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Abstract 

Accurate computations of high-speed-viscous flows demand the use of higher-order-accurate 

schemes for computing the inviscid-flux vectors. However, the constraint of monotonicity 

preservation calls for the need of limiters in the solution or flux reconstructions used for 

obtaining higher-order accuracy. The necessity for use of limiters is strong in the inviscid-

flow regions owing to the presence of discontinuities like shocks, contact surfaces, slip lines 

etc. In contrast, the flow field inside the boundary layer is smoother compared with that 

outside the shear layer in viscous-compressible flows. It is a well-known fact that all the 

limiters inherently possess diffusive effects like extremum clipping. These diffusive effects of 

limiters add up with the physical dissipation present inside the boundary layer and spoil the 

solution accuracy. To overcome this problem, this paper proposes a novel approach to control 

the limiters used for MUSCL reconstruction using a recently introduced boundary layer 

sensor. The limiters are switched off inside the boundary layer using the sensor. This 

approach results in controlling the diffusive effects of the limiters in the higher-order-accurate 

computation of viscous-compressible flows. The higher accuracy of the new methodology is 

demonstrated by a number of carefully selected test problems using van Albada limiter. 
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Introduction 

The design of accurate, robust and efficient schemes for computing high-speed flows has been 

an area of prime importance in the field of computational gasdynamics [1]. The dynamics of 

inviscid-compressible flows is governed by the Euler equations of gasdynamics. Even for 

high-speed viscous applications governed by the compressible Navier-Stokes equations, the 

convective fluxes are numerically computed by using the same flux formulas developed for 

the Euler equations. The design of a stable and accurate numerical scheme for the convective 

fluxes is a highly challenging task because the highly nonlinear behaviour of these equations 

admits discontinuous solutions in the forms of shocks, contact discontinuities, slip surfaces, 

and also expansion waves with sonic points [2].  Since the unsteady Euler equations are 

hyperbolic in nature admitting wave-like solution, simple central differencing of the fluxes 

leads to numerical instabilities necessitating the development of upwind schemes which 

comprise one-sided differencing that respects the direction of signal propagation. Roe’s Flux-

Difference Splitting (FDS) [3], van Leer’s Flux-Vector Splitting (FVS) [4], Liou and 

Steffen’s Advection Upstream Splitting Method (AUSM) [5], Nishikawa and Kitamura’s 

Rotated Riemann Solvers [6], Residual Distribution (RD) schemes [7-8], multidimensional 

Riemann solvers [9-12] are examples of some popular upwind methods. It can be shown that 

an upwind scheme is equivalent to central-space discretization plus an “implicit” numerical 



diffusion term. In other words, addition of numerical diffusion plays the role of imparting 

stability to a purely central space discretization of the convective-flux vectors. Contrary to the 

upwind schemes, the central schemes choose a symmetric stencil irrespective direction of 

signal propagation. For numerical stability some artificial diffusion is added to the central-

space discretization of the flux. The Lax-Friedrichs [13], Lax-Wendroff [14], Local-Lax 

Friedrichs [15], Jameson-Schmidt-Turkel (JST) [16] are to mention a few noteworthy central 

schemes.  

While numerical diffusion is essential for stability, excessive diffusion spoils the solution 

accuracy by smearing the discontinuities and shear layers. Especially for viscous-flow 

computations excessive numerical diffusion causes the smearing of boundary layers, under 

prediction of skin friction and wall-heat fluxes [5, 17, 18] and over-prediction of separation-

bubble sizes [19]. For example, though van Leer’s FVS scheme is robust and accurate for the 

computation of the Euler equations, it is less accurate than AUSM for viscous-flow 

computations owing to the more diffusive nature of the former [5]. It may be noted that the 

numerical diffusion required for stability is high in zones of shocks or sharp gradients, while 

in smooth-flow regions its requirement is less. These requirements call for the regulation of 

numerical diffusion based on the smoothness of flow field.  

Godunov showed that a monotonous conservative linear scheme can be at best first-order 

accurate [20]. However, because of excessive numerical diffusion the first-order accurate 

computations are not preferred for viscous-flow computations. Naturally for accurate 

computation of viscous flows one needs to go for higher-order-accurate schemes. 

Nevertheless, the higher-order-accurate reconstructions of the fluxes require the use of 

nonlinear limiters in order to avoid spurious numerical oscillations [21 (van Leer, 1979)]. The 

limiters aid in the attainment of monotonous solutions, but they also induce diffusive effects 

like extremum clipping [22]. Kalita and Dass [18] presented an improved version of the 

Diffusion-Regulated Local Lax Friedrichs (DRLLF) scheme [23] for viscous computations by 

scaling down its numerical diffusion inside the boundary layer using a new boundary-layer 

sensor with different limiters in the higher-order reconstructions. 

In viscous flows solution gradients may exist inside the boundary layers. However, these 

gradients are mild owing to the diffusive effects of physical viscosity.  Therefore, a scope 

exists to control the diffusive effects of limiters inside shear layers in the computation of 

viscous-compressible flows. To the best of our knowledge, efforts to suppress the action of 

limiters inside the boundary layers are not reported in the available literature. This work 

presents a novel approach of controlling the limiters only inside the boundary layers in 

computations of high-speed-viscous flows on a finite volume framework. This approach 

switches off the limiters inside the viscous-shear layers using a recently introduced boundary 

layer sensor [18]. Outside the boundary layer the original-solution-reconstruction approach 

with full limiting is followed. For the demonstration, the performance of higher-order-

accurate AUSM scheme with MUSCL reconstruction [21] using the van Albada limiter [24 

(van Albada)] is shown for a number of viscous supersonic and hypersonic test cases. The 

numerical experiments reveal that the new approach of controlling the diffusive effects of 

limiters produces more accurate results compared with the higher-order versions of the same 

scheme with full limiting over the entire flow field. 

This paper is organized in four sections. The next section presents the numerical methodology 

for computing the boundary-layer sensor and an algorithm for controlling the limiters using 

the same. The improved performance of the new approach is demonstrated in the section on 

“Numerical Simulations, Results and Discussion” with a number of standard-test cases, 

before making the concluding remarks in the “Conclusions” section. 



The numerical methodology and the algorithm to control limiters 

We first introduce the MUSCL reconstruction for a one-dimensional (1D) formulation. The 

same methodology can be easily extended to multiple dimensions. A 1D-computational 

domain is shown in Fig. 1.  The left and right states for any variable U across any cell-

interface 
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I  between the cells I and 1I   are computed by using the MUSCL approach as 

[25] 
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where U is the cell-averaged value stored at a cell centre, 1
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and R represent the left and right states of the variable U across the cell-interface, and k̂ is an 
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Figure 1.  A cell-interface and its left and right states  

 

In the case of van Albada limiter, ˆ 0k   and the update equations for left and right states are 

given by [24] 
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where the function  is typically the same for both the states given by 
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so that 
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The additional parameter  is required in order to prevent the activation of the limiter in 

smooth-flow regions owing to small-scale oscillations. It has to be set proportional to the 

local grid scale. Based on extensive numerical experiments the present work considers  in 

terms of the cell volume V as 

     
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Inside the viscous-shear layers owing to the presence of physical diffusion the extrema in the 

flow field are attained smoothly. This offers an opportunity to switch off the slope limiter 
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 inside the boundary layer, provided the presence of the boundary layer is sensed by a 

suitable sensor. If the slope limiter is switched off, the MUSCL reconstruction becomes 
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In order to regulate the slope limiter, a recently introduced boundary layer sensor is used in 

the present work. The boundary layer sensor vgr is computed as the absolute ratio of velocity 

gradient across a cell-interface to the velocity gradient at the solid wall [18].  
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where parU  is the velocity component parallel to the wall and   is the direction normal to the 

wall. Literature suggests scaling down the numerical diffusion in the wall-normal direction 

only for viscous-flow computations [26]. Following the same principle, the present work also 

suggests to control the action of limiters in the higher-order-accurate computations of fluxes 

only across the cell-faces that are “aligned” with the flow. The algorithm for switching on and 

off the limiters for MUSCL reconstruction in the higher-order-accurate computations of 

fluxes is as follows: 

(i) The parameter vgr is used to track the location of the edge of the boundary layer. 

At the wall vg 1.r   As one moves away from the wall towards the free stream, the 

value of the boundary-layer sensor decreases asymptotically till it attains a value 

zero far away from the wall. Thus, a critical height Ycritical is identified at the cell 

for which, vg 0.01r  . 

(ii) In the cells where Y<Ycritical, the flow is considered to be inside the boundary layer, 

where physical viscosity plays a significant role. Therefore the limiter is switched 

off during the solution reconstructions within the boundary layer, and 

computations are carried out using Eq. (10) and Eq. (11). 

(iii) For cells located at criticalY Y the solution reconstructions are done using Eq. (1) 

and Eq. (2). If the limiter used is van Albada, then these equations reduce to Eq. 

(4) and Eq. (5). 



Numerical Simulation, Results and Discussion 

In the present work, we choose to demonstrate the performance of higher-order-accurate 

AUSM scheme. The AUSM scheme is selected because of its high accuracy for viscous-flow 

computations.  For illustration the solution reconstruction using the MUSCL approach with 

van Albada limiter is shown. However, our experience shows that the switching off other 

limiters inside the viscous-shear zones using the boundary-layer sensor also yield favourable 

results similar to that of the van Albada limiter. Two standard test cases are shown in the 

present paper, namely, viscous supersonic flow over an adiabatic flat plate at Mach 3 [18, 27, 

28] and hypersonic flow over a ramped surface at Mach 6 [18, 28, 29]. The geometric and 

free-stream parameters for the two test cases are given in Table 1 and Table 2. 

Table 1. The geometric and flow parameters for viscous supersonic flow over a flat plate  

Parameter Value 

Length of the plate (Lc) 0.0000285 m 

Free-stream pressure (p∞) 101325 N/m
2
 

Free-stream temperature (T∞) 288.15 K 

Free-stream Mach number (M∞) 3 

 

Table 2. The geometric and flow parameters for hypersonic flow over a ramped surface 

Parameter Value 

Length of the plate upto the compression corner (Lc) 0.05 m 

Total length of the ramped surface  0.12 m 

Ramp angle (θ) 15
0
 

Reynolds number per unit length  Re /U      8X10
5 
m

-1 

Free-stream stagnation temperature  1747 K 

Free-stream Mach number (M∞) 6 

Wall temperature (Tw) 298 K 

 

 
(a) 

 
(b) 

Figure 2. Viscous supersonic flow over an adiabatic-flat plate: (a) temperature profile at 

the trailing edge (b) velocity profile at the trailing edge 

 



The normalized-temperature  /T T profiles for viscous supersonic flow over a flat plate 

under the adiabatic condition are compared in Fig. 2(a). The y-distance is non-

dimensionalized as suggested by Van Driest [30]. It can be seen that full limiting predicts a 

marginally higher adiabatic wall temperature compared with the controlled limiting. This is 

due to the fact that switching off the limiter inside the boundary layer during controlled 

limiting results in a lower level of numerical diffusion. The normalized-velocity profiles are 

shown in Fig. 2(b). As expected, the controlled limiting results in marginally less smearing of 

the hydrodynamic boundary layer, which is evident from the encircled and zoomed-in 

portions. 

 
(a) 

 
(b) 

Figure 3. Hypersonic flow over a ramped surface: (a) wall-heat flux along the surface  

(b) pressure coefficient along the surface 

 

The variations of wall-heat flux from Marini’s experimental results for hypersonic flow over a 

ramped surface are compared with the present computations in Fig. 3(a). With full limiting, 

the peak-heat flux in the post-reattachment zone is lower that the corresponding value with 

controlled limiting. In other words, the prediction of wall-heat flux with controlled limiting is 

in better agreement with the experimental results. The reason for this can be ascribed to the 

fact that full limiting induces more numerical diffusion compared with controlled limiting. 

Accordingly, both the computed hydrodynamic and thermal boundary layers are smeared 

more by the former case than the latter one. The increased smearing of the computed thermal 

boundary layer results in a lower temperature gradient at the wall, which leads to an under-

estimation of the wall-heat flux. The variations of pressure coefficients with both full and 

controlled limiting are in close agreement with Marini’s experiments, as can be seen in Fig. 

3(b). 

Conclusions 

In the present work, a novel approach is proposed to control the diffusive action of limiters 

inside the boundary layers for computation of viscous compressible flows. The method 

proposes an algorithm to switch off the limiters inside the viscous shear layers and switch on 

the same in the inviscid zone using a recently introduced boundary-layer sensor. This is 

important since the viscous-flow computations demand the minimum possible level of 

numerical diffusion so as to avoid the smearing of hydrodynamic and thermal boundary 

layers. The superior performance of the approach is demonstrated by choosing the higher-

order AUSM scheme with MUSCL reconstruction using van Albada limiter. Two standard 

test cases, namely, viscous supersonic flow over an adiabatic flat plate and hypersonic flow 



over a ramped surface are used to showcase the improved performance of the new approach. 

It is shown that controlling the diffusive effects of the limiters inside the boundary layers 

results in the decrease of smearing of boundary layers, thereby the improvement in accuracy 

of viscous-compressible-flow computations.  
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