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Abstract 
In this paper, we present a meshless solution of natural convection from the heated cylinder. 
The numerical technique is constructed around Weighted Least Squares approximation that is 
used to evaluate derivatives needed to solve partial differential equations governing the 
problem at hand, i.e. Navier-Stokes, mass continuity, and heat transport. The results are 
presented in terms of temperature and velocity magnitude contour plots, as well as a more 
quantitative comparison with reference data in terms of Nusselt number and maximal velocity 
values. Three different cases are tackled, namely the standard de Vahl Davis case, natural 
convection from the heated cylinder, and cooling of overhead power line due to the natural 
convection under realistic conditions. 

Keywords: Navier-Stokes, MLSM, de Vahl Davis, natural convection, cooling of 
overhead power lines.  

Introduction 

Natural convection from a horizontal cylinder plays a crucial role in many heat transfer 
related problems ranging from heat exchangers, solar heating systems, cooling of electronic 
packages, to cooling of overhead power lines. One of the first studies of convective heat 
transfer from circular cylinders goes back to 1892 when Ayrton and Kilgour investigated the 
thermal emission of thin, long horizontal wires [1]. Several similar experiments followed [2], 
and in 1975 Morgan collected experimental data in a comprehensive review paper [3]. Based 
on the collected data Morgan introduced the correlations between Grashof, Prandtl and 
Nusselt numbers [3]. In other words, he presented relationships between the power of cooling 
in dependence on the material properties and the temperature difference between the cylinder 
and the ambient, which still serve as a basis in operative models for predicting the 
temperature of overhead power lines [4, 5]. There are many other similar studies where 
authors investigate the heat transfer from the heated cylinder due to the natural or forced 
convection under different conditions [2, 6, 7].  
 
Probably the most famous article on the numerical investigation of natural convection was 
published in 1983 by de Vahl Davis [8], who defined and solved a reference solution for 
natural convection of air in a closed rectangular cavity with differentially heated vertical and 
isolated horizontal walls. Many researchers followed his paper and solved proposed 
benchmark case with different numerical techniques [9, 10], gradually establishing high 
confidence in the numerical solution. Similar benchmark case for the natural convection 
around the homogeneously heated cylinder was introduced in 1992 by Demirdžić, et al. [11], 
again researchers responded with different numerical solutions [12].  
 



Although numerical methods such as the Finite Volume Method, Finite Difference Method, or 
the Finite Element Method are typically used for solving natural convection problems, there 
has been also a considerable research done in an alternative meshless solution [13-15], which 
appeared in the seventies with Smoothed Particles Hydrodynamics (SPH) [16]. The SPH is an 
answer for attacking problems, where mesh-based methods fail entirely, e.g. breaking waves, 
however, at the cost of inconsistency due to the combination of Eulerian kernel and 
Lagrangian description of motion. Nevertheless, since the introduction of SPH a myriad of 
different strong and weak form meshless methods appeared [17]. The conceptual difference 
between meshless methods and mesh-based methods is in the treatment of relations between 
nodes. In the mesh-based techniques the nodes need to be structured into a mesh that covers 
the whole computational domain, while the meshless methods do not require any special 
relations between nodes and can be fully defined only through the relative inter nodal 
positions [18]. An immediate consequence of such simplification is greater generality 
regarding the approximation and the position of computational points and much higher 
flexibility in implementation.  
 
In this paper, we present a local meshless solution that is based on Weighted Least Squares 
approximation of a natural convection problem in three scenarios: the de Vahl Davis case, the 
Demirdžić case, and finally the cooling of overhead power line.  
 
The rest of the paper is organized as follows. In section Governing problem the problem is 
introduced in section Meshless solution procedure all the details for implementation of the 
solution procedure are presented, in section Results, the analyses of present study are given, 
and in the last section, paper offers conclusions and guidelines for future work.  

Governing problem 

The physical model for describing natural convection is well-established. The fluid mechanics 
is described with the Naver-Stokes equation, i.e. the Cauchy momentum equation with 
Newtonian stress tensor, and mass continuity, which is coupled with the heat transfer through 
the Boussinesq approximation. The model can be written nicely in the following system of 
partial differential equations   
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with ( ) ref, , , , , , , , , ,p Tu v P T c Tλ r β µv g  and b  standing for velocity, pressure, 
temperature, thermal conductivity, specific heat, gravitational acceleration, density, the 
coefficient of thermal expansion, reference temperature for Boussinesq approximation, 
viscosity and body force, respectively. The natural convection can be characterised by two 
dimensionless numbers 
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referred to as Rayleigh and Prandtl numbers, respectively, where Ω  stands for the domain 
dimension. 

We will consider three cases. First, the de Vahl Davis case to confirm the solution procedure, 
second, the heated cylinder case to demonstrate the flexibility of meshless method regarding 
the geometry, and finally a cooling of the overhead power line by natural convection under 
realistic conditions. The cases differ in geometry, boundary conditions and thermo-physical 
properties. The de Vahl davis case is the most straightforward, since the closed square cavity 
with impermeable no-slip velocity boundary conditions, differentially heated vertical, and 
isolated horizontal walls are considered. The heated cylinder case is a bit more challenging 
due to the irregular geometry introduced by a cylinder in the domain. The last case, the 
cooling of the overhead power line is the most challenging due to realistic conditions and 
presence of velocity Neumann boundary conditions. All three cases are presented in Figure 1. 

 
Figure 1: Geometry and boundary conditions for de Vahl Davis case (left), Demirdžić 

case (middle), and cooling of the overhead power line (right). 

Meshless solution procedure 

Spatial discretization 

Spatial discretization is based on a local approximation of a considered field over the 
overlapping local support domains, i.e. in each node an approximation over a small local sub-
set of neighbouring n  nodes among all nodes N 
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with ( ), , , ,x ym p pα b p  standing for the number of basis functions, approximation 
coefficients, basis functions and the position vector, respectively, is used. Using the same 
number of basis functions as a number of support domain, i.e. n m= , the determination of 
coefficients α  simplifies to solving a system of n  linear equations that result from expressing 
eq. (7) in each support node.  
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jp  are positions of support nodes and u  are values of the considered field in the support 
positions. The above system can be written in a matrix form as  

 =u Bα ,  (9) 

where B  stands for a coefficient matrix with elements ( )ji i jB b= p . Using a higher number 
of support nodes than the number of basis functions, i.e. n m> , a Weighted Least Squares 
(WLS) approximation is used to solve the over-determined problem. In other words a norm 
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is minimized, where W  is a diagonal matrix with elements ( )jj jW W= p  with 
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where σ  stands for weight parameter, 0p  for the centre of support domain  and minp  for the 
distance to the first support domain node. The solution can be written in matrix form as  
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where ( )0.5 +
W B  stand for a Moore–Penrose pseudo inverse. By explicit expression of α  into 

(8) an equation  
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is obtained, where χ  stand for the shape function. Now, we can apply partial differential 
operator, which is our goal, on the trial function,  

 ( ) ( )ˆ Lu L=p χ p u ,  (14) 

where L stands for a general differential operator. In this paper, we deal with a Navier-Stokes 
equation and therefore only shape functions for Laplace operator and first derivatives are 
needed, which are pre-computed and stored  

 ( ) ( ) ( )( )T 0.5 0.5 x

x
+∂ ∂

=
∂

χ p b p W p B W ,  (15) 

 ( ) ( ) ( )( )T 0.5 0.5 y

y
+∂ ∂

=
∂

χ p b p W p B W ,  (16) 

 ( ) ( ) ( )( )2 T2 0.5 0.5+∇ = ∇χ p b p W p B W ,  (17) 

The presented formulation is convenient for implementation since most of the complex 
operations, i.e. finding support nodes and building shape functions, are performed only when 
nodal topology changes. In the main simulation, the pre-computed shape functions are then 
convoluted with the vector of field values in the support to evaluate the desired operator. We 
will refer to this approach as to the Meshless Local Strong Form Method (MLSM) in further 
discussions.  

Positioning of computational nodes 

The presented MLSM approach can be understood as a generalisation of FDM. Despite its 
simplicity it offers many possibilities for treating challenging cases, e.g. nodal adaptivity to 
address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in 



physical field. Furthermore, the stability versus computation complexity and accuracy can be 
regulated merely by changing a number of support nodes, etc. In this paper, we will exploit 
the generality to solve the problem in an irregular domain. Although the above formulation 
does not need an exact mesh, it is expected that using regularly distributed nodes lead to more 
accurate and stable results [18-20]. Therefore, despite seeming robustness of meshless 
methods regarding the nodal distribution, a certain effort has to be invested into the 
positioning of the nodes [21], with the ultimate goal to maximize stability and accuracy and 
retain the generality of the meshless principle. A possible approach to achieve that is to 
distribute nodes with a straightforward algorithm based on Poisson Disc Sampling. Such 
algorithms have been already used in a meshless context [22] and will also be used here. The 
general idea is to put a seed node randomly within the domain. Then, add new nodes on a 
circle with centre in the seed node and radius supplied as a desired nodal density parameter rδ  
where  the value of rδ  represents the desired distance between nodes. In the next iteration 
one of the newly added nodes is selected as the new seed node and the procedure repeats. 
Example of nodes positioned within the domain that will be tackled in numerical examples 
with the Poisson Disk Sampling algorithm is depicted in Figure 2. 

 
Figure 2: Nodes positioned with a Posisson Disk Sampling algorithm. 

 

Solution procedure 

Each time step begins with computing new intermediate velocity from the equation (2) 
without pressure term with explicit Euler’s method. Since the intermediate velocity does not 
satisfy equation (1), a Poisson pressure correction equation  
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t
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∆
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where t∆  stand for time step and iterv  for intermediate velocity, is solved with following 
boundary condition 
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where n̂  stands for the outside unit normal vector.  The pressure Poisson equation is, at given 
boundary conditions, defined only up to a constant and to avoid instabilities a unique solution 
is enforced with an additional condition, also referred to as a regularization 
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Once the pressure correction is known, a velocity is corrected accordingly 
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Finally, the equation (3) is solved, again with Euler method.  

Results 

De Vahl Davis benchmark case 

De Vahl Davis investigated natural convection of air with Pr 0.71=  up to 6Ra=10  in his 
original paper. However, more intense solutions followed with the most volatile case of 

8Ra=10 . Here, we focus only on the 8Ra=10 case. Results are presented in terms of 
temperature and velocity magnitude contour plots in Figure 3. A more quantitative result is 
shown in Figure 4, where a hot side Nusselt number and maximal vertical cross-section 
velocity with respect to the number of nodes used are compared against reference solutions 
[23] (a), [9] (b) and [10] (c). It can be clearly seen that the solutions of MLSM approach 
converge towards values that are within the dispersion of the reference solutions and we can 
conclude that the presented solution procedure can handle intense natural convection cases on 
regular nodal distributions.  

 
Figure 3: Temperature (left) and velocity maginute (right) contour plots for de Vahl 

Davis case at Ra=108. 

 
Figure 4:  Average hot side Nussulet number (left) and maximal vertical velocity (right) 

with respect to the number of used nodes N  for 8Ra 10=  case. 



Heated cylinder case benchmark case 

In a next case, the natural convection from a cylinder whose wall is maintained at a constant 
temperature HT , enclosed by a square duct with vertical walls kept at constant temperature, 
and horizontal walls assumed adiabatic, is considered. The cylinder centre is displaced from 
the duct centre vertically for 10%, and its radius is 20% of domain height. The temperature 
and velocity magnitude contour plots computed by MLSM approach are presented in Figure 
5. Furthermore, in Figure 6 MLSM solution is compared against reference data [11] in terms 
of isotherms and cold side Nusselt number. We can observe that the MLSM solution agrees 
well with the data provided by Demirdžić, et al. 

 
Figure 5: Temperature (left) and velocity maginute (right) contour plots for Demirdžić 

case. 

 
Figure 6: Comparison between MLSM solution and data from [11] in terms of  

isotherms (left) and cold side Nusselt number (right). 

Cooling of overhead power line case 

In the last numerical example, we examine a cooling of the overhead power line by natural 
convection.  The problem is very similar to the previous one, with the main difference in a top 
boundary condition, where instead of confined cavity an open domain is assumed. Besides, 
the thermo-physical properties of real materials are considered and not dimensionless 
characterisation as in previous two examples. The power line 490-AL1/64-ST1A with radius 
1.33 cm is positioned in the centre of in 5x5 cm square domain, and the air is modelled with 
following properties: 31.29kg/mρ = , 1005J/kgKpc = , 0.00367β = , thermal conductivity 
modelled as 



 2 5 8 22.368 10 7.23 10 2.76 0 W3 1
mKa T Tλ − − −  = ⋅ + ⋅ − ⋅   

, (22) 

and viscosity modelled as 

 ( ) [ ]2 5 2 617.239 4.635 10 2.03 10 10 Pa sT Tµ − − −= + ⋅ − ⋅ ⋅ . (23) 

First, the temperature and velocity magnitude contour plots for 0 CCT °=  80 CHT °=  are 
presented in Figure 7. In a next analysis (Figure 8) we compare the power of convective 
cooling computed by presented MLSM solution procedure against two leading standards, 
namely CIGRE [4] and IEEE [5]. Although the agreement is not perfect, we are satisfied with 
the results. It is essential to understand that CIGRE and IEEE computations rely only on 
empirical relations, while the MLSM solution uses solely physical model and thermo-physical 
properties of air. 

 
Figure 7: Temperature (left) and velocity maginute (right) contour plots for cooling of 

overhead power line case at skin temperature 80 C° . 

 
Figure 8: Power of convective cooling with respect to the difference between the skin 

temperature and ambiental temperature ( H CT T T∆ = − ) . 



Conclusions 

In this paper, we demonstrated the usability of the meshless method in solving the natural 
convection from a heated cylinder. First, we established some confidence in the solution 
procedure by solving the standard de Vahl Davis case on the regular nodal distributions. Next, 
we attacked a bit more complicated case of natural convection in the irregular domain. As for 
the last numerical example, we demonstrated the simulation of cooling of the overhead power 
line by natural convection.  
 
In all presented cases the results computed with MLSM are in good agreement with the 
reference data. In the future work we would like to present also a coordinate free 
implementation of MLSM and compare its performance with more established numerical 
libraries. 
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