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Abstract

In this paper, we present a local convergence analysis of some iterative methods to approximate
a locally unique solution of nonlinear equation in a Banach space setting. In the earlier study,
Babajee et al. [1] demonstrate convergence of their methods under hypotheses on the fourth-
order derivative or even higher. However, only first-order derivative of the function appears in
their proposed scheme. In this study, we have shown that the local convergence of these methods
depends under hypotheses only on the first-order derivative and the Lipschitz condition. In this
way, we not only expand the applicability of these methods but also proposed the theoretical
radius of convergence of these methods. Finally, a variety of concrete numerical examples
demonstrate that our results even apply to solve those nonlinear equations where earlier studies
cannot apply.

Keywords: Newton-like method, local convergence, Banach space, Lipschitz constant, radius
of convergence.
Introduction

One of the most basic and important problem of Numerical analysis concerns with approximat-
ing a locally unique solution x∗ of the equation of the form

F (x) = 0, (1)

where F is a Fréchet -differentiable operator defined on a convex subset D of a Banach space
X with value in a Banach space Y.

Analytical methods for such type of problems are very rare or almost non existent. Therefore, it
is only possible to approximate solutions by relying iterative methods. The convergence analy-
sis of iterative methods is usually divided into two categories: semi-local and local convergence
analysis. The semi-local convergence matter is, based on the information around an initial point,
to give criteria ensuring the convergence of iteration procedures. A very important problem in
the study of iterative procedures is the convergence domain. Therefore, it is very important to
propose the radius of convergence of the iterative methods.

We study the local convergence of the two step method defined for each n = 0, 1 2, . . . by

yn = xn −
2
3F
′(xn)−1F (xn),

xn+1 = G4th HM(xn) = xn −H1(xn)A(xn)F (xn),
z(xn) = F ′(xn)−1F ′(yn),

H1(xn) = I − 1
4
(
z(xn)− I

)
+ 1

2
(
z(xn)− I

)2
,

A(xn) = 1
2
(
F ′(xn)−1 + F ′(yn)−1

)
(2)



and
xn+1 = G(2s+4)th HM(xn) = zs(xn)

zj(xn) = zj−1(xn)−H2(xn)A(xn)F
(
zj−1(xn)

)
, j = 1, 2, . . . , s, s ≥ 1,

H2(xn) = 2I − z(xn),
z0(xn) = G4th HM(xn),

(3)

where, s is a natural number with s = 0, x0 ∈ D is an initial point and I is the identity operator.
Notice that if s = 0, then method (3) reduces to method (2). These methods were studied in [1]
in the special case when X = Y = Ri (i is a natural integer). Method (2) was shown to be of
order four and method (3) was to be shown of order 2s + 4. However, the local convergence
was shown in [1], by using the Taylor series expansions and hypotheses reaching up to the fifth
Fréchet derivative of involved operator F although only first order derivative appears in the
proposed schemes. The hypotheses on the derivatives of F restrict the applicability of method
(2) and method (3). As a motivational example, define function F on X = Y = R, D = [−5

2 ,
1
2 ]

by

F (x) =
{
x3lnx2 + x5 − x4, x 6= 0
0, x = 0 .

Then, we have that
F ′(x) = 3x2lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6xlnx2 + 20x3 − 12x2 + 10x

and
F ′′′(x) = 6lnx2 + 60x2 − 24x+ 22.

Then, obviously, function F ′′′(x) is unbounded on D at the point x = 0. Hence, the results in [1],
cannot apply to show the convergence of method (2) or its special cases requiring hypotheses
on the fourth derivative of function F or higher. Notice that, in-particular there is a plethora of
iterative methods for approximating solutions of nonlinear equations [2, 3, 4, 5, 6, 1, 7, 8, 9, 10,
11, 12, 13, 14, 15]. These results show that initial guess should be close to the required root for
the convergence of the corresponding methods. But, how close initial guess should be required
for the convergence of the corresponding method? These local results give no information on
the radius of the ball convergence for the corresponding method. The same technique can be
used to other methods.

In the present study we expand the applicability of method (2) using only hypotheses on the
first order derivative of function F . We also proposed the computable radii of convergence and
error bounds based on the Lipschitz constants. We further present the range of initial guess x∗

that tell us how close the initial guess should be required for granted convergence of the method
(2). This problem was not addressed in [1].
Local convergence in Banach space

We present the local convergence analysis that follows is based on some scalar functions and pa-
rameters. Let L0, L > 0 and M ∈ [1, 3) be given parameters. Define functions g1, g2, h2, p,



qj , hqj
, j = 1, 2, . . . , s (s is a natural integer) on the interval

[
0, 1

L0

)
by

g1(t) = 1
2(1− L0t)

(
Lt+ 2M

3

)
,

g2(t) = Lt

2(1− L0t)
+ L0M(1 + g1(t))t2

2(1− L0t)2 +
[
L0(1 + g1(t))t2

4(1− L0t)2 + 1
2
L2

0(1 + g1(t))2t4

(1− L0t)4

]
M2

(1− L0t)2 ,

h2(t) = g2(t)− 1,

p(t) = M

1− L0t

(
1 + L0(1 + g1(t))

1− L0t

)
,

q1(t) = (1 + p(t))g2(t),
hq1(t) = q1(t)− 1,
qj(t) = (1 + p(t))qj−1(t) = (1 + p(t))jg2(t), j = 2, 3, . . . , s,
hqj

(t) = qj(t)− 1

and parameters r1 and rA by

r1 =
2
(
1− M

3

)
2L0 + L

,

rA = 2
2L0 + L

.

We have that
0 < r1 < rA, (4)

g1(r1) = 1 and for each t ∈ [0, r1] : 0 ≤ g1(t) < 1. Moreover, by the definition of the functions
g2 and h2 : h2(0) = −1 and h2(t) → +∞ as t → 1−

L0
. It then follows from the intermediate

value theorem that the function h2 has zeros in the interval
(
0, 1

L0

)
. Further, consider that r2

is the smallest such zero. Similarly, we have that hqj
(0) = −1 and hqj

(t) → +∞ as t → 1−

L0
.

Denote by rqj
the smallest zeros of the functions hqj

, respectively on the interval
(
0, 1

L0

)
. In

particular, we have hq1(r2) = (1 + p(r2))g2(r2) − 1 = p(r2) > 0, since 1 − L0r2 > 0 and
g2(r2) = 1. Hence, rq1 < r2. Similarly, we get hqj

(rj−1) = p(rqj−1) > 0, since 1−L0rqj−1 > 0
and qj−1(rqj−1) = 1. That is we obtain that

rqs < rqs−1 < · · · < rq1 < r2. (5)

Define
r = min{r1, rqs}. (6)

Then, in view of (4) – (6), we have that

0 < r < rA <
1
L0

(7)

and for each t ∈ [0, r)
0 ≤ g1(t) < 1, (8)

0 ≤ g2(t) < 1, (9)

and
0 ≤ qj(t) < 1. (10)



Notice that if s = 0, then the radius of convergence should be defined by r = min{r1, r2}. Let
U(w, ρ), Ū(w, ρ) stand, respectively for the open and closed balls in X with center w ∈ X
and of radius ρ > 0. Next, we present the local convergence analysis of method (3) using the
preceding notations.

Theorem 1 Let F : D ⊆ X → Y be a Fréchet differentiable operator. Suppose there exist
x∗ ∈ D and L0 > 0 such that for each x ∈ D

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y, X) (11)

and ∥∥∥F ′(x∗)−1(F ′(x)− F ′(x∗)
∥∥∥ ≤ L0‖x− x∗‖. (12)

Moreover, suppose that there exist L > 0 and M ∈ [1, 3) such that for each x, y ∈ D ∩
U
(
x∗, 1

L0

)
the following estimates hold

∥∥∥F ′(x∗)−1 (F ′(x)− F ′(y))
∥∥∥ ≤ L‖x− y‖, (13)

∥∥∥F ′(x∗)−1F ′(x)
∥∥∥ ≤M, (14)

and
Ū (x∗, r) ⊆ D, (15)

where the radius of convergence r is defined by (6). Then, the sequence {xn} generated by
method (3) for x0 ∈ U(x∗, r) − {x∗} is well defined, remains in U(x∗, r) for each n =
0, 1, 2, . . . and converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (16)

‖xn+1 − x∗‖ = ‖z0(xn)− x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (17)

and
‖zj(xn)− x∗‖ ≤

(
1 + p(‖xn − x∗‖)

)
‖zj−1(xn)− x∗‖

≤
(
1 + p(r)

)j
g2(r)‖xn − x∗‖ < ‖xn − x∗‖,

(18)

where the “g” functions are defined previously. Furthermore, for T ∈
[
r, 2

L0

)
, the limit point

x∗ is the only solution of equation F (x) = 0 in Ū(x∗, T ) ∩D.

Proof: Mathematical induction shall be used to show estimates (16) – (18). By hypotheses
x0 ∈ U(x∗, r)− {x∗}, (7) and (12), we get that∥∥∥F ′(x∗)−1 (F ′(x0)− F ′(x∗))

∥∥∥ ≤ L0‖x− x∗‖ < L0r < 1. (19)

In view of (19) and the Banach Lemma on invertible operators [5, 13], we get that F ′(x0)−1 ∈
L(Y, X), y0 exists and

∥∥∥F ′(x0)−1F ′(x∗)
∥∥∥ ≤ 1

1− L0‖x0 − x∗‖
. (20)



We also get that y0 is well defined by the first sub step of method (3) for n = 0. We can write
by (11)

F (x0) = F (x0)− F (x∗) =
∫ 1

0
F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ (21)

Notice that ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ < r, so x∗ + θ(x0 − x∗) ∈ U(x∗, r). Then,
by (14) and (21), we have that∥∥∥F ′(x∗)−1F ′(x0)

∥∥∥ ≤M‖x0 − x∗‖ (22)

We can write by the first sub step of method (3) and (11)

y0 − x∗ =
(
F ′(x0)−1F ′(x∗)

) ∫ 1

0
F ′(x∗)−1 (F ′(x∗ + θ(x0 − x∗))− F ′(x0)) (x0 − x∗)dθ

+ 1
3
(
F ′(x0)−1F ′(x∗)

) (
F ′(x∗)−1F ′(x0)

) (23)

Using (7), (8), (13), (20), (22) and (23), we obtain in turn that

‖y0 − x∗‖ =
∥∥∥F ′(x0)−1F ′(x∗)

∥∥∥ ∥∥∥∥∫ 1

0
F ′(x∗)−1 (F ′(x∗ + θ(x0 − x∗))− F ′(x0)) (x0 − x∗)dθ

∥∥∥∥
+ 1

3
∥∥∥F ′(x0)−1F ′(x∗)

∥∥∥ ∥∥∥F ′(x∗)−1F ′(x0)
∥∥∥

≤ L‖x0 − x∗‖2

2(1− L‖x0 − x∗‖)
+ M‖x0 − x∗‖

3(1− L‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(24)
which shows (16) for n = 0 and y0 ∈ U(x∗, T ). It follows from (19), (20) and (24) for y0
replacing x0, since y0 ∈ U(x∗, T ) that F ′(y0)−1 ∈ L(Y, X)

∥∥∥F ′(y0)−1F ′(x∗)
∥∥∥ ≤ 1

1− L0‖y0 − x∗‖

≤ 1
1− L0g1(‖x0 − x∗‖)

≤ 1
1− L0‖x0 − x∗‖

(25)

and x1 is well defined by the second sub step of the method (3) for n = 0. Then, we can write
by the second sub step of method (3) for n = 0 in turn that but using (9) instead of (8), we



obtain in turn that

x1 − x∗ = (x0 − x∗ − F ′(x0)−1F (x0)) + 1
2
(
F ′(x0)−1F (x∗)

)[
F ′(x∗)−1

(
F ′(x0)− F ′(x∗)

)
+ F ′(x∗)−1

(
F ′(x∗)− F ′(y0)

)](
F ′(y0)−1F (x∗)

)(
F ′(x∗)−1F (x0)

)
+
[

1
4
(
F ′(x0)−1F (x∗)

)(
F ′(x∗)−1(F ′(y0)− F ′(x∗)) + F ′(x∗)−1(F ′(x∗)− F ′(x0))

)
×
(
F ′(y0)−1F ′(x∗)

)
F ′(x∗)−1 + 1

2

((
F ′(x0)−1F (x∗)

)(
F ′(x∗)−1(F ′(y0)− F ′(x∗))

+ F ′(x∗)−1(F ′(x∗)− F ′(x0))
)(
F ′(y0)−1F ′(x∗)

)
F ′(x∗)

)2]1
2
(
F ′(x0)−1F ′(x∗)−1

)
×
(
F ′(x∗)−1F ′(y0) + F ′(x∗)−1F ′(x0)

)(
F ′(y0)−1F (x∗)

)(
F ′(x∗)−1F (x0)

)
.

(26)
Then, using the triangle inequality in (26), (7), (9), (20), (22) (for x0 = x0 and x0 = y0), (24)
and (25), we get in turn that

‖x1 − x∗‖ ≤
L‖x0 − x∗‖2

2(1− L0(‖x0 − x∗‖))
+
L0M

(
‖x0 − x∗‖+ ‖y0 − x∗‖

)
‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)(1− L0‖y0 − x∗‖)

+
[
L0
(
‖x0 − x∗‖+ ‖y0 − x∗‖

)
‖x0 − x∗‖

4(1− L0‖x0 − x∗‖)(1− L0‖y0 − x∗‖)

+ 1
2

L0
(
‖x0 − x∗‖+ ‖y0 − x∗‖

)
‖x0 − x∗‖

(1− L0‖x0 − x∗‖)(1− L0‖y0 − x∗‖)

2 ]
M2‖x0 − x∗‖

(1− L0‖x0 − x∗‖)(1− L0‖y0 − x∗‖)
≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(27)
which shows (17) for n = 0 and x1 ∈ U(x∗, T ). Notice that by the definition of the method
(3), x1 = z0(x0) and all iterates zj(x0), j = 1, 2, · · · , s are well defined. Then, we have by
the third sub step of method (3) for n = 0

‖z1(x0)− x∗‖ ≤ ‖z0(x0)− x∗‖+ ‖H2(x0)A(x0)F ′(x∗)‖M‖z0(x0)− x∗‖
= (1 +M‖H2(x0)A(x0)F ′(x∗)‖)‖z0(x0)− x∗‖.

(28)

We need an upper bound on the norm inside (28). It follows from the definition of A, H2 and
(27) that

‖H2(x0)A(x0)F ′(x∗)‖ ≤ 1
2

( 1
1− L0‖x0 − x∗‖

+ 1
1− L0‖y0 − x∗‖

)
(‖I‖+ ‖I − u(x0)‖)

≤ 1
1− L0‖x0 − x∗‖

(
1 +

∥∥∥F ′(xn)−1(F ′(xn)− F ′(yn))
∥∥∥)

≤ 1
1− L0‖x0 − x∗‖

(
1 +

L0
(
‖x0 − x∗‖+ ‖y0 − x∗‖

)
1− L0‖x0 − x∗‖

)

≤ 1
1− L0‖x0 − x∗‖

(
1 +

L0
(
1 + g1(‖x0 − x∗‖)‖x0 − x∗‖

)
1− L0‖x0 − x∗‖

)

≤ p(‖x0 − x∗‖)
M

.

(29)



Using (28) and (29), we get that

‖z1(x0)− x∗‖ ≤
(
1 + p(‖x0 − x∗‖)

)
‖z0(x0)− x∗‖

≤
(
1 + p(‖x0 − x∗‖)

)
g2(‖x0 − x∗‖)‖x0 − x∗‖

= q1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(30)

so z1(x0) ∈ U(x∗, r) and (18) for n = 0 and j = 1. In an analogous way by using
zj(x0), zj−1(x0) instead of z1(x0), z0(x0) in (28) and (29), we get that (18) holds for n = 0
and j = 1, 2, . . . , s. Hence, x2 is well defined in x2 ∈ U(x∗, r) and by (18) and the definition
of the method (3) ‖x2 − x1‖ ≤ ‖x1 − x∗‖. Continuing in this way, we arrive at the estimates
(16) –(18) and ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, c = g2(‖x0 − x∗‖) ∈ [0, 1), which shows
xk+1 ∈ U(x∗, r) and lim

k→∞
xk = x∗. Finally, to show the uniqueness part, let y∗ ∈ Ū(x∗, T ) be

such that F (y∗) = 0. Set Q =
∫ 1

0 F
′ (x∗ + θ(y∗ − x∗)) dθ. Then, using (12), we get that

∥∥∥F ′(x∗)−1(Q− F ′(x∗))
∥∥∥ ≤ L0

∫ 1

0
θ‖x∗ − y∗‖dθ = L0

2 T < 1. (31)

Hence, Q−1 ∈ L(Y, X). Then, in view of the identity F (y∗) − F (x∗) = Q(y∗ − x∗), we
conclude that x∗ = y∗. �
Remark

(a) In view of (12) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗) + F ′(x∗))‖

≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖

≤ 1 + L0‖x0 − x∗‖,

condition (14) can be dropped and M can be replaced by

M = M(t) = 1 + L0t

or M = 2, since t ∈ [0, 1
L0

).

(b) The radius r1 was shown in [5, 6] to be the convergence radius for Newton’s method under
conditions (12) and (13). It follows from (5) and the definition of r1 that the convergence
radius r of the method (2) cannot be larger than the convergence radius r1 of the second
order Newton’s method. As already noted in [5, 6], r1 is at least as large as the convergence
ball give by Rheinboldt [13]

rR = 2
3L.

In particular, for L0 < L we have that

rR < r1

and
rR

r1
→ 1

3 as
L0

L
→ 0.



That is our convergence ball r1 is at most three times larger than Rheinboldt’s. The same
value for rR given by Traub [14].

(c) It is worth noticing that method (2) is not changing if we use the conditions of Theorem 1
instead of the stronger conditions given in [1]. Moreover, for the error bounds in practice
we can use the computational order of convergence (COC) [9]

ξ =
ln‖xn+2−x∗‖
‖xn+1−x∗‖

ln‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . . (32)

or the approximate computational order of convergence (ACOC) [9]

ξ∗ =
ln‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . . (33)

This way we obtain in practice the order of convergence in a way that avoids the bounds
involving estimates higher than the first Fréchet derivative. Notice that the evaluation of ξ∗

does not require that the usage of the solution x∗.

(d) If s = 0 and r = min{r1, r2}, then the results of Theorem 1 hold for method (2) replacing
method (3) (except (18)).

Numerical example and applications

In this section, we shall check the effectiveness and validity of our theoretical results which
we have presented in section 2 on the scheme proposed by Babajee et al. [1]. For this purpose,
we shall choose a variety of nonlinear equations and system of nonlinear equations which are
mentioned in the following examples including motivational example. At this point, we will
choose the following methods

yn = xn −
2
3F
′(xn)−1F (xn),

xn+1 = G4th HM = xn −H1(xn)A(xn)F (xn),
z(xn) = F ′(xn)−1F ′(yn),

H1(xn) = I − 1
4
(
z(xn)− I

)
+ 1

2
(
z(xn)− I

)2
,

A(xn) = 1
2
(
F ′(xn)−1 + F ′(yn)−1

)
(34)



yn = xn −
2
3F
′(xn)−1F (xn),

zn = xn −H1(xn)A(xn)F (xn),
xn+1 = zn −H2(xn)A(xn)F (zn),

H2(xn) = 2I − F ′(xn)−1F ′(yn)

(35)

and 

yn = xn −
2
3F
′(xn)−1F (xn),

zn = xn −H1(xn)A(xn)F (xn),
wn = zn −H2(xn)A(xn)F (zn),

xn+1 = wn −H2(xn)A(xn)F (wn),

(36)



having convergence order of p = 4, p = 6 and p = 8 which can be deduced by using s = 0,
s = 1 and s = 2, respectively. For computational point of view, we denoted them by M1, M2
and M3, respectively.

First of all, we shall calculate the values of rR, r1, rA, r2, rqs and r which are displayed in
the Tables 1, 3, 5, 6. So, we can obtain the radius of convergence of the above mentioned
methods. Then, we will also verify the theoretical order of convergence of these methods for
scalar equations on the basis of the results obtain from computational order of convergence

and
∣∣∣∣ en

ep
n−1

∣∣∣∣ (where p is either p = 4, 6 or p = 8). In the Tables 2, 4 and 7, we displayed the

number of iteration indexes (n), approximated zeros (xn), residual error of the corresponding

function (|F (xn)|), errors |en| (where en = xn − x∗),
∣∣∣∣ en

ep
n−1

∣∣∣∣ and the asymptotic error constant

η = lim
n→∞

∣∣∣∣∣ en

ep
n−1

∣∣∣∣∣. In addition, we calculate the computational order of convergence by using

the above formulas (32) and (33). Moreover, we calculate the computational order of conver-
gence, asymptotic error constant and other constants up to several number of significant digits
(minimum 1000 significant digits) to minimize the round off error.

In the context of system of nonlinear equations, we also consider a nonlinear system in example
3 to check the proposed theoretical results for nonlinear system. In this regards, we displayed
the number of iteration indexes (n), residual error of the corresponding function (‖F (xn)‖),

errors ‖en‖ (where en = xn−x∗),
∥∥∥∥ en

ep
n−1

∥∥∥∥ and the asymptotic error constant η = lim
n→∞

∥∥∥∥∥ en

ep
n−1

∥∥∥∥∥ in

the Table 7. Moreover, we use the above mentioned formulas namely, (32) and (33) to calculate
the computational order of convergence to further verifying the theoretical order of convergence
of nonlinear system.

As we mentioned in the earlier paragraph that we calculate the values of all the constants and
functional residuals up to several number of significant digits but due to the limited paper space,
we display the values of xn up to 15 significant digits and the values of other constants namely,

rR, r1, rA, r2, rqs , r, ξ(COC),
∣∣∣∣ en

ep
n−1

∣∣∣∣ , η and
∥∥∥∥ en

ep
n−1

∥∥∥∥ are up to 5 significant digits. Further, the

residual error in the function/system of nonlinear functions (|F (xn)| or ‖F (xn)‖), and the error
|en| or ‖en‖ are display up to 2 significant digits with exponent power which are mentioned in
the following Tables corresponding to the test function. However, minimum 1000 significant
digits are available with us for every value.

Furthermore, we consider the approximated zero of test functions when the exact zero is not
available, which is corrected up to 1000 significant digits to calculate ‖xn − x∗‖. For the
computer programming, all computations have been performed using the programming package
Mathematica 9 with multiple precision arithmetic. In addition, the meaning of ae(±b) is
a× 10±b in the tables 1–7.

Example 1 Let S = R, D = [−1, 1], x∗ = 0 and define function F on D by

F (x) = sin x. (37)

Then, we get L0 = L = 1 and M = 1. We calculate the different values of the radius of
convergence, COC (ξ) etc., which are displayed in the following Tables 1 and 2.



Table 1: Different values of parameters which satisfy Theorem 1

Cases rR r1 rA r2 rqs r
M1 0.66667 0.44444 0.66667 0.33913 0.19871 0.19871
M2 0.66667 0.44444 0.66667 0.33913 0.097223 0.097223
M3 0.66667 0.44444 0.66667 0.33913 0.0401905 0.0401905

Table 2: Convergence behavior of different cases on example 1

Cases n xn |F (xn)| |en| ξ
∣∣∣ en

ep
n−1

∣∣∣ η

M1

0 0.15 1.5e(−1) 1.5e(−1)
1 4.22751609372639e(−6) 4.2e(−6) 4.2e(−6) 8.3497e(−3) 2.2442e(−7)
2 7.16819456281920e(−29) 7.2e(−29) 7.2e(−29) 5.0045 2.2442e(−7)

M2

0 0.070 7.0e(−2) 7.0e(−2)
1 −7.42990061829384e(−11) 7.4e(−11) 7.4e(−11) 6.3153e(−4) 6.5738e(−13)
2 1.10589328064363e(−73) 1.1e(−73) 1.1e(−73) 7.0009 6.57738e(−13)

M3

0 0.020 2.0e(−2) 2.0e(−2)
1 −7.56773592959322e(−19) 7.6e(−19) 7.6e(−19) 2.9561e(−5) 1.1160e(−21)
2 1.20053454004807e(−166) 1.2e(−166) 1.2e(−166) 9.0001 1.1160e(−21)

Example 2 Let X = Y = R3, D = Ū(0, 1), v = (x, y, z)T and defined F on D by

F (v) =
(
ex − 1, e− 1

2 y2 + y, z
)T

. (38)

Then the Fréchet-derivative is given by

F ′(v) =

e
x 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that x∗ = (0, 0, 0)T , F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1, L =
1.789572397 and M = 1.7896. Hence, we calculate the different values of the radius of con-
vergence, COC (ξ) etc., which are mentioned in the following Tables 3 and 4.

Table 3: Different values of parameters which satisfy Theorem 1

Cases rR r1 rA r2 rqs r
M1 0.37253 0.15440 0.38269 0.17719 0.067047 0.067047
M2 0.37253 0.15440 0.38269 0.17719 0.0152413 0.0152413
M3 0.37253 0.15440 0.38269 0.17719 0.0023526 0.0023526

Example 3 Let X = Y = C[0, 1], and consider the nonlinear integral equation of Hammerstein-
type defined by

x(s) =
∫ 1

0
G(s, t)x(t)2

2 dt, (39)



Table 4: Convergence behavior of different cases on example 2

Cases, x0 n ‖F (xn)‖ ‖en‖ ξ
∥∥∥ en

ep
n−1

∥∥∥ η

M1, (0.017, 0.017, 0.018)

0 3.0e(−2) 3.0e(−2)
1 1.4e(−7) 1.4e(−7) 0.17667 1.7584
2 7.5e(−28) 7.5e(−28) 3.8124 1.7584

M2, (0.0022, 0.0022, 0.0023)

0 3.4e(−3) 3.4e(−3)
1 6.4e(−16) 6.4e(−16) 0.19198 5.7481
2 4.1e(−91) 4.1e(−91) 5.8845 5.7481

M3 (0.00022, 0.00022, 0.00023)

0 3.9e(−4) 3.9e(−4)
1 9.9e(−29) 9.9e(−29) 0.19642 18.010
2 1.6e(−223) 1.6e(−223) 7.9202 18.010

where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1] by

G(s, t) =
{

(1− s)t, t ≤ s

s(1− t), s ≤ t.
(40)

The solution x∗(s) = 0 is the same as the solution of equation (1), where operator F :
C[0, 1]→ C[0, 1] is defined by

F (x)(s) = x(s)−
∫ 1

0
G(s, t)x(t)2

2 dt. (41)

Notice that ∥∥∥∥∫ 1

0
G(s, t)dt

∥∥∥∥ ≤ 1
8 . (42)

Then, we have that the Fréchet- derivative is defined by

F ′(x)(y(s)) = y(s)−
∫ 1

0
G(s, t)x(t)dt. (43)

So, we get that F ′(x∗(s)) = I and

∥∥∥F ′(x∗)−1(F ′(x)− F ′(y))
∥∥∥ ≤ 1

8‖x− y‖. (44)

Hence, we can choose L0 = L = 1
8 and M = 2. We calculate the different values of the radius

of convergence based on the methods, which are mentioned in the following Table 5.

Table 5: Different values of parameters which satisfy Theorem 1

Cases rR r1 rA r2 rqs r
M1 5.3333 1.7778 5.3333 1.0014 0.61000 0.61000
M2 5.3333 1.7778 5.3333 1.0014 0.33700 0.33700
M3 5.3333 1.7778 5.3333 1.0014 0.16848 0.16848

Example 4 Returning back to the motivation example at the introduction on this paper, we have
L = L0 = 14.5, M = 2 and our required zero is x∗ = 1. We calculate the different values of
the radius of convergence, COC (ξ) etc., which are given in the following Tables 6 and 7.



Table 6: Different values of parameters which satisfy Theorem 1

Cases rR r1 rA r2 rqs r
M1 0.045977 0.015326 0.045977 0.030850 0.002334 0.002334
M2 0.045977 0.015326 0.045977 0.030850 0.000052082 0.000052082
M3 0.045977 0.015326 0.045977 0.030850 1.01954e(−6) 1.01954e(−6)

Table 7: Convergence behavior of different cases on example 4

Cases n xn |F (xn)| |en| ξ
∣∣∣ en

ep
n−1

∣∣∣ η

M1

0 0.318 7.3e(−5) 3.1e(−4)
1 0.318309886198877 3.5e(−12) 1.5e(−11) 1636.0 1615.17
2 0.318309886183791 2.0e(−41) 8.4e(−41) 4.0007 1615.17

M2

0 0.3183 2.3e(−6) 9.9e(−6)
1 0.318309886183791 1.0e(−25) 4.3e(−25) 4.5854e(+5) 4.5825e(+5)
2 0.318309886183791 6.6e(−142) 2.8e(−141) 6.0000 4.5825e(+5)

M3

0 0.3183 2.3e(−6) 9.9e(−6)
1 0.318309886183791 2.8e(−33) 1.2e(−32) 1.3008e(+8) 1.2997e(+8)
2 0.318309886183791 1.2e(−248) 5.1e(−248) 8.0000 1.2997e(+8)

Results and discussion

It is worthy to note that the radii of convergence in the Table 6 are very small. Actually, the
radius of convergence depends on the considered function, corresponding bounds and the body
of structure of the iterative methods. We can see these things in the above Tables 1, 3 and 5
where we obtain better radii of convergence rather than Table 6. In addition, we also want to
check the convergence behavior of the listed methods, when we consider initial approximation
out of the convergence domain which can be seen in the Table 6. So, we can say that the
proposed iterative methods will always converge to the required root whenever we consider
the initial approximation inside of convergence domain however, it is also possible outside the
domain. No doubts, the radius of convergence of the listed scheme is decreasing by increasing
the number of sub-steps. But, we are getting better and faster convergence towards the required
root which can be seen the Tables 2, 4 and 7.
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