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Abstract

Over the past several years, many scholars have attempted to construct higher-order schemes
for locating multiple solutions of a univariate function having known multiplicity m ≥ 1. But
till date, we have a very limited literature (only four research articles) of eighth-order conver-
gence iteration functions for multiple zeros. The primary contribution of this study is to propose
an optimal eighth-order scheme for multiple zeros having simple and compact body structure
with faster convergence. An extensive convergence analysis is also present with the main the-
orem which clearly show the eighth-order convergence of propose iteration scheme. Finally,
numerical tests on some real-life problems, such as a Van der Waals equation of state and the
conversion problem from the chemical engineering, among others are presented, which confirm
the theoretical results to great extent of this study.

Keywords: Nonlinear equations, King-Traub conjecture, multiple roots, optimal iterative meth-
ods, efficiency indexce.
Introduction

Finding the multiple zeros of the involved function f(x) = 0 (where f : D ⊂ C → C is a
holomorphic function in the enclosed region D containing the required zero) is one of the most
challenging, of great significance and difficult tasks in the area of computational mathematics.
It is quite tough to obtain exact solution in analytic way of such problems or we can say that
it is almost fictitious. So, we have to satisfy ourselves by obtaining approximated and efficient
solution up to any specific degree of accuracy by the means of iterative procedure.

This is one of the main reason that researchers are putting their great efforts to resort an iteration
function since the past few decades. Additionally, this accuracy is also depend on some other
facts like: the considered iterative function, structure of the considered problem, initial guess
and programming software namely, Maple, MATLAB, Fortran, Mathematica, etc. Further, the
people or researchers using these iterative methods have to struggle with many problems, some
of them are like: choice of initial guess/approximation, slower convergence, non-convergence,
divergence, oscillation problem close to the initial guess, failure etc. (for the details please see
Ostrowski 1960 [17], Traub 1964 [25], Ortega and Rheinboldt 1970 [18], Burden and Faires
2001 [? ], Petkovic et al. 2012 [19]).

In addition, we dont have a single iteration function which is applicable to every problem until
now. This is the main reason that we have an excessive amount of literature on the iteration
functions for scalar equations. Here, we concern about the multiple zeros of the involved uni-
variate function in this study. Unfortunately, we have a small amount of literature belongs to
higher-order iteration function in the case of scalar equations that can handle multiple roots. The
tough calculation work and more time consumption are the main reason behind of this. More-
over, it is more challenging task to construct iterative procedure for multiple zeros as compared
to simple.



Eighth-order multi-point methods have faster convergence and better efficiency index as com-
pare to fourth-order [6, 16, 15, 27, 21, 22, 23, 28, 14, 4, 5, 24] and sixth-order [12, 13] iteration
functions. Our mean to say that we can save computational time and cost by using them and
obtain the approximate solution in a small number of iterations as compared to them. However,
we have only four research articles [3, 26, 2, 8] till date that talk about the eighth-order conver-
gence for multiple zeros with known multiplicitym ≥ 1, according to our best knowledge. But,
we know that there is always a scope in the research to obtain better approximation techniques
with simple and compact body structure.

While keep all these things in our mind, we not only present an eighth-order iteration scheme
having optimal convergence for obtaining the multiple solutions of scalar equation which is
better than the existing ones. But, lower residual errors, lower error among two consecutive
iterations and more stable computational order of convergence belong to our methods when we
compared them to the existing ones of identical order of convergence. Moreover, we present
a main theorem which demonstrate the eighth-order convergence when multiplicity of zeros is
known in advance. Finally, we give a practical exhibition of our newly propose methods to the
real life problems.
Construction of higher-order scheme

In this section, we present the main contribution of this study. Our mean to say that we present
an eighth-order scheme for multiple zeros having simple and compact body structure. There-
fore, we consider the new scheme in the following way:

yn = xn −m
f(xn)
f ′(xn) ,

zn = yn − µH (ν) f(xn)
f ′(xn) ,

xn+1 = zn − κµ
(
G(µ) + mκ

1− 4µ

)
f(xn)
f ′(xn) ,

(1)

where α, β ∈ R are two free disposable parameters and two weight functions H : C→ C and
G : C → C are analytic functions in the neighborhoods of (1) and (0) with ν = 1+αµ

1+βµ , µ =(
f(yn)
f(xn)

) 1
m , κ =

(
f(zn)
f(yn)

) 1
m .

In Theorem 1, we illustrate that the constructed scheme (1) attain maximum eighth-order of
convergence for all α, β ∈ R (α 6= β), without using any extra functional evaluation. It is
interesting to observe that the weight functionsH andG play significant role in the construction
of scheme (for details please see Theorem 1).

Theorem 1 Let us consider x = ξ (say) be a multiple zero with multiplicity m ≥ 1 of the
involved function f . In addition, we assume that f : D ⊂ C → C be an analytic function in
the region D enclosing a multiple zero ξ. Then, the scheme defined by (1) has an eighth-order
convergence, when it satisfies the following values

H(1) = m, H ′(1) = 2m
α− β

(α 6= β), G(0) = m, G′(0) = 2m, G′′(0) = H ′′(1)(α− β)2 + (2− 4β)m,

G′′′(0) = (α− β)2
(
H ′′′(1)(α− β)− 6(β − 1)H ′′(1)

)
+ 12m(β2 − 2β − 2).

(2)

Proof: Let us consider that en = xn − ξ and ck = m!
(m−1+k)!

fm−1+k(ξ)
fm(ξ) , k = 2, 3, 4 . . . , 8 are the



error in nth iteration and asymptotic error constant numbers, respectively. Now, we expand the
Taylor’s series expansions of the functions f(xn) and f ′(xn) about x = ξ, which are given by

f(xn) = f (m)(ξ)
m! emn

(
1 + c1en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n +O(e9

n)
)

(3)

and

f ′(xn) =f
m(ξ)
m! em−1

n

(
m+ (m+ 1)c1en + (m+ 2)c2e

2
n + (m+ 3)c3e

3
n + (m+ 4)c4e

4
n

+ (m+ 5)c5e
5
n + (m+ 6)c6e

6
n + (m+ 7)c7e

7
n + (m+ 8)c8e

8
n +O(e9

n)
)
,

(4)

respectively.
By using the expressions (3) and (4) in the first substep of scheme (1), we have

yn − ξ = c1

m
e2
n + 1

m2

(
2mc2 − (m+ 1)c2

1

)
e3
n +

4∑
i=0

θie
i+4
n +O(e9

n), (5)

where θi = θi(m, c1, c2, . . . , c8) are given in terms ofm, c2, c3, . . . , c8 for example θ0 = 1
m3

[
3m2c3+

(m + 1)2c3
1 −m(3m + 4)c1c2

]
and θ1 = 1

m4

[
2c2c

2
1m(2m2 + 5m + 3) − 2c3c1m

2(2m + 3) −

2m2
(
c2

2(m+ 2)− 2c4m
)
− c4

1(m+ 1)3
]
, etc.

With the help of expression (5) and Taylor Series expansion, we further obtain

f(yn) =f (m)(ξ)e2m
n

[( c1
m

)
m

m! +
(2mc2 − (m+ 1)c2

1)
( c1
m

)m
en

m!c1
+
(
c1
m

)1+m 1
2m!c3

1

{
(3 + 3m+ 3m2 +m3)c4

1

− 2m(2 + 3m+ 2m2)c2
1c2 + 4(m− 1)m2c2

2 + 6m2c1c3
}
e2
n +

4∑
i=0

θ̄ie
i+3
n +O(e8

n)
]
.

(6)
From the expressions (3) and (6), we have

µ = c1en
m

+ 2mc2 − (m+ 2)c2
1

m2 e2
n +

4∑
i=0

¯̄θiei+3
n +O(e8

n), (7)

which further leads us

ν = αµ+ 1
βµ+ 1 = 1 + (α− β)

8∑
k=1

γke
k
n +O(e9

n), (8)

where γk = γk(m,α, β, c1, c2, . . . , c8) are given in terms of m,α, β, c2, c3, . . . , c8 for example
γ1 = c1

m
, γ2 = 1

m2

[
2c2m− c2

1(β +m+ 2)
]
, γ3 = 1

2m3

[(
2β2 + 8β + 2m2 + (4β + 7)m+ 7

)
c3

1 +
6c3m

2 − 2c2c1m(4β + 3m+ 7)
]
, etc.

Now, let us consider ν = 1 + Ω. Then, from the expression (8) that the remainder Ω =
ν − 1 is infinitesimal with the order en. Therefore, we can expand weight function H(ν) in the
neighborhood of (1) by Taylor’s series expansion up to third-order terms in the following way:

H(ν) = H(1) +H ′(1)Ω + 1
2!H

′′(1)Ω2 + 1
3!H

′′′(1)Ω3. (9)



By using expressions (3)–(9) in the second substep of scheme (1), we obtain

zn − ξ = −
c1
(
H(1)−m

)
m2 e2

n +
5∑
i=0

Aie
i+3
n +O(e9

n), (10)

whereAi = Ai(m, c1, c2, . . . , c8, α, β,H(1), H ′(1), H ′′(1), H ′′′(1)) are given in terms ofm, c1, c2,
c3, . . . , c8, α, β, H(1), H ′′(1), H ′′′(1). For example, first coefficient explicitly written as A0 =

1
m3

[
2c2m

(
m−H(1)

)
− c2

1

(
m2 +m−H(1)(m+ 3) + (α− β)H ′(1)

)]
and we can also write

other ones in the similar way.
It is straightforward to say from the expression (10) that we can easily obtain at least third-order
convergence, when we consider

H(1) = m. (11)

With the help of expression (11) and A0 = 0, we obtain

c2
1

(
H ′(1)(β − α) + 2m

)
m3 = 0, (12)

which further yield

H ′(1) = 2m
α− β

, α 6= β. (13)

In this way, we reach optimal fourth-order convergence. Now, by inserting the expressions (11)
and (13) in (10), we have

zn−ξ =


(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
c3

1 − 2c1c2m
2

2m4

 e4
n+

5∑
i=2

Aie
i+3
n +O(e9

n). (14)

Again, with the help of Taylor series expansion and expression (14), we obtain

f(zn) =f (m)(ξ)e4m
n


2−m

 c3
1

(
−H′′(1)(α−β)2+m2+(4β+9)m

)
−2c1c2m2

m4

m

m! +
5∑
i=1

Āie
i
n +O(e6

n)

 .
(15)

From the expressions (6) and (15), we further have

κ =
c2

1

(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2

2m3 e2
n +

5∑
i=1

¯̄Aiei+2
n +O(e8

n). (16)

It is clear from the expression (16) that the κ is of order e2
n. Therefore, we can expand weight

function G(µ) in the neighborhood of origin (0) by Taylor’s series expansion up to third-order
terms in the following way:

G(µ) = G(0) +G′(0)µ+ 1
2!G

′′(0)µ2 + 1
3!G

′′′(0)µ3. (17)



Insert the expressions (3) – (17) in the last substep of scheme (1), we obtain

en+1 =
c1
(
G(0)−m

)[
c2

1

(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2
]

2m5 e4
n

+
4∑
i=1

Lie
i+4
n +O(e9

n),
(18)

where Li = Li(α, β,m, c1, c2, . . . , c8, H
′′(1), H ′′′(1), G′(0), G′′(0), G′′′(0)).

It is noteworthy that we can obtain at least fifth-order convergence if we choose

G(0) = m. (19)

By using the value of G(0) = m and L1 = 0, we have

−
c2

1

(
G′(0)− 2m

)[
c2

1

(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2
]

2m6 = 0, (20)

which further yield
G′(0) = 2m. (21)

Again, by inserting the value of G(0) and G′(0) in L2 = 0, we yield

−
c3

1

[
c2

1

(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2
](
G′′(0)−H ′′(1)(α− β)2 + (4β − 2)m

)
4m7 = 0,

(22)
which further have

G′′(0) = H ′′(1)(α− β)2 + (2− 4β)m. (23)

By using the expressions (19), (21) and (23) in L3 = 0, leads us

−
c4

1

(
c2

1

(
−H ′′(1)(α− β)2 +m2 + (4β + 9)m

)
− 2c2m

2
)

12m8

×
(
G′′′(0) + (α− β)2(6(β − 1)H ′′(1) +H ′′′(1)(β − α))− 12m(β2 − 2β − 2)

)
= 0,

(24)

which further provide

G′′′(0) = (α− β)2
(
H ′′′(1)(α− β)− 6(β − 1)H ′′(1)

)
+ 12m(β2 − 2β − 2). (25)

In order to obtain final asymptotic error constant term, we insert the expressions (19), (21), (23)
and (25) in (18). Then, we have

en+1 =
c1
(
c2

1
(
m2 −H ′′(1)(α− β)2 + (4β + 9)m

)
− 2c2m

2
)

24m9

[
c4

1

{
(α− β)2

(
3(6β2 − 8β + 15)H ′′(1)

− 2(3β − 2)(α− β)H ′′′(1)
)
−m

(
24β3 − 48β2 + 180β + 3H ′′(1)(α− β)2 + 433

)
+ 6(2β + 1)m2

+ 7m3
}
− 6c2c

2
1m
(
4m2 −H ′′(1)(α− β)2 + (4β + 2)m

)
+ 12c3c1m

3 + 12c2
2m

3
]
e8
n +O(e9

n).
(26)

The expression (26) demonstrate that our scheme (1) reaches maximum eighth-order conver-



gence for all α and β (provided α 6= β) by using only four functional evaluations per full
iteration. Hence, it is an optimal scheme in the sense of Kung-Traub conjecture, completing the
proof. �

Some special cases

In this section, we discuss some special cases of our proposed scheme (1) based on different
weight functionsH(ν) andG(µ). Therefore, we have depicted some special cases of the scheme
(1) in Table 1. We can also easily obtain several new eighth-order iterative methods for multiple
zeros by choosing different kind of weight functions provided they should satisfy the conditions
of Theorem 1.

Table 1: Some special cases of the proposed scheme (1).

Cases H(ν) G(µ)
Case-1 m(α−β+2ν−2)

α−β m
[
1 + 2µ+ (1− 2β)µ2 + 2(β2 − 2β − 2)µ3

]
.

Case-2 m(α−β+2ν−2)
α−β

m(2β2µ+β(2−4µ2)−(3µ+1)2)
2β2µ+β(2−4µ)−4µ−1

Case-3
a1 + a2

ν m
[
1 + 2µ+ (1− 2α)µ2 + 2(α2 − 2α− 2)µ3

]
where, a1 = − 2m

α−β , a2 = m(α−β+2)
α−β

Case-4
a1 + a2

ν m
(

2α2µ+α(2−4µ2)−(3µ+1)2
)

2α2µ+α(2−4µ)−4µ−1where, a1 = − 2m
α−β , a2 = m(α−β+2)

α−β

Case-5
b1
ν + b2

1+ν
m
4
(
4 + 8µ− 2b3µ

2 + b4µ
3)

where, b1 = m(−α+β−4)
α−β , b2 = 4m(α−β+2)

α−β b3 = α2 − 2α(β − 3) + β2 − 2β − 2,
b4 = 3α3 − 5α2(β − 2) + α(β2 + 4β − 24) + β3 − 6β2 + 8β − 16

Let us remark that the order of the proposed scheme (1) does not depend on the values of α
and β (provided α 6= β). So, these elements can be considered as free parameters in order to
analyze the computational results.
Numerical experiments

In this section, we illustrate the efficiency and convergence behavior of our iteration func-
tions for particular cases. Therefore, we use case-1 for (α = 0, β = −2),

(
α = 1

2 , β = −3
2

)
,(

α = 1
4 , β = −7

4

)
and case-2 for (α = 0, β = −2) in expression (1), known by PM1, PM2,

PM3 and PM4, respectively. In this regards, we choose four real life problems having multi-
ple and simple zeros and two standard academic problems with multiple zeros. The details are
outline in the examples (1)–(6).

For better comparison of our iterative methods, we consider several existing methods of order
six and eight (optimal). Firstly, we compare our methods with a non optimal family of sixth-
order iteration functions given by Geum et al. [13], out of them we choose the case 5YD, which
is given by

yn = xn −m
f(xn)
f ′(xn) , m ≥ 1,

wn = xn −m
[

(un − 2) (2un − 1)
(un − 1) (5un − 2)

]
f(xn)
f ′(xn) ,

xn+1 = xn −m
[

(un − 2) (2un − 1)
(5un − 2) (un + vn − 1)

]
f(xn)
f ′(xn) ,

(27)



where un =
(
f(yn)
f(xn)

) 1
m and vn =

(
f(wn)
f(xn

) 1
m , is denoted by GM .

In addition, we demonstrate comparison of them with an optimal eighth-order iteration function
proposed by Behl et al. [8], which is given by (this was one of the best scheme claimed by them):

yn = xn −m
f(xn)
f ′(xn) ,

zn = yn −mun
f ′(xn)
f ′(xn)

[
1 + βun

(β − 2)un + 1

]
,

xn+1 = zn − unvn
f(xn)
f ′(xn)

[1
2m

{
(2vn + 1)

(
4(β2 − 6β + 6)u3

n + (10− 4β)u2
n + 4un + 1

)
+ 1

}]
(28)

where un =
(
f(yn)
f(xn)

) 1
m and vn =

(
f(zn)
f(yn)

) 1
m , is known by BM .

Moreover, we compare them with optimal eighth-order iterative methods constructed by Zafar
et al. [26]. We choose the following schemes out of them

yn = xn −m
f(xn)
f ′(xn) ,

zn = yn −mun
(
6u3

n − u2
n + 2un + 1

) f(xn)
f ′(xn) ,

xn+1 = wn −munvn(1 + 2un)(1 + vn)
(2wn + 1

A2P0

)
f(xn)
f ′(xn)

(29)

and

yn = xn −m
f(xn)
f ′(xn) ,

zn = yn −mun
(

1− 5u2
n + 8u3

n

1− 2un

)
f(xn)
f ′(xn) ,

xn+1 = wn −munvn(1 + 2un)(1 + vn)
(

3wn + 1
A2P0(1 + wn)

)
f(xn)
f ′(xn) ,

(30)

where un =
(
f(yn)
f(xn)

) 1
m , vn =

(
f(zn)
f(yn)

) 1
m , wn =

(
f(zn)
f(xn)

) 1
m , with A2 = P0 = 1 (both schemes

(29) and (30)) are known as FM1 and FM2, respectively.

Finally, we also contrast them with another optimal family of eighth-order methods presented
by Behl et al. [2], out of them we choose the following methods

yn = xn −m
f(xn)
f ′(xn) ,

zn = xn −mun (1 + 2un) f(xn)
f ′(xn) ,

xn+1 = zn −
unwn

1− wn

(
m (un (8vn + 6) + 9u2

n + 2vn + 1)
4un + 1

)
f(xn)
f ′(xn)

(31)



and

yn = xn −m
f(xn)
f ′(xn) ,

wn = yn −mun (1 + 2un) f(xn)
f ′(xn) ,

xn+1 = zn −
unwn

1− wn

(
4u3

4 − u2
4 − 2u4 − 2v4 − 1

) f(xn)
f ′(xn) ,

(32)

where un =
(
f(yn)
f(xn)

) 1
m , vn =

(
f(zn)
f(yn)

) 1
m , wn =

(
f(zn)
f(xn)

) 1
m , are called by RM1 and RM2,

respectively.

In Tables 2 – 3, we display the number of iteration indexes (n), error in the consecutive iterations
|xn+1−xn|, computational order of convergence (ρ) (we used the formula given by Cordero and
Torregrosa [10] in order to calculate ρ) and absolute residual error of the corresponding function
(|f(xn)|). We make our calculations with several number of significant digits (minimum 5000
significant digits) to minimize the round off error.

As we mentioned in the above paragraph we calculate the values of all the constants and func-
tional residuals up to several number of significant digits. However, due to the limited paper
space, we display the value of errors in the consecutive iterations |xn+1 − xn| and absolute
residual errors in the function |f(xn)| up to 2 significant digits with exponent power which are
depicted in Tables 2 – 3. Moreover, computational order of convergence is provided up to 5
significant digits. Finally, we mentioned the values of approximated zeros up to 25 significant
digits for each of the examples.

All computations have been performed using the programming package Mathematica 11 with
multiple precision arithmetic. Further, the meaning of a(±b) is shorthand for a × 10(±b) in the
Tables 2–3.

Example 1 Fractional conversion in a chemical reactor:
Let us consider the following expression (for the details of this problem please see [20])

f1(x) = x

1− x − 5 log
[

0.4(1− x)
0.4− 0.5x

]
+ 4.45977, (33)

In the above expression x represents the fractional conversion of species A in a chemical reactor.
Since, there will be no physical meaning of above fractional conversion if x is less than zero or
greater than one. In this sense, x is bounded in the region 0 ≤ x ≤ 1. In addition, our required
zero to this problem is ξ = 0.7573962462537538794596413. Moreover, it is interesting to note
that the above expression will be undefined in the region 0.8 ≤ x ≤ 1 which is very close to
our desired zero. Furthermore, there are some other properties to this function which make the
solution more difficult. The derivative of the above expression will be very close to zero in the
region 0 ≤ x ≤ 0.5 and there is an infeasible solution for x = 1.098.

Example 2 Continuous stirred tank reactor (CSTR)

Let us consider the isothermal continuous stirred tank reactor (CSTR). Components A and R
are fed to the reactor at rates of Q and q − Q, respectively. Then, we obtain the following
reaction scheme in the reactor ( for the details see [9]):



A+R→ B

B +R→ C

C +R→ D

C +R→ E

The problem was analyzed by Douglas [11] in order to design simple feedback control systems.
He presented the following expression for the transfer function of the reactor

KC
2.98(x+ 2.25)

(x+ 1.45)(x+ 2.85)2(x+ 4.35) = −1,

where KC is the gain of the proportional controller. The control system is stable for values of
KC that yields roots of the transfer function having negative real part. If we choose KC = 0 we
get the poles of the open-loop transfer function as roots of the nonlinear equation:

f2(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x+ 51.23266875. (34)

No doubts, the above function f2 has four zeros ξ = −1.45,−2.85,−2.85,−4.35. However,
our required zero is ξ = −4.35 for expression (34).

Example 3 Van der Waals equation of state

(
P + a1n

2

V 2

)
(V − na2) = nRT,

explains the behavior of a real gas by introducing in the ideal gas equations two parameters,
α1 and α2, specific for each gas. The determination of the volume V of the gas in terms of the
remaining parameters requires the solution of a nonlinear equation in V

PV 3 − (na2P + nRT )V 2 + α1n
2V − α1α2n

2 = 0.

Given the constants α1 and α2 of a particular gas, one can find values for n, P and T , such that
this equation has a three simple roots. By using the particular values, we obtain the following
nonlinear function

f3(x) = x3 − 5.22x2 + 9.0825x− 5.2675.

have three zeros and out of them one is a multiple zero ξ = 1.75 of multiplicity of order two
and other one simple zero ξ = 1.72. However, our desired root is ξ = 1.75.

Example 4 Multifactor problem

An undesirable RF breakdown which may happen in the high power microwave devices working
under the vacuum condition is known as is multifactor [1]. For example, multifactor appears
inside a parallel plate waveguide. There exists an electric field with an electric potential differ-
ence which creates the electron movement between these two plates. An interesting case in the
study of the electron trajectories is when the electron reaches a plate with root of multiplicity 2.
The trajectory of an electron in the air gap between two parallel plates is as follows

y(t) = y0 + (v0 + e
E0

mω
sin(ωt0 + α))(t− t0) + e

E0

mω2 (cos(ωt+ α)− cos(ωt0 + α))
(35)



where m and e are the mass and charge of the electron at rest, E0 sin(ωt+α) is the RF electric
field between plates and y0 and v0 are the position and velocity of the electron at time t0. We
consider the following particular case of (35), where the parameters have been normalized:

f4(x) = x+ cos(x)− π

2 (36)

with the zero ξ = π
2 of multiplicity 3.

Example 5 Let us consider a polynomial equation similar to [18], which is given by

f5(x) = ((x− 1)3 − 1)100. (37)

The above function has one multiple zero at ξ = 2 of multiplicity m = 100.

Example 6 Let us consider the following standard nonlinear test function from Behl et al. [6]

f6(x) =
(

1−
√

1− x2 + x+ cos
(
πx

2

))3
. (38)

The above function has a multiple zero at ξ = −0.7285840464448267167123331 of multiplicity
3.

Conclusion

In this study, we propose a new eighth-order iteration function having optimal eight-order
convergence for multiple zeros of a univariate function with faster convergence, simple and
compact body structure. The construction of the present scheme is based on the weight func-
tion approach that play an important role in the establishment of eighth-order convergence. In
addition, we presented an extensive convergence analysis with the main theorem which clearly
show the eighth-order convergence. Each member of our scheme is optimal in the sense of the
classical Kung-Traub conjecture. The computational efficiency index is defined as E = p1/θ,
where p is the order of convergence and θ is the number of functional evaluations per iteration.
Thus, the efficiency index of the present methods is E = 4

√
8 ≈ 1.682 which is better than the

classical Newton’s method E = 2
√

2 ≈ 1.414.

Moreover, we can easily obtain several new methods by considering different weight functions
in our scheme (1). Lower residual errors, lower error among two consecutive iteration and
stable computational order of convergence belongs to our methods when we compared them to
the existing ones of same order on problem like chemical conversion, continuous stirred tank
reactor, Van der Waals equation of state, multi factor problem, etc. Finally, on accounts of the
results obtained, it can be concluded that our proposed methods are highly efficient and perform
better than the existing methods.
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Table 2: Difference between two consecutive iterations (|xn+1 − xn|) of different iteration
functions.

f(x) n GM BM FM1 FM2 RM1 RM2 PM1 PM2 PM3 PM4

f1(x)

1 1.8(−10) 5.1(−12) 5.1(−11) 7.7(−11) 8.0(−12) 1.4(−11) 8.2(−13) 9.4(−13) 2.9(−12) 1.3(−14)

2 1.7(−53) 1.2(−81) 1.6(−72) 5.9(−71) 1.4(−79) 9.4(−78) 8.1(−89) 5.8(−88) 9.7(−84) 4.3(−105)

3 1.3(−311) 1.5(−638) 1.5(−564) 7.3(−552) 1.2(−621) 4.7(−607) 7.3(−697) 1.3(−689) 1.4(−655) 7.4(−829)

ρ 6.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

f2(x)

1 9.5(−3) 2.0(−2) 2.0(−2) 2.0(−2) 2.7(−4) 2.7(−4) 2.0(−2) 2.0(−2) 2.0(−2) 2.0(−2)

2 8.1(−16) 4.2(−18) 5.2(−18) 5.2(−18) 9.1(−14) 9.1(−14) 4.2(−18) 4.2(−18) 4.2(−18) 4.2(−18)

3 3.9(−94) 3.1(−143) 1.9(−142) 1.7(−142) 3.4(−42) 3.4(−42) 3.0(−143) 3.0(−143) 3.0(−143) 3.0(−143)

ρ 5.9929 7.9858 7.9846 7.9847 3.0005 3.0005 7.9862 7.9861 7.9861 7.9862

f3(x)

1 3.9(−4) 2.6(−4) 3.9(−4) 4.1(−4) 2.6(−4) 2.7(−4) 7.2(−5) 2.9(−5) 5.1(−5) 3.3(−5)

2 1.0(−14) 3.6(−19) 5.2(−17) 9.8(−17) 1.4(−19) 1.1(−18) 9.4(−24) 1.1(−27) 3.9(−25) 2.4(−27)

3 3.9(−78) 6.1(−138) 5.9(−120) 1.2(−117) 1.0(−141) 6.1(−134) 8.0(−175) 3.3(−207) 5.0(−186) 7.5(−207)

ρ 5.9975 7.9977 7.9945 7.9941 8.0026 7.9971 7.9994 7.9996 7.9995 7.9995

f4(x)

1 2.5(−6) 4.3(−6) 4.3(−6) 4.3(−6) 1.4(−10) 1.4(−10) 1.3(−17) 1.3(−17) 1.3(−17) 1.3(−17)

2 1.5(−18) 1.4(−30) 1.4(−30) 1.4(−30) 3.8(−52) 3.8(−52) 1.4(−30) 1.4(−30) 1.4(−30) 1.4(−30)

3 3.7(−55) 5.9(−153) 5.9(−153) 5.9(−153) 5.3(−260) 5.3(−260) 5.9(−153) 5.9(−153) 5.9(−153) 5.9(−153)

ρ 3.0000 5.0000 5.0000 5.000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

f5(x)

1 2.0(−7) 9.5(−8) 4.8(−7) 6.5(−7) 6.3(−8) 1.9(−7) 5.1(−8) 2.3(−8) 2.7(−8) 1.5(−8)

2 1.8(−41) 1.6(−55) 5.7(−49) 8.4(−48) 4.2(−57) 8.0(−53) 8.0(−58) 2.6(−59) 4.6(−60) 1.7(−15)

3 1.0(−245) 1.3(−437) 2.2(−384) 6.6(−375) 5.9(−169) 9.6(−416) 2.9(−456) 3.2(−454) 3.2(−474) 1.9(−118)

ρ 6.0000 8.0000 8.0000 8.0000 2.2745 8.0000 8.0000 8.0000 8.0000 14.862

f6(x)

1 3.5(−6) 1.7(−7) 2.4(−7) 2.4(−7) 9.3(−8) 9.7(−8) 1.2(−7) 1.2(−7) 1.2(−7) 1.1(−7)

2 1.2(−32) 4.4(−53) 2.0(−51) 2.5(−51) 3.0(−55) 5.8(−55) 1.2(−54) 1.2(−54) 1.2(−54) 2.6(−55)

3 1.8(−191) 9.4(−418) 5.3(−404) 3.6(−403) 3.1(−435) 1.0(−432) 8.7(−431) 8.7(−431) 1.3(−430) 2.8(−436)

ρ 6.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000
(∗ means the corresponding fails to work. ∗∗ means computational order of convergence is not calculated in the case divergence.)



Table 3: Comparison based on residual error (i.e. |f(xn)|) of different iteration functions.

f(x) n GM BM FM1 FM2 RM1 RM2 PM1 PM2 PM3 PM4

f1(x)

1 1.4(−8) 4.1(−10) 4.1(−9) 6.1(−9) 6.4(−10) 1.1(−9) 6.6(−11) 7.5(−11) 2.3(−10) 1.0(−12)

2 1.4(−51) 9.9(−80) 1.3(−70) 4.7(−69) 1.1(−77) 7.5(−76) 6.5(−87) 4.7(−86) 7.8(−82) 3.4(−103)

3 1.0(−309) 1.2(−636) 1.2(−562) 5.8(−550) 9.7(−620) 3.8(−605) 5.8(−695) 1.0(−687) 1.1(−653) 5.9(−827)

f2(x)

1 1.9(−4) 8.0(−4) 8.5(−4) 8.5(−4) 1.5(−7) 1.5(−7) 8.0(−4) 8.0(−4) 8.0(−4) 8.0(−4)

2 1.4(−30) 3.7(−35) 5.7(−35) 5.6(−35) 1.7(−26) 1.7(−26) 3.7(−35) 3.7(−35) 3.7(−35) 3.7(−35)

3 3.2(−187) 2.0(−285) 7.3(−284) 6.3(−284) 2.5(−83) 2.5(−83) 1.9(−285) 1.9(−285) 1.9(−285) 1.9(−285)

f3(x)

1 4.6(−9) 2.0(−9) 4.6(−9) 5.1(−9) 2.0(−9) 2.3(−9) 1.6(−10) 2.5(−11) 7.7(−11) 3.2(−11)

2 3.2(−30) 4.0(−39) 8.0(−35) 2.9(−34) 5.9(−40) 3.4(−38) 2.6(−48) 3.3(−56) 4.6(−51) 1.7(−55)

3 4.6(−157) 1.1(−276) 1.1(−240) 4.3(−236) 3.1(−284) 1.2(−268) 1.9(−350) 3.3(−415) 7.6(−373) 1.7(−410)

f4(x)

1 2.6(−18) 1.3(−17) 1.3(−17) 1.3(−17) 4.7(−31) 4.7(−31) 4.7(−31) 4.7(−31) 4.7(−31) 4.7(−31)

2 6.2(−55) 5.0(−91) 5.0(−91) 5.0(−91) 9.1(−156) 9.1(−156) 5.0(−91) 5.0(−91) 5.0(−91) 5.0(−91)

3 8.4(−165) 3.5(−458) 3.5(−458) 3.5(−458) 2.4(−779) 2.4(−779) 3.5(−458) 3.5(−458) 3.5(−458) 3.5(−458)

f5(x)

1 1.1(−622) 2.2(−655) 4.4(−585) 5.3(−572) 3.9(−673) 3.1(−626) 4.5(−682) 1.3(−709) 2.5(−709) 3.7(−736)

2 9.7(−4027) 1.4(−5431) 1.2(−4777) 8.7(−4661) 11.(−5590) 9.1(−5163) 1.6(−5662) 6.7(−5376) 2.3(−5886) 5.3(−1429)

3 5.4(−24451) 4.1(−43641) 2.7(−38318) 5.1(−37371) 1.1(−16775) 7.8(−41455) 3.3(−45506) 6.1(−41287) 1.6(−47302) 5.9(−11726)

f6(x)

1 1.1(−6) 1.3(−20) 3.5(−20) 3.7(−20) 2.1(−21) 2.3(−21) 4.8(−21) 4.8(−21) 4.5(−21) 3.5(−21)

2 4.3(−96) 2.2(−157) 2.1(−152) 4.2(−152) 6.7(−164) 5.1(−163) 4.3(−162) 4.3(−162) 4.6(−162) 4.7(−164)

3 1.5(−572) 2.1(−1251) 3.8(−1210) 1.2(−1207) 7.5(−1304) 2.5(−1296) 1.7(−1290) 1.7(−1290) 6.2(−1290) 5.4(−1307)



[5] Behl, R., Cordero, A., Motsa, S.S. and Torregrosa, J.R. (2016) V. Kanwar, An optimal fourth-order
family of methods for multiple roots and its dynamics. Numer. Algor. 71 (4), 775–796.

[6] Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R. and Kanwar, V. (2016) An optimal fourth-order
family of methods for multiple roots and its dynamics. Numer. Algor. 71 (4), 775–796.

[7] Burden, R.L. and Faires, J.D. (2001) Numerical Analysis. PWS Publishing Company, Boston.
[8] Behl, R., Zafar, F., Alshomrani, A.S., Junjuaz, M. and Yasmin, N. (2018) An opti-

mal eighth-order scheme for multiple zeros of univariate functions. Int. J. Comput. Meth.
https://doi.org/10.1142/S0219876218430028.

[9] Constantinides, A. and Mostoufi, N. (1999) Numerical Methods for Chemical Engineers with
MATLAB Applications, Prentice Hall PTR, New Jersey.

[10] Cordero, A. and Torregrosa, J.R. (2007) Variants of Newton’s method using fifth-order quadrature
formulas. Appl. Math. Comput. 190 (1), 686–698.

[11] Douglas, J.M. (1972) Process Dynamics and Control, vol. 2 Prentice Hall, Englewood Cliffs.
[12] Geum, Y.H., Kim, Y.I. and Neta, B. (2015) A class of two-point sixth-order multiple-zero finders

of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400.
[13] Geum, Y.H., Kim, Y.I. and Neta, B. (2016) A sixth-order family of three-point modified Newton-

like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Com-
put. 283, 120–140.

[14] Hueso, J.L., Martinez, E. and Teruel, C. (2015) Determination of multiple roots of nonlinear
equations and applications. J. Math. Chem. 53, 880–892.

[15] Li, S.G., Cheng, L.Z. and Neta, B. (2010) Some fourth-order nonlinear solvers with closed formulae
for multiple roots. Comput. Math. Appl. 59, 126-135.

[16] Neta, B. (2010) Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J.
Comput. Math. 87(5), 1023-1031.

[17] Ostrowski, A.M. (1964) Solutions of equations and system of equations. Academic press, New
York.

[18] Ortega, J.M. and Rheinboldt, W.C. (1970) iterative solution of nonlinear equations in several vari-
ables. Academic Press, New-York.
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