylinder barreling

analysis at 24% compression states.



(a)SelectiveCS-FEM-T10 (b)ABAQUS C3D10

(c)ABAQUS C3D10M (d)ABAQUS C3D10H

(e)ABAQUS C3D10MH (f)ABAQUS C3D10HS

Figure 4: Comparison of nodal reaction force distributions of the upper face in the cylinder barreling

analysis at 24% compression states. The proposed method (a) and the modified T10 elements of

ABAQUS ((c) and (e)) represent valid distributions. In contrast, the non-modified T10 elements

of ABAQUS ((b), (d) and (f)) represent oscillatory invalid distributions.



ABAQUS elements (C3D10M and C3D10MH) show valid distributions. Nodal reaction force os-

cillation is a severe issue especially when handling contacts, but it is confirmed that SelectiveCS-

FEM-T10 avoids this issue.

As a demonstration, the distributions of Mises stress and pressure at 0.47 m enforced displace-

ment (47% compression) are shown in Fig. 5. Only the result of SelectiveCS-FEM-T10 is

shown in this figure because the ABAQUS T10 elements get convergence failure in earlier states,

as mentioned above. SelectiveCS-FEM-T10 gets convergence failure at 48% compression in

this case; however, it gives reasonable deformation and stress distribution until it reaches the

convergence failure.

Conclusion

A novel smoothed finite element method (S-FEM) using 10-node tetrahedral (T10) element,

SelectiveCS-FEM-T10, was proposed. By combining the selective reduced integration (SRI) and

S-FEM with cyclic smoothing, the proposed method overcome various issues: shear/volumetric

locking, pressure checkerboarding, and nodal reaction force oscillation. Unlike the conventional

4-node tetrahedral (T4) S-FEMs, the strain smoothings of the proposed method are only per-

formed within each T10 element using T4 subelements. As a result, the proposed method can be

implemented as a user-defined element of general-purpose FEM codes and also its computational

time is almost equivalent to the conventional T10 elements. Moreover, like the conventional S-

FEMs, the proposed method is applicable to the dynamic explicit analysis because it is a pure

displacement-based finite element method.

SelectiveCS-FEM-T10

Figure 5: Mises stress (left) and pressure (right) distributions of SelectiveCS-FEM-T10 in the cylinder

barreling analysis at 47% compression states. Every ABAQUS T10 elements get convergence

failure around 25% compression and thus their results are not shown here.
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