
 

Multi-Fidelity Optimization for Aerospace Vehicle Design  

 

†Ramana V. Grandhi¹ and Christopher C. Fischer2 
1Distinguished Research Professor, Department of Mechanical and Materials Engineering,                           

Wright State University Dayton, OH, USA. 
2Graduate Research Assistant, Wright State University, Dayton, OH 

 

*Presenting author: Ramana.grandhi@wright.edu 

†Corresponding author: Ramana.grandhi@wright.edu 

Introduction 

Computational optimization methodologies are growing in popularity for use in aircraft 

design as physical interactions are understood and system requirements increase in 

complexity and demand. These methodologies offer the potential of increased system 

performance through enabling numerous design options to be explored systematically. While 

optimization methods have traditionally been predominant in the latter stages of a design 

process (preliminary and detailed), there is a growing interest and need for the utilization of 

higher-fidelity physics in the earlier stages of design (conceptual). However, simulation 

models based on these higher-fidelity physics tend to have higher computational cost in 

comparison to their lower-fidelity counterparts. Therefore, optimization, which typically 

requires a large number of model evaluations, can be prohibitively expensive given the higher 

computational cost of these physics-based models. The traditional method for reducing the 

computational cost inherently present in optimization is to employ surrogate-based 

optimization (SBO) techniques. This paper presents an alternative/modified technique that 

leverages high-fidelity response data to correct low fidelity models for use in an SBO 

environment.  

The aforementioned need for high-fidelity physics to be brought into the design cycle at 

an earlier stage of the design process is evident in the design of next generation military 

aircraft, both manned and unmanned. These aircraft demand increased capabilities in speed, 

range, survivability, mission versatility, and reliability. To satisfy these demands, one must 

achieve synergy between aircraft constituent sub-systems including, among others, 

propulsion, structures, flight controls, and materials. This necessary synergy, and resulting 

maximum platform performance, is only attainable through the use of a truly integrated 

design process. Such a process, along with the desire to identify and exploit beneficial 

coupling within the physics of the design domain, inherently requires leveraging higher 

fidelity computational simulations among various disciplines early in the design process. This 

stands contrary to conventional conceptual design practices that utilize the use of handbooks, 

spreadsheets, and legacy information. However, it is currently unclear as to when it is 

appropriate and/or necessary to bring in higher fidelity simulation models, or even 

experimental data, that will provide the best benefit to the design process.  

The conceptual and preliminary design stages of aircraft design have traditionally been 

two separate, time intensive design phases. However, the concept of dialable/multi-fidelity 

design is one in which the gap between these two phases is bridged by introducing physics 

into the design process at an earlier stage than traditionally employed. This introduction of 

physics at an earlier stage eliminates the need for separate conceptual and preliminary design 

phases and consequently reduces total design time.  



The concept of multi-fidelity design does however pose certain obstacles such as 

determining how and when to “dial” or switch between different fidelity models. This work 

explores the ability of applying an adjustment factor to the response of a low-fidelity model 

so as to predict the true system response taken to be the response obtained from a high-fidelity 

simulation throughout an optimization routine. A surrogate model is constructed for the 

purpose of determining an adjustment factor given any design point (thus a function of design 

variables) using information of previous high and low fidelity simulations from previous 

optimization iterations. In doing so, sensitivity information of the high-fidelity simulation 

model can be estimated through a combination of sensitivity information for the adjustment 

factor surrogate model and low fidelity models. It is shown that optimization on the high-

fidelity as well as adjusted low-fidelity models converge to the same local optimum whereas, 

optimization on adjusted low-fidelity model does so in an order of magnitude fewer high-

fidelity function evaluations.  

In this research, an adaptation to traditional Trust Region Model Management schemes 

has been developed and employed within an optimization routine designed to facilitate the 

decision making process of determining “when” to utilize higher-fidelity response 

information. This is implemented in parallel with surrogate modeling techniques, such as 

Kriging, for the purpose of constructing a model of adjustment factors. This surrogate 

adjustment factor model is then used to correct the low-fidelity model.  

Multi-Fidelity Optimization (MFO) 

Numerous heuristic techniques have been used to optimize a high-fidelity function using 

lower-fidelity information. We consider heuristic multi-fidelity optimization (MFO) 

approaches to be approaches that generally converge in practice to an optimum of the high-

fidelity function, but in which there is no formal mathematical proof or guarantee. These 

methods vary from problem specific necessities to rigorous methods that compute a 

probability of finding an improved high-fidelity function value. Examples of problem specific 

multi-fidelity approaches include adding global response surface corrections to low-fidelity 

models[? ? ], using the low-fidelity function gradient as the optimization direction, but 

performing the line search with the high-fidelity function value, creating a response surface 

using both high- and low-fidelity analysis results, and running higher-fidelity models when 

two or more lower-fidelity models disagree. In contrast, we consider a non-heuristic method 

to be one in which given a set of requirements for the initial design(s) and behavior of the 

high and low-fidelity functions, there is a mathematical guarantee that with enough time the 

multi-fidelity method will find a high-fidelity optimum. Non-heuristic multi-fidelity methods 

may converge slower than single-fidelity methods, but nonetheless they are guaranteed to 

work eventually. Our discussion of MFO methods focuses on both heuristic and non-heuristic 

methods that are broadly applicable and likely to find a high-fidelity optimum for general 

problems.  

In MFO, global and local approaches define two sides of a coin in which research focuses. 

Global methods search the entire feasible domain for the best design, whereas local methods 

attempt to find the nearest design that has better performance than all other designs in that 

neighborhood. Some approaches combine either an augmented Lagrangian, exact penalty 

method, constraint filtering, or barrier with either a pattern-search or a Simplex method. Other 

methods use linear interpolation of both the objective function and the constraint. Global 

methods have the benefit that they typically do not require estimates of the high-fidelity 

functions’ gradients. This is important because frequently a high-fidelity functions’ gradient is 



unavailable and cannot be estimated accurately. However, given the extreme advancements in 

sensitivity calculation approaches, this work makes the assumption that gradient information 

is not beyond the scope of attainment. A detriment to using global optimization methods is 

that they typically require considerably more high-fidelity evaluations than local methods. So, 

there is clearly a need for both types. This work focuses on local methods which may utilize 

global approach ideology and methodology such as enhanced surrogate modeling techniques.  

Open Issues in MFO 

This work only considers local optimization and does not attempt to find the globally 

optimal design due to the challenges addressed. For local multi-fidelity optimization four 

major challenge themes have emerged, (i) how to rigorously and effectively combine multiple 

low-fidelity models to best predict the high-fidelity function behavior, (ii) when is it 

appropriate to utilize high-fidelity model, an when is it safe for lower fidelity models be used 

to drive the design process, (iii) how to find a high-fidelity optimum in the presence of 

potentially computationally expensive function evaluations, and (iv) how best to use gradient 

information such that surrogate models use as much information as is known about the high-

fidelity function.  

Summary Remarks 

In this work, an adjustment factor technique (surrogate-based Bayesian influenced hybrid 

bridge function) combined with a TRMM optimization scheme was presented for use in 

multi-fidelity design processes. The novel approach developed is a weighted average of 

additive and multiplicative adjustment factors where the weighting coefficients are calculated 

using a Bayesian Updating technique. This techniques is the basis of Bayesian statistics and is 

used in uncertainty quantification and inference-based statistics. The key to the presented 

surrogate-based adjustment factor technique is the use of a Gradient Enhanced Kriging 

surrogate model constructed over a localized trust region. This localized trust region is 

adaptive in the sense that its relative size and location are determined by the accuracy of the 

corrected low-fidelity model through the presented TRMM methodology. Therefore, a 

surrogate hybrid bridge function model is constructed utilizing all data available within the 

trust region (from previous optimization iterations) and thus adjustment factors obtained at 

said points utilized to correct low-fidelity simulation response; thus, more accurately 

predicting a high-fidelity response.  

This multi-fidelity optimization methodology is demonstrated using three different 

optimization problems. The first problem is an unconstrained minimization in which there are 

two fidelities that define the objective. This problem proved the capability of arriving at the 

high-fidelity optimum through the use of a Bayesian inspired bridge function implemented in 

a TRMM optimization environment. The Second problem extends the first by adding multi-

fidelity constraints to the optimization problem. Such a case is new to literature in handling 

multiple fidelities in the objective and constraints simultaneously without the use of Lagrange 

multipliers to simplify the problem via combining constraints into the objective. This problem 

proved the ability to maintain high-fidelity accuracy while reducing computational cost 

associated with the design process. Finally, third demonstration illustrates the application and 

benefits associated with implementing this methods on a real world engineering problem of 

wing body design in structural and fluid mechanics disciplines. 


