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Abstract 
In the computation of unsteady compressible fluid dynamics, unnecessary numerical 
oscillations can appear in the domain near the sharp discontinuities such as shock or slip line, 
especially for the high-order spatial accuracy. The WENO(weighted essentially no oscillation) 
method can delete the oscillation of numerical dissipation error, and so can the central 
difference methods with artificial viscosity, which  are very economical for the computational 
cost. The characteristics of conventional WENO and central difference schemes are compared 
with each other for a benchmark problem in this study where LF(Lax-Friedrichs) and Garnier 
filters are used with ACM(Artificial Compression Method) switch acting near the sharp-
gradient discontinuities. 
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Introduction 

Originally, the discontinuity of signal in the physical property can produce improper 
oscillation due to a loss of information in the sampling of continuous analog data, which can 
be analyzed as the truncation of high-order Fourier series terms even in the various 
experiments. In the similar principle, the truncation error in Taylor series expansion generates 
numerical oscillation for the finite difference approximation. For the spatial accuracy more 
than the second order, a dissipation error is inevitable in the central difference schemes.  In 
the WENO schemes[1] developed by Jiang and Shu, the smooth indicator acts as a sensor for 
the gradient, giving a filtered solution like upwind or TVD(total variation diminishing) 
methods. However, this kind of schemes sacrifices an order of spatial accuracy that is an odd 
number: for example, three, five, and seven, etc. The central difference schemes with ACM 
sensors[2] developed by Yee et al. has shown a possibility to develop a filtered method with 
filters, and various filter models are proposed such as Garnier et al.[3] and Kim and Kwon [4]. 
Generally, so far the central-difference based methods show better result in the smooth region 
like vortex and slip layer, but the numerical oscillation can be very critical in the 
discontinuous waves. Therefore, systematic approach for the selection of schemes and filters 
is required in the development of numerical codes. In this study, we compared characteristics 
and performances related with three numerical schemes for the numerical simulation of 
unsteady compressible flow: WENO, central difference with Garnier filter, and central 
difference with LF filter.  
 
 



Numerical Schemes 

In this section, three numerical methods are explained, and the Euler equations is expressed 
for the conservative dependent variable vector : 
 

            (1) 
 
where the flux is , and the equation of state is  

. 
Eq. (1) is semi-discretized in space with the third-order Runge-Kutta algorithm for 

temporal integration[1]: 
 

       (2) 

 
where the time step  is restricted by CFL(Courant-Friedrichs-Lewy) condition. The 
numerical flux in Eq. (2) is computed with WENO and central difference methods. 
 

WENO Scheme 

The CW(characteristic-wise)-WENO method consists of the following algorithm[1]: 
1. Projection to the characteristic field 
2. Lax-Friedrichs flux splitting 
3. WENO reconstruction 
4. Transform back into physical projection 

 
The left eigen-vector matrix from the Roe-averaged Jacobian matrix at the right face of the 

computational cell[5],  is used for the projection to the characteristics field. 

 
     (3) 

          (4) 

 
Using Lax-Friedrichs flux splitting, the maximum eigen-value is calculated for the region of 
influence in the hyperbolic partial differential equation system, Eq. (1). The WENO 
interpolation applies the convex sum of weighted average in the numerical stencil.  The 
weights are coefficients expressed as a function of smooth indicators and optimal coefficients 
for the finite difference.  The weighted combination of ENO flux results in odd numbered 
order of spatial accuracy.  In the last process, Eqs. (3-4) are transformed back to the primitive 
variables.  The scheme is implemented as a fifth order of spatial accuracy in the present study. 
 

Central Difference Schemes 

The central difference flux is applied in Eq. (2), and it is filtered at the last procedure in each 
time marching: 
 

                (5) 
     



where  is the spatial operator applying a low numerical viscosity filter, which can be 
controlled selectively for the large-gradient region with ACM switch function[2]. 
   The numerical viscosity that is very similar with a flux in Eq. (5),  can be modelled with 
various methods. Garnier filter[3] subtracts the central difference flux component,  from the 
WENO characteristic flux, which is similar with upwind method. 
 
            (6) 

 

Kim and Kwon[4] designed a new filter based on the Lax-Friedrichs numerical viscosity 
using characteristic-wise WENO method as a filter. 
 
          (7) 

 
where  denotes the maximum eigen values. 
 

Convergence Test 

Eq. (1) under an initial condition,  and is solved for the 
convergence test with three methods described in the previous section.  Errors and orders are 
given in Table 1 for the number of cells,  in the domain of . The order of accuracy 
satisfies fifth order at =160 for all schemes. 
 

Table 1. Result of convergence test 
Numerical 

Method N  error  error  order  order 

WENO5 

10 1.222E-02 1.757E-02 - - 
20 6.495E-04 1.002E-03 4.23 4.13 
40 2.075E-05 3.735E-05 4.97 4.75 
80 6.479E-07 1.198E-06 5.00 4.96 

160 2.017E-08 3.640E-08 5.01 5.05 

Central 
Difference 
with 
Garnier 
Filter 

10 3.915E-03 5.377E-03 - - 
20 1.060E-04 1.657E-04 5.21 5.02 
40 2.500E-06 5.387E-06 5.41 4.94 
80 3.948E-08 1.338E-07 5.98 5.33 

160 1.151E-09 3.612E-09 5.10 5.21 

Central 
Difference 
with 
LF 
Filter 

10 3.915E-03 5.377E-03 - - 
20 3.072E-04 5.085E-04 3.67 3.40 
40 9.784E-06 1.955E-05 4.97 4.70 
80 3.058E-07 5.760E-07 5.00 5.09 

160 8.942E-09 1.504E-08 5.10 5.26 
 
 



 

 
Figure 1. Comparison of CPU times 

 

Computational Cost 

The computational cost for the same problem with the same number of grids is compared in 
Fig. 1, which gives data from various schemes. The minimum time cost is achieved from the 
central difference with Garnier filter.  It shows that the LF filter consumes only 1.7% 
computational time more than the minimum, but, however, the characteristic-wise WENO 
consumes about 6.8 times of time because it must perform the matrix inversion to transform 
back from Eq. (3-4).  The time cost of WENO increases about 6.8 times because it should 
perform the matrix inversion at each intermediate Runge-Kutta time step, and the 
performance of LF filter is almost similar with Garnier model. 
 

Summary 

Three numerical methods are implemented for the computation of unsteady compressible 
flow: characteristic-wise WENO and central difference method with Garnier and LF filters. 
From the convergence test, all of them achieved the fifth-order spatial accuracy. The Garnier 
filter shows the best performance in the convergence test and the CPU cost. However, the test 
for more complicated problem related with shock and discontinuity waves can differ from the 
present simple benchmark problem. 
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