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Abstract

Mathematical model has been used extensively in solving engineering problems with singular-

ity. This paper introduces a mesh-free numerical scheme for solving problems with boundary

singularity. The solution of the governing equation is approximated by a class of mesh-free

radial basis functions. The proposed radial basis function is a continuously differentiable, pos-

itive definite and integrable function, it can easily be used to solve higher order of differential

equations. In the vicinity of the singular point, we use a series to approximate the solution.

Then domain decomposition is used to blend the two solutions together.
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Introduction

The behaviour of many fatigue and fracture mechanics can be modelled as problems with

boundary singularity. Studies of boundary singularity problems can be traced back to Motz

[1] in 1946. The author adopted the classical finite difference scheme together with the re-

laxation method to overcome the discontinuity occurring from the crack tip over the boundary

interface. The solution to the Motz’s problem is singular at the origin and is often used by many

researchers as reference example for testing numerical methods. The Motz’s problem has the

form ∇2u = −f , where f is a specific function. In the vicinity of the singular point, the singu-

lar solutions u can be written as u = ûh + up, where ûh is the homogeneous solution and up is

the particular solution. For the two-dimensional Laplace equations, the homogeneous solution

ûh in the vincinity of the singular points can be found in [2] and is given by the asymtotic series

of the form

uh =
∞∑
i=1

Air
αifi (θ) , r, θ ∈ Ω

over a connected region Ω, where Ai are the unknown expansion coefficients to be determined.

These coefficients are termed as generalized flux intensity factors (GFIFs). The polar coordi-

nates (r, θ) centred at the singular point and (αi, fi) associated with eigen-pairs, where αi is the

power arranged in ascending order as defined by αi ≤ αi+1.

Yosibash et al [3, 4] in 1997 developed a mesh-dependent method derived from the least-square

finite difference scheme for approximating solutions in the vicinity of the singular point and a

conventional finite difference scheme was then applied to the remaining part of the given prob-

lem. Another comprehensive study on crack tip analysis of singularity problems was carried

out by Li [5] using conformal mappings and several types of combined methods.

Recently Rao et al [6] developed an element-free Galerkin method (EFGM) for fracture analysis

of cracks. However, the mathematical formulation is rather complicated and consists of three

components: (i) moving least-squares approximation; (ii) choosing the weight functions and

(iii) variational formulation and discretization. This paper introduces an efficient mesh-free

numerical scheme which is derived from a class of radial basis functions (RBF). The RBF

method possess a simple mathematical formulation and a truly mesh free property, which does



not require a global mesh for supporting computations. In addition, RBF are continuously

differentiable and integrable, and is insensitive to dimension d. These features make it suitable

for solving problems in higher dimensions with unsmooth boundary conditions.

Meshless Radial Basis Function Method for Solving PDEs

This paper discusses a mesh free approximation scheme based on the radial basis function for

solving the problems with complex boundary conditions and singularities. The RBF methods

have been found to have major advantages over the classical finite element or finite difference

methods. One of these advantages is that it does not require the construction of an underlying

mesh. This allows it to handle complicated boundaries with concave surface more efficiently.

The basic concept of the RBF method is described below.

The RBFs were originally devised for scattered geographical data interpolation by Hardy [7],

who introduced a class of functions called multiquadric functions in the early 1970’s. The basic

idea of the RBF interpolation is to approximate an unknown function, {f(x) : x ∈ Rd} by an

interpolant, say {f̂(x) : x ∈ Rd} at a set of N distinct data points X = {xj : j = 1, 2, · · · , N}.
Let Φ : R+ → R be a set of positive definite basis functions defined by

Φ = {φ (‖x− xj‖)} , x,xj ∈ Rd

on a fixed space Rd. Here φ(‖x− xj‖) refers to a typical type of RBFs that is solely dependent

on the Euclidean distance between x and a fixed point xj ∈ Rd. The RBF interpolant to the

approximated solution of f(x) can be expressed as a finite linear combination of φ (‖x− xj‖) :

f̂(x) =
N∑
j=1

αjφ(‖x− xj‖), x,xj ∈ Rd, (1)

where {αj : j = 1, 2, · · · , N} are the unknown coefficients, which can be determined by setting

the following condition:

f̂(xi) = f(xi), i = 1, 2, . . . , N. (2)

This yields a system of linear equations, which can be expressed in the following matrix form

[Aφ] ~α =
−→
F , (3)

where [Aφ] = [φ(xi − xj)]1≤i,j≤N is an N × N matrix, ~α = [α1, α2, . . . , αN ]T and
−→
F =

[f(x1), f(x2), . . . , f(xN)]T are N × 1 column matrices. Provided that the chosen radial basis

function φ ∈ Rd is positive definite, the matrix [Aφ] is non-singular so the linear system (3)

has a unique solution. The unknown coefficients {αj} can be obtained uniquely by solving the

linear system (3).

Although the above-mentioned condition guarantees the uniqueness of some particular RBF

interpolants, not all RBFs can satisfy the conditions of positive definiteness. A general theory on

the existence, uniqueness and convergence of the RBFs interpolation was proven by Micchelli

[8] in 1986. In accordance with the Micchelli’s result, Powell [9], Madych et al [10] and Wu et

al [11] extended the study and deduced some important non-singularity properties of the RBF

interpolation. Their analysis concluded that the RBF interpolation method possess a super-

convergent property and truly mesh-free algorithm. The RBF method has been demonstrated

to be highly flexible for the approximation of high spatial dimensional problems. The accuracy

of the RBF interpolant has an order of convergence O
(
hd+1

)
, where h is the density of the



collocation points and d is the spatial dimension.

Many of RBF ideas can be easily generalized to the case where the basis function φ is only

conditionally positive definite [12] in which one needs to add a finite number of polynomial

of suitable degree to the interpolant f̂(x) in equation (1) and impose additional conditions to

accomplish its uniqueness. Let Qd
m(x) ∈ Πm where Πm is a set of d-variate polynomials of

degree less than m. The RBF interpolant ŷ(x) is now written as

f̂(x) =

N∑
j=1

αjφ(||x− xj||) +Qd
m(x), x ∈ Rd, 0 < m < N, (4)

where

Qd
m(x) =

L∑
k=1

bkpk(x), L =
(m+ d− 1)!

(m− 1)!d!
.

The terms {pk(x)| k = 1, 2, · · · , L} are the basis of Qd
m(x). The approximation function of (4)

has a unique solution if the system satisfies the conditions (2) and the following constraints

N∑
j=1

αjpk(xj) = 0, k = 1, 2, · · · , L. (5)

Note that, in this case, the matrix [Aφ] is enlarged to order (N + L)× (N + L) , and −→α and
−→
Y

are (N + L)× 1 column matrices. Although there are many possible radial basis functions, the

followings are the most popular choices:

φ(rj) =



r3j Cubic (a)
(r2j ) log rj, Thin plate splines in R2 (b)

e−σr
2
j , Gaussian, σ > 0 (c)

(r2j + δ2)
1
2 , Multiquadric, δ ∈ R (d)

(r2j + δ2)−
1
2 , Reciprocal multiquadric, δ ∈ R (e)

(6)

where {rj = ‖x− xj‖ | j = 1, 2, · · · , N} is the Euclidean distance between x and xj ∈ Rd
and δ2 ∈ R is the shape parameter of the multiquadric functions in (d) & (e), which is used

to control the fitting of a smooth surface to the data. These functions are globally supported

and will generate a system of equations with a full matrix. However, as shown by Madych and

Nelson [13], the multiquadric function (MQ-RBF) can be exponentially convergent so we can

often use a relatively small number of basis elements to achieve a computational efficiency. As

a consequence, the MQ-RBF method has been the most commonly used has been radial basis

function and progressively refined recently by Kansa [14] and widely used by Hon et al [15]

and Wong et al [16] to solve scientific and engineering problems. Their results from solving

elliptic, parabolic and hyperbolic problems were shown to be better than other well established

approximation methods.

The Algorithm

To study the performance of the proposed method, we apply it to solve a classical re-entrant

corner problem. Re-entrant corner problem possesses a typical nature of singularity of solution,

the singular point occurs at the origin forming an angle of γπ which would result discontinu-

ity. The model involves the Laplace equation satisfying some mixed Neumann and Dirichlet



Figure 1: A region with an re-antrance angle.

boundary conditions. The re-entrant corner with the L-shaped domain as depicted in Figure (1),

is a special case in which, γ = 3
2
π at the origin.

The governing equation is:

∇2f = 0 (7)

and the boundary conditions are dipicted in the figure. We then divide the region into three

as shown in the figure. Ω1 is the region that is far away from the corner and Ω3 is the region

close to the the corner. Ω2 is the region between Ω1 and Ω3. We are going to use a radial basis

function to approximate the solution in Ω1 and Ω2 and the series solution to approximate the

solution in Ω2 and Ω3.

Let X1 = {xi|i = 1, .., N1} be nodes in Ω1, X2 = {xi|i = N1 + 1, .., N1 +N2} be nodes on the

boundary Γ in the figure, X3 = {xi|i = N1 + N2 + 1, .., N1 + N2 + N3} be nodes in Ω2. We

now use these N(= N1 +N2 +N3) nodes in forming the approximation of the solution:

frbf (x) =
N∑
j=1

ajφ(||x− xj||) +
M∑
j=1

bjpj(x), x ∈ Rd, 0 < M < N.

For solution close to the re-entrancc corner, we would approximate the solution using the series

solution:

fseries(r, θ) =
P∑
i=1

cir
2
3
(i−1) cos

[
2

3
(i− 1) θ

]
, − 3π/2 ≤ θ ≤ 0. (8)



For each of the node in X1, we would set up an equation according to (7), so we have N1
equations for them: [

A B
] [ a

b

]
= [0] , (9)

where A is an N1 × N matrix, B is an N1 ×M matrix, a is an N × 1 matrix, b is an M × 1
matrix, and

{A}ij = ∇2φ(||x− xj||)
∣∣
x=xi

,

{B}ij = ∇2pj(x)
∣∣
x=xi

,

[a] = {a1, ..., aN}T ,
[b] = {b1, ..., bM}T .

Let the boundary condition be specified as:

Bou(f) = v(x), for x ∈ Γ, (10)

where Bou is the boundary condition operator and v(x) is the prescribed boundary condition.

So for each node in X2, we would set up an equation according to (10):

[
C D

] [ a
b

]
= [d] , (11)

where C is an N2 ×N matrix, D is an N2 ×M matrix, and

{C}ij = bou(φ(||x− xj||))|x=xi+N1 ,
{D}ij = bou(pi(x))|x=xi+N1 ,

[d] = {v(x1+N1), ..., v(xN2+N1)}T .

For nodes in X3 we would we would set up an equation so that the radial basis solution equals

to that of the series solution:

[
E F G

]  a
b
c

 = [0], (12)

where E is an N3 ×N matrix, F is an N3 ×M matrix, E is an N3 × P matrix, and

{E}ij = ∇2φ(||x− xj||)
∣∣
x=xi+N1+N2

,

{F}ij = ∇2pj(x)
∣∣
x=xi+N1+N2

,

{G}ij = −r 23 (j−1) cos

[
2

3
(j − 1) θ

]∣∣∣∣
r=ri+N1+N2 ,θ=θi+N1+N2

,

[c] = {c1, ...., cP}.

Then, we select additional nodes X4 = {xN1+N2+N3+1, ....xN1+N2+N3+N4} in Ω2 so that N4 >



P , we would then use the least square method to set up the last P equations. First we find the

sum of square of differences between the radial basis function and the series solution at nodes

in X4:

S =

N4∑
j=1

(frbf (x)− fseries(r, θ))2 .

Then, we would set up one equation for each of

∂S

∂ci
= 0, for i = 1, ..., P. (13)

In matrix form, (13) is:

[
KTH KTJ KTK

]  a
b
c

 = [0], (14)

where H is an N4 ×N matrix, J is an N4 ×N matrix, K is an N4 × P matrix, and

{H}ij = ∇2φ(||x− xj||)
∣∣
x=xi+N1+N2+N3

,

{J}ij = ∇2pj(x)
∣∣
x=xi+N1+N2+N3

,

{K}ij = −r 23 (j−1) cos

[
2

3
(j − 1) θ

]∣∣∣∣
r=ri+N1+N2+N3 ,θ=θi+N1+N2+N3

.

We can then combine all the equations (9), (11), (12) and (14), we have the following system

LP = Q, (15)

where

L =


A B 0
C D 0
E F G

KTH KTJ KTK

 ,P =

 a
b
c

 , and Q =


0
d
0
0

 .
The solution of P from (15) can be obtained by

P = L−1Q.

Numerical Results

The numerical results from the proposed scheme are compared with that obtained by Yosibash

[3], who produced the value of Ai by using finite element method. The computational results

for u′s were generated 342 collocation points over the domain Ωu. Table 1 analyses the first

four intensity factors c1, c2, c3 and c4 of the series expression (8).



Table 1

Intensity factors Results from Yosibash [3] Results from MQ-RBF Method

c1 0.6667 0.6676
c2 −0.4520 −0.4514
c3 −0.2149 −0.2139
c4 0.0000 4.1516× 10−5

The maximum relative errors of the approximate results is 5.30E-02 when comparing to the

global solution obtained from series expansion. The small magnitude of relative errors reflects

the proposed radial basis function method to produce a reasonable degree of accuracy. Figure

2 shows the predicted results over Ωu of the underlying problem. The smooth distribution

indicates a good performance of using the RBF method in the given model.

Figure 2: Predicted result of u(x, y) over the L-sharp region.

From the numerical experience, we observed that the results of MQ-RBF method appear to

have a same order of magnitude as those results achieved by Yosibash [3], where the authors

reported that their first four coefficients are accurate up to the shown 4 decimal places. Our

results indicates that the RBF method combined with overlapping domain decomposition is not

only an efficiency scheme, it also produced a high level of accurate approximation. The present

scheme has been shown to be very effective to overcome the shortcoming of RBF method as

mentioned above.

Conclusions

In summary, the MQ-RBF method used in this paper is type of globally supported functions.

The disadvantage of such global RBF is that the result in a full matrix which is computation-

ally expensive and may cause instability if the matrix is ill-conditioned, which has seriously

hindered its ability from solving large scale problem with a large number of nodal points. This

shortcoming leads to the studies of domain decomposition scheme. The combination of RBF

scheme and domain decomposition has been verified to be a very effective technique to over-

come this shortcoming of RBF method. The overlapping domain decomposition scheme used

in this paper is specially designed to overcome the discontinuity of the solution near the singular

point. The special region which covers the singular point, is small and Ω12 is common region

to both Ω1 and Ω2.



On the other hand, the RBF method possesses a number of attractive properties. The greatest

attractive properties are the mesh free configuration and the simple mathematical formulation,

these properties make the RBF method more flexible in coupling with other remedial numerical

schemes. In this paper, we would easily incorporate the domain decomposition and least square

approximation scheme with RBF. We showed that the least square approximation with MQ-RBF

lead to a small numerical discrepancy in the numerical experiments.

We have illustrated the efficiency of the proposed scheme. However, the scheme can be applied

to any elliptic problems with boundary singularity, provided that the solution in the vicinity

of the singular point in the form of asymtotic series expansion has been known explicitly. In

addition, since the RBF method is insensitive to the dimension of the problem, the scheme can

be used to solve higher dimensional problems.
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