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Abstract 
Recently, the authors extended the interval method into the time domain and proposed a new 
mathematical model for time-varying uncertainty quantification, namely, the "interval process 
model". Interval process uses a lower bound and an upper to describe the imprecision of a 
time-variant parameter at any time point rather than the precise probability distribution, and 
hence compared with the traditional stochastic process it shows some advantages in 
uncertainty quantification such as easy to understand, convenient to use, small dependence on 
samples, etc. This paper firstly gives the conceptions of limit and continuity of interval 
process, based on which the differential and integral of interval process are defined. Secondly, 
the middle point function, auto-covariance function and cross-covariance function of the 
differential and integral of interval process are deduced, which thus enriches the theory of 
interval process model. Thirdly, the above conceptions are applied to the vibration analysis of 
structures under uncertain excitations. The variation bounds of the velocity and acceleration 
responses are deduced for both of the linear single degree of freedom (SDOF) vibration 
system and the multiple degree of freedom (MDOF) vibration system under uncertain 
excitations.  

Keywords: Interval process; Differential and integral of interval process; Time-variant 
uncertainty; Non-random vibration analysis; Response bounds 
Introduction 

In the existing researches, the convex model approach [1-3] is primarily used to solve the 
time-invariant problems, in which the uncertainty of the involved parameters does not change 
with time. Nevertheless, for many practical problems, there exist some parameters not only 
exhibiting uncertainty, but also having time-varying or dynamic characteristics, such as the 
degrading material property with time, random dynamic loads applied to structures, etc. 
Recently, the authors thus extended the convex model approach to the time domain, and 
proposed a new kind of mathematical model to quantify the time-varying or dynamic 
uncertainty, namely, the "interval process model" [4, 5]. In the interval process model, an 
interval rather than a precise probability distribution is used to describe the parametric 
uncertainty at each time point and two boundary curves are then employed to depict the whole 
time-varying uncertainty of the parameter. Compared with the traditional stochastic process, 
the interval process theoretically has some attractive advantages, such as easy to understand, 
convenient to use, small dependence on samples, etc. Thus we hope that it can be a useful 
supplement to the classical stochastic process model in the future.  
This paper firstly proposes the conceptions of differential and integral of interval process, 
which enriches the theory of interval process model. Secondly, the differential and integral of 
interval process are applied to the vibration analysis of mechanical systems under uncertain 
excitations. Not only the variation bounds of the displacement response for the vibration 
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systems under uncertain excitation can be obtained, but also the variation bounds of the 
velocity and acceleration responses for the vibration systems can be derived. 

Results and discussions 
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(a) The SDOF spring-mass-damper vibration system                     (b) Displacement responses 
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(c) Velocity responses                               (d) Acceleration responses 

Figure 1. Displacement, velocity and acceleration response bounds of the damped SDOF 
system in different auto-correlation coefficient functions [6] 

Figure 1 shows a SDOF spring-mass-damper vibration system.We consider four kinds of 
auto-correlation coefficient functions as follows: ( ) | |e α τρ τ −=  (case a); ( ) | |e cosα τρ τ ωτ−=  

(case b); ( ) 01 | | /Tρ τ τ= −  (case c); ( ) 0, 0ρ τ τ= ≠  (case d). Herein the parameters are set as 
0.2α = , / 4ω π= , 40sT = , and τ  indicates the temporal distance. By using the proposed 

method, the variation bounds of the displacement, velocity and acceleration responses for the 
SDOF system can be obtained and plotted, as shown in Figure 1. From Figure 1, it can be 
seen that the bounds of the displacement, velocity and acceleration responses for the SDOF 
system will change when the auto-correlation coefficient function of the external excitation 
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changes. Under four types of correlation cases, the above three response bounds can be 
roughly divided into two stages, i.e., the transient response stage and the steady-state response 
stage. In the transient response stage, the three response bounds exhibit obvious oscillation, 
and their middle point and radius functions both fluctuate with time. This kind of oscillation 
tends to be slighter with time, and a steady state can be reached. In this stage, both the middle 
points and radiuses of the three responses keep almost constants. 

Conclusions 

Based on our previous work, this paper firstly gives the conceptions of the limit, continuity, 
differential and integral of interval process and the corresponding properties, which enriches 
the interval process model theory. Secondly, the variation bounds of velocity and acceleration 
responses for the linear SDOF and MDOF vibration systems under uncertain excitations are 
derived based on the differential and integral of interval process, effectively enhancing the 
analytical ability of the non-random vibration analysis method. As the extension of the 
interval process model, the relevant conceptions of the differential and integral of interval 
process can be extended into some other fields, such as time-variant reliability analysis, 
finance engineering, etc. 
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