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Abstract 
Recently the authors developed a kind of non-probabilistic analysis method called ‘non- 
random vibration analysis method’ to deal with the important random vibration problems, in 
which the excitation and response are both given in the form of interval process rather than 
stochastic process.  In this paper, some significant improvements were made for the 
non-random vibration analysis method, making it not only more rigorous in theory but also 
more practical in engineering. Firstly, the definitions and relevant conceptions of interval 
process model are further standardized and improved, and in addition some important 
conceptions such as the interval process vector and the cross-covariance function matrix are 
complemented. Secondly, the analytic formulation of dynamic response bounds is deduced for 
both of the linear single degree of freedom (SDOF) vibration system and the multiple degree 
of freedom (MDOF) vibration system, providing an important theoretical basis for 
non-random vibration analysis. Thirdly, this paper also gives the formulation and 
corresponding numerical methods of structural dynamic response bounds based on finite 
element method (FEM) for complex continuum problems, effectively enhancing the 
applicability of non-random vibration analysis method in engineering. 
Keywords: Random vibration; Non-probabilistic analysis; Interval process; Dynamic 
response bounds; Vibration system; Continuum structure  

Introduction 
In a lot of practical engineering problems, the dynamic excitation on a structure not only 
shows time-variant characteristics, but also exhibits obvious uncertainties, such as ground 
motion acceleration on building basement in the earthquake, which often causes random 
vibration of the structure. Traditionally, the stochastic process and random vibration methods 
are adopted for quantification of a time-varying parameter and corresponding random 
vibration analysis [1]. However, great number of time-history testing samples are required to 
obtain the precise probability distribution characteristics of the stochastic process, which is 
often difficult or even impossible to obtain because of restrictions in experimental condition 
or cost. 
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Figure 1. The interval process [2] 

 



 

 

In our recent work, therefore, the interval method is successfully extended to time-variant 
problems, and a new model called interval process model [2, 3] was proposed to deal with the 
time-variant or dynamic uncertainties. As shown in Figure 1, the interval process model 
proposed by the authors [2, 3] employs a bounded and closed interval for quantification of the 
parametric uncertainty at arbitrary time point. Since then, by combining the interval process 
model with the traditional vibration theory, the authors further proposed a kind of 
non-probabilistic analysis method to deal with the random vibration problems, which is called 
the ‘non-random vibration analysis method’ [3-5]. In non-random vibration analysis, the 
interval process model rather than traditional stochastic process model is used to describe the 
uncertain excitation. The excitation and response are both given in the form of the 
time-history bounds, which avoids the introduction of probability characteristics. Solving the 
response bounds can then provide important reference data for the safety evaluation and 
reliability design of the practical vibration systems. This paper deduces the analytic 
formulation of dynamic response bounds for the linear single degree of freedom (SDOF) and 
multiple degree of freedom (MDOF) vibration systems and gives the formulation and 
corresponding numerical methods of structural dynamic response bounds based on FEM for 
complex continuum problems. 

Results and discussions 
Figure 2 shows a vehicle door structure, and point A and B are measurement and load point, 
respectively. We consider two cases of radius function of the load, namely, 20N (case 1) and 
40N (case 2). For both of the cases, the auto-correlation coefficient function of the load is set 
as ( ) ( ), cosi jt t

i j i jt t e t tρ − −= − . By applying the proposed method, the dynamic displacement 
response bounds at point A are obtained as shown in Figure 3. Firstly, it can be found that the 
dynamic displacement response of the vehicle door structure at point A also shows significant 
uncertainty because of the load uncertainty. In addition, for this problem, only 1 FEM 
computation was carried out in the whole non-random vibration analysis, which also reflects a 
very high computational efficiency of the proposed method. 
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Figure 2. A vehicle door structure and its FEM model [6] 
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Figure 3. Displacement response bounds at the measurement point A [5] 

 
Conclusions 
Based on our previous work, this paper made some significant improvements for the 
non-random vibration analysis method. For the linear SDOF and MDOF vibration systems, an 
analytical formulation of the dynamic response bounds under uncertain excitation is derived 
by introducing the Duhamel's integral, providing an important theoretical basis for 
non-random vibration analysis. Additionally, for complex continuum structures, the 
formulation and corresponding numerical methods of the structural dynamic response bounds 
are also given through introducing the Green's kernel function technique, effectively 
enhancing the applicability of non-random vibration analysis method in engineering. As an 
effective supplement to the traditional random vibration theory, we hope to extend the 
non-random vibration analysis method to some relevant fields in the future, such as nonlinear 
vibration, structural reliability analysis, fatigue analysis of structures, etc.  
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