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WELCOME MESSAGE 
 
 
Dear Colleagues and Friends, 
 
It is our great pleasure to welcome you to the 11th International Conference on Computational Methods 
(ICCM2020) which will be held virtually through Zoom from August 9th to 12th, 2020.  Due to the 
Covid-19 pandemic, this year’s conference becomes the first ICCM virtual conference since its 
establishment. Rather than viewing this unprecedented change caused by the pandemic as an obstacle, we, 
as part of the scientific community, take it as an opportunity to reinforce our commitment to always 
staying adaptable in order to continuously demonstrate our meaningful and high-quality research work 
and exchanging our scientific ideas in our community.  

Since its establishment, the ICCMs have been an international forum for academic and industrial 
researchers to exchange ideas on recent advances in areas related to computational methods, numerical 
modelling & simulation, and machine learning techniques. It will offer presentations on a wide range of 
topics to facilitate the inter-disciplinary exchange of ideas in science, engineering and related disciplines, 
and foster various types of academic collaborations. Publications, which have been peer-reviewed and 
accepted, will be showcased through oral presentations at the conference. All presentations, including 
abstracts and papers, will be published online at our website, as usual. 

The ICCM conference series were originated in Singapore in 2004, followed by ICCM2007 in Hiroshima, 
Japan; ICCM2010 in Zhangiajie, China; ICCM2012 in Gold Coast, Australia; ICCM2014 at Cambridge, 
England; ICCM2015 at Auckland, New Zealand; ICCM2016 at Berkeley, CA, USA; ICCM2017 at 
Guilin, China; ICCM2018 at Rome, Italy; ICCM2019 at Singapore, and this on the Cloud. 

We would like to express our gratitude to all members of the Organizing Committee, the International 
Scientific Committee, and other supporters who have been working relentlessly in order to make this 
conference possible. Also, we would like to express our sincere appreciation to international reviewers for 
their diligent work on reviewing the submitted abstracts and papers.  

Lastly, we would like to thank you for your contributions to the ICCM2020 conferences. We are excited 
to welcome you to this special virtual conference and looking forward to your continued engagement for 
future ICCM conferences.  

 

 
Professor Nguyen-Xuan Hung 
Conference Chairman 
Director, CIRTECH Institute, HUTECH University of Technology 
President, Vietnam Association of Computational Mechanics 
Vietnam 

Professor Gui-Rong Liu 

Honorary Conference Chairman 
University of Cincinnati 

USA 
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Abstract 

There has been a high demand for fire prevention in large warehouses and workshops for 

many years. It is important to localise inconspicuous potential fire, which is called 

smouldering, timely and precisely in order to prevent significant damage. Different from a 

flaming fire source, smouldering source emits less smoke and sustains little heat so it can be 

challenging for smoke detectors and heat detectors to detect. Recent research shows that 

unmanned robots that are equipped with plume-tracing algorithms are capable of sensing 

chemical emission and localise its source. Under the condition that gas and smoke may also 

form plume, it is promising to apply plume-tracing robots in the localisation of smouldering 

source. In this paper, a novel approach to localise early stage fire using plume-tracing robot is 

presented. The robot is tested in a virtual warehouse environment created by computational 

fluid dynamics (CFD) and proved to be capable of detecting and localising the smouldering 

source in a warehouse environment successfully.  

Keywords: Computational fluid dynamics; Robotics; Fire prevention; Plume-tracing 

algorithms 

Introduction 

To minimise the damage caused by industrial fires, it is best to detect and localise the fires at 

an early stage. In this circumstance, this paper proposes a novel approach to detecting and 

localising fires at an early stage, particularly the slow smouldering fires, by using plume-

tracing methods. The slow smouldering fires are dangerous and can cause significant damage 

if growing into flaming fires. Smouldering is often characterised by low-temperature and 

flameless, which make it difficult to detect by using convention fire prevention equipment 

such as heat detectors and smoke detectors [1]-[3]. Often locating inside the cargo, 

smouldering sources can also be difficult to capture by using cameras. Moreover, smouldering 

sources usually emit a variety of gases and this provides the potential for detection and 

localisation of smouldering source by using mobile robots that are equipped with gas sensors. 

In this case, the expectation is that the plume-tracing robots will detect and localise 

smouldering sources by tracking in the plume. 

Analysis of gases from smouldering sources shows that smouldering sources emit a higher 

level of carbon monoxide concentration than that of a flaming combustion [2][3]. Unlike 

carbon dioxide, the concentration of carbon monoxide in the air is very low, therefore being 

an ideal target gas species for plume-tracing proposes. In this paper, carbon monoxide is 

selected as the target gas species, and a virtual robot equipped with carbon monoxide sensors 

and wind sensors is adopted. A bio-inspired plume-tracing search algorithm [4] is introduced 

to navigate the robot to approach the smouldering source by continuously moving upwind the 

plume. People found that chemicals like pheromone may influence the moments of insects 

like moths [5]. A great deal of investigations on plume-tracing behaviours have been carried 

out and then the plume-tracing algorithms were summarised and proposed [5][6]. Unmanned 
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robots equipped with plume-tracing algorithms are widely used in the detection and 

localisation of the sources of gas leakage, explosive and fires. Based on the simplest 

implementation of plume–tracing algorithms, called ‘surge anemotaxis’, an algorithm that 

makes robot surge upwind when maintaining in the plume, novel localisation and framework 

have been added to improve the searching efficiency. In this case study, the variable step size 

mechanism [4] and 3D simulation framework [7] are combined to provide a novel approach to 

detecting and localising a smouldering fire at its early stage in a warehouse environment. The 

plume-tracing search algorithm is tested in a virtual environment created by CFD, which 

already proved to be a good simulation tool and used to simulate various indoor and outdoor 

gas propagation [4][7][8].     

Methodology 

Plume-tracing Algorithm 

The plume-tracing algorithm used in this paper was firstly investigated by [4] and proved to 

be a good tool for detecting and localising H2S leakage sources in an office-like indoor 

environment. Figure 1 shows how this plume-tracing algorithm works. The surge anemotaxis 

plume-tracing algorithm, which navigates the robot to surge upwind every step, has been 

optimised in the current study. Unlike the normal surge anemotaxis investigated in [9][10] 

with the constant step size, for the novel iSCA-taxis [4] with variable step sizes, the robot will 

increase step sizes when the concentration of the target chemical decreases. Also, the robot 

will decrease the step size when the local gas concentration increases. This mechanism helps 

the robot move faster by surging a longer distance when species concentration is low, 

therefore reducing the searching time and improving the searching efficiency. A simple 

equation to determine the surge distance is adopted as: 

    XY=C     (1) 

where X is the chemical concentration and Y is the normal surge distance. C is constant and 

can be adjusted case by case. 

 
Figure 1: Mechanism of a typical plume-tracing process 

ICCM2020, 9th -12th August 2020

2 



Simulation Setup 

CFD is used to simulate the airflows in a warehouse with a smouldering source inside. The 

commercial CFD software, ANSYS Fluent 19.2, is used to simulate the gas concentration 

distribution as well as the wind fields in the warehouse by using the k-ω SST model. The 

combination of CFD-generated data and Matlab search algorithms has been validated in 

[4][7][8], confirming that testing the robot in virtual environment is applicable. The data 

generated by CFD including gas concentration, wind fields and geometry information are 

imported to the Matlab for testing and training the robot. A general view of the warehouse 

geometry is shown in Figure 2, and the CFD-predicted wind field and gas concentration 

distribution of carbon monoxide at 0.3m high is shown in Figure 3. The chemical 

concentration legend is logarithmic to present a clearer distribution. The warehouse is 100 

metres long in the X direction and 60 metres long of the long margin in the Y direction (see 

Figure 2). The length of the wall with air inlet windows is 40m and the height is 6m, while the 

height of the part with reserved load area is 8m. A smouldering source is maintained on a 

stack of cargo and is modelled as a small surface continuously emitting carbon monoxide and 

carbon dioxide at the temperature of about 300°C. A steady state model is used with an air 

inlet speed of 1m/s at four windows and one small door as shown in Figure 2. The large door 

at the other side of the warehouse is set as a pressure outlet boundary (see Figure 2). The 

initial position of the robot is near the air outlet door. 

 
Figure 2: The geometry model of the warehouse 

3D Simulation Framework Consisting of Matlab and CFD 

In addition to the iSCA-taxis, a 3D simulation framework combining Matlab and CFD 

together, which was firstly performed by [7], is applied. For the 3D simulation framework, the 

CFD data at different horizontal levels (for example in this paper, 0.3 m, 0.5 m, 1.0 m and 1.5 

m above the ground) are used for the Matlab search algorithms. In general, 3D framework is 

more realistic than 2D framework in testing the search algorithms as plumes are always three-

dimensional. More details of the 3D framework can be found in [7]. 
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Results and Discussion 

Figure 3 shows the CFD-predicted wind field and concentration of carbon monoxide along a 

horizontal plane with a height of 0.3 meters above the ground. The smouldering source is 

located at a top edge of a goods , as shown in Figure 2. The wind enters the warehouse from 

the windows and the door on the right wall. A plume of CO emitted from the smouldering 

source is formed downstream of the source. Figure 4 shows the trajectory of the robot 

tracking the plume in the warehouse. The robot was released from a location closed to the 

outlet door (see Figure 4). The trajectory demonstrates that the robot controlled by the  

Figure 3: Concentration of carbon monoxide and wind field at height of 0.3m 

Figure 4: Trajectory of a plume-tracing robot searching for a smouldering source in a 

warehouse 
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plume-tracing algorithm successfully localised the smouldering source. The robot initially 

surged in a large step size (first two steps from the releasing point) in the region close to the 

outlet door where very low CO concentration is found. After the plume was detected (the 

third step shown in Figure 4), the robot surged in a smaller but constant step size within the 

plume. When approaching the source, the local concentration increases and the robot 

continued moving in a shorter step size to avoid missing the source when surging. Finally the 

robot found the smouldering source successfully.  

Conclusions 

To summarise, as afore demonstrated, the plume-tracing robot successfully detected and 

localised a smouldering source in a large warehouse. The iSCA-taxis [4] with a variable step 

size mechanism proved to be a suitable solution for enhancing the plume-tracing algorithm. 

More tests will be carried out to test the effect of releasing locations, source locations, wind 

fields, etc. on the performance of the robot in detecting and localising the smouldering source. 

Furthermore, as more literatures on plume-tracing algorithms are carried out, novel search 

algorithms with higher searching efficiency have the potential to be applied on fire 

prevention. Hence, future works of this study conclude testing more times with the 

smouldering source located at different positions within warehouses with different geometry 

design and optimise the plume-tracing algorithm with recently-proposed improvement 

methods. 
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Abstract
An polyhedral mesh method with hundreds or thousands faces has been proposed as a kind of 
unstructured mesh method. In particular, at computation for compressible flows, contrast of 
mesh element size is very high. Thus, it is useful from the viewpoint of computational efficiency 
as there is large possibility of reducing unnecessary grid points. In this paper, the polyhedral 
mesh method was improved for moving boundary problems which requires high computational 
cost. Specifically, the polyhedral mesh method was combined with the unstructured moving 
grid finite volume method. Then, the moving polyhedral mesh method which satisfies both 
physical and geometric conservation laws was proposed. The method allows moving grid 
computation with high accuracy. In this paper, the new method was formulated. Then, the 
reliability of its scheme was shown by confirming the geometric conservation law to apply the 
moving grid problem in a uniform flow. Furthermore, to confirm its code for compressible 
flows, it was applied to a shock tube problem. Then, the complete matching with exact solution 
was shown. At last, the method was applied to piston problem for compressible flow. By 
comparing with exact solution of the shock wave position, effectiveness and promising future 
of the method were shown.

Keywords: Computational fluid dynamics, Moving mesh, Polyhedral mesh, Compressible 
flows

Introduction

Choosing computational grid system for flow fields is very important, because the system 
directly affect to computational efficiency. For a large scale computation, structured mesh 
system is usually chosen as parallel computation using a lot of cores like a supercomputer. On 
the other hand, for a relatively small CFD using PC or WS, unstructured mesh system is useful, 
because of not only high compatibility with body shape but also high expectations of 
computational efficiency improvement. In general unstructured grid system, prism and pyramid 
as pentahedral element and tetrahedral element are adopted. Mainly tetrahedron is used. For 
boundary layer, prism is located. Then, pyramid connects tetrahedron with prism. Also 
hexahedron is used occasionally. In the unstructured mesh system, by limiting the number of 
element type as three or four, simplification of computational code and computational 
efficiency by parallelization are expected. However, the limitation of the number of element 
type also restricts computational efficiency itself. Thus, to receive benefit of the unstructured 
mesh system, we should select the most convenient element type according to flow fields. As 
for this issue, an polyhedral mesh method [1][2] has been proposed. In the method, 
computational elements with hundreds or thousands faces are used. For example, a large flow 
domain which has constant physical value can be expressed by only one element. Thus, salient 
efficiency can be obtained.
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On the other hand, some mesh methods that do not depend on a grid system also have been 
proposed. In overset grid method [3][4], a sub-grid located around a body is put on a main grid 
which covers a whole flow field. The sub-grid also can be moved according to motion of the 
body. But it is difficult to satisfy a physical conservation law because of interpolation of 
physical value between main grid and sub-grid. While, solution adaptive grid method [5][6] is 
also convenient from the viewpoint of computational efficiency. In the method, size of 
computational element is changed according to physical value on its element. In particular, 
AMR(Adaptive Mesh Refinement) [7][8] is more efficient grid method, because the method 
can change the size of element dramatically. Furthermore, the AMR using above mentioned 
polyhedral mesh [9] also has been proposed. However, the AMR method required an experience 
of choosing its sensor for adaptation of solution.
By the way, unsteady flows around a body are often seen in practical. As for the flows, if a 
body fitted coordinate system is adopted, moving mesh method is used. In this case, the moving 
mesh method [10][11] for conventional unstructured mesh has been already proposed. However, 
more efficient moving mesh method using polyhedral mesh is not proposed yet. In this paper, 
the moving polyhedral mesh finite volume method which combines moving mesh method with 
polyhedral mesh is proposed and formulated. The method satisfies a geometric conservation 
law [12] on polyhedral mesh by applying finite volume method for four dimensional space time 
unified domain. Then, the method is applied for compressible flows and its availability is shown.

Polyhedral Mesh
Polyhedral mesh consist polyhedral element which is surrounded by more than four polygons 
like a pentagon, a hexagon, a nonagon. Then, a schematic of the polyhedral mesh is shown in 
Fig. 1. In two dimensional polygon, computational element is defined by the number of edge, 
as the number of edge and vertex is same. However, in three dimensional polyhedron, the 
number of face (NF), edge (NE), and vertex (NV) are required to define the geometry, for 
example, as shown in Fig. 2.

Figure 1.  Schematic of polyhedron

NF:4, NE:6, NV:4              NF:6, NE:12, NV:8         NF:12, NE:30, NV:20
Figure 2.  Tetrahedron, Hexahedron and dodecahedron as a polyhedron
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Procedure of Mesh Generation

Although there are several procedures for generating the polyhedral mesh, we adopt follows:
1. Find the center of gravity point in the tetrahedron.
2. Generate the center of gravity on each face and the middle point on each edge.
3. Count the number of vertex which is belonged to cell shares one vertex ‘it’, as shown 

in Fig. 3 step1.
4. Find the cells share the edge defined by one vertex ‘it’ and other adjacent vertex in one 

cell. Generate a polygon which is made by connecting the center of gravity points in 
their cells, as shown in Fig. 3 step2.

5. Generate other polygons around one vertex ‘it’ by repeating the procedure from 2 to 4. 
By connecting the polygons, the tetrahedron is generated, as shown in Fig. 3 step3.

Figure 3.  Generating a polyhedral mesh

Numerical Approach
Governing Equations

In this study, three-dimensional Euler equation is adopted as governing equation. It is written 
in conservation law form as follows.
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The unknown variables , u, v, w, and e represent the gas density, velocity components in the 
x, y and z directions, and total energy per unit volume, respectively. The working fluid is 
assumed to be perfect, and the pressure p is defined by

                             )(
2
1

1
222 wvupe 


 


,                                           (3)

where, the ratio of specific heats  is typically taken as being 1.4.
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Moving Polyhedral Mesh Finite Volume Method

To satisfy a geometric conservation law under a moving grid environment, the moving 
polyhedral mesh finite volume method is formulated. A control volume is defined as space time 
unified domain. Thus, for three-dimensional computation, the control domain is generated as a 
four-dimensional domain. For example, in the case of a polyhedron which has 22 vertices, the 
control volume is created by moving the polyhedron from n time step to n+1 time step as shown 
in Fig. 4-left. Thus, the control volume is constructed by 44 vertices. The face of the four-
dimensional control volume is three-dimensional volume. For example, one face painted in 
yellow in Fig. 4-left is expressed in Fig. 4-right. It is created by sweeping the face from n time 
step to n+1 time step.

Figure 4.  4-dimensional polyhedral control volume
(Left: Control volume, Right: One face of the control volume)

The governing equation (1) is rewritten in divergence form as follows,

0~~
 F .                                                                (4)

Where,
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
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
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



tzyx

,,,~ ,                                                 (5)

),,,(~ qGFEF  .                                                   (6)

Here, Eq. (4) is integrated for the control volume as follows,

0~~~
~  dF .                                                     (7)

Then, Eq. (7) is rewritten using Gauss’ theorem as

dSd  
 ~~
~~~~~ kFF .                                              (8)

Where, k~ is outward normal unit vector for the surface of the control volume ~ . S is surface 
of the control volume ~ . Eq. (8) is rewritten using nk ~~ dS as
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Where, NF(i) is the number of face of the polyhedral element. For example, if NF(i) = 12, the 
polyhedron is a dodecahedron. Then, the subscript l (= 1, 2, 3, …., NF(i)+2) indicates the 
number of face of control volume. Here, face number l = NF(i)+1 and NF(i)+2 indicate 
polyhedron itself at n and n+1 time step respectively. Then, Eq. (9) is discretized as
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To solve Eq. (10), we can get physical value at new time step. Here, the flux vectors are 
evaluated using the Roe flux difference splitting scheme [13] with MUSCL approach, as well 
as the Venkatakrishnan limiter [14]. Then, to solve the implicit algorithm, the RRK scheme is 
adopted under the OpenMP parallel environment [15].

Numerical Results
Verification For Computation Using Polyhedral Mesh

To verify the computation using polyhedral mesh, it is applied to a shock tube problem as shown 
in Fig. 5.

Figure 5.  Shock tube problem

As initial conditions, high pressure air is put in left hand side and low pressure is right hand 
side. Specifically, density  = 1.0, pressure p = 1.0/ ( = 1.4), velocity u = v = w = 0 in the left 
hand side and  = 0.1, p = 0.1/, u = v = w = 0 in the right hand side are given. Then, a flow is 
computed after removing the diaphragm instantaneously. By the high pressure air compresses 
the low pressure air, a moving shock wave is generated.
The polyhedral computational mesh is shown in Fig. 6. Then, density contours at t = 0.0 – 2.0 
are shown in Fig.7. We can confirm the moving shock wave.
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Figure 6.  Polyhedral mesh (Upper: Outer boundary, Lower: Cut section)

                                    t = 0.0                                                                     t = 0.5

                                    t = 1.0                                                                     t = 1.5

                                                                              t = 2.0
Figure 7.  Density contours from t = 0.0 to 2.0
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Fig 8. shows a comparison between numerical and exact solution. They are locations of moving 
shock wave, expansion wave and contact surface on the center line of computational domain at 
t = 0.5. We can confirm that the numerical solution corresponded with the exact solution. 
Therefore, the validity of the computation using polyhedral mesh was shown.

Figure 8.  Comparison of density between numerical and exact solution

Verification For Moving Polyhedral Mesh Method

To confirm a verification of the formulation of the moving polyhedral mesh finite volume 
method, a geometric conservation law on moving polyhedral mesh was checked. A satisfaction 
of the law indicates that the motion of the mesh don’t affect a flow field. Thus, capturing a 
uniform flow on moving polyhedral mesh was tried.
Computational domain is put in a uniform flow, as shown in Fig. 9. Then, the computational 
mesh is shown in Fig. 10.  The number of computational elements is 583. As an initial condition, 
 = 1.0, p = 1.0/, and velocity u = v = w = 1 are given.

Figure 9.  Computational domain for checking a geometric conservation law
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Figure 10.  (Left: Outer boundary, Right: Cut section)

The computational mesh is moved using Eq. (11) as follows,

𝑥௜= 𝑥଴+
ଵ
ଵ଴଴

cos𝜃௡ , 𝑦௜= 𝑦଴ +
ଵ
ଵ଴଴

sin 𝜃௡ ,  𝑧௜= 𝑧଴ +
ଵ
ଵ଴଴

sin 𝜃௡ , 
                                                                                                                                               (11)

𝜃௡ = ଷగ
଼଴
𝑛(𝑥଴+ 𝑦଴ + 𝑧଴).

Where, x0, y0 and z0 are grid points on initial mesh. 

Figure 11.  History of the error of density

Fig. 11 shows the history of error of density on moving mesh. The error is defined as Eq. (12).
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The order of the error is between 10-14 and 10-15. It is under the machine zero. Thus, we can 
confirm that the scheme satisfy the geometric conservation law on moving polyhedral mesh.
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Application To Piston Problem

The moving polyhedral mesh finite volume method is applied to a piston problem as practical 
example. By moving piston, compressible air generates a moving shock wave in a cylinder as 
shown in Fig. 12. 
As an initial condition,  = 1.0, p = 1.0/, and velocity u = v = w = 0 are given in the cylinder. 
At t = 0.0, the piston starts traveling and accelerating toward the end wall. The piston speed Up

is expressed as Eq. (13). Fig. 13 shows the computational mesh. As boundary conditions, a 
reflection condition is obtained for the cylinder wall. Then the piston speed on each time is 
given for the piston wall. The number of computational elements is 30,727. The mesh is 
shrunk for x direction only according to motion of the piston.

Figure 12.  Piston problem

Figure 13.  Polyhedral mesh for piston problem
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1.010

t
tt

U p                                                      (13)

Fig. 14 shows pressure contours at t = 0.0, 0.4, 0.6, 0.8, 1.0 and 1.2. The traveling shock wave 
generated by moving piston can be seen. Then, a comparison between between numerical and 
exact solution of position of shock wave is shown in Fig. 15. We can also confirm that the 
numerical solution corresponded with the exact solution. Then, the validity and promising 
future of the method was shown.
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                                t = 0.0                                                                   t = 0.4

  
                              t = 0.6                                                                   t = 0.8

                                t = 1.0                                                                   t = 1.2
Figure 14.  Pressure contours ( t = 0.0 – 1.2)

Figure 15.  Comparison of location of shock wave between numerical and exact solution 

Conclusions

For efficient computation and high flexibility of mesh generation, the moving polyhedral mesh 
finite volume method was proposed in this paper. Then the method was formulated using space 
time unified domain which constructs complicated polyhedral elements. First, as a result of 
shock tube problem, that the numerical solution corresponded with the exact solution of density 
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was confirmed. Thus, the validity of the computation using polyhedral mesh was shown. For 
formulation of the method, moving mesh on a uniform flow was checked. The order of the error 
on moving polyhedral mesh reached machine zero. So, the scheme can satisfy a geometric 
conservation law completely. Furthermore, the method was applied to the piston problem. As 
the result, we can also confirm that the numerical solution corresponded with the exact solution.
Thus, the validity and promising future of the method has been shown.
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Abstract   

In this paper, an analytical solution for the full-range behavior of pipe joints under combined 

thermal and mechanical loadings is presented. The solution is based on a rigid-softening 

bond-slip model and compared with finite element results. Through the nonlinear fracture 

mechanics, the analytical expressions of the interfacial shear stress and the load-displacement 

relationship could be obtained. The stress transfer mechanism, the interface crack propagation 

and the ductility behavior of the joints could be explained. 

 

Keywords:  debonding, temperature, pipe joints, interface 

 

1 Introduction 

Pipe structures are a very important structural form for energy, aerospace and construction 

industries. In consideration of whole weight, strength and maintenance workload, it is 

commonly accepted that there should be less joints in a piping system at first design. Due to 

the limitation of transportation, installation and rehabilitation, a joint seems essential for a 

large structure system containing different components. The limitations of the overall system 

performance usually come from the capacity of pipe joints. 

 

For most piping system, the joints can be divided into three types: flange coupling, welding 

and adhesive bonding. The first two traditional connections have the same shortage, such as 

high stress concentration. However, the adhesively bonded pipe joint can effectively lower the 

stress concentration. 

 

Among all the possible loading configurations, tensional loading is one of the fundamental 

loading types. Because of the difficulties in the analysis of interfacial behavior, there are just a 

few theoretical studies available in the previous references. Lubkin and Reissner [1] used the 

ordinary thin-shell theory to study the calculated adhesive shear and normal stresses. An 

explicit closed-form solution was obtained by means of the Laplace transform based on 

Lubkin and Reissner model [2-3]. By means of the principle of minimum complementary 

energy, closed-form solutions are obtained by Shi and Cheng [4]. Nemes et al. [5-6] 

introduced all the components of the stress field into the potential energy formulation to 

predict the intensity and the distributions of stresses. In order to understand the mechanical 

behavior, Yang [7] developed an analytical model based on the first-order laminated 

anisotropic plate theory. All the existing analytical studies were focused on the elastic region 

of interfacial behavior. However, the interfacial failure always experiences much more 
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complicated processes. So the softening and debonding of the adhesively bonded interface 

should be taken into consideration. 

 

To understand the interfacial behavior of plane joints exposed to different temperature 

variations, the pull test has been used [8-10]. The results reflect the combined effects of a 

number of factors, including temperature-induced interfacial shear stresses change in the 

bondline as well as the adherends if the temperature becomes sufficiently high. The whole 

joints should be subjected to normal work temperature because a large temperature variation 

will induce complicity of the interface bond property [11]. Some other researchers have also 

conducted single-lap or double-lap shear tests to understand interfacial bond behavior at 

different temperatures [12-18]. 

 

Interfacial behavior is the key factor that affects the total performance of bonded joints. A lot 

of studies have been done in this research area to predict the shear stress distribution and 

ultimate load of different adhesively bonded joints [19-25]. However, there are very few 

studies focusing on the analytical solution of interfacial fracture problems of pipe joints 

subjected to combined thermal and mechanical loadings in the literatures[13,26]. To the best 

knowledge of the authors, linear elastic properties are assumed for the entire pipe joints and 

very few researchers have taken interfacial softening and debonding into consideration. 

 

This paper presents an analytical solution for the full-range behavior of an adhesively bonded 

pipe joint under combined thermal and mechanical loadings. The expressions for the interface 

slip and shear stress are derived for the different failure stages. The present research improves 

and clarifies the understanding of the interfacial debonding of bonded pipe joints under 

combined thermal and mechanical loadings. By modifying different material parameters, the 

present results may be further extended to composite pipe joints, composite-metal pipe joints 

or metallic pipe joints. 

 

2 Interface model of pipe joints 

2.1 Interface model and assumptions 

 

The inner and outer pipes are bonded together by a thin and soft adhesive layer shown in Fig. 

1. Here the inner and outer pipes are defined as pipe 1 and 2, respectively. For the sake of 

clarification, only the right half of the pipe joints is considered due to symmetry. The distance 

between the left end of pipe 1 and the right end of pipe 2 is expressed by L. 

                              
 

(a) A cross-sectional view                                         (b) A side view 

Fig. 1 Adhesively bonded pipe joints 

 

Before starting the derivations, the basic assumptions adopted in the present study are 

summarized as follows: 

1) The adherents are homogeneous and linear elastic; 
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2) The adhesive is only under pure shear; 

3) The pipe joint is under pure tension which is resisted by the main pipe and coupler pipe, 

that is, the adhesive layer is assumed to only transmit shear stresses between Pipes 1 and 

2, not contribute to any direct resistance to the external force; 

4) The radius of the pipe is much larger than the thickness of the pipe and the thickness of 

the pipe is much larger than the thickness of the adhesive layer. 

 

2.2 Governing equation 

 

If at the given cross-section as illustrated in Fig.2, the slips of pipe 1 and 2 are different from 

each other, a relative slip occurs accompanied by a longitudinal relative displacement at the 

bond layer. Considering the elastic constitutive law of two tubes, their axial force F1 and F2 

are written as: 

 1
1 1 1 1

du
F E A T

dx


 
   

 
                                                          (1) 

 2
2 2 2 2

du
F E A T

dx


 
   

 
                                                         (2) 

Where Ei, Ai, ui, αi are Young’s modulus, cross section, axial displacement and thermal 

expansion coefficient of pipe i=1 and 2, respectively. Ri, Rii, Rio, ti are the average radius, 

inner radius, outer radius, thickness of pipe i=1 and 2, respectively. Ea and ta are Young’s 

modulus and thickness of adhesive layer. ΔT is the temperature variation. According to the 

above assumptions, the tension load carried by the soft and thin adhesive layer is ignored. As 

the pipe joints used in the industry area are very thin, no radial temperature gradient is 

considered in the present study. Thus, the equilibrium between external and internal tension 

load in the pipe joints requires: 

 1 2F F F                                                                     (3) 

 

Differentiating Eq. (3) yields 

 1 2 0
dF dF dF

dx dx dx
                                                                (4) 

 
(a) Schematic for the right half of pipe joints 

 

 
(b) Infinitesimal isolated body 

Fig. 2 Deformation and equilibrium in the bonded joints 

 

The interface slip δ is defined as the relative displacement of two bonded pipes: 

 1 2u u                                                                      (5) 

In this model the study starts from the axial equilibrium, considering pipe 1 in Fig. 2 
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2

dF

R dx



                                                              (6) 

where τ is the interfacial shear stress along the axial direction and R is the distance between 

the center of the pipe and mid-height of the adhesive layer. Substituting Eqs. (1)-(5) into Eq. 

(6) yields, by introducing interfacial fracture energy Gf 
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Where 
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f
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
 

 
  

 
                                                 (9) 

 

Equation (7) is the governing differential equation of the adhesively bonded joints in Fig. 1. 

When the local bond-slip law τ=τ(δ) is found, this equation can be solved to predict the 

interface slip and shear stress distributions along the bond length subjected to combined 

thermal and mechanical loadings. 

 

The interfacial fracture energy parameter Gf is determined by the interfacial bond slip law. 

The interfacial fracture energy, which is simply the area under the local bond-slip curve, is 

introduced because once it is known it can be used regardless of the exact shape of the local 

bond-slip curve where a particular quantity (e.g. the ultimate load) depends on the interfacial 

fracture energy but not on the shape of the bond-slip curve. Therefore, the interfacial fracture 

energy parameter is introduced in governing equation. 

 

2.3 Bond-slip law 

 

Researchers have proposed various bond-slip models. Experimental results indicate that the 

bi-linear model which features a linear ascending branch followed by a linear descending 

branch provides a close approximation [21]. The elastic deformation at the peak bond stress τf 

is much smaller than the ultimate slip δf when the shear stress reduces to zero, which signifies 

the shear fracture (or debonding or macro-cracking) of a local bond element. Therefore, the 

rigid-softening model as shown in Fig. 3 can be treated as simplifications of the bi-linear 

bond-slip law by omitting the elastic stage. 

 
Fig. 3 Rigid-softening bond-slip model 

 

For simplification, it is assumed that the bond-slip law is fully reversible if slip reversal 

occurs during the failure process. The rigid-softening model is described by the following 

equation: 

-δf 

δf 

-τf 

τf 

δ 

τ 

Gf 

Gf 

0 
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


    


 


                                            (10) 

 

When δ=0, it is called a rigid stage which is simplified as R. When -δf≤δ<0, it is called a 

softening stage which is simplified as S’. When 0<δ≤δf, it is called a softening stage which is 

simplified as S. When δ<-δf, it is called a debonding stage which is simplified as D’. When 

δ>δf, it is called a debonding stage which is simplified as D. Once the bond-slip law is defined, 

the governing equation (i.e. Eq. (7)) can be solved to find the shear stress distribution along 

the interface and the load-displacement response of the bonded joints. The states of the 

interface and the possible debonding processes are discussed below. 

 

Substituting Eq. (10) into Eq. (7) givens the following differential equations for different 

stages: 

      2 2

1 1 0f fx x                                                      (11) 

      2 2

1 1 0f fx x                                                      (12) 

  
2

2
0 f

d

dx


                                                           (13) 

Where 

 2 2

1 2

1 1 2 2

2 1 1
2

f f f

f f f

G
R

E A E A

 
  

  

 
   

 
                                         (14) 

 

3 Initial state subjected to thermal loading 

At the beginning of interfacial debonding, we just take the effect of thermal loading into 

consideration. The effect of mechanical loading is then added. Superposition will not change 

the results but the derivation can be simplified. If the adhesively bonded pipe joints are 

subjected to thermal loading only, the interfacial shear stress resulting from a temperature 

increase is anti-symmetrically distributed, with shear stress at the left end being negative. The 

differential equations for this stage are Eqs. (11)-(13). If the lengths of the left and right 

softening regions are denoted by aL and aR, respectively, the boundary conditions at the two 

ends and the softening fronts (x=aL, L-aR) can be obtained for the condition of thermal loading: 

  1 0 0F                                                                  (15) 

  1 0F L                                                                 (16) 

   0La                                                                 (17) 

   0RL a                                                               (18) 

 

On the whole bond length, the distribution of axial normal stress is continuous. Therefore, it 

can be known from Eq. (8) that δ’(x) is also continuous as expressed below: 

  x   is continuous at Lx a                                                 (19) 

  x   is continuous at Rx L a                                               (20) 
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The interfacial slip and shear stress can be found by solving Eqs. (11)-(12). If (α1-α2)ΔT>0, 

the thermal expansion of pipe 1 is constrained and negative (i.e. compressive) axial stresses 

are induced in pipe 1. Within the rigid region of the interface (aL≤x≤L-aR), there is no 

interface slip or shear stress. Under these conditions, the solutions for the left softening region 

of the interface (0≤x≤aL) are given by 

  1cosf f Lx a                                                          
  (21) 

  1cosf Lx a                                                            (22) 

and for the right softening region (L-aR≤x≤L) are given by 

  1cosf f RL a x                                                         (23) 

  1cosf RL a x                                                          (24) 

 

If there is no mechanical loading (i.e. F=0), the interfacial shear stress is anti-symmetrically 

distributed. The slips at the left and right ends can be obtained as follows, respectively 

  1cosL f f La                                                            (25) 

  1cosR f f Ra                                                           (26) 

 

Substituting condition (15) and (16) into Eqs. (21) and (23), respectively, the expression of 

softening length can be obtained as 

 
 1 2

1 1

1
arcsinL R

f

T
a a

 

  

  
   

  

                                              (27) 

 

If (α1-α2)ΔT<0, the thermal contraction of pipe 1 is constrained and tensile (positive) axial 

stresses are induced in pipe 1. The solutions presented above are also valid with the interface 

slip responses redefined as 0≤δ≤δf within 0≤x≤aL and -δf≤δ≤0 within L-aR≤x≤L. Due to 

symmetry of interfacial behavior, the authors only take the case (α1-α2)ΔT>0 into 

consideration in the present study for the sake of clarification. The whole interface is in a 

S’RS stage. In this paper, the slips at the two ends are assumed less than debonding slip which 

means that the interface state induced by thermal loading is within softening region. By 

letting ΔL=-δf and ΔR=δf, the maximum of softening length induced by thermal loading can be 

written in the form 

 
12

L Ra a



                                                               (28) 

 

From Eqs. (27)-(28), the following equation can be obtained 

  1 2 1fT                                                               (29) 

 

For the convenience of research, a critical parameter K1 can be introduced as: 

 1 1fK                                                                     (30) 

 

If 0<(α1-α2)ΔT<K1, the interface state induced by thermal loading is S’RS stage and no 

debonding occurs. 

 

4 Failure process subjected to combined loading 
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If a pull load is now applied on the pipe joints after the application of thermal loading, the 

softening region near the right end increases while the softening zone near the left end 

diminishes gradually. The governing equations (i.e. Eqs. (11)-(13)) are valid for the interface 

whereas the boundary condition (15) at the right end changes to 

  1F L F                                                                (31) 

 

As the pull load increases, the interface enters into S’RSD stage when the slip at the right end 

reaches δf. Or else when the slip at the left end reaches zero while the slip at the right end is 

less than δf, the interface enters into SRS stage. By letting ΔL=0 and ΔR=δf, the following 

expression can be obtained from Eqs. (15), (21), (23) and (31) through complicated analytical 

derivations 

   1

1 2
1

f
T

 
 


  


                                                       (32) 

Where 

 2 2

1 1

E A

E A
                                                                  (33) 

For the convenience of research, another critical parameter K2 can be introduced as: 

 
1

2
1

f
K

 





                                                                (34) 

If 0<(α1-α2)ΔT <K2, the slip at the left end reaches zero and the interface enters into SRS stage 

as the pull load increases. But if K2<(α1-α2)ΔT <K1, the slip at the right end reaches δf and the 

interface enters into S’RSD stage. The effect of ratio ρ should be taken into consideration 

when the pipe joints are only subjected to tension loading. The relationship of interface slips 

at the two ends is related to the non-dimensional parameter ρ. If ρ=1, the interface slips at the 

two ends are the same and the two ends enter into debonding at the same time. If ρ is not 

equal to 1, the interface slips at the two ends are different and the sequence of entering into 

debonding should be considered. The interface slip at the right end reaches δf first when ρ>1 

since slip at the right end is larger than that at the left end. When ρ<1, the interface slip at the 

left end is larger than that at the right end. But when the pipe joints are subjected to combined 

loading, the effect of (α1-α2)ΔT is the key factor that affects failure process. So the effect of 

ratio ρ is not considered in this paper. 

 

4.1 Case 0<(α1-α2)ΔT <K2 

 

For this case, the left softening region diminishes as the pull load increases. When the slip at 

the left end reaches zero, the interface enters into SRS stage and the following equation can be 

obtained by letting ΔL=0 

  1 2

1 1

1 1
arcsinR

f

a T


 
  

 
   

  

                                               (35)                 

 

4.1.1 SRS stage 

 

The lengths of the left and right softening regions are denoted as aL and aR respectively which 

are the same as in the previous section. The differential equations for this stage are Eqs. (12)-

(13) with the conditions (15), (17)-(20) and (31). Based on the conditions (17) and (19), the 

solutions of Eq. (12) for the relative shear displacement and stress of 0≤x≤aL can be written in 

the form: 

  1cosf f Lx a                                                              (36) 
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  1cosf Lx a                                                               (37) 

 

In addition, based on the conditions (18) and (20), the solutions of Eq. (12) for the relative 

shear displacement and stress of L-aR≤x≤L can be obtained 

  1cosf f RL a x                                                             (38) 

  1cosf RL a x                                                             (39) 

 

Substituting conditions (15) and (31) into Eqs. (36) and (38), respectively, the following 

relationships can be obtained 

    1 1 1 2

2 2

sinf L

F
a T

E A
                                                        (40) 

    1 1 1 2

1 1

sinf R

F
a T

E A
                                                     (41) 

In addition, the following relationship can be easily obtained by solving Eqs. (40)-(41) 

simultaneously 

      1 2 1 1

1

1
sin sinR L

f

T a a


    
 


                                           (42) 

The slip at the right end is the same as Eq. (26) and the slip at the left end can be obtained as 

  1cosL f f La                                                            (43) 

 

When the interface slip at the right end reaches δf, the interface enters into SRSD stage. And 

the length of left softening region can be calculated as 

  1 2

1 1

1 1 1
arcsinL

f

a T


 
   

 
    

  

                                              (44) 

 

Substituting Eq. (41) into Eq. (37), the expression of load can be written as 

  1 1 1 1 2fF E A T                                                            (45) 

 

4.1.2 SRSD stage 

 

During this stage, debonding (or macro-cracking or fracture) commences and propagates 

along the interface. It is assumed that the length of debonding region starting at the right end 

is dR. The differential equations for this stage are Eqs. (12)-(13) with the conditions (15), (17), 

(19), (31) and 

   0R RL d a                                                               (46) 

  R fL d                                                                (47) 

  x   is continuous at R Rx L d a                                                 (48) 

  x   is continuous at Rx L d                                                   (49) 

 

The relative shear displacement and stress of 0≤x≤aL can be written the same as Eqs. (36)-(37). 

Based on the conditions (46) and (48), the solutions of Eq. (12) for the relative shear 

displacement and stress of L-dR-aR≤x≤L-dR can be written in the form: 

  1cosf f R RL d a x                                                         (50) 

  1cosf f R RL d a x                                                           (51) 
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In addition, based on the conditions (47) and (49), the solution of Eq. (13) for the relative 

shear displacement of L-dR≤x≤L can be written in the form: 

   1 1sinf f R Ra L d x                                                      (52) 

 

The slip at the left end is the same as Eq. (43) and the slip at the right end can be obtained as 

  1 1sinR f f R Ra d                                                          (53) 

 

Substituting condition (47) into Eq. (50), the following result can be obtained 

 
12

Ra



                                                                  (54) 

 

In addition, substituting conditions (15) and (31) into Eqs. (36) and (52), respectively, the 

same relationships as Eqs. (40)-(41) can be obtained. The same equation as Eq. (44) can be 

obtained as well in this stage. From the above discussion, it can be concluded that the lengths 

of softening regions stay the same during this stage and the right softening region moves 

towards the left end as the length of rigid region decreases. When the rigid region vanishes, 

the interface enters into SD stage and the length of the whole softening region is defined as au 

which can be obtained from Eqs. (41) and (51): 

  1 2

1 1

1 1 1
arccosu

f

a T


 
   

 
     

  

                                         (55) 

 

4.1.3 SD stage 

 

When the stress peaks reach together, the rigid region vanishes. This stage is governed by Eqs. 

(12)-(13) with boundary conditions (15), (31), (47) and (49). The length of the softening 

region in this stage is defined as a. Based on the conditions (15) and (47), the solutions of Eq. 

(12) for the relative shear displacement and the shear stress of 0≤x≤a can be written in the 

form: 

  
 

 
1

1 2

2 2 1 1

sin1

cos
f

a xF
T

E A a


   

 

    
      

 
                                      (56) 

  
 

 
1

1 2

2 2 1 1

sin1

cos

f

f

a xF
T

E A a


  

  

    
     

 
                                       (57) 

In addition, based on the conditions (47) and (49), the solution of Eq. (13) for the relative 

shear displacement of a≤x≤L can be written in the form: 

  
 

 1 2

2 2 1

1

cos
f

F
T a x

E A a
   



 
       

 
                                      (58) 

The slips at the left and right ends can be obtained as follows, respectively 

    1 2 1

2 2 1

1
tanL f

F
T a

E A
   



 
       

 
                                          (59) 

  
 

 1 2

2 2 1

1

cos
R f

F
T L a

E A a
  



 
        

 
                                    (60) 

Substituting condition (31) into Eq. (58), the expression of softening length can be obtained 

 
   

   
2 2 1 2

1 1 1 1 2

1
arccos

F E A T
a

F E A T

 

  

    
  

    
                                             (61) 

The above equation indicates the softening length decreases as the pull load decreases. If only 

taking the effect of mechanical loading into consideration, ΔT equals zero and the softening 
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length remains constant during this stage. The load-displacement relationship can be obtained 

from Eqs. (60)-(61). 

 

4.2 Case K2<(α1-α2)ΔT <K1 

 

When the slip at the right end reaches δf and the left part of the interface is in S’ stage, the 

interface enters into S’RSD stage. The same expression as Eq. (54) and the following one can 

be obtained 

  1 2

1 1

1 1 1
arcsinL

f

a T


 
   

 
    

  

                                           (62) 

And the expression of load is the same as Eq. (45). 

 

4.2.1 S’RSD stage 

 

The length of the right softening region is denoted as aR which is the same as in the previous 

section. The differential equations for this stage are Eqs. (11)-(13) with the conditions (15), 

(17), (19), (31) and (46)-(49). Based on the conditions (17) and (19), the solutions of Eq. (11) 

for the relative shear displacement and stress of 0≤x≤aL can be written the same as Eqs. (21)-

(22). Based on the conditions (46) and (48), the solutions of Eq. (12) for the relative shear 

displacement and stress of L-dR-aR≤x≤L-dR can be written the same as Eqs. (50)-(51). In 

addition, based on the conditions (47) and (49), the solutions of Eq. (13) for the relative shear 

displacement of L-dR≤x≤L can be written the same as Eq. (52). The slips at the left and right 

ends can be obtained as Eqs. (25) and (53), respectively. Substituting condition (47) into Eq. 

(50), the same result as Eq. (54) can be obtained. 

 

In addition, substituting conditions (15) and (31) into Eqs. (21) and (52), respectively, the 

expressions can be obtained as (41) and 

    1 1 1 2

2 2

sinf L

F
a T

E A
                                                        (63) 

The same equation as Eq. (62) can be obtained as well in this stage. From the above 

discussion, it can be concluded that the lengths of softening regions stay the same during this 

stage and the right softening region moves towards the left end as the length of rigid region 

decreases. When the rigid region vanishes, the interface enters into the next failure process. 

 

4.2.2 S’SD stage 

 

This stage is governed by Eqs. (11)-(13) with boundary conditions (15), (17), (19), (31), (47) 

and (49). Based on the conditions (17) and (19), the solutions of Eq. (11) for the relative shear 

displacement and the shear stress of 0≤x≤aL can be written in the form: 

      1 1 1cos cot sinf f L f R L Lx a L d a x a                                             (64) 

      1 1 1cos cot sinf L f R L Lx a L d a x a                                                (65) 

 

Based on the conditions (17) and (47), the solutions of Eq. (12) for the relative shear 

displacement and the shear stress of aL≤x≤L-dR can be written in the form: 

 
 

 
1

1

sin

sin

R

f f

R L

L d x

L d a


  



   
 

   

                                               (66) 
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 

 
1

1

sin

sin

R

f

R L

L d x

L d a


 



   


   

                                                  (67) 

 

In addition, based on the conditions (47) and (49), the solutions of Eq. (13) for the relative 

shear displacement of L-dR≤x≤L can be written in the form: 

 
 

 1

1

1

sin
f f R

R L

L d x
L d a

   


   
   

                                      (68) 

 

Substituting conditions (15) and (31) into Eqs. (64) and (68), respectively, the relationship of 

aL and dR can be obtained by combining the following two equations 

        1 1 1 1 1 1 2

2 2

sin cot cosf L f R L L

F
a L d a a T

E A
                 

               
  (69) 

 
 

 1 1 2

1 11

1

sin
f

R L

F
T

E AL d a
   


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   

                                    (70) 

 

The slip at the left and right ends can be obtained as follows, respectively 

      1 1 1cos cot sinL f f L f R L La L d a a                                             (71) 
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When the left softening region vanishes and aL equals zero, the interface enters into SD stage. 

 

4.2.3 SD stage 

 

This stage is the same as the stage in 4.1.3, thus the expressions of the interface slip, the 

interface shear stress, as well as the relationship of the load-displacement are also the same. 

5 Numerical Analysis 

In this section, numerical examples and parametric study are conducted for the bonded pipe 

joints. The failure processes identified above are analyzed. The material properties and 

geometry parameters in the numerical analysis are chosen as: t1=5 mm, R1=147.5 mm, t2=5 

mm and R2=153 mm. Young’s modulus for the two pipes are given as: E1=120 GPa and 

E2=200 GPa. Thermal expansion coefficients for the two pipes are gives as: α1=2.1e-5/℃ and 

α2=1e-5/℃. And the interfacial characteristic parameters are selected as: τf=7.2 MPa, δf=0.16 

mm and Gf=0.58 N/mm. The bond length is taken as 600 mm. K1 and K2 are calculated as 

17.6e-4 and 6.4e-4, respectively. 

 

5.1 Finite element model 

 

Considering the assumptions given above, bending and Poisson's effect are neglected. The FE 

model is implemented in the software package ABAQUS. In the model, the two pipes are 

idealised as two-node truss elements. As the bondline is assumed to withstand pure shear 

deformation, four-node two-dimensional interfacial cohesive element is used to represent the 

adhesive layer. The cohesive elements share common nodes with the truss elements. Cohesive 

element cannot be treated as line in ABAQUS. Therefore, the thickness of adhesive layer 

should be given and it is chosen as 0.5mm. The size of mesh along vertical direction is 0.5mm 

the same as thickness of adhesive layer in the model. The size of mesh along horizontal 
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direction is 1mm. It should be noted that the properties of the cohesive elements are 

independent of its nominal thickness if traction-separation type constitutive law is used. All 

the results presented in this paper are obtained using the arc-length method which is capable 

of obtaining the full-range load-displacement response of the bonded joints. 

 

5.2 Interfacial stress states and load-displacement curves 

 

The test results showed that the ultimate load increased initially as the temperature increased 

until it was around the glass transition temperature of the bonding adhesive. The average 

ultimate load and the failure mode at 50℃ were similar to those obtained at the reference 

temperature (20℃) [8]. After that, a further temperature increase resulted in a decrease in the 

ultimate load resulting from the softening of the adhesive [9]. When the temperature is higher 

than 50℃, the property of adhesive layer may change significantly. The bond-slip law used in 

the present study is not valid anymore. The real bond-slip law may become very complicated 

and it is not the main focus of this work. Therefore, a temperature variation of 30℃ is taken 

into consideration. The value of expression (α1-α2)ΔT is calculated as 3.3e-4 which is less 

than K2. The load-displacement curve for a temperature rise of 30℃ is shown as in Fig. 4. OA 

is the S’RS stage, AB is the SRS stage, BC is the SRSD stage and CD is the SD stage. 

 

 
Fig. 4 Load-displacement curve 

 

Interfacial shear stress distributions at different failure processes are shown in Fig. 5. And the 

shear stresses are all normalized by the value of τf for easy comparisons. When only the 

thermal loading is applied [point O in Fig. 4], the interfacial shear stress resulting from a 

temperature increase is anti-symmetrically distributed with shear stress at the left end being 

negative. Once the interface slip at the left end reaches zero [point A in Fig. 4], the interface 

enters into SRS stage. Afterwards, the length of softening region at the left end increases. 

Debonding initiates first at the right end [point B in Fig. 4] and then propagates along the 

bond length while the softening region at the left end stays unchanged. When the rigid region 

disappears [point C in Fig. 4], the interface enters into SD stage. Furthermore, Fig. 5(d) shows 

that the debonding zone expands towards the left end in the last stage. Then the interfacial 

shear stress at the left end reduces to zero which signifies complete debonding of the entire 

interface. 

 

The load displacement curves of analytical and FEM results are almost the same shown as in 

Fig.4. Such as the load displacement curves, the curves of shear stress distribution by 

numerical and FEM results are almost the same as well. Therefore, the curve of shear stress 

distribution by FEM results is not given here. 
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(a) S’RS stage                                                  (b) SRS stage 

 
(c) SRSD stage                                                          (d) SD stage 

 

Fig. 5 Shear stress distributions 

 

5.3 Effect of temperature on load-displacement curve 

 

Fig.6 is the influence for temperature on the load-displacement curves. The ultimate load 

decreases when thermal loading is considered. But the damage ductility increases a little. 

What should be emphasized is that ultimate load and ductility are affected by the expression 

(α1-α2)ΔT rather than only temperature variation. 

 

 
Fig. 6 Effect of temperature on load-displacement curve 

 

5.4 Effect of temperature variation on ultimate load 

 

Fig.7 presents numerical results from the analytical solution to examine the effect of 

temperature variation on the ultimate load which is defined as Fu. The expression of ultimate 

load is the same as Eq. (45). And the results are determined by the expression (α1-α2)ΔT. This 

detrimental effect of temperature variation on bond resistance needs to be properly considered 

in engineering practice when the pipe joints are subjected to significant service temperature 

variations. 
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Fig. 7 Effect of temperature variation on ultimate load 

6 Conclusions 

This paper has presented a closed-form analytical solution for the full-range behavior of 

adhesively bonded pipe joints under combined thermal and mechanical loadings. A rigid-

softening local bond-slip law is thus adopted to simulate the initiation, growth and failure of 

interface debonding. The solution provides closed-form expressions for the interface slip and 

the interfacial shear stress in addition to the load-displacement responses for the entire 

deformation processes. The predictions of the closed-form solutions have been compared with 

the finite element results. The solutions are also applicable to similar adhesively bonded joints 

made of other orthotropic materials, such as fiber reinforced material pipe joints. Furthermore, 

the solutions can also be applied to study the interfacial behavior of pipe joints in moist 

environment by introducing coefficients of wet expansion. 
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Abstract 

In this paper, the immersed boundary method (IBM) with the pressure boundary condition is 

applied to a plate of infinitesimal thickness that the boundary is not along the grid and its 

effectiveness is discussed. In the original IBM, unphysical pressure oscillations appear near the 

object boundary, and as a result, it is difficult to correctly estimate the drag and the like. In the 

previous study, the present IBM has been applied to a plate of infinitesimal thickness whose 

boundary is along the computational grid and its effectiveness was shown. Therefore, in this 

paper, the present IBM is extended to be applicable to a plate of infinitesimal thickness whose 

boundary is not along the computational grid. Then, in order to validate the present IBM, the 

flow around a 2-dimensional flat plate of infinitesimal thickness of various attack angles is 

considered. As a result, unphysical pressure oscillations appear near the boundary in the original 

IBM, whereas in the present IBM, the oscillations do not appear at any attack angle. The drag 

and the lift coefficients in the present IBM are in good agreement with the reference results at 

any attack angle. Therefore, the IBM with the pressure boundary condition is very promising 

as a means to suppress unphysical pressure oscillations near the virtual boundary of an object 

of infinitesimal thickness in the original IBM. In addition, the present pressure estimation at the 

virtual grid point allows the IBM to be applied even when the virtual boundaries are not along 

the grid. From the above, it can be concluded that the present IBM is very promising as a 

Cartesian grid approach for a very thin object. 

Keywords: Computational Fluid Dynamics, Cartesian Grid Approach, Immersed Boundary 

Method, Incompressible Flow, Pressure Condition 

 

Introduction 

In the development of products closely related to flow phenomena, flow simulations are often 

performed to understand flow phenomena. In order to develop higher performance products, 

the shapes of objects to be subjected to fluid simulations have become complicated. Therefore, 

it is important to develop a method for efficiently performing a flow simulation on such an 

object. 

In recent years, flow simulations for insects such as butterflies and dragonflies have been 

performed for the purpose of developing high-performance small flying objects called micro 

air vehicle (MAV). These models have multiple wings that are extremely thin compared to the 

fuselage, and these wings move in a complex manner. In the simulation of flows including such 

models, the Cartesian grid approach is considered to be suitable because of the ease of grid 

generation. 

In the Cartesian grid approaches, the immersed boundary method (IBM) [1] is very popular. In 

the IBM, object boundaries are represented by a gathering of virtual points (virtual boundary), 
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and the additional forcing terms are added to the momentum equations at the grid points near 

the virtual boundary so as to satisfy the velocity condition on the virtual boundary. As for the 

estimation of the additional forcing term, the direct forcing term estimation [1] is well adopted. 

However, the conventional IBM with the direct forcing term estimation generates the 

unphysical pressure oscillations near the virtual boundary because of the pressure jump between 

inside and outside of the virtual boundary. In order to remove the pressure oscillations, the 

seamless immersion boundary method (SIBM) was proposed [1]. In the SIBM, the additional 

forcing terms are added not only near the virtual boundary but also inside the virtual boundary. 

However, even if the SIBM is applied to a very thin object such as an insect wing, suppression 

of the pressure oscillations cannot be expected much because the number of grid points inside 

the virtual boundary is very small. In particular, if there are no grid points inside the virtual 

boundary, the SIBM cannot be applied to the object. Therefore, Okahashi et al. [1] has applied 

IBM with the pressure boundary condition [1] to a plate of infinitesimal thickness and has 

verified its effectiveness. However, the verification is limited only when the virtual boundary 

is along the grid. Therefore, the IBM with the pressure boundary condition is applied to a plate 

of infinitesimal thickness that the virtual boundary is not along the grid and its effectiveness is 

discussed. 

Immersed Boundary Method for Object of Infinitesimal Thickness 

Governing Equations  

The non-dimensional continuity equation and incompressible Navier-Stokes equations are 

written as, 

    
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0,     (1) 

    
𝜕𝑢𝑖

𝜕𝑡
= 𝐹𝑖 −

𝜕𝑝

𝜕𝑥𝑖
+ 𝐺𝑖,     (2) 

    𝐹𝑖 = −𝑢𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
+

1

𝑅𝑒

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
,     (3) 

where 𝑅𝑒 denotes the Reynolds number defined by 𝑅𝑒 = 𝑈𝐿/𝑣. 𝑈, 𝐿, and 𝑣 are the reference 

velocity, the reference length and the kinematic viscosity, respectively. The last term of Eq. (2), 

𝐺𝑖, denotes the additional forcing term for the IBM. 𝐹𝑖 denotes the convective and diffusion 

terms. 

 Computational Methodology 

The incompressible Navier-Stokes equations (2) are solved by the second order finite difference 

method on the collocated grid arrangement. The convective terms are discretized by the second 

order fully conservative finite difference method [6]. The diffusion and pressure terms 

discretized by the usual second order centered finite difference method. However, at the grid 

point near the virtual boundary, the convective and diffusion terms are discretized by the second 

order one-sided finite difference method in order to avoid using the velocity at the position 

across the virtual boundary. For the time integration, the fractional step approach based on 

forward Euler method is applied.  

 Forcing Term Estimation 

In order to estimate the additional forcing term in the Navier-Stokes equations, 𝐺𝑖, there are 

mainly two ways, that is, the feedback [7][8] and direct [2] forcing term estimations. In this 

paper, the direct forcing term estimation in Fig. 1 is adopted. For the forward Euler time 

integration, the forcing term can be determined by 
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    𝐺𝑖 = −𝐹𝑖
𝑛+

𝜕𝑝

𝜕𝑥𝑖

𝑛
+

𝑈̅𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑡
,     (4) 

where 𝑈̅𝑖
𝑛+1denotes the interpolated velocity by linear interpolation. Namely, the forcing term 

is specified as the velocity components at next time step satisfy the relation, 𝑈̅𝑖
𝑛+1 = 𝑢𝑖

𝑛+1. 

When the object has the infinitesimal thickness, the pressure oscillations appear near the virtual 

boundary because the SIBM cannot be applied to it. 

 

 
 

Figure 1.  Direct forcing term estimation 

 

 Pressure Estimation 

In the original IBM, the pressure boundary condition is not considered. As a result, the pressure 

oscillations appear because of the pressure jump across the virtual boundary. In the present 

method, the pressure boundary condition is considered in order to avoid the pressure jump. In 

order to estimate the pressure gradient considering the pressure boundary condition on the 

virtual boundary, the virtual grid points are provided at grid points located across the virtual 

boundary. Therefore, some pressure values are defined at these grid points. In this study, the 

pressure is imposed the Neumann condition on the normal direction on the virtual boundary 

(𝜕𝑝 𝜕𝑛⁄ = 0). For example, in Fig. 2 (a), the x-direction pressure gradient at grid point (𝐼, 𝐽) is 

written as  

    
𝜕𝑝

𝜕𝑥
|

𝐼,𝐽
=

𝑃̅𝐼+1,𝐽−𝑝𝐼−1,𝐽

2∆𝑥
,     (5) 

where 𝑃̅𝐼+1,𝐽 denotes the pressure at the virtual grid point that satisfies the pressure condition 

on the virtual boundary. The pressure on the virtual grid point is estimated by using the Taylor 

series expansion in two variables with reference to the points 𝑚 = 1 to 2 and the pressure 

condition on the virtual boundary 𝑣𝑏 [5][9]. 𝒏 denotes the unit normal vector at the virtual 

boundary point. The reference points are chosen from the surrounding grid points in the normal 

direction. The relationship between pressure on the virtual boundary and reference points is 

approximated by 

    𝑝𝑚 = 𝑝𝑣𝑏 + (𝑙𝑚𝑥
𝜕𝑝

𝜕𝑥
|

𝑣𝑏
+ 𝑙𝑚𝑦

𝜕𝑝

𝜕𝑦
|

𝑣𝑏
),     (6) 

where 𝑙𝑚𝑥, 𝑙𝑚𝑦 are the distance components from the virtual boundary point to the reference 

points. The pressure condition on the virtual boundary is written by 

    
𝜕𝑝

𝜕𝑛
|

𝑣𝑏
= 𝑛𝑥

𝜕𝑝

𝜕𝑥
|

𝑣𝑏
+ 𝑛𝑦

𝜕𝑝

𝜕𝑦
|

𝑣𝑏
= 0.     (7) 
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By substituting Eq. (7), Eq. (6) is rewritten to 

    𝑝𝑚 = 𝑝𝑣𝑏 + (𝑙𝑚𝑥 −
𝑛𝑥

𝑛𝑦
𝑙𝑚𝑦)

𝜕𝑝

𝜕𝑥
|

𝑣𝑏
.     (8) 

By using 𝑝𝑣𝑏 and 
𝜕𝑝

𝜕𝑥
|

𝑣𝑏
, the pressure on the virtual grid point is expressed by 

    𝑃̅𝐼+1,𝐽 = 𝑝𝑣𝑏 + |𝑙𝑥|
𝜕𝑝

𝜕𝑥
|

𝑣𝑏
,     (9) 

where 𝑙𝑥 is the distance in x-component from the virtual boundary to the virtual grid point. 

If the virtual boundary is along the grid (Fig. 2 (b)), the pressure on the virtual grid point is 

expressed by 

    𝑃̅𝐼+1,𝐽 = 𝑝𝐼,𝐽.     (10) 

 

 
 

(a) Virtual boundary not along the grid               (b) Virtual boundary along the grid 

Figure 2.  Pressure estimation on the virtual grid point 

 

Flow Around a Plate of Infinitesimal Thickness 

In order to validate the present IBM, the flow around a 2-dimensional flat plate of infinitesimal 

thickness is considered. The present IBM is compared to the original IBM. The computational 

domain is shown in Fig. 3. The reference length is the plate length. 𝜃 is the attack angle of the 

plate. When 𝜃 = 0° , 90° , the virtual boundary of the plate is along the grid. In this paper, 

numerical simulations are performed at various attack angles. The computational grid is the 

hierarchical Cartesian grid that is fine near the plate. The grid resolutions near the virtual 

boundary are ∆= ∆𝑥 = ∆𝑦 = 0.0125. The grid points are arranged so as not to be located on 

the plate at any attack angle. On the inflow boundary, the velocity is fixed by the uniform flow 

(𝑢 = 1, 𝑣 = 0) and the pressure is imposed by the Neumann condition obtained by the normal 

momentum equation. The velocity is extrapolated from the inner points and the pressure is 

obtained by the Sommerfeld radiation condition [10] on the outflow and side boundaries. On 

the virtual boundary, the velocity condition is the non-slip (𝑢 = 0, 𝑣 = 0) condition. In the 

present IBM, the pressure condition is the Neumann condition on the normal direction 

(𝜕𝑝 𝜕𝑛⁄ = 0 ). In the original IBM, the pressure is not imposed condition on the virtual 

boundary. The Reynolds number is set as 𝑅𝑒 = 20. Under these conditions, the flow field is 

steady. 
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Figure 3.  Computational domain 

 

In Figs. 4-7, the pressure contours around the plate at each attack angle are shown. When 𝜃 =
0°, there is no difference in the pressure field between the two methods. This is because the 

Neumann condition of the pressure on the virtual boundary is naturally satisfied in the original 

IBM because the flow field is vertically symmetric. Therefore, unphysical pressure oscillations 

do not appear. However, at other attack angles, unphysical pressure oscillations appear near the 

virtual boundary in the original IBM. On the other hand, unphysical pressure oscillations do not 

appear at any attack angle in the present IBM. Therefore, even when the virtual boundary is not 

along the grid, the effect of suppressing unphysical pressure oscillations by the IBM with the 

pressure boundary condition is effective. 

 

           
 

(a) Original IBM                                              (b) Present IBM 

Figure 4.  Pressure contours (𝜽 = 𝟎°) 
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(a) Original IBM                                              (b) Present IBM 

Figure 5.  Pressure contours (𝜽 = 𝟑𝟎°) 

 

           
 

(a) Original IBM                                              (b) Present IBM 

Figure 6.  Pressure contours (𝜽 = 𝟒𝟓°) 

 

           
 

(a) Original IBM                                              (b) Present IBM 

Figure 6.  Pressure contours (𝜽 = 𝟗𝟎°) 
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In Figs. 7, 8, the drag and the lift coefficients are shown at each attack angle with the reference 

results [11]. In this paper, the drag and the lift coefficients are estimated by 

    𝐶𝐷 =
∫ 𝑝𝑥𝑑𝑠𝑏 +∫ 𝜏𝑥𝑑𝑠𝑏

1

2
𝜌0𝑈0

2𝑆
,     (11) 

    𝐶𝐿 =
∫ 𝑝𝑦𝑑𝑠𝑏 +∫ 𝜏𝑦𝑑𝑠𝑏

1

2
𝜌0𝑈0

2𝑆
,     (12) 

where 𝑏  denotes the virtual boundary, 𝑝𝑥  and 𝜏𝑥  is the 𝑥  direction components of the 

interpolated pressure and shear stress on the surface of the plate 𝜌0 and 𝑈0 denote the reference 

density and velocity of the flow. The drag and lift coefficients in the present method are in good 

agreement with the reference results. On the other hand, the drag and lift coefficients in the 

original IBM are very different from the reference results. This is because it is difficult in the 

original IBM to correctly estimate the pressure on the plate surface because of unphysical 

pressure oscillations near the virtual boundary. Therefore, it can be seen that the pressure field 

is greatly improved by applying the present IBM. Therefore, the effectiveness of the present 

IBM can be confirmed. 

 

  
 

Figure 7. Drag coefficients                                Figure 8. Lift coefficients 

 

Conclusions 

In this study, the IBM with the pressure condition was applied to a flat plate of infinitesimal 

thickness of various attack angles and its effectiveness was verified. Except when the attack 

angle was 0°, unphysical pressure oscillations appeared near the virtual boundary in the original 

IBM. On the other hand, at all attack angles, unphysical pressure oscillations did not appear in 

the present IBM. As a result, the drag and the lift coefficients in the present IBM wear in good 

agreement with the reference results at all attack angles. Therefore, the IBM with the pressure 

boundary condition is very promising as a means to suppress unphysical pressure oscillations 

near the virtual boundary of an object of infinitesimal thickness in the original IBM. In addition, 

the present pressure estimation at the virtual grid point allows the IBM to be applied even when 

the virtual boundaries are not along the grid. From the above, it can be concluded that the 

present IBM is very promising as a Cartesian grid approach for a very thin object. 
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Abstract 

A nonaffine model is proposed for the elastomeric gel to account for the change of the 

entangling structure of molecular chains during the free swelling and simple tensional process, 

in which the change in the number of polymer chains per unit volume, N , is depending on the 

first invariant of right Cauchy-Green tensor, 
1I , and on the volume ratio of the gel, J , 

separately. It is found that the dependency of the entangling structure of molecular chains on 

1I  has a remarkable effect on the deformation response of the gel compared to that on J . 

Moreover, the effect of the nonaffine movement of molecular chains is non-negligible for the 

gel contacting with the solvent in liquid phase. 

Keywords: Elastomeric gel, Free swelling, Simple tension, Chemical potential, Entangling 

structure 

Introduction 

The elastomeric gel, consisting of cross-linked polymer molecules and discrete solvent 

molecules, have a high permeability to small molecules and undergo reversible volume 

change by exuding or absorbing solvent in response to a wide range of stimuli, such as light, 

temperature, pH, ionic strength and chemical reactions. As a result, the gel has been 

developed for diverse applications and used as smart materials in sensors and actuators [1-3]. 

To characterize how mechanical constraint affects the amount of swelling, and how chemical 

processes generate forces, several nonlinear field theories have been developed [4-7]. Flory 

and Rehner proposed a statistical mechanical model for the network of polymer molecules 

and indicated that the swelling capacity of the gel is diminished by the application of an 

external stress [8]. In our former study [9], we focused on the discussion of the mechanical 

behavior of the elastomeric gel based on a nonaffine molecular chain network model 

(nonaffine model) [10], which was originally developed for the orientation hardening of 

amorphous polymers and may account for the change in the entanglement situation for the 

physical linkages during the deformation processes. It was found that the free swelling 

process may lead to a larger change of the entangling structure of molecular chains compared 

to the tensional process. Moreover, the various combination of the effect of each process on 

the nonaffine movement of molecular chains may lead to some interesting mechanical 

responses of the gel, such as yield. 

On the other hand, the elastomeric gel can undergo large deformation of two modes. The first 

mode results from the fast process of short-range rearrangement of molecules, allowing the 

gel to change shape but not volume. The second mode results from the slow process of long-

range migration of the solvent molecules, allowing the gel to change both shape and volume. 

As we have discussed the first mode in our former study [9], in this study, we will focus on 

the second mode, namely, the state of equilibrium achieved when a network has been in 

contact with a solvent for a long time. The condition of equilibrium between the gel and the 
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solution is derived based on the variational principle and the dependency of the entangling 

structure’s effect on the deformation response of the gel under different mechanical and 

chemical constraints is to be clarified. 

Conditions of Equilibrium 

The basic idea of the derivation of the conditions of equilibrium for the dry polymer and the 

solvent is from the work done by Hong et al. [4]. It is convenient to consider that, in the 

reference state, a block of network of dry polymers is a unit cube, and contains no solvent and 

subject to no applied forces. In the current state, the network is submerged in a solvent-

containing environment, and the six faces of the block are subject to applied forces. When the 

network, the solvent, and the applied forces equilibrate, the network absorbs C  number of 

solvent molecules, and deforms homogeneously into the shape of a parallelepiped. When the 

deformation gradient of the network is expressed by F , the ratio of volume of the swollen gel 

and that of the dry network is determined as FdetJ . As an idealization, it is assumed that the 

volume of the gel is a function of the concentration of the solvent: 

CJ 1 .                                                                     (1) 

That is, all molecules in a gel are incompressible, and the volume of the gel is the sum of the 

volume of the dry network and the volume of the pure liquid solvent, where   is the volume 

per solvent molecule. Eq. (1) determines the concentration of solvent, C , once the 

deformation gradient is known. Consequently, the nine components of the deformation 

gradient F  specify the state of the gel. Let W  be the Helmholtz free energy of the gel in the 

current state. The Helmholtz free energy of the gel can be taken to be a function of the nine 

components of the deformation gradient, F , and is assumed to be separable into contributions 

from stretching the network and mixing the polymer and solvent [8]: 

   JWWW mixstretch  F .                                                           (2) 

The free energy due to the stretching of the network,  FstretchW , is a function of the deformation 

gradient, and depends on the density of crosslinks. The free energy due to the mixing of the 

polymer and the solvent,  JWmix
, is a function of the concentration of the solvent in the gel, 

but is independent of the density of crosslinks. Introduce another free energy function Ŵ  by 

using a Legendre transformation:  

CWW ˆ ,                                                                 (3) 

where   is the chemical potential of the solvent molecules. Eq. (1)~(3) form the basis for the 

model of ideal elastomeric gels. In equilibrium, the change of the Helmholtz free energy of 

the composite vanishes and one can obtain that 

 

ik

ki
F

W
s






,ˆ F ,    

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
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,ˆ FW
C ,                                                    (4) 

where 
kis  is the nominal stress. 

Free Energy Functions 

In the original Flory-Rehner model [8], specific functions are adopted for  FstretchW  and  JWmix
. 

In this study, we employ the best known formulation as: 
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where N  is the number of polymer chains per unit volume, 
Bk  is Boltzmann constant, T  is the 

temperature and   is a dimensionless measure of the enthalpy of mixing. A combination of 

Eq.(1), (3) and (5) gives the desired free energy function: 

       1
1

log1log23
2

1
,ˆ 


















 J

JJ

J
J

Tk
JFFTNkW B

ikikB





F .           (6) 

Furthermore, to account for the effect of the nonaffine movement of the polymer chain on the 

deformation behavior of the gel, similar to our former study [9], we employ the simplest 

version of the nonaffine model [10] to accommodate the change in the number of polymer 

chains per unit volume, N , depending on the first invariant of right Cauchy-Green tensor, 
1I , 

or on the third invariant of right Cauchy-Green tensor, 
3I , separately. 

max

1

1
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ikik FFI 1
,   or                                            (7) 
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3 JI  ,                                                       (8) 

where 
0N  is the number of polymer chains per unit volume of the gel in the reference state, 

max

1I  and max

3I  are the limit value of 
1I  and 

3I , separately. 

Stress-Stretch Relations 

Inserting Eq. (6) into Eq. (4), we obtain that 
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Recall an algebraic identity, JHFJ ikik  / , where 
ikH  is the transpose of the inverse of the 

deformation gradient F . For simplicity, we describe the deformation of the gel in the 

coordinates of principal stretches. Let 
1 , 

2 , 
3  be the principal stretches of the gel, so that 

 321 ,,diag F , 
321 J  and 2

3

2

2

2

11  I .  

Free Swelling State 

Submerged in the solvent-containing environment but subject to no applied forces, the 

elastomeric gel attains a state of equilibrium, the free swelling state, characterized by an 

isotropic swelling ratio, 3/1

321

 J . Therefore, based on Eq. (9), the relation between 

the principal stretch   and the chemical potential of the solvent molecules   can be written 

as: 
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when Eq. (7) is applied, or can be written as: 
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when Eq. (8) is applied. 

Simple Tension State 

A unit cube of the elastomeric gel is equilibrated in a solvent of chemical potential  , and is 

subject to a uniaxial stress 
1s  along the longitudinal direction. The state of deformation can be 
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characterized by the longitudinal stretch 
1  and two transverse stretch 

32   . The stresses in 

the transverse directions vanish, so that Eq. (9) gives 
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when Eq. (7) is applied, or gives 
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when Eq. (8) is applied. Eq. (12) and Eq. (13) determine the transverse stretch 
2  for a given 

longitudinal stretch 
1 . Eq. (9) also relates the longitudinal stress to the stretches as: 
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when Eq. (7) is applied, or as: 
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when Eq. (8) is applied. 

Results 

In this study, we have normalized the chemical potential by TkB
, and normalized the stress by 

/TkB
. The Flory-Rehner free energy function introduces two dimensionless material 

parameters: N  and  . In the numerical results below, we take the values 3

0 10N  and 

1.0 . On the other hand, the values of the two parameters introduced in the nonaffine model 

are taken as 50max

1 I  and 8000max

3 I . 

In Fig. 1(a), the stretch of an elastomeric gel at the free swelling state is plotted as a function 

of the chemical potential of the solvent. When the solvent is subject to a pressure p  greater 

than the vapor pressure, 
0p , the solvent is in the liquid phase, and the chemical potential of 

the solvent molecules is  0pp  . When the solvent is subject to a pressure p  less than the 

vapor pressure, 
0p , the solvent in equilibrium becomes a gas, which we assume to be an ideal 

gas, so that the chemical potential of the solvent molecules is  0/log ppTkB . When the 

phase of solvent changes from gas to liquid, the stretch of the gel increases exponentially. 

With regard to the effect of the nonaffine movement of the polymer chain on the swelling 

deformation of the gel, no effect can be observed when the solvent is in gas phase. However, 

when the solvent is close to its liquid phase, the nonaffine movement of the polymer chain 

leads to a relatively early increase of the stretch. In Fig. 1(b), the variation of the number of 

polymer chains N  during the free swelling of the gel are shown. It is obviously that the 

decrease of the number of polymer chains N  is remarkable when the development of its value 

is dependent on 
1I . 

When an elastomeric gel is subject to a uniaxial stress, and is in contact with a solvent of a 

given chemical potential, the state of equilibrium is assumed to achieve after a long time. In 

Fig. 2(a), the applied stress is plotted as a function of the stretch, while the solvent is held at 

several levels of the chemical potential. As shown in Fig. 1(a), the gel can swell to a stretch of 

3.5 when the solvent is in liquid phase. Therefore, if the longitudinal stretch 
1  is limited to 

the value smaller than 3.5, compressive stress is necessary. However, when the solvent is in 

gas phase, the applied stress is almost tensional stress. With regard to the effect of the 
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nonaffine movement of the polymer chain on the applied stress, no effect can be observed 

when the development of the number of the polymer chain N  is dependent on 
3I . However, if 

the development of N  is dependent on 
1I , the change in the entanglement situation for the 

physical linkages leads to the decrease of the applied stress of the gel when it is in contact 

with the solvent in gas phase. Interestingly, when the solvent is in liquid phase, the nonaffine 

movement of the polymer chain leads to a lower value of compressive stress at the small 

stretch region and a higher value at the large stretch region compared to that of the affine 

model. In Fig. 2(b), the variation of the number of polymer chains N  of the gel during the 

simple tension state are shown. For the gel that is in contact with the solvent in gas phase, the 

number of polymer chains N  decreases the stretch increases. On the other hand, for the gel 

that is in contact with the solvent in liquid phase, the value of N  increases at the small stretch 

region and decreases at the large stretch region. 

Conclusions 

In this study, a nonaffine model is proposed for the elastomeric gel to account for the change 

of the entangling structure of molecular chains during the free swelling and simple tensional 

process. It is found that the dependency of the entangling structure of molecular chains on 
1I  

has a remarkable effect on the deformation response of the gel compared to that on J . 

Moreover, the effect of the nonaffine movement of molecular chains is non-negligible for the 

gel contacting with the solvent in liquid phase. 
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(a)                                                                         (b) 

Figure 1. Characteristics of the elastomeric gel in the free swelling state 

(a) stretch – chemical potential relations; (b) variations of the entangling structure 

 

       
(a)                                                                    (b) 

Figure 2. Characteristics of the elastomeric gel in the simple tension state 

(a) stress – stretch relations; (b) variations of the entangling structure 
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Abstract 

Numerical simulation of the ship motions in regular waves with changing a wave direction is 
carried out. An in-house structured CFD solver which is capable of the overset-grid method is 
employed. The case in the CFD workshop Tokyo 2015 which the ship type is the container 
hull with the rudder, and the ship motions are the three degrees of the freedom, the heave, 
pitch and roll motions, is selected. The use of the characteristics of the overset grids method is 
made, which means the background rectangular grids which generate the incoming waves are 
replacing along with the wave direction while the other grids are maintained. The present 
method shows the effectiveness through the comparisons with the experimental and existing 
computational results. 

Keywords: Regular wave, Wave direction, Ship motion, Overset grids method 

 

Introduction 

The numerical simulation of the ship motions with changing the wave direction is performed. 
The overset grids method and the in-house CFD solver which have the capability to the 
present test case are employed. The background rectangular grids are prepared and replaced 
along with the wave directions while the other computational grids including the ship and 
rudder grids are maintained. The present method is examined on the test case in the CFD 
workshop Tokyo 2015 [1]. Through the comparisons of computational results of the 
amplitudes of the ship motions which are introduced by the Fourier analysis with the 
measured and existing simulated results, the effectiveness of the present method is examined. 
 

Computational Method 

Base Solver 

An in-house structured CFD solver [2] is employed. The governing equation is 3D RANS 
equation for incompressible flows. Artificial compressibility approach is used for the 
velocity-pressure coupling. Spatial discretization is based on a finite-volume method. A cell 
centered layout is adopted in which flow variables are defined at the centroid of each cell and 
a control volume is a cell itself. Inviscid fluxes are evaluated by the third-order upwind 
scheme based on the flux-difference splitting of Roe. The evaluation of viscous fluxes is 
second-order accurate. For unsteady flow simulations, a dual time stepping approach is used 
in order to recover incompressibility at each time step. It is consisted from the second order 
two-step backward scheme for the physical time stepping and the first order Euler implicit 
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scheme for the pseudo time. The linear equation system is solved by the symmetric Gauss-
Seidel (SGS) method. 
 
For free surface treatment, an interface capturing method with a single phase level set 
approach is employed. Incoming Regular waves are generated at the region inside of the 
computational domain. The wave direction is determined with changing the regions which 
generate the regular waves. 
 
The ship motions are determined by solving motion equations, and the motions are strongly 
coupled with the governing equations. The computational domain is deformed under the 
criterion of the distance from the ship hull. The ship motions are accounted for by a moving 
grid technique. The grid velocities are contained in the inviscid terms to satisfy the 
geometrical conservation law. The grid velocities are derived from the volume where each 
cell face sweeps. The boundary condition on a body is given as the velocities of the ship 
motion. 

Overset Grids Method 

The weight values for the overset-grid interpolation are determined by an in-house system [3]. 
The detail of the system can be found on [3], the summary is described. 
 
 The priority of the computational grid is set.  
 The cells of a lower priority grid and inside a body is identified (called as in-wall cell in 

here). 
 Receptors cells which the flow variables have to be interpolated from donor cells are 

defined. Two cells on a higher priority grid and facing to the outer boundary are set as 
receptor cells to satisfy the third order discretization of NS solver. Additionally, two cells 
neighborhood of in-wall cells, the cells of a lower priority grid and inside the domain of a 
higher priority grid are also set as the receptor cell. 

 The weight values for the overset interpolation are determined by solving the inverse 
problem based on Ferguson spline interpolation. 

 
Flow variables of the receptor cell are updated when the boundary condition is set. The forces 
and moments are integrated on the higher priority grid to eliminate the lapped region on body 
surfaces. At first, the cell face of the lower priority grid is divided into small pieces. Secondly, 
the small piece is projected to the cell face of the higher priority grid by using the normal 
vector of the higher priority face. Then the 2D solid angle is computed and the small piece is 
decided in or out of the higher priority face. Once the small piece is in the higher priority face, 
the area ratio of the piece is set to zero. Finally, the area ratio is integrated on the lower 
priority face, then we have the ratio to integrate the forces and moments on lower priority face. 
 

Computed Results 

The container hull form which is utilized on the case in CFD workshop Tokyo 2015 is 
selected [1]. The model ship length is approximately 2.7m and the Reynolds number is 
R=3.738 x 106. Froude number is Fn=0.26. The wave length ratio of incoming regular waves 
is  /L=1.15, and the wave height ratio h/L is approximately 0.0167. The wave directions are 
set as 5 directions which are defines as 0 degree (head sea condition), 45 degrees, 90 degrees 
(beam sea condition), 135 degrees and 180 degrees (following sea condition).  The motions 
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are free to pitch, roll and heave which are designated in the instruction of the workshop. The 
non-dimensional physical time step size is always set to 0.005. 
 
Table 1 shows the division number of computational grids arranged with the priority of the 
overset grids method. Figure 1 shows the grids near the hull body. The computational grids 
consist of the rudder grid, the refined rectangular grid for the arrangement of the overset 
relation, the ship hull and background rectangular grids. IM means the ship length direction, 
JM is the width direction, and KM is the division number in the direction along with the depth 
for the rectangular grids while IM means the spanwise direction, JM is chord direction, and 
KM is the division number for the normal direction from the rudder surface on the rudder grid. 
For the ship hull grid, IM means the ship length direction, JM is the girth direction, and KM is 
the division number in the normal direction from the hull surface. The minimum spacing on 
the wall surface is set as the non-dimensionalized distance y+=100 applying k-   SST 
turbulence model with the wall function type [4]. The five rectangular grids are chosen in 
accordance with the wave direction. The grids except the background rectangular grids are 
maintained, and the overset relation is generated with replacing the background rectangular 
grid for the wave direction. Computational domain is set as 0.30.2  x and 

155.02  z  excepting the grid for the 180 degrees case has the range 0.20.2  x  to 
adapt for the following waves. The domain size for the y-direction is set as 0.20.2  y  
excepting the grid for the 90 degrees case has 575.20.2  y  to set the wave damping zone 
in the wave direction. The division number JM in the width direction also changes to the 
adequate number to resolve the wave length along with the wave direction. 
 

Table 1. Division number of the computational grids. 

Grids IM x JM x KM 
Rudder 45 x 89 x 9 
Refined Rect. 49 x 49 x 49 
Hull 257 x 161 x 61 
Rect.(0 degree) 
Rect.(45 degrees) 
Rect.(90 degrees) 
Rect.(135 degrees) 
Rect.(180 degrees) 

193 x 65 x 57 
193 x 161 x 57 
193 x 177 x 57 
193 x 161 x 57 
201 x 65 x 57 
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Figure 1.  Computational grids 

 
Figure 2 shows the instantaneous view of the free surface in the oblique and lateral sea 
conditions. The wave pattern indicates the direction of the waves, and the disturbed wave due 
to the interactions between the incoming waves, ship and its motions can be found. 
 
Figure 3 shows the amplitude of the heave motion, Figure 4 shows the amplitude of the roll 
motion and Figure 5 shows the amplitude of the pitch motion along with the wave directions. 
All the amplitudes are introduced by the Fourier analysis which is indicated on the web-site 
[1], and the amplitudes on the component of the first encounter frequency are compared. 
Present results show agreement with the measured data and indicate similarity with the other 
computational results excepting the heave motion at 180 degrees and roll motion at 45 
degrees. The heave motion seems to be affected by the surge motion which is accounted for in 
the experiment while the numerical simulations do not consider the surge motion based on the 
instruction [1] for this case. The time history of the heave motion has the component of the 
secondary encounter frequency [1], consequently, the simulation with the surge motion may 
become the solution to be solved the problem of this small disagreement. All the 
computational results indicate relatively very small difference comparing with the measured 
data on the roll amplitude at 45 degrees. The experimental condition may differ from the ideal 
condition which is achieved by the numerical simulations. 
 

Rudder 
Refined Rect. 

Hull 

Rect. 
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Figure 2.  Instantaneous view of the free surface 
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Figure 3.  Comparison of the amplitude of the heave motion 
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Figure 4.  Comparison of the amplitude of the roll motion 
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Figure 5.  Comparison of the amplitude of the pitch motion 

 

Conclusions 

The numerical simulation of the ship motions in regular waves with changing wave direction 
is carried out. The case in the CFD workshop Tokyo 2015 is selected, and the overset grids 
method is applied with replacing the background rectangular grid to generate the incoming 
regular waves while other grids are maintained. The present results indicate the similarity 
with the other computational results, and the present method shows the effectiveness through 
the comparisons with the experimental data. 
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Abstract 

The main current communication method is electromagnetic (EM) wave communication. 

Then, it is necessary technology for human life. EM wave system has conveniences that high-

speed and large capacity communication. On the other hand, it also has disadvantages that it 

requires much energy and the facilities. In contrast, molecular communication (MC) that uses 

biological molecules as an information carrier is noticed as a new communication method, 

because it requires little energy and is expected application for micro-scale. However, in 

general MC is difficult to communicate at high-speed and to control communication itself 

comparison with EM wave communication. Because most of MC is diffusion-based. In this 

study, numerical simulation for the promoting effect of concentration diffusion by flow 

caused by the movement of a circular object is performed to solve the problem of 

communication speed. As a result, diffusion phenomenon was promoted in response to the 

object condition. 

Keywords: Molecular communication, Concentration diffusion, Communication speed, 

Promotion, Numerical analysis 

Introduction 

There are various technologies around us, and communication technologies to make them 

function are indispensable. At present, most of communications rely on methods using 

electromagnetic (EM) wave. EM wave communication is a common method for devices that 

people usually use. Because it has some advantages that can communicate with high-speed, 

large capacity and high accuracy. Whereas, it also has disadvantages that requires much 

energy and the facilities such as base stations or radio towers, and difficult to micronize for 

communication devices. Against these, a new communication method called molecular 

communication (MC), which does not require EM wave, has been devised and researched [1]. 

 

MC is a method that uses chemical substances (biological molecules) such as proteins and 

DNAs as the signal transduction carrier. Then, it is different to traditional communication 

methods. The molecules released by the transmitter propagate in fluids, and the signal 

transduction is completed when they reach at the receiver. This communication method is 

common for many creatures. For example, a pheromonal communication [2][3] is typical, ants’ 

procession and moths’ courtship are the best examples. In addition, transportation of body 

hormones is also a kind of MC [4]. 

 

MC is attracting attentions because it has three advantages. First, MC requires no or little 

energy. The main propagation method of MC is free diffusion. Therefore, energy such as 
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electricity is unnecessary. Directional transportation of molecules also requires no external 

energy because they use chemical energy generated in vivo. Second, applications can be 

expected even in micro environment where EM cannot be applied [1][4]. Biological 

molecules are almost nanoscale size. Thus, MC is considered to be able to operate in very 

small systems. Finally, MC has high biocompatibility. The substances and methods that are 

harmful to living things cannot be used, when considered to application for them. However, 

MC is very little adverse effects on organisms, because MC’s signal carriers are biomolecules. 

Using bio-nanomachines for biomolecules transmission/reception may contribute to the 

practical applications of drug delivery systems and health monitoring [1][2][4]. 

 

Contrary these advantages, MC also has disadvantages that slow communication speed [1], 

small information capacity and the characteristics of susceptible to communication distance 

[5], obstacles and disturbances. To solve these problems, Sun et al. (2016) [6] have suggested 

the method of adding advection to diffusion for faster communication. Sun et al. (2019) [7] 

have considered method to divide and transmit data by using DNA molecules like packets to 

improve the amount of information. Turan et al. [8] have devised a method remedy the 

communication stability problem of MC. They use the vessel-like channel, and restrains the 

movement by reflecting and absorbing molecules that collide with the channel wall. Guo et al. 

[9] have performed the numerical simulation in the unique situations, such as differences in 

the location of a receiver, computational systems with a high wall and the interference of 

meshes. They reported results that the communication reliability of MC is higher than EM in 

these situations. In these previous studies, although various approaches have been tried to 

improve the problems of MC, there are few studies on improving the diffusion phenomenon 

to solve the problem of communication speed. 

 

This study promotes diffusion by intentionally generating flow by rotating a circular object 

placed in the computational system in order to improve communication speed of MC. In this 

paper, the computational methods, conditions and their results are described. Then, the 

promoting effect of concentration diffusion is evaluated. 

Governing Equations and Numerical Methods 

As governing equations, the continuity equation and the two-dimensional incompressible 

Navier-Stokes equation are written as follows: 
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where x and y are coordinates, t is time. u and v are velocities in x and y directions, 

respectively. q is the velocity vector. Ea and Fa are the advection flux vectors, Ep and Fp are 

the pressure flux vectors, and Eν and Fν are the viscous flux vectors in x and y directions, 

respectively. The elements of flux vectors are: 
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(3) 

 

where p is the pressure, Re is the Reynolds number. The subscripts x and y indicate 

derivatives with respect to x and y, respectively. Reynolds number defined as: 
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where 0U  is the characteristics velocity, 0L  is the characteristics length and   is the 

kinematic viscosity. Over bar shows the dimensional quantity. In discretization for the 

Navier-Stokes equation, we applied Moving-Grid Finite-Volume Method [10]. Eq. (2) 

becomes: 

 

     0~~~~
4

1

2

1

56

1 







 






ll

n

t

n

t

n nn nAqq , (5) 

 

and 

 

 























q

FFF

EEE

A 



pa

pa
~

, (6) 

 

where the tilde is the quantity in unified space of time and space. n is the outward normal 

vector of the control volume. To solve Eq. (5), we adopted SMAC method [11]. 

 

In this study, in order to simulate concentration diffusion, we also consider the concentration 

equation. The concentration equation was nondimentionalized and written as follows: 
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where c is the concentration. Ec and Fc are the advection terms of concentration and Ed and Fd 

are the diffusion terms of concentration in x and y direction, respectively. The advection terms 

and the diffusion terms are: 
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where Sc is the Schmidt number. The Schmidt number defined as: 
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where D is the diffusion coefficient. We also applied Moving-Grid Finite-Volume Method for 

the concentration equation. Eq. (7) becomes: 
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At each time step, we solved the concentration equation after solving the Navier-Stokes 

equation, because the concentration does not affect to a flow. To solve Eq. (10), we adopted 

LU-SGS method [12]. In evaluation of the flux vector for the concentration equation, we 

adopted QUICK method [13] for the advection grid term and the concentration advection term. 

Then, we use central differential approximation method for the concentration diffusion term. 

Computational conditions 

Computational system 

The rectangular two-dimensional computational domain and the evaluation domain were 

provided. In this study, we discuss about concentration diffusion in the evaluation domain. In 

the evaluation domain, the circular object was located and rotated. This object generates a 

flow and promotes concentration diffusion. The concentration was released from the right end 

of the evaluation domain (transmitter), and measured by three measurement points at the left 

end of the evaluation domain (receivers). Table 1 and Figs. 1, 2 show the details of the 

computational system. As shown in Fig. 1, the computational domain is larger on the left side, 

the top and the bottom with respect to the evaluation domain. The reason of it is that the 

measurement points located near the boundary are greatly affected by the boundary. Besides 

that, the air was used as the computational fluid. Table 2 shows the conditions of the density, 

the kinematic viscosity, the diffusion coefficient and the pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Details of computational system 

150×50

50×30

1

3.5

20, 15

x = 50

(Right end)

Upper 0, 29

Center 0, 15

Lower 0, 1.0

Concentration

measurement points

[mm, mm]

Computational domain [mm
2
]

Evaluation domain [mm
2
]

Object radius [mm]

Rotational radius [mm]

Rotation center [mm, mm]

Concentration release surface

[mm]

Density [kg/m
3
] 1

Kinematic viscosity [m
2
/s] 1.0×10

-5

Diffusion coefficient [m
2
/s] 1.0×10

-5

Pressure [kPa] 101.325

Table 2. Fluid condition 
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Boundary condition 

Table 3 shows the boundary conditions of the velocity, the pressure and the concentration for 

the around the computational domain and the object in this study. 

 

 

 

 

 

 

 

 

Grid condition and object velocity 

In this study, we dissected some velocity conditions of the object and verified the differences 

in effect on diffusion. As the grid condition, the non-uniform grid was applied for the cases 

that the object rotated, and the uniform grid was applied for the case that the object was 

stationary. The minimum grid size near the object and time step size needed to be modified 

for each velocity condition. Table 4 shows the details of grid, time step size and the object 

velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Boundary condition 

Except for the right end Right end

Velocity Non-slip

Pressure Linear extrapolation

Concentration Linear extrapolation 1.0 Linear extrapolation

Around the computational domain
Object

Linear extrapolation

Linear extrapolation

Figure 2. Evaluation domain 

Figure 1. Computational domain 

Table 4. Grid and object velocity condition 

Case 1 2 3 4

Number of grid points 114×95 160×141 160×141 160×141

Max grid size 10 10 10 10

Min grid size 0.2 0.1 0.1 0.1

Time step size Δt 0.02 0.01 0.02 0.02

Object velocity [mm/s] 50 100 200 300

Case 5 6 7

Number of grid points 170×151 170×151 751×251

Max grid size 10 10 0.2

Min grid size 0.09 0.09 0.2

Time step size Δt 0.02 0.02 0.005

Object velocity [mm/s] 500 1000 0
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Results and Discussions 

Fig. 3 shows that the computational results for time variation of concentration at three 

receivers. The case 7 condition in Table 4 plotted in each result of the case 1 to 6 by a broken 

line. 

 

As shown in Fig. 3, the cases with using the rotating object promoted concentration diffusion 

than the case with stationary object. However, the cases that the object was rotated with 

extremely high-velocity such as the cases 5 and 6 were invalid shown in Fig. 3 (e) and (f). 

This is because the signal noise can be confirmed. In addition, as the object velocity was 

higher, concentration diffusion was more promoted. Although there are differences by each 

velocity conditions, concentration diffusion was promoted at least more than double in several 

seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Case 1 (b) Case 2 

(c) Case 4 

(d) Case 5 (e) Case 6 

Figure 3. Time variation of concentration 

(f) Case 3 
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Concentration diffusion promoting effect 

In the cases with using rotating object, we obtained interesting results that the concentration 

diffusion was promoted. It is surmised that this effect is conspicuous because the rotational 

motion of the object generates the directional flow rather than stirring. The object rotates 

counterclockwise; thus, there should be the leftward flow at the top and the rightward flow at 

the bottom. Fig. 3 (b) and (c) show that concentration at the upper measurement point is 

higher than the lower, and strengthen the possibilities of the existence of the directional flow. 

In fact, the visualization of the velocity vector in the evaluation domain prove it. Fig. 4 shows 

the velocity vector of each case at t = 10 sec. 

 

Fig. 3 shows that the concentration diffusion was more promoted as the object velocity was 

higher. The reason is that the faster the object rotates, the larger the flow around the object 

grows, and it is illustrated in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turbulence of flow and concentration 

In the case that the object velocity is extremely high, the object created large disturbance as 

shown in Fig. 3 (e), (f). It is the problem to measure concentration. In these two cases, the 

phenomenon that the flow generated by the object disturbed diffusion and it pushed back 

concentration. Thus, the computational domain was filled rapidly with high concentration 

were identified. The sharp increase in Fig. 3 (e), (f) was caused by this phenomenon. The 

source of this phenomenon cannot be revealed. However, there is a possibility that the 

concentration diffuses avoiding the measurement points by the flow and the disturbance. In 

addition, there is also possibility that the concentration of outside of the evaluation domain 

flowed into the evaluation domain near the measurement points rapidly by something trigger, 

and it affects result. Fig. 5 shows the turbulence of the flow and the concentration in case 6. 

(a) Case 1 (b) Case 2 

(c) Case 3 (d) Case 4 

Figure 4. Velocity vector 
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As shown in Fig. 5, the upward flow was generated in the right side of the evaluation domain 

and it disturbed the concentration diffusion. It was also confirmed that the concentration 

distribution was collapsed.  

 

The results of case 5 and 6 prove that it is difficult to control the promotion of the 

concentration diffusion for the high object velocity. Therefore, there is the appropriate range 

to promote. Although they are small, the disturbances exist in case 2 to 4. These disturbances 

can be considered the communication noise. When the promoting effect is applied for MC, 

this noise effects the communication stability; thus, the best computational condition is 

required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

In this study, the circular object was located in the two-dimensional computational domain 

and rotated by some velocity conditions, and we obtained conclusions as follows: 

 

[1] The concentration diffusion was promoted by the rotating of the circular object. 

[2] The higher the object velocity, the more promote the concentration diffusion. It is related 

to the scale of the flow generated by the circular object. 

[3] The object velocity has the upper limit to gain the stable promotion effect of the 

concentration diffusion. 
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Abstract 

Compressible-incompressible flows such as gas-liquid two-phase flows and jets are very 
interesting phenomena. The construction of a method which is able to analyze complex 
phenomenon is expected to be applied to various real phenomena. The purpose of this study is 
to simulate the flow in the pressure tank of a water rocket with gas-liquid two-phase flow. 
First, we developed a coupled calculation method for compressible flow and incompressible 
flow. Next, the calculation just before the gas-liquid two-phase flow was performed and 
compared with the experiment, and a reasonable thrust was obtained. 

Keywords: Water rocket, Compressible-incompressible flows 

Introduction 

Flows are classified into two types: compressible flows and incompressible flows. In 
compressible flows, the density changes according to the change in pressure, while 
incompressible flows ignore the change in density. The effect of compressibility can be 
summarized by Mach number. If the Mach number is smaller than 0.3, it is treated as 
incompressible flow. It is said that compressibility is considered when the density change is 
greater than 5%. For example, in air at 20 °C, compressibility must be considered when the 
flow velocity is greater than about 100 m/s. In the other words, at a flow velocity of 100 m/s, 
it is needed to change the governing equation. There are few examples of CFD analysis under 
the situation where a compressible flow and an incompressible flow are mixed, such as the 
discharge of the ink jet in the ink jet printer. In order to analyse the phenomenon that a 
compressible flow and an incompressible flow are mixed by CFD, a method of the coupled 
calculation for the compressible flow and the incompressible flow is necessary. 
Therefore, in this paper, a water rocket, which is a familiar toy and is also fluidly interesting, 
is selected as a coupled problem for a compressible flow and an incompressible flow, and its 
flight simulation is attempted. Only water and air exist in the pressure tank of the PET rocket. 
As for the movement of the water, the water has been injected within one second, and 
sloshing and wave phenomena occur in the flow field. As for the movement of the 
compressed air, this compressed air in the tank expands with the injection of water. The air 
expands until it reaches the same pressure as the surroundings after the water is blown out. 
For the flow in the pressure tank of the water rocket, the optimal thrust control by Watanabe 
et al. [1], the unsteady thrust characteristics by Itakura et al. [2], and the calculation by Ohta et 
al. There are several academic papers on flight conditions [3]. However, these are mainly 
comparisons between experimental results and theoretical calculations, and simulations using 
CFD have not been performed. This may be due to the high cost calculation for two-phase 
flow with complicated interface inside the pressure tank. Thus, applications of dynamic 
phenomena analysis can be expected by constructing the simulation method inside the 
pressure tank. 
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The purpose of this study is to simulate the flow in a pressure tank using the combined 
calculation of compressible flow and incompressible flow, and to calculate the thrust received 
by the water rocket. The usefulness of the thrust data obtained by comparing with the 
experiment is confirmed. 
 

Numerical Approach 

Governing Equations 

For the flow of water in the pressure tank, the governing equations are the continuity equation 
and the incompressible Navier–Stokes equation in conservation law form. These are written 
as 
 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (1) 

 

 
𝜕𝜕𝒒𝒒𝑖𝑖
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑬𝑬𝑖𝑖
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑭𝑭𝑖𝑖
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑮𝑮𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝟎𝟎 (2) 

 𝑬𝑬𝑖𝑖 = 𝑬𝑬𝑎𝑎 + 𝑬𝑬𝑝𝑝 − 𝑬𝑬𝑣𝑣 ,𝑭𝑭𝑖𝑖 = 𝑭𝑭𝑎𝑎 + 𝑭𝑭𝑝𝑝 − 𝑭𝑭𝑣𝑣 ,𝑮𝑮𝑖𝑖 = 𝑮𝑮𝑎𝑎 + 𝑮𝑮𝑝𝑝 − 𝑮𝑮𝑣𝑣,  

 
where qi is the velocity vector, Ei, Fi, and Gi are respectively flux vectors for incompressible 
flow in the x, y, and z directions, Ea, Fa, and Ga are respectively advection flux vectors, Ev, 
Fv, and Gv are viscous-flux vectors, and Ep, Fp, and Gp are pressure terms. The elements of 
the velocity vector and flux vectors are 
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, 

(3) 

where u, v, and w are respectively the velocity components of the x, y, and z directions and p 
is pressure. Re is the Reynolds number. These equations are non-dimensionalized using 
equation (4).  
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(4) 

Here, �  represents a dimensional quantity, and 𝐿𝐿�0 ,  𝑈𝑈�0 , 𝜌̅𝜌 , and, 𝜇̅𝜇  represent the 
characteristic length, representative velocity, density, and viscosity coefficient, respectively. 
Next, for the flow of air in the pressure tank, the governing equations are the Euler equations 
in conservation law form. These are written as 
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where qc is the conservative quantity vector, Ec, Fc, and Gc are respectively flux vectors for 
compressible flow in the x, y, and z directions, which include advection and pressure term. 
The elements of the velocity vector and flux vectors are 
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where 𝜌𝜌 is density and e is internal energy per unit volume. Assuming an ideal gas having a 
specific heat ratio of 𝛾𝛾, it can be expressed as equation (7) using the equation of state. 
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1
2
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where the ratio of specific heats γ is typically taken as being 1.4. These equations are non-
dimensionalized using equation (8). 
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Here, �  represents a dimensional quantity, and 𝐿𝐿�0, 𝑐𝑐∞̅, and, 𝜌̅𝜌∞, represent the characteristic 
length, the speed of soundand representative density, respectively. 
 

Unstructured Moving-grid Finite-volume Method 

The flow of air and water in the pressure tank is a moving boundary problem. To solve the 
moving boundary problem, it is necessary that the movement and deformation of the grid do 
not affect the flow, that is, it must satisfy the law of conservation of geometry [4]. In this 
study, we used the moving-grid finite-volume method [5][6] that strictly satisfies the 
conservation law as a discretization method. The three-dimensional unstructured moving-grid 
finite-volume method is useful for compressible and incompressible fluids. 
To assure the geometric conservation laws, we use a control volume in the space-time unified 
domain (x, y, z, t), which is four-dimensional in the case of three-dimensional flows. Now, 
Equations (2) and (5) can be written in divergence form as 
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 (for incompressible flow), (10) 
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 (for compressible flow) 

The present method is based on a cell-centered finite-volume method. Thus, the flow 
variables are defined at the center of the cell in the (x, y, z) space. The control volume 
becomes a four-dimensional polyhedron in the (x, y, z, t)-domain, as schematically illustrated 
in Figure 1. 

 

 
Figure 1 Schematic view of control volume 𝜴𝜴�  in (x, y, z, t) space-time unified domain. 

We apply volume integration to Eq. (9) with respect to the control volume illustrated in 
Figure 1. Using the Gauss theorem, we can write Eq. (9) in surface integral form as 

 �∇� ⋅ 𝑭𝑭�𝑑𝑑𝑉𝑉�
 

𝛺𝛺�
= � 𝑭𝑭� ⋅ 𝒏𝒏�𝑢𝑢 𝑑𝑑𝑆𝑆�
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≈��𝑭𝑭� ⋅ 𝒏𝒏��𝑙𝑙

6

𝑙𝑙=1
= 𝟎𝟎 (11) 

 

Here, 𝒏𝒏�𝑢𝑢 is an outward unit vector normal to the surface of the polyhedron control volume 𝛺𝛺�  
(𝜕𝜕𝛺𝛺� ). The term 𝒏𝒏� = �𝑛𝑛�𝑥𝑥,𝑛𝑛�𝑦𝑦, 𝑛𝑛�𝑧𝑧 ,𝑛𝑛�𝑡𝑡�𝑙𝑙 , (l=1, 2,... 6) denotes the surface normal vector of 
control volume and its length is equal to the boundary surface area in four-dimensional (x, y, 
z, t) space. The upper and bottom boundaries of the control volume (l = 5 and 6) are 
perpendicular to the t-axis. Therefore they have only the 𝑛𝑛�𝑡𝑡 component, the length of which 
corresponds respectively to the cell volume in the (x, y, z)-space at time tn and tn+1. Thus, Eq. 
(11) can be expressed as 

 𝒒𝒒𝑖𝑖𝑛𝑛+1(𝑛𝑛�𝑡𝑡)6 + 𝒒𝒒𝑖𝑖𝑛𝑛(𝑛𝑛�𝑡𝑡)5 +��𝑭𝑭� ⋅ 𝒏𝒏��𝑙𝑙
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4
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= 𝟎𝟎 (for incompressible flow) (12) 

 𝒒𝒒𝑐𝑐𝑛𝑛+1(𝑛𝑛�𝑡𝑡)6 + 𝒒𝒒𝑐𝑐𝑛𝑛(𝑛𝑛�𝑡𝑡)5 + ��𝑭𝑭� ⋅ 𝒏𝒏��𝑙𝑙
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= 𝟎𝟎 (for compressible flow) (13) 
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Numerical Procedure 

To solve Eq. (12) for incompressible flow, we apply the Fractional Step method [7]. Thus, Eq. 
(12) can be solved in the three following stages. The equation to be solved at the first stage 
contains the unknown variables at n+1-time step in the flux terms. Thus, the equation is 
iteratively solved using the LU-SGS method [8]. The equation to be solved at the second 
stage is the Poisson equation about the pressure. This equation is iteratively solved using the 
Bi-CGSTAB method [9]. The flux vectors are evaluated using the QUICK method, whereas 
the flux vectors of the pressure and viscous terms are evaluated in the central-difference-like 
manner.  
On the other hand, the flux vectors of Eq. (13) for compressible flow are evaluated using the 
Roe flux difference splitting scheme [10] with MUSCL approach, as well as the 
Venkatakrishnan limiter [11]. Then, to solve the implicit algorithm, the two-step Rational 
Runge-Kutta scheme [12] is adopted. 
 

Procedure on Coupled Computation for Compressible flow and Incompressible flow 

Compressed air pushes water in the pressure tank. As a result, the compressed air expands and 
pushes water out by the reduced flow rate of water. The calculation procedure is as follows: 
 
( i) The outflow velocity 𝑣𝑣𝑒𝑒 of water is estimated from equation (14) using the initial pressure 

of air only at the first hour stage. 
(ii) The moving speed of the interface between water and air 𝑣𝑣𝑏𝑏  is calculated using the 

continuous equation and 𝑣𝑣𝑒𝑒. 
(iii) The incompressible fluid is calculated using 𝑣𝑣𝑏𝑏 to obtain the water outflow speed 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜. 
(iv) The pressure loss 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is calculated using equation (15). On the other hand, the interface 

pressure 𝑝𝑝𝑐𝑐 is obtained by using the 𝑣𝑣𝑏𝑏 in the calculation of the compressible fluid. 
(v) The interface moving speed 𝑣𝑣𝑎𝑎𝑎𝑎 is calculated using 𝑝𝑝𝑐𝑐, 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and, equation (16). 
(vi) Repeating (iii) ~ (v). (𝑣𝑣𝑏𝑏 = 𝑣𝑣𝑎𝑎𝑎𝑎)  
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2(𝑝𝑝𝑐𝑐 − 𝑝𝑝∞ − 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜌𝜌𝑤𝑤𝑔𝑔ℎ)

𝜌𝜌𝑤𝑤 ��
𝑆𝑆1
𝜉𝜉𝑆𝑆2

�
2
− 1�

 (16) 

 
Here, 𝑣𝑣𝑒𝑒 is the outflow velocity, 𝑝𝑝𝑐𝑐 is the pressure of air at the boundary surface with water, 
𝑝𝑝∞ is the pressure at the outlet, 𝜌𝜌𝑤𝑤 is the density of water,  𝑔𝑔 is the gravitational acceleration, 
ℎ is the height of the liquid surface, 𝜉𝜉 is the nozzle flow coefficient, 𝑆𝑆1 is the cross-sectional 
area of the interface between air and water, 𝑆𝑆2 is the cross-sectional area of the outlet, and 𝜁𝜁 is 
the ratio of the cross-sectional area of the outlet to the contraction part. In this paper, 𝜉𝜉 and 𝜁𝜁 
are is respectively taken as 0.8 and 1.64. 
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Numerical Results 

The flow simulation in the pressure tank of the water rocket is performed to derive the thrust 
necessary for the flight of the water rocket. There are compressed air and water in the pressure 
tank, and thrust is obtained by the ejection of water by the expansion of the compressed air. 

Calculation Model 

Figure 2 shows the pressure tank part (the part surrounded by a red frame) of the water rocket. 
The diameter of the plastic bottle is 80 mm, the diameter of the outlet from which the water 
gushes out is 10 mm, and the height is 320 mm. This is modeled using Metasequoia [13], and 
a computation grid is created using MEGG3D [14], as shown in Figure 3. It has 126,625 grid 
points and 575,495 elements. Figure 4 shows the dimensions of the model created. 

 

 
Figure 2 A tank of PET-bottle rocket. 
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Figure 3 Calculation model and mesh of tank for PET-bottle rockets. 
 

 
Figure 4 Size of the tank model for water rocket at t = 0. 

 

Calculation Conditions 

For compressed air, the initial conditions are assumed to be 4 atmospheres (gauge pressure). 
The pressure is 𝑝𝑝𝑐𝑐 = 2.921, velocity is 𝑢𝑢𝑐𝑐 = 𝑣𝑣𝑐𝑐 = 𝑤𝑤𝑐𝑐 = 0, and dencity 𝜌𝜌(= 𝑝𝑝𝑐𝑐γ) = 4.08 . 
The characteristic length is a PET bottle diameter of 80 mm and a density is 1.2 kg/m3. The 
boundary condition is a wall reflection boundary on the entire surface, assuming that the 
water surface is a rigid body. 

As initial conditions for water, the pressure is 𝑝𝑝 = 0, and the velocity is 𝑢𝑢 = 𝑣𝑣 = 𝑤𝑤 = 0. 
The characteristic length is PET bottle diameter 𝐿𝐿�0 = 80 mm , characteristic velocity is 
𝑈𝑈�0 = 15 m/s, density is 1000 kg/m3, viscosity is 1.0 × 10−3 Pa ∙ s, as with compressed air. 
In this case, the Reynolds number Re = 1.2 × 106. 

As the boundary conditions, pressure is fixed at the outflow surface and velocity is linear 
extrapolation on BC1. The air-water interface BC2 is considered a wall. The pressure is 
Neumann type boundary and velocity fixed (w = −𝑣𝑣𝑎𝑎𝑎𝑎) on BC2. At the wall boundary BC3, 
the pressure is Neumann type boundary and the velocity is reflection boundary. The time step 
size is ∆𝑡𝑡𝑐𝑐 = 0.0226 for the calculation of the compressed air flow and ∆𝑡𝑡𝑖𝑖 = 0.001 for the 
calculation of the water flow due to the difference in the characteristic velocity. The 
calculation is performed until immediately before the diameter of the pressure tank changes. 

Simulation of Flow in Pressure Tank 

Figure 5 shows the velocity results for this calculation at 𝑡𝑡̅ = 0.18 s. In the vicinity of the 
outlet, we confirmed that a flow like Poiseuille flow, whose velocity increases at the center of 
the outlet. Figure 6 shows a velocity vector near the outlet at 𝑡𝑡̅ = 0.18 s. We confirmed that 
the water flows along the shape of the model. In this paper, the calculation is performed 
before the diameter of the pressure tank changes, which is about 0.2 s. According to Itakura et 
al. [2] and Ota et al. [3], the injection time of only water is about 0.3 s. After a gas-liquid two-
phase flow in which air and water are mixed, only air is injected in 0.5 s. Figure 7 shows the 
velocity vector near the outlet at 𝑡𝑡̅ = 0.1 s. Comparing Figure 6 and Figure 7, we confirmed 
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that a positive flow in the z-axis direction near the outflow nozzle at 𝑡𝑡̅ = 0.18 s is larger than 
at 𝑡𝑡̅ = 0.1 s. This shows that vortices and complicated flows occur over time. 

 

 
Figure 5 Velocity distribution of water flow in a tank of water rocket at 𝒕̅𝒕 = 𝟎𝟎.𝟏𝟏𝟏𝟏 𝐬𝐬. 

 

 
Figure 6 Velocity vectors about outflow in a tank of water rocket at 𝒕̅𝒕 = 𝟎𝟎.𝟏𝟏𝟏𝟏 𝐬𝐬. 
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Figure 7 Velocity vectors about outflow in a tank of water rocket at 𝒕̅𝒕 = 𝟎𝟎.𝟏𝟏 𝐬𝐬. 

 
The thrust 𝐹𝐹 obtained by the plastic rocket by water injection was calculated using equation 

(17). 
 𝐹𝐹 = 𝑚̇𝑚𝑣𝑣𝑒𝑒. (17) 

 
Here, 𝑚̇𝑚 is the mass flow rate of the outflowing fluid, and 𝑣𝑣𝑒𝑒 is the outflow velocity. Figure 

8 shows the comparison between the thrust obtained by this calculation and the experimental 
results by Itakura et al. [2]. The red line in the figure represents the results of this calculation. 
This shows that the slopes at which the thrust decreases approximately match though the 
absolute values of thrust do not match. According to Itakura et al. [2], "The net thrust is 
obtained by subtracting the injection weight at each time. At this time, the value cannot be 
accurately estimated, then the thrust obtained by the force sensor was used as it was". In fact, 
it is presumed that the thrust value is actually a little smaller. Therefore, the result of the thrust 
by this calculation is reasonable. 
 

 
Figure 8 Thrust data compared with experimental data. 

(Red line: present method, Blue line: experimental data) 

ICCM2020, 9th -12th August 2020

69 



Concluding Remarks 

In this paper, the thrust was derived by using the coupled calculation for compressible and 
incompressible flow. As a result, the thrust agreed qualitatively with the experimental results. 
This suggests that this coupled calculation method was valid. However, in this calculation, we 
consider the outflow stage of water only in the pressure tank. Therefore, in order to achieve 
quantitative agreement, it is necessary to consider gas-liquid two-phase flow in the actual 
pressure tank and more complicated flows such as a sloshing. 
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Abstract 

Several numerical infection simulations have been performed to identify the transmission 

route of influenza virus. In this case, the most important issue is shortening the calculation 

time. Thus, according to different calculation condition, whole recalculation is not required. 

Then, only the necessary parts of the numerical model can be used for calculation by 

calculating for multiple numerical models separately and applying the results to the 

calculation of other models. That leads to a shortening of overall calculation time. In this 

study, as the first step, to construct a coupled calculation method, the calculation for a room 

model was performed using the calculation results of a respiratory organ model. Then, the 

result obtained by the calculation for the respiratory organ model was coupled on the 

respiration flow of a human model in the room model. That showed the possibility that the 

method could be applied to coupled calculation for multiple numerical models and contribute 

to shortening of calculation time.  

 

Keywords: Coupled simulation, Influenza virus, Computational fluid dynamics, respiratory 

organ 

 

Introduction 

Computational Fluid Dynamics (CFD) has been used for the design and development of 

industrial products by reproducing actual phenomena related to fluids. In accordance with the 

development of a computer hardware and software, both calculation speed and computation 

memory have been improved. Together with them, the computational target also becomes 

more complex and large-scale. Several numerical infection simulations have been performed 

to identify the transmission route of influenza virus. The transmission route of the virus 

released from the patient to the infected person was studied. Similarly, in this study, the 

calculation time for one case become longer as the computational target becomes complicated. 

In a large-scale calculation, the conditions at the local part of the numerical model are often 

changed to study some cases. If the numerical model is only the whole model, it is necessary 

to recalculate including the unnecessary part, which takes time. 

Ito et al. [1] has united a human respiratory organ model and outside of a human model with a 

continuous mesh. Then, a space from the inside of the respiratory organ to the indoor space 

through the nostrils and mouth was handled as a series of the analysis models. In this case, 

tens of millions elements were required for expression of the model to obtain detailed results. 

If the number of elements is large, it takes time to calculate for one case. Thus, it is important 

to be able to shorten the calculation time. For example, it is necessary to perform the 

recalculation including the respiratory organ according to changing indoor conditions such as 

a ventilation volume. Even if the ventilation volume is changed, the velocity in the respiratory 
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organ does not change. So, it is unnecessary to perform the recalculation for the inside of the 

respiratory organ. Then, we tried to construct the method that the calculation of a flow in the 

room is performed using the calculation result of a flow for the inside of the respiratory organ. 

Then, it should be performed is useful for shortening the calculation time. If that is 

constructed, the calculation for only the necessary part of analysis models can be performed 

and the calculation time should be shortened. Also, a characteristic value can be set for each 

model. 

In addition, several studies have been conducted to identify the transmission routes of viral 

droplets and to take effective prevention by applying the effects of breathing and coughing. 

Studies using CFD include study of the behavior of droplets discharged by breathing and 

coughing in an aircraft environment [2], study of the behavior of droplets discharged by 

breathing in a room [3], and study of the behavior of droplets and the location of attachment 

in a respiratory organ [4]. However, there are few cases that study the behavior between 

inside and outside the body, and it is necessary to do so. When coupled calculation for a air 

flow is performed, it is necessary for coupled simulation to be able to be performed for viral 

behavior. If a method of the coupled calculation for multiple models is constructed, it is 

expected to apply the method to complex and large-scale calculations. 

In this study, the behavior of viral droplets was calculated using two models, a room model 

with human models and a respiratory organ model, in order to investigate coupled 

calculations between multiple models. Specifically, the viral behavior was calculated under 

the condition that one person models was coughed, and another one was performed using the 

calculation results for the respiratory organ model. The objective of the study is to construct a 

coupled calculation method. The behavior of the droplet was calculated using the result of the 

indoor air flow. The behavior of the viral droplets was reproduced by introducing the radius 

change, the survival rate, and the combination of the droplets. 

Numerical Approach 

Governing equations 

In this study, the incompressible Navier-Stokes equations and continuity equations are used. 

These expressions are nondimensionalize, and they are written as  

 

， 
(1) 

 

 

 

 (2) 

 

 

  

， 
(3) 

 
where, q is the velocity vector, E, F, and G are inviscid flux vectors in x, y, and z directions 

respectively, and Ev, Fv, and Gv are viscous flux vectors in x, y, and z directions respectively, 
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u, v, and w are velocities in the x, y, and z directions, p is pressure, and Re is Reynolds 

number. The subscripts x, y, and z in Ev, Fv, and Gv represent the differential in each direction. 

Numerical Method 

Unstructured grid that can represent complicated shapes is adopted because human and 

respiratory organs have complex surface profile. In this study, the method based on the cell-

centered finite-volume method is used. Equation (1) is volume integrated using the Gauss 

theorem, and it can be rewritten as follows: 

 

， 

(4) 

 

 

， 

(5) 

 

where,  is a control volume, l = 1,2,3,4 is the number of each surface in the control volume, 

and nx, ny, and nz are outward normal vectors in the x, y, and z directions respectively. The 

Fractional Step method is used to solve Equation (4), and it divides Equation (4) into two 

stages. One contains the unknown variables at the n+1 time step in the flux terms. The other 

contains Poisson equation for pressure. As an iterative method, the former is used the LU-

SGS method [5], and the latter is used the Bi-CGSTAB method [6]. 

 

Parameter of viral behavior 

Viral droplets are extremely small compared with the size of the room. Therefore, it is 

considered that the influence of the droplet on the airflow is small. Then, in this study, the 

influence of viral droplets on the airflow is ignored, and the calculation for the behavior of the 

virus is performed using the calculation result for the airflow. In order to approximate the real 

behavior of the virus, some parameters are introduced. 

The sedimentation velocity of the droplet is decided by a formula [7] considering a 

temperature and a relative humidity. In addition to the airflow, the droplets are affected by 

gravity which is determined by the droplet radius. First the vapor pressure is calculated from 

relative humidity and temperature using the Clausius-Clapeyron relation [8]. Using the vapor 

pressure, the change in the droplet radius due to evaporation is evaluated as follows: 

 

， 
(6) 

 

where, r is the droplet radius, D is the diffusion coefficient of water vapor, es is the saturated 

vapor pressure, e is the vapor pressure, ρw is the density of water, Rv is the gas constant of 

water vapor, and T is the temperature. 

Next, the horizontal and vertical velocity of the droplet is evaluated as follows: 

 

， 
(7) 
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where, u and v are droplet velocity in the horizontal and vertical direction, η is the surface air 

viscosity and ρd is the density of droplet. Considering the influence of the gravity, the 

sedimentation velocity of the droplet is evaluated as follows: 

 

， 
(8) 

 

where, w is the sedimentation velocity, and g is gravitational acceleration. 

When the virus droplet contacts with another droplet, the two droplets are combined. The 

radius of the combined droplet is determined so that the volume of the combined droplet is 

equal to the sum of each volume of the two droplets. The central position of the combined 

droplet is determined by the inverse ratio of the two droplets radius.  

It is known that the survival rate of influenza virus is defined by temperature and humidity. G. 

J. Harper [9][10] studied the survival rate experimentally. Considering the results, the survival 

rate was approximated as via and defined as following equations, where t is real time. 

 

In the case of relative humidity 50%: 

. (9) 

In the case of relative humidity 80%: 

. (10) 

 

Airflow Calculation 

Numerical Model for respiratory organ 

In this study, two numerical models, respiratory organ model and room model, are used. For 

respiratory organ model, the model used by Yamakawa et al. [4] was revised and used. For 

computational mesh, Fig. 1 shows mesh for the respiratory organ. The total number of 

elements is 462,141. 

 

  

(a) Overview (b) Mesh around a nasal cavity 

 

Figure 1. Mesh for the respiratory organ 
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Calculation conditions for respiratory organ 

In this study, the simulation is performed for nasal breathing. Fig. 2 shows the flow rate of 

breathing described in the Handbook of Physiology [11]. For the flow rate, the positive flow 

rate indicates inspiration and the negative is expiration. In the respiratory model, the unsteady 

cycle is reproduced by giving the flow rate to the bronchi according to this waveform. Also, 

because the respiratory organ model has left and right bronchus, half of the flow rate in the 

figure is given to each bronchi. The characteristic length is 0.018 m, the characteristic velocity 

is 1.8 m/s, and the Reynolds number is 2100. As the initial condition, p = 0.0 and u = v = w = 

0.0 are given. 

 

 
Figure 2. Breathing flow rate 

 

Calculation result for respiratory organ 

Fig. 3 shows the velocity distribution at sagittal plane during inhalation. It can be confirmed 

that the velocity increases at the nasal cavity and the pharynx where the cross-sectional area 

of the respiratory tube is small. In this study, the calculation was performed for nasal 

breathing, so the velocity near the mouth was zero. The calculation results were similar than 

the results calculated by Yamakawa et al. [4]. 

 

 
Figure 3. Velocity distribution at sagittal plane 

inspiration 

expiration 
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Numerical Model for inside of room 

For room model, Fig. 4 shows the room model used in this coupled calculation. The size of 

the room is 6.0m × 6.0m × 3.5m, and two human models are located face to face in the room. 

A human model placed in the room is shown in Fig. 5.  
 

 
 

Figure 4.  A room model with human model 

 
 

 
Figure 5.  A human model 

 

 

 

 

 

 

 

 

 

3.5 m 

6.0 m 

6.0 m 

1.7m 

1.5 m 

Air vent 
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Fig. 6 shows mesh around humans and a head in the room. The mesh around a human model 

is fine, especially near the nose and mouth, and becomes coarser toward the wall. The total 

number of elements is 991,611  

 

   
(a) Mesh at sagittal plane (b) Mesh around a face 

Figure. 6 Mesh for the inside of the room 

 

Calculation conditions for inside of room 

In this study, we performed the simulation for two human models in the room, assuming that 

one person coughs and another breathes at the nose. First, for the one human model, Fig. 7 

shows the flow rate of coughing experimented by Gupta et al. [12]. The unsteady cycle is 

reproduced by calculating under the condition that the flow rate from the mouth flows out 

according to this waveform. After coughing, mouth respiration starts using the flow rate 

shown in Fig. 5. For another human model which performs nasal breathing, breathing is 

performed using the results obtained by the airflow calculation in the respiratory organ model. 

The characteristic length is 0.3 m, the characteristic velocity is 1.0 m/s, and the Reynolds 

number is 19500. As the initial condition, p = 0.0 and u = v = w = 0.0 are given. 

 

 
Figure 7. Flow rate of coughing 
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Calculation result for inside of room 

Fig. 8 shows the calculation results when coughing. It shows the velocity distributions at t = 

0.03 s, 0.12 s, 0.24 s, and 0.54 s. It was confirmed that the air discharged from the mouth of 

one human model spread as time went on. 

 

 

 

(a) t = 0.03 s (b) t = 0.12 s 

 

 

(c) t = 0.24 s (d) t = 0.54 s 

Figure 8. Velocity distribution when coughing 

 

Then, Fig. 9 shows the calculation results when breathing. It shows the velocity distributions 

at t = 1.95 s, 2.55 s, 3.6 s, and 4.2 s. The flow rate of coughing and breathing was given to left 

human model. The results for the respiratory organ model was used for the value of breathing 

at right human model. It was confirmed that the air was discharged by expiration and 

weakened gradually to shift to inspiration.  

 

  
(a) t = 1.95 s (b) t = 2.55 s 

  

(c) t = 3.6 s (d) t = 4.2 s 

Figure 9. Velocity distribution when breathing 
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Then, in order to confirm the coupled calculation, Fig. 10 shows the velocity distribution near 

the face of the right human model at t = 1.95 s, 2.55 s, 3.6 s, and 4.2 s. For the expiration, it 

was confirmed that a change of velocity was similar to the waveform of breathing, which 

gradually becomes stronger and weaker. 

 

  
(a) t = 1.95 s (b) t = 2.55 s 

  
(c) t = 3.6 s (d) t = 4.2 s 

Figure 10. Result of coupled calculation 

 

Simulation of viral behavior 

In this calculation, the simulation of viral behavior is performed using the results of the 

airflow calculation.  We aim to construct a method to perform the simulation of viral behavior 

using the results for the airflow calculation of different models. 

 

Calculation conditions for inside of room 

In this study, the calculation is performed at temperature 25 ℃ and humidity 50% in the room. 

The initial position of the viral droplets is located in front of the mouth, as shown in Fig. 11. It 

is arranged in the red part of Fig. 11. For the initial droplets, the droplets are divided into 16 

kinds of radius based on the number of droplets discharged by cough reported by Duguid et al. 

[13]. Table 1 shows the distribution.  

 

 
Figure 11. Initial position of droplets 

ICCM2020, 9th -12th August 2020

79 



Table 1 Distribution for the number of droplets 

Radius ( ) The number of droplets Radius ( ) The number of droplets 

2.0 219 75.0 410 

4.0 1241 100.0 355 

8.0 4138 125.0 206 

16.0 6346 150.0 149 

24.0 3494 200.0 114 

32.0 1647 250.0 138 

40.0 916 500.0 157 

50.0 410 1000.0 60 

Total 20,000 

 

Calculation result for inside of room 

As the calculation result of the viral behavior in the room, Fig. 12 shows the distributions of 

viral droplets at t = 0.09 s, 0.3 s, 4.5 s, and 9.0 s. It is a droplet with larger diameter as the 

color turns red. It was confirmed that they were diffused by coughing regardless of size and 

large droplets were influenced by gravity as time went on. In particular, it could be confirmed 

that the blue droplets (small droplets) are distributed above and the red droplets (large 

droplets) are distributed below at t = 9.0 s. This suggests that the risk of infection is high for 

small droplets that float for a long time because large droplets fall immediately. At     t = 9.0 s, 

14 droplets adhered near the nose of the human model, and 55 droplets combined. In addition, 

some of the droplets were influenced by the nasal respiration, as shown by the circles in (c). It 

was confirmed that the viral behavior was affected by the respiration based on the result of the 

calculation for the respiratory organ. 

 

  
(a) t = 0.09 s (b) t = 0.3 s 

  
(c) t = 4.5 s (d) t = 9.0 s 

Figure 12. Distribution of viral droplets in the room 
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Calculation conditions for inside of room 

In this study, the calculation is performed at temperature 35 ℃ and humidity 80% in the 

respiratory organ. 14 droplets adhered for total of 20,000 droplets in the last subsection. It is 

supposed that 100,000 droplets are discharged and 70 droplets are adhered. In order to 

confirm the behavior in more detail, this calculation is performed assuming that 70 droplets 

are inhaled. Because the time of adhesion is different each droplet, the droplets are placed in 

the nostrils according to each adherent time. 

 

Calculation result for respiratory organ 

As the calculation result of the viral behavior in the respiratory organ, Fig. 13 shows the 

distributions of droplets at t = 4.6 s, 6.0 s, 7.5 s, 10.5 s, 15.0 s, and 60.0 s. The droplets went 

and returned in the model. It is supposed that this development has been caused because of 

expiration and inspiration. It could be seen that most of the droplets adhere to the nasal cavity 

as time went on. On the other hand, as shown in (f), it could be seen that some droplets enter 

the trachea through repeated breathing and adhere to the trachea or bronchi. Through these 

results, it could be confirmed what behavior was shown by viral droplets influenced by 

coughing and breathing. 

 

   
(a) t = 4.6 s (b) t = 6.0 s (c) t = 7.5 s 

   
(d) t = 10.5 s (e) t = 15.0 s (f) t = 60.0 s 

Figure 13. Distribution of viral droplets in the respiratory organ 
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Conclusions 

The objective of the study is to construct a method of coupled calculation using multiple 

models. As the application, the calculation for the behavior of viral droplets influenced by 

coughing and breathing was performed. The airflow calculation and the simulation of viral 

behavior were performed using the two models, and the following conclusions were obtained. 

First, the airflow calculation in the room was performed using the result of the airflow 

calculation in the respiratory organ and it could be confirmed that the calculation could be 

applied to the room model. Second, the simulation of viral behavior for inside and outside the 

body was performed and it could be confirmed that coughing and breathing influenced the 

behavior of viral droplets. Thus, the possibility of coupled calculation for multiple models 

could be shown. 
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Abstract 

Tensegrity is a unique geometric morphology which is composed of discontinuous compression 

members with a continuous network of tension members. It can be stabilized in a self-

equilibrium state and can deform by itself without the application of external force. Finding its 

equilibrium shape has become one of the key points for the tensegrity design structures, which 

is known as form-finding analysis.  

In this study, the form-finding problem of tensegrity structure will be carried out by the tangent 

stiffness method which is quite effective in the geometrical nonlinear analysis due to its strict 

rigid body displacement of elements. The nonlinear analysis based on the tangent stiffness 

method allows us to describe the element behavior freely, even real or virtual, by defining the 

measure potential. In this study, power function is proposed for the form-finding analysis and 

it is evaluated by the influence of each coefficient on the shape formation. From this analysis, 

it can be expected to develop more equilibrium solutions in a more efficient way.  

Keywords: Tensegrity structures, measure potential, influential coefficients 

 

Introduction 

Tensegrity is a unique class of structural morphology which is a combination of disconnected 

compression members with connected tension members. The structure can maintain the 

stabilization in its self-equilibrium state and can deform by itself without loading of external 

force [1]. Tensegrity possesses the superior characteristics than other ordinary structures since 

they are architecturally aesthetic, structurally lightweight, and mechanically flexible to be 

deployed or folded in a large-scale structure. The application of the tensegrity concept becomes 

wider in various fields from structural fabrication, ultra-lightweight space structures [2] to 

biomedical science [3]. Due to the advance in material science and computational capability, 

membrane structures are found to be in association with tensegrity structures. The utilization of 

the tensegrity structures can widely be seen in public services such as open-space pavilion or 

landmark sculpture or bridge structure. Therefore, it is basically important to find out the 

equilibrium configurations to design the tensegrity structures.  
 
Since the introduction of the concept on tensegrity, many researchers have been trying to find 

out the characteristic behavior of tensegrity and its response in various analyses by approaching 

in numerous ways [4] [5]. One of the widely used methods is the force density method [6] and 

it can be applied to structures where the lengths of the elements are not specified in the initial 

stage. However, it has a deficiency of controlling the variation of lengths of the elements of the 

structures [7]. Dynamic relaxation method has been effectively used in the cable structures [8] 

and in truss and frame structures [9] and it is also applied in tensegrity structures as another 
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approach. However, Motro et al. concluded that its efficiency decreases with an increased 

number of nodes of large-scale tensegrity although it has convergence for the structures with 

only few nodes [10]. Masic et al. extended the force density method in an algebraic approach 

with the involvement of shape constraints to the symmetric tensegrity structures with a 

nonlinear optimization method [7]. S. Lee and J. Lee modified the force density method by 

combining with a genetic algorithm to determine the self-equilibrium and stability properties 

of tensegrity structures [11]. The integrated method does not need the requirement of any 

symmetric condition which has been particularly considered in the existing force density 

method for the form-finding process.  
 
On the other hand, the authors have studied the form-finding process from the viewpoint of the 

geometrically nonlinear analysis [12] [13]. Since the tensegrity structure can largely deform in 

its self-equilibrium state, the geometrical nonlinearity is needed to be considered in the large 

deformational structures. In this study, the tangent stiffness method is applied to conduct the 

form-finding analysis since it is quite effective in the geometrical nonlinear analysis due to its 

strict rigid body displacement of elements [14].  
 
In the form-finding process by the tangent stiffness method, we can set the element behavior 

by defining the measure potentials. The “virtual” potential functions have the parameters of 

element measurement and its differential functions as the element force equations prescribing 

the element behavior [15]. Therefore, many types of the element can be used according to the 

purpose of the analyses. In this study, the measure potential is defined by power function and 

the component of each coefficient is examined in a wide range of variation in order to 

investigate their influence on the resulted equilibrium solutions.   

Tangent Stiffness Method (TSM) 

The tangent stiffness method evaluates the geometrically nonlinearity caused by elements’ rigid 

body displacement strictly, because of the tangent geometrical stiffness derived by the 

differential calculus calculation of balance equation between the element edge force vector and 

the nodal force vector. Thus, we can make rules about the element behavior inside of the 

element local coordinate no concern with the tangent geometrical stiffness, and the obtained 

equilibrium solutions adjust to defined element behavior. Namely, the tangent stiffness method 

gives us the usefulness that the element behavior can be defined “freely”. 

General Formulation of TSM 

Let S be the vector of the element edge forces independent of each other, and the matrix of 

equilibrium J corresponding to S in the general coordinate system. Then the nodal forces U 

expressed in the general coordinate will be as follow. 

    𝑈 = 𝐽𝑆     (1) 

The tangent stiffness equation can be expressed as the differential calculus of Eq. (1). 

    𝛿𝑈 = 𝐽𝛿𝑆 + 𝛿𝐽𝑆 = (𝐾0 + 𝐾𝐺)𝛿𝑢     (2) 

In which, 𝐾0 is the element stiffness which provide the element behavior in element (local) 

coordinate, and 𝐾𝐺 is the tangent geometrical stiffness. 𝛿𝑢 is nodal displacement vector in 

general coordinate. 
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Potential Function of Element Measurement  

In order to regulate the element behavior in element (local) coordinate, we define the element 

measure potential, which is expressed as the function of measurement such as element length 

or element area. On the other hand, defining element potential can be described as assuming 

the “virtual” elemental stiffness that does not relate to the material’s stiffness.  

 

Let element measure potential is P, and let the vector of elements’ measurements whose 

component is independent of each other is s, then the element edge force S can be expressed as 

follow. 

   𝑆 =
𝛿𝑃

𝛿𝑠
     (3) 

Element Force Equation for Tensegrity Form-finding 

In the form-finding process by the tangent stiffness method, we can set the element behavior 

by defining the measure potentials. Therefore, many types of the element can be used according 

to the purpose of the analyses. In this study, we proposed the power function of Eq. (4) as the 

measure potential whose differential calculus gives the corresponding element force equation 

as in Eq. (5) in which P is the measure potential, N is the axial force, C is the coefficient of 

stiffness, 𝑙0  is the non-stressed length, l is the current length and n is the multiplier 

respectively. 

    𝑃 = 𝑐(𝑙 − 𝑙0)𝑛+1     (4) 

 

    𝑁 = (𝑛 + 1)𝑐(𝑙 − 𝑙0)𝑛 = 𝐶(𝑙 − 𝑙0)𝑛     (5) 

Tangent Stiffness Equation for Each Element 

Let α be the components of cosine vector of an axial force line element, which connects node 

1 and node 2, and we can rewrite Eq. (1) as follow. 

    [
𝑈1

𝑈2
] = [

−𝛼
𝛼

] 𝑁     (6) 

Substituting Eq. (6) to the above Eq. (2), and make it matrix form. 

    𝛿 [
𝑈1

𝑈2
] = (𝐾0 + 𝐾𝐺)𝛿 [

𝑢1

𝑢2
]     (7) 

The tangent geometrical stiffness 𝐾𝐺 can be used for any types of elements regardless of the 

definition of the element potential. Therefore, the form of 𝐾𝐺 is always as following.  

    𝐾𝐺 =
𝑁

𝑙
 [ 𝑒 − 𝛼𝛼𝑇 −𝑒 + 𝛼𝛼𝑇

−𝑒 + 𝛼𝛼𝑇 𝑒 − 𝛼𝛼𝑇 ]     (8) 

On the other hand, 𝐾0 should be prepared according to the element force equations. 

    𝐾0 = 𝑛𝐶(𝑙 − 𝑙0)𝑛 [ 𝛼𝛼𝑇 −𝛼𝛼𝑇

−𝛼𝛼𝑇 𝛼𝛼𝑇 ]     (9)  
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Numerical Example 

 

Figure 1. Connectivity and support condition of primary unbalanced configuration 

The proposed model is a triple-layered hexagonal tensegrity consisted of 18 stiffer elements 

(struts) and 78 softer elements (cables) as shown in Fig. 1. Taking the advantage of the tangent 

stiffness method, it is possible to set the element behavior freely, even real or virtual. Therefore, 

referring to Eq. (5), the stiffer element is designated as behavior of linear steel rod with a real 

constant stiffness(𝐶𝑠 = 2 × 109, 𝑛𝑠 = 1). For the softer element, we propose three kinds of 

virtual coefficients. In each analysis, the setting is made with respect to coefficient of 

stiffness 𝐶𝑐, the multiplier 𝑛𝑐 and for the non-stressed length ratio R. 

In the case of coefficient of stiffness, we found that setting the amount of 𝐶𝑐 at different values 

(1, 10, 100, 1000 and 10000) has only a slight difference in finding the equilibrium solutions 

as shown in Fig. 2 since the softer element’s stiffness is much lower than compared to that of 

stiffer element. On the other hand, the application of the multiplier 𝑛𝑐 (setting from 1 to 10) 

gives more options in finding the solutions. As shown in Fig. 3, the multiplier 𝑛𝑐 with odd 

number has a typical tendency to capture more equilibrium solutions than with even number.  

For the coefficient of non-stressed length, we define it in terms of ratio 𝑅 = 𝑙𝑐 𝑙𝑠⁄  (cable/strut) 

in the range of (0 to 1) with 5% increment. And we conduct the shape analysis and evaluate the 

influence of the non-stressed length ratio against the variation of the coefficient of stiffness (𝐶𝑐 

= 1~10000) and the odd number of multiplier (𝑛𝑐=1, 3. 5. 7 and 9) based on the observation of 

the variable coefficients. Therefore, 25 trials are conducted for each non-stressed length ratio 

R. Among those 25 trials in each analysis, we collect all the equilibrium solutions and analyze 

the shape formation of the solutions.  

Depending on the combination of 𝐶𝑐 and 𝑛𝑐, the out coming solutions may have similar or 

different configurations against with the relative non-stressed length ratio R. Therefore, we pick 

up the example solution which appears the most among 25 trials at each ratio R as shown in 

Fig. 4. As for example, at the ratio R=0.00, the coincidence of obtaining configuration “A” has 

72% out of 25 trials. Moreover, it is found that the lower non-stressed length ratio till R=0.3 is 

occupied by the appearance of configuration “A”. Similarly, some of the non-stressed length 

ratio are found to be represented by the similar configuration. However, the appearance of 

configuration becomes different as the ratio R becomes larger. In other words, the formation of 

various configurations can be expected in large ratio R against for its corresponding 𝐶𝑐 and 𝑛𝑐. 

Each configuration is demonstrated in bird eye’s view, plan view and two side views as 

illustrated in Fig. 5. 

In each illustration, the brown color describes the compression of stiffer element while the red 

color refers to the tension of softer element. Meanwhile, the blue color means the tension of 

stiffer element and the grey is for the compression of softer element. For example, illustration 

           
 

(a) Plan view             (b) Side view            (c) Bird’s eye view 
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“A” is composed of brown and red color where the compression members of stiffer elements 

are in discontinuous in term of an ordinary sense of tensegrity. However, such as in illustration 

“E”, the softer elements also suffer the compression force as in grey color and these 

compression members are found to be in contact each other which is beyond the general sense 

of tensegrity. However, the principle of self-equilibrium condition under no external force is 

not changed. In another word, it allows the compression members to come close in contact 

under the equilibrium state in our form-finding analysis with the application of virtual stiffness 

defined by the measure potential. In this way, we can expect the higher possibility to explore 

the various shape formation of tensegrity corresponding to the different setting of each 

coefficient.  

                           

Figure 2. Result of coefficient of stiffness 𝑪𝒄      Figure 3. Result of the multiplier 𝒏𝒄 

 

 

Figure 4. Result of the non-stressed length ratio R against the designated 𝑪𝒄 and 𝒏𝒄 
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       Configuration “A”         Configuration “B” 

  

  

        Configuration “C”         Configuration “D” 

 

  

 

 

  

 

 

 

 

         Configuration “E”          Configuration “F” 

  

          Configuration “G”        Configuration “H” 
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        Configuration “I”          Configuration “J” 

  

 

 

  

                          Configuration “K” 

 

Figure 5. Illustration of configuration “A” to “K” 

Conclusions 

Based on the analysis results, it can be concluded that application of the measure potential is 

able to find out numerous equilibrium solutions even under the same connectivity of the primary 

configuration. Meanwhile, the tangent stiffness method allows us to prescribe the element 

behavior freely to conduct the nonlinear analysis because of strict rigid body displacements. 

Therefore, it is possible to set a wide range of coefficients while maintaining the equilibrium 

condition.  

 

The measure potential of the power function gives a wide option to define the virtual 

coefficients freely. Among them, variation of the coefficient of stiffness 𝐶𝑐  shows no big 

effect while the multiplier  𝑛𝑐 with odd number has more influence to find out the equilibrium 

solutions. On the other hand, the non-stressed length ratio R seems to be a complex factor in 

the shape analysis. From the numerous solutions, it is found that the possibility to obtain the 

equilibrium solutions can be increased by defining and selecting the appropriate combination 

of coefficients. All in all, this study highlights the application of the virtual coefficients and 

their influence on the out coming configurations. And it is expected to be a reference in 

prescribing the various coefficients and utilizing them in more efficient way in the form-finding 

analysis and related studies in the future. 
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Abstract

This paper presents a homogenization approach for laminate plate. The laminate theory is
combined with homogenization methods in thin bending plate. Micro plate, made of cross-ply
laminate materials with circular or rectangular hole, is discretized by compatible plate element
as Hsieh-Clough-Tocher element. The porosity has effects on elastic behavior of laminate plate.
The homogenization technique is used to determine the effective material constant matrix of
representative laminate plate element. The numerical example is micro laminate plate with
circular or rectangular holes and the porosity Vf from 0.1 to 0.4. Then, macro homogenized
plate is considered in static analysis under uniform loads. The results get good similarities
when compared with analytic and other numerical methods.

Keywords: homogenization theory, classical plate, representative plate element.
1 Introduction

In general, there are various types in mechanical modeling for elastic behavior of composite
plate such as 3D finite element model, heterogeneous bending plate and homogenized bending
plate with a heterogeneous representative volume element. Using bending plate model get
more attractive than other model, because of saving the cost of calculation. However, it has
difficulty for modeling the accurate geometry in the case of the plate with complex shape. This
is solved when applying the heterogeneous representative volume element. A representative
plate element take the complexity of the micro-structure and get average overall volume. Then,
macro plate is considered as homogenized plate.

The homogenization theory for the periodic plate problem in elasticity has been studied by
the authors [1–3]. Analytical approach in [4–10] proposed the methods based on the classical
variational principles to determine the effective constant of composite materials. The study,
using series approximation techniques are developed for a three-dimensional representation
element to give the average effective material overall the representative volume domain, was
extended to the case of laminated panels and shell structures by Lewinski [11]. The researches
are presented to determine the approximation of the effective properties of the sheet structure
always considered. The study conducted by Kolpakov has determined the approach for effective
elastic parameters of plate structure with first-order relationship. In addition, the Fast Fourier
Transform (FFT) series approximation method performed by Nguyen has determined the elastic
constants for the thin sheet structure. The approach of FE2 numerical simulation for three-
dimensional plate structure micro composite was performed. However, with the increasing
complexity of micro problems, simulation of three-dimensional structures can lead to memory
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overload during simulation. Proposed numerical approach to replace three-dimensional plate
structure model but still ensure accuracy.

In this study, the homogenization approach for bending laminate plate can be obtained. The
homogenization technique is used to determine the effective elastic constants of bending repre-
sentative plate. Two examples are implemented as the rectangular or circular hole in bending
laminate plate made of many layers. The results are compared with other theoretical and nu-
merical studies.
2 Hsieh-Clough-Tocher element

The Hsieh-Clough-Tocher (HCT) element method is a C1-compatible element with the approx-
imation of the tertiary function of the element’s local coordinates. The HCT element will be
used to disjointed the transition field for the article. The distinctive feature of the HCT element
is that a centre point is added to subdivide into three inner triangles. Then, three degrees of free-
dom at the centre of triangle are eliminated by continuous conditions of three internal edges.
This makes the HCT element possible to ensure the accuracy is equivalent to divide into three
elements but reducing the three degrees of freedom at the centre of the plate in the calculation
process.

u = Nd (1)

Where N is a Herminia function. d are the degrees of freedom at the corner nodes.

(a) sub element (b) Element’s connection (c) eliminated rotation

Figure 1: The compatible element with C1 HCT with 9 degrees of freedom.

The determination of a compatible shape function includes compatible triangle elements, using
only a third order, the triangle is divided into three internal triangles as shown in the figure1.
Point O is the center of the initial triangle and the three sub-triangles are numbered corre-
sponding to the number of opposite corners. Numbers of sub-triangles are defined in algebraic
expressions.

Each element has 12 degrees of freedom including the deflection at the corner of triangle ele-

mentwi with i = 1, 2, 3; rotation at each corner nodes θxi = ∂wi

∂xi

and θyi = ∂wi

∂yi

with i = 1, 2, 3

and the rotation at the point between the edges θi = ∂wi

∂ni

with i = 4, 5, 6.

The displacement w(x, y) is approximated on each sub triangle element

w(k)(x, y) = N(k)(x, y)d(k), with k = 1, 2, 3 (2)
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Where d is the node displacement of the element

d =
[
w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3 wo θxo θyo

]T
=
[
dC dO

]T
(3)

Where dC is the degrees of freedom at the corner of the triangle and dO is the degrees of
freedom at the center of the triangle.

The rotation on the edges of sub element

θk
n|i =

[
Bk

C Bk
O

] {dC

dO

}
, k = 1, 2, 3; i = 7, 8, 9 (4)

From the compatible conditions for the rotation wn at the edges 7,8,9

θ1
n|7 = −θ3

n|7
θ1

n|8 = −θ2
n|8

θ2
n|9 = −θ3

n|9
(5)

Equilibrium equation from compatible conditions

BCdC + BOdO = 0 (6)

So we have a relationship between displacement at the center and displacement at the corners

dO = −B−1
O BdC = RdC (7)

The deflection w(x, y) can be rewritten in the form

w(k) = (N(k)
C + N(k)

O R)dC (8)

Determining the angle of rotation along edges 4,5,6 is complicated. However, the angle of
rotation at the middle node is ignored if the angle of rotation at the middle node ij is the
average of the angle of rotation of the node i and the node j:

θk =
(
θxi + θxj

2

)
cosαij +

(
θyi + θyj

2

)
sinαij (9)

where αij is the angle of edges ij = 23, 31, 12.

So, HCT element only has 9 degrees of freedom and achieved compatibility of normal slope
along the boundary edges.
3 The representative laminate plate

Consider a heterogeneous thin plate with area Ω ∈ R2 associated micro-structure such as rep-
resentative laminate plate element. In homogenization theory, one key assumptions is that the
mechanical problem contains two separate scales: macroscopic (or overall) and microscopic
(or local) scales. This means that the microscopic scale is small enough, compared with a el-
ement of the structure, for the heterogeneity to be separately identified, and the macroscopic
scale is large enough for the effects of the heterogeneity to be smeared-out. The connection
between them involves two stages: down-scaling (or localization) and up-scaling (or globaliza-
tion). Down-scaling is the macro-to-micro translation, in which the macroscopic quantities are
transformed to the RPE as boundary conditions. The inverse procedure, the micro-to-macro
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translation by which the microscopic properties originating in the RPE are averaged at the
macroscopic level, is called up-scaling.

Figure 2: Homogenization of periodic plate under uniform load

3.1 Homogenization theory

The macroscopic moment are equal to the mean of microscopic moment over all area of RPE.

MM = 1
|Ω|

∫
Ω

Mm dΩ (10)

Where Mm is the microscopic moment in local scale MM is the macroscopic moment at a
materials point in macro-structure.

The macroscopic curvature are equal to the mean of microscopic curvature over all area of RPE.

κM = 1
|Ω|

∫
Ω
κm dΩ (11)

Where κm is the microscopic curvature in micro scale; κM is the macroscopic curvature at
materials point of macro-structure and Ω is the area of the RPE.

The relationship between internal work in a macro point and average internal work over RPE in
the form of Hill-Mandel’s theorem

MMκM = 1
|Ω|

∫
Ω

MmκmdΩ (12)

In micro scale, the curved deformation at a macro point κM can be applied as boundary condi-
tion of displacement (deflection and rotation) for micro plate problem.

The displacement field of the micro plate problem is according to

w = 1
2XTκMX + w̃ (13)

3.2 Laminate plate

Apply to the plane stress stress problem, the effective material constant matrix Qij of the axial
material

Qij =

Q11 Q12 0
Q12 Q22 0
0 0 Q66

 (14)
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The coefficients in the effective material matrix of the k layer of micro plate

Qk
11 = Ek

1
1− νk

12 × νk
21

Qk
12 = νk

12 × Ek
2

1− νk
12 × νk

21
= νk

21 × Ek
1

1− νk
12 × νk

21

Qk
22 = Ek

2
1− νk

12 × νk
21

Qk
66 = Gk

12

(15)

Composite materials are made up of many consecutive layers, in which the fiber directions of
each layer are different. Therefore, the overall coordinates are chosen as local axis for the
material layers. The material matrix of each layer will be rotated to return to the global axis as
follows

Q̄ij =

Q̄11 Q̄12 Q̄16
Q12 Q̄22 Q̄26
Q̄16 Q̄26 Q̄66

 (16)

The effective material constant matrices after rotating the axis α

Q̄11 = Q11 × cos4 α + 2× (Q12 + 2×Q66)× sin2 α cos2 α +Q22 × sin4 α

Q̄21 = (Q11 +Q22 − 4×Q66)× sin2 α cos2 α +Q12 × (sin4 α + cos4 α)
Q̄22 = Q11 × sin4 α + 2× (Q12 + 2×Q66)× sin2 α cos2 α +Q22 × cos4 α

Q̄16 = (Q11 −Q12 − 2×Q66)× sinα cos3 α + (Q11 −Q12 + 2×Q66)× sin3 α cosα
Q̄26 = (Q11 −Q12 − 2×Q66)× sin3 α cosα + (Q11 −Q12 + 2×Q66)× sinα cos3 α

Q̄66 = (Q11 +Q22 − 2Q12 − 2Q66)× sin2 α cos2 α +Q66 × (sin4 α + cos4 α)

(17)

The angle α is the angle between the fiber direction and the overall x axis.

The matrix of the global effective material based on plate thickness

Db =
n∑

k=1

∫ zk+1

zk

Q̄
k
z2dz = 1

3

n∑
k=1

(z3
k+1 − z3

k)Q̄k
(18)

The stiffness matrix of the plate element is assembled

K =
∫

A
BT DbBdA (19)

The system equation of the problem of micro bending plate is as follows

Ku = f (20)

3.3 Periodic boundary for micro plate

Application of periodic boundary conditions for the representation of a thin plate at corner nodes

w̃ = 0 (21)

The curvature from the macro problem is transferred to the deflection at the corner nodes of

ICCM2020, 9th -12th August 2020

95 



micro-plate element determined by the following expression

w(x, y) = 1
2XTκMX (22)

Thereby, the displacement of the nodes at the corner is determined as follows

ui = Ti
pκM (23)

The periodic boundary conditions in the bending micro plate problem show the relationship
between the displacement of the independent nodes, the symmetric nodes on the boundary and
the displacement at the corner of the plate.

Cu = 0 (24)

The periodic boundary conditions for the problem of micro-bending micro-structure are ex-
pressed in degrees of freedom [

Ci Cd

] {ui

ud

}
= 0 (25)

The relationship between independent degrees of freedom and dependent degrees of freedom is
shown by the formula

ud = −C−1
d Ciui = Cdiui (26)

System equations are rearranged according to independent and dependent degrees of freedom[
Kii Kid

Kdi Kdd

]{
ui

ud

}
=
{

fi

fd

}
(27)

Apply periodic boundary conditions in the system equation

K∗ = Kii + KidCdi + CT
diKdi + CT

diKddCdi

f∗ = fi + CT
difd

K∗ui = f∗
(28)

The matrix of effective material constant of micro bending plate

MM = DMκeff (29)

The displacement at the corner nodes of the micro plate

ub =
[
T1

p T2
p T3

p T4
p

]T
κM = TpκM (30)

The system equation is rewritten in degrees of freedom at the corner nodes[
Kaa Kab

Kba Kbb

] [
ua

ub

]
=
[
0
fb

]
(31)

Condensation method to transfer in the form of the d.o.f at the corner of RPE

K∗bb = Kbb −KbaK−1
aa Kab

K∗bbub = fb
(32)
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The stress of the macro scale is calculated by the formula

MM = 1
A

TT
p fb = 1

A
TT

p K∗bbub = 1
A

TT
p K∗bbTpκM (33)

The effective material constant matrix of the RPE

Deff = 1
A

TT
p K∗bbTp (34)

4 Numerical example
4.1 Fully laminated plate

First, the fully laminated plate under uniform load is in implementation. The HCT element
are used to discrete the displacement field. There are three type of laminated plate such as
three layer [0/90/0], four layer [0/90/90/0], and five layer [0/90/0/90/0]. The material matrix
is standardized with the following elastic parameters E2 = 1; E1 = 25E2; G12 = 0.5 × E2;
ν12 = 0.25. The bending stiffness matrix of each layer with angles 0 and 90 is determined as
follows

D0 =

25.06 0.25 0.00
0.25 1.00 0.00
0.00 0.00 0.50

 ;D90 =

1.00 0.25 0.00
0.25 25.06 0.00
0.00 0.00 0.50

 (35)

The numerical computation is implemented in MATLAB R2018a (version 9.4.0) and the pro-
gram is compiled by a computer with Intel Core i5 CPU-1.8GHz and RAM-4GB.

(a) Geometry

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(b) mesh

Figure 3: Fully laminated plate: Geometry and mesh of plate under uniform load.

The normalized central deflection of plate is expressed as

w̄ = 100E2w(a/2, a/2, 0)t3
qa4 (36)

The simply supported and clamped laminate plate is under uniform vertical load q and geometry
and mesh are shown in Fig. 3. The number of node per edge is from 3 to 15. Table 1 displays
the normalized center deflection of laminated plate with supported and clamped boundary. In
comparison with analytic result of Reddy [12] and numerical results of Phan [13] in Table 2.
The obtained results rapidly converge on analytic solutions provided by Reddy [12] (0.47 %
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difference with three layer plate, 0.64% difference with four layer plate, and 0.70% difference
with five layer plate with mesh 15× 15).

Table 1: The normalized deflection of laminate plate in two case of boundary condition.

Boundary nlayer

mesh

3x3 5x5 7x7 9x9 11x11 13x13 15x15

Supported
Three 0.5871 0.6252 0.6486 0.6563 0.6598 0.6617 0.6629
Four 0.5722 0.6282 0.6561 0.6663 0.6711 0.6737 0.6753
Five 0.5627 0.6288 0.6588 0.6698 0.6750 0.6779 0.6796

Clamped
Three 0.1349 0.1341 0.1367 0.1369 0.1370 0.1370 0.1370
Four 0.1349 0.1356 0.1401 0.1416 0.1423 0.1427 0.1430
Five 0.1349 0.1363 0.1415 0.1435 0.1445 0.1450 0.1454

Table 2: Compare normalized center deflection of simply supported laminate plate.

Method three layer four layer five layer

Present 15× 15 CLT, HCT element 0.6629 0.6753 0.6796
Reddy [12] CLT, Navier’s solution 0.6660 0.6796 0.6844
Reddy [12] FSDT, a/h=100 0.6697 0.6833 0.6874
FEM-T3 [13] FSDT, a/h=100 0.5744 0.5795 0.5812
FEM-Q4 [13] FSDT, a/h=100 0.6307 0.6430 0.6465
DSG3 [13] FSDT, a/h=100 0.6642 0.6744 0.6688
ES-DSG3 [13] FSDT, a/h=100 0.6743 0.6854 0.6799

The convergence of the normalized central deflection in case of full plate (Vf = 0) are shown
in Fig.4 and compared with Reddy’s exact solution [12]. The descending slope and gradual
transition to the horizontal line present the convergence of the method when using the HCT
plate element.

200 400 600 800 1000 1200
Total degree of freedom

0.85

0.9

0.95

1

w
/w

ex
ac

t

exact solution
three layer
four layer
five layer

(a) Supported plate

200 400 600 800 1000 1200
Total degree of freedom

0.94

0.96

0.98

1

w
/w

15
x1

5

three layer
four layer
five layer

(b) Clamped plate

Figure 4: Fully laminated plate: Normalized central deflection of simply supported plate.
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4.2 Square plate with periodic circular hole

The next, we consider a square laminated plate with 64 periodic circular holes, which geometry
and mesh are shown in Fig. 5. Square plate, length a = 1m and thickness t = 0.1m, subject an
uniform load q = 1.

(a) Geometry (b) Mono-scale plate

Figure 5: The geometry and mesh of mono scale plate with 64 holes and Vf = 0.1.

In the homogenization approach, we divide the problem into two problems, such as a homoge-
nized plate for macro scale and a representative plate for micro scale. The mesh of macro and
micro plate are shown in Fig. 6 with increasing porosity Vf from 0.1 to 0.4.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) Homogenized plate
-0.5 0 0.5

-0.5

0

0.5

(b) Vf = 0.1
-0.5 0 0.5

-0.5

0

0.5

(c) Vf = 0.4

Figure 6: Periodic circular hole: The mesh of homogenized plate and representative bend-
ing plate with Vf = 0.1 : 0.4.

In micro scale problem, the curvatures from macro scale can be applied as boundary conditions.
The displacement of the micro three layer plate in the case of porosity Vf = 0.1 corresponding
to macro curved deformation κxx = 1 are shown in Fig. 7; κyy = 1 in Fig. 8 and κxy = 1 in
Fig. 9. It can be seen that the relationship between deflection and curvature κxx, κyy is second
order and first order in case of κxy.

In macro scale problem, the homogenized plate as macro plate is the same with full plate prob-
lem. The normalized central deflection of macro plate with fully supported and clamped bound-
ary are shown on Table 3. The normalized central deflection of macro plate under uniform loads
tends to increase with increasing pore volume is reasonable. Table 4 shows the comparison of
the normalized center deflection of homogenized plate and mono scale plate. The result of
homogenized plate get good agreement with mono scale plate. Note that, the total degree of
freedom in homogenized plate is less many times than mono scale plate. It shows the effects of
present approach.
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(a) 3D deflection w (b) Rotation θx (c) Rotation θy

Figure 7: Circular hole: Displacement field of micro laminated plate with κxx = 1 and
Vf = 0.1.

(a) 3D deflection w (b) Rotation θx (c) Rotation θy

Figure 8: Circular hole: Displacement field of micro laminated plate with κyy = 1 and
Vf = 0.1.

(a) 3D deflection w (b) Rotation θx (c) Rotation θy

Figure 9: Circular hole: Displacement field of micro laminate plate with κxy = 1 and
Vf = 0.1.
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Table 3: Circular holes: the normalized center deflection of homogenized laminate plate
with various porosity.

Boundary Porosity
mesh

3×3 5×5 7×7 9×9 11×11 13×13 15×15

Supported

0/90/0
Vf =0.1 0.7028 0.7501 0.7790 0.7887 0.7932 0.7956 0.7971
Vf =0.2 0.7872 0.8413 0.8741 0.8854 0.8905 0.8933 0.8950
Vf =0.3 0.8575 0.9166 0.9526 0.9649 0.9706 0.9737 0.9756
Vf =0.4 0.9209 0.9840 1.0225 1.0358 1.0419 1.0452 1.0472

0/90/90/0
Vf =0.1 0.6805 0.7482 0.7821 0.7944 0.8003 0.8034 0.8054
Vf =0.2 0.7631 0.8397 0.8781 0.8921 0.8987 0.9024 0.9045
Vf =0.3 0.8290 0.9120 0.9539 0.9692 0.9764 0.9803 0.9827
Vf =0.4 0.8846 0.9724 1.0169 1.0332 1.0408 1.0450 1.0476

0/90/0/90/0
Vf =0.1 0.6675 0.7464 0.7825 0.7958 0.8021 0.8055 0.8076
Vf =0.2 0.7491 0.8380 0.8788 0.8938 0.9009 0.9048 0.9071
Vf =0.3 0.8125 0.9086 0.9529 0.9692 0.9769 0.9812 0.9837
Vf =0.4 0.8638 0.9651 1.0121 1.0294 1.0376 1.0420 1.0447

Clamped

0/90/0
Vf =0.1 0.1604 0.1596 0.1631 0.1635 0.1637 0.1638 0.1639
Vf =0.2 0.1796 0.1789 0.1829 0.1836 0.1839 0.1841 0.1842
Vf =0.3 0.1959 0.1952 0.1997 0.2004 0.2008 0.2010 0.2011
Vf =0.4 0.2109 0.2101 0.2150 0.2158 0.2162 0.2164 0.2165

0/90/90/0
Vf =0.1 0.1575 0.1584 0.1638 0.1657 0.1666 0.1671 0.1674
Vf =0.2 0.1754 0.1765 0.1826 0.1848 0.1858 0.1864 0.1867
Vf =0.3 0.1904 0.1916 0.1983 0.2006 0.2018 0.2024 0.2028
Vf =0.4 0.2038 0.2051 0.2122 0.2147 0.2159 0.2166 0.2170

0/90/0/90/0
Vf =0.1 0.1559 0.1574 0.1636 0.1660 0.1671 0.1677 0.1681
Vf =0.2 0.1728 0.1746 0.1815 0.1841 0.1854 0.1861 0.1865
Vf =0.3 0.1870 0.1889 0.1965 0.1993 0.2007 0.2014 0.2019
Vf =0.4 0.1998 0.2019 0.2098 0.2129 0.2144 0.2152 0.2157
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Fig.10 and Fig.12 shows the displacement fields of mono scale plate, made of three layer, with
supported and clamped boundary and porosity Vf =0.1. Besides, Fig.11 and Fig.13 display the
displacement fields of homogenized plate, made of three layer, with supported and clamped
boundary and porosity Vf =0.1. It can be seen that the displacement fields of homogenized plate
is similar with the mono scale plate in two type boundary conditions. The maximum of three
layer mono scale plate’s deflection at the center of plate agree with the homogenized plate in
two case of boundary. The rotation about x θx is equal to zero belong the vertical edge and the
rotation about y θy is equal to zero belong the horizontal edge in the supported plate. In the
clamped plate, the deflection w, rotation about x θx, and rotation about y θy is equal to zero.

Table 4: Circular holes: Compare between normalized deflection of mono-scale plate and
homogenized plate.

Boundary Porosity Method Dof Three layer Four layer Five layer

Supported

Vf =0.1
Mono scale plate 31491 0.7949 0.8051 0.8080
Homogenized plate 1263 0.7971 0.8054 0.8076

Vf =0.2
Mono scale plate 15255 0.8850 0.8941 0.8959
Homogenized plate 1263 0.8950 0.9045 0.9071

Vf =0.3
Mono scale plate 23043 0.9648 0.9726 0.9737
Homogenized plate 1263 0.9756 0.9827 0.9837

Vf =0.4
Mono scale plate 20136 1.0275 1.0292 1.0267
Homogenized plate 1263 1.0472 1.0476 1.0447

Clamped

Vf =0.1
Mono scale plate 31491 0.1616 0.1656 0.1666
Homogenized plate 1263 0.1639 0.1674 0.1681

Vf =0.2
Mono scale plate 15255 0.1800 0.1824 0.1821
Homogenized plate 1263 0.1842 0.1867 0.1865

Vf =0.3
Mono scale plate 23043 0.1965 0.1980 0.1971
Homogenized plate 1263 0.2011 0.2028 0.2019

Vf =0.4
Mono scale plate 20136 0.2097 0.2104 0.2093
Homogenized plate 1263 0.2165 0.2170 0.2157

(a) Deflection w (b) Rotation θx (c) Rotation θy

Figure 10: Circular holes: Displacement fields of supported three layer plate with 64 holes
and Vf = 0.1.
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(a) Deflection w (b) Rotation θx (c) Rotation θy

Figure 11: Circular holes: Displacement fields of simply supported homogenized plate
with Vf = 0.1.

(a) Deflection w (b) Rotation θx (c) Rotation θy

Figure 12: Circular holes: Displacement fields of clamped three layer plate with 64 holes
and Vf = 0.1.

(a) Deflection w (b) Rotation θx (c) Rotation θy

Figure 13: Circular holes: Displacement fields of clamped homogenized plate with Vf =
0.1.
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4.3 Square plate with periodic rectangular holes

In this example, a square laminate plate with 64 periodic rectangular holes, which geometry and
mesh are shown in Fig. 14, is studied. Square plate, length a= 1m and thickness t= 0.1m, subject
an uniform load q= 1. Fig.15 displays the mesh of homogenized plate and the representative
plate with rectangular hole. The porosity Vf is from 0.1 to 0.4 and the length of hole a0 =√
Vf × a× a

(a) Geometry

-0.5 0 0.5
-0.5

0

0.5

(b) Mono scale mesh

Figure 14: Rectangular holes: Geometry and mesh of mono-scale plate with periodic
rectangular holes and Vf =0.1.
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(a) Homogenized plate mesh
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(b) Vf =0.1

-0.5 0 0.5
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0

0.5

(c) Vf = 0.4

Figure 15: Rectangular holes: Mesh of homogenized plate and representative element
plate with rectangular hole and Vf =0.1:0.4.

In macro scale problem, the homogenized plate as homogenized plate with rectangular holes
is the same with full plate problem. Table 5 shows the normalized central deflection of macro
plate with fully supported and clamped boundary. Table 6 shows the comparison of the nor-
malized center deflection of homogenized plate and mono scale plate with periodic rectangular
holes. The displacement, consistent deflection w, rotation about x θx and rotation about y θy,
of homogenized plate is plotted in Fig.17 with supported boundary and Fig.19 with clamped
boundary. There is the similar with results of mono scale plate Fig.16 with supported boundary
and Fig.18 with clamped boundary. Note that, the total degree of freedom in mono scale prob-
lem is larger than homogenized problem. By applying homogenization approach, the computa-
tional costs are reduced, but the accuracy in this approach with representative volume element
and rectangular holes is still ensured.
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Table 5: Rectangular holes: The normalized deflection of homogenized laminate plate
with various porosity.

boundary Porosity
mesh

3×3 5×5 7×7 9×9 11×11 13×13 15×15

Supported

0/90/0
Vf =0.1 0.7009 0.7483 0.7769 0.7866 0.7911 0.7935 0.7950
Vf =0.2 0.7801 0.8333 0.8655 0.8764 0.8815 0.8842 0.8859
Vf =0.3 0.8411 0.8980 0.9326 0.9444 0.9498 0.9528 0.9545
Vf =0.4 0.8931 0.9529 0.9895 1.0019 1.0075 1.0106 1.0125

0/90/90/0
Vf =0.1 0.6780 0.7455 0.7792 0.7915 0.7972 0.8004 0.8023
Vf =0.2 0.7569 0.8325 0.8702 0.8840 0.8905 0.8940 0.8962
Vf =0.3 0.8178 0.8987 0.9393 0.9541 0.9611 0.9649 0.9672
Vf =0.4 0.8689 0.9540 0.9968 1.0125 1.0199 1.0239 1.0263

0/90/0/90/0
Vf =0.1 0.6645 0.7431 0.7789 0.7921 0.7983 0.8017 0.8038
Vf =0.2 0.7432 0.8309 0.8711 0.8858 0.8928 0.8966 0.8989
Vf =0.3 0.8039 0.8980 0.9413 0.9572 0.9647 0.9688 0.9713
Vf =0.4 0.8541 0.9533 0.9990 1.0158 1.0237 1.0281 1.0307

Clamped

0/90/0
Vf =0.1 0.1608 0.1601 0.1635 0.1639 0.1641 0.1643 0.1643
Vf =0.2 0.1796 0.1789 0.1828 0.1834 0.1837 0.1838 0.1839
Vf =0.3 0.1942 0.1934 0.1977 0.1983 0.1986 0.1987 0.1988
Vf =0.4 0.2070 0.2061 0.2106 0.2112 0.2115 0.2117 0.2118

0/90/90/0
Vf =0.1 0.1583 0.1592 0.1647 0.1666 0.1675 0.1680 0.1683
Vf =0.2 0.1771 0.1781 0.1843 0.1864 0.1875 0.1880 0.1884
Vf =0.3 0.1920 0.1932 0.1998 0.2021 0.2032 0.2039 0.2042
Vf =0.4 0.2051 0.2063 0.2134 0.2158 0.2170 0.2177 0.2181

0/90/0/90/0
Vf =0.1 0.1569 0.1585 0.1647 0.1671 0.1682 0.1688 0.1692
Vf =0.2 0.1754 0.1773 0.1843 0.1869 0.1882 0.1890 0.1894
Vf =0.3 0.1908 0.1928 0.2003 0.2032 0.2046 0.2054 0.2059
Vf =0.4 0.2041 0.2062 0.2143 0.2174 0.2189 0.2197 0.2202
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(a) Deflection w (b) Rotation θx (c) Rotation θy

Figure 16: Rectangular holes: Displacement fields of supported-mono scale plate with
Vf = 0.1 and three layer.

(a) Deflection w (b) Rotation θx (c) Rotation θy

Figure 17: Rectangular holes: Displacement fields of supported-homogenized plate with
Vf = 0.1.

(a) Deflection w (b) Rotation θx (c) Rotation θy

Figure 18: Rectangular holes: Displacement fields of clamped mono scale plate with Vf =
0.1 and three layer.
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(a) Deflection w (b) Rotation θx (c) Rotation θy

Figure 19: Rectangular holes: Displacement fields of clamped-homogenized plate with
Vf = 0.1.

Table 6: Rectangular holes: Comparison the normalized center deflection between ho-
mogenized plate and mono scale plate.

Boundary Vf Method Dof Three layer Four layer Five layer

Supported

0.1
Mono-scale plate 5379 0.7642 0.7732 0.7747
Homogenized plate 1263 0.7950 0.8023 0.8038

0.2
Mono-scale plate 3075 0.8227 0.8286 0.8278
Homogenized plate 1263 0.8859 0.8962 0.8989

0.3
Mono-scale plate 4647 0.8958 0.9050 0.9064
Homogenized plate 1263 0.9545 0.9672 0.9713

0.4
Mono-scale plate 5067 0.9795 0.9935 0.9981
Homogenized plate 1263 1.0125 1.0263 1.0307

Clamped

0.1
Mono-scale plate 5379 0.1565 0.1612 0.1624
Homogenized plate 1263 0.1643 0.1683 0.1692

0.2
Mono-scale plate 3075 0.1692 0.1733 0.1740
Homogenized plate 1263 0.1839 0.1884 0.1894

0.3
Mono-scale plate 4647 0.1874 0.1918 0.1926
Homogenized plate 1263 0.1988 0.2042 0.2059

0.4
Mono-scale plate 5067 0.2036 0.2093 0.2109
Homogenized plate 1263 0.2118 0.2181 0.2202
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5 Conclusions

A novel computational homogenization approach for a representative laminate plate element of
periodic boundary conditions has been described. The laminate plate has been used for repre-
sentative plate element. Another theory such as Mindlin’s plate, functionally graded materials
plate can be extended for this approach. These aspects with the variable geometry of hole will
be the subjects of future research.

The study was supported by The Youth Incubator for Science and Technology Programe, man-
aged by Youth Development Science and Technology Center - Ho Chi Minh Communist Youth
Union and Department of Science and Technology of Ho Chi Minh City, the contract number
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Abstract
This paper proposes a novel automatic adaptive iterative edge-smoothed finite element (ES-FE)
analysis method that captures the collapse load limit of ductile structures under applied forces.
Underpinning the algorithm is the implementation of a so-called modified elastic compensation
method. It performs iteratively a series of standard elastic ES-FE analyses  each involving
appropriate adjustments of elastic moduli at some critical elements. The computationally
efficient automatic adaptive ES-FE construction is incorporated directly within the elastic
modulus variation procedures. The modulus compensation rate error indicator decides at each
iteration the specific yield locations requiring non-uniform mesh refinements. The robustness
and accuracy of the proposed analysis scheme are illustrated through the available benchmarks,
one of which given herein. The automatic non-uniform mesh construction gives rise to the fast
convergence of collapse load limit computed with modest computing resources.

Keywords: Automatic adaptive mesh, Elastic compensation, Limit analysis, Modulus variation,
Smoothed finite element

Introduction

Limit analysis [1] presents one of the most powerful approaches that assesses the maximum load
multiplier of ductile structures at failures. The classical method is based on the two well-known
lower (static) and upper (kinematic) bound theorems. It has attracted the interest from both
researchers and practical engineers owing to its favorable computation as a one-step analysis
approach.

The implementation of limit analysis within a mathematical programming setup was pioneered in
the 1970s by Maier and his group, see e.g., [2][3]. In essence, the piecewise linearization of
nonlinear yield loci enables the formulations and solutions of governing limit analysis relations
through the use of duality primal and dual properties as the two couple standard linear
programming problems. Further developments were the applications in the plastic analysis, and
the design of engineering structures, such as frictional masonry blocks [4][5], pipelines [6],
associative and/or non-associative nonlinear materials [7]-[9], etc. Underlying these works are
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the formulations and solutions of a challenging class of mathematical programming problems
involving complementarity constraints [7][9].

The alternative approach known as an elastic compensation method proposed by Mackenzie and
Boyle [10], one of a wide class of modulus variation procedures [11]-[13], favorably estimates
limit loads of practical engineering structures. The successful applications were the limit load
(shakedown limit) predictions of various engineering designs, such as 3D nozzle/cylinder
intersections under monotonic (cyclic) internal pressure [14], thin plates with generalized yield
criteria under transverse forces [15], thin plate and shell structures [16] and so on. The success of
these work relies on the robustness of ground structural modeling and analysis framework.

The standard finite element method appended with some strain smoothing technique was coined
by Liu et al. [27] as the growing class of smoothed finite element (S-FE) models. It provides
various superior properties as coarse mesh accuracy, numerical stability and locking-free model
with optimal computing efforts [18]. The mathematical programming based S-FE techniques
have shown the computational efficiency and accuracy in obtain the solutions of general plastic
analysis problems [19]-[21]. The edge-based smoothed finite element (ES-FE) method adopting
the same low-order shape function offers various advantages over the conventional approach, viz.
the numerical stability under an incompressibility condition, fast convergence of solutions and
course-mesh accuracy [22]. The problems associated with localized plastic zones drastically
reduce the accuracy of limit load solution procedures. A special treatment of non-uniform
discrete model construction is required. An error indicator reduces the difference between upper
and lower bound limit load solutions [23]. The yield stress-based error indicator was introduced
for a quasi-lower bound limit analysis by Le [24].

In this work, we propose a novel error indicator so-called the posteriori method characterized by
the modulus compensation rate. This is different from the plastic dissipation based technique
widely adopted for kinematic limit analysis method [21][25]. The analysis framework employs
the three-node triangular elements that are most flexible to model arbitrary geometry and
appropriate for the fully automatic adaptive algorithms (viz., in this study a newest vertex
bisection [26]) giving the good computational performance. More explicitly, the modified
version of elastic compensation method [27] within automatically adaptive three-node ES-FE
analysis framework is proposed to converge the collapse load solutions of structures. The
underlying concept is the implementation of sequential elastic ES-FE analyses. Each of which
performs the progressive adjustment of elastic Young’s moduli of some critical elements at some
excessive stress values. The proposed modulus compensation rate error indicator is directly
incorporated as the main adaptive mesh process. The scheme satisfies simultaneously the static
admissible stress and yield conformity conditions, and the computed solution thus presents the
lower-bound collapse load limit when sufficiently discretized structural models attained [28]. It
also overcomes the problems associated with stress singularity and volumetric locking conditions
resulting the fast solution convergence over a series of elastic analysis procedures.
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ES-FE Based Iterative Plastic Analysis

ES-FE Model and Governing Formulations

The structure is discretized, as for the standard finite element (FE) procedure, into Nn nodes, Nm
members, Nd degrees of freedom and Ns smoothing domains. A set of edge-based smoothing
domains Ωs

k is established over the whole problem domain, for example, by connecting between
two endpoints of the edge and central points of adjacent elements as shown in Fig. 1.

Figure 1. Generic three-node ES-FE model with smoothing (shaded) domains.

The strains k developed within Ns smoothing domains Ωs
k (for all k = 1,,Ns) of the generic

three-node ES-FE model in Fig. 1 are smoothed and result in a weight-averaged strain field
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where ( , )x y is the compatible strain field underlying a standard three-node finite element
method and W (x, y) ≥ 0 a Heaviside-type weight smoothing function
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  the total area of an individual smoothing domain Ωs

k .

A Green’s divergence theorem is applied on Eq. 1, and the smoothed strain field then becomes
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where Ln (x, y) is a matrix collecting outward normal (nx, ny) acting on the boundary Γ sk of Ωs
k

and u(x, y) the displacement field. The smoothed strain vector k developed within the three-
node finite element model then reads
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where Bi , di are the smoothed strain-displacement matrix and the nodal displacements of the i-th
node, respectively encompassing the smoothing domain Ωs

k .

The strain compatibility matrix Bk and displacement vector dk of a generic smoothing domain Ωs
k

containing three-node finite elements in Fig. 1 collect the corresponding submatrices Bi and
vectors di of all enveloping i-th nodes, respectively. An area-weighted average formulation [18]
then gives
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where jB is a compatible strain-displacement matrix extracted from the standard FEM. The
global stiffness matrix K assembled from the element matrices Kk of all k = 1, ,Ns smoothing
domains Ωs

k is expressed by

T  s
k k k k kK A tB D B , (6)

where Dk a standard constitutive matrix written in terms of elastic Young’s modulus Ek
associated with a smoothing domain Ωs

k .

Modified Elastic Compensation Algorithm

The algorithm develops the modified elastic compensation method [27] within a three-node ES-
FE framework to estimate the collapse load limit of structures made of the von Mises materials
realistically describing ductile steels. The procedure runs a series of standard elastic analysis
solves with each iteration i appropriately modifying the values of elastic moduli i

mE associated
with the set of elements m developing the intensity of stresses exceeding a predefined nominal
value determined in the previous iteration i  1. It accounts for the progressive stress distribution.
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The stress tensors  1i
k x y xy, ,     associated with a generic smoothing domain k are

calculated in the previous iteration i  1, and the von Mises (plane stress and strain) material
yield functions are written as functions of stress resultants 1i

v,k  and yield limits c,m by

  
 

2 2
,

1
,

2 2
,

      for a plane strain
,

    for a plane s

3 / 4

tress

4

3

x y xy c m
i
v k

x y x y xy c m

   


     


 


 



  
 

(7)

Moreover, the von Mises stress 1i
v,m  of a general three-node element m reads the maximum of

three subdomain stress resultants 1i
v,k  .

At each iteration i, the modulus variation of a generic element m complies with:
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where (0,0.5] is a modification factor. The value of  is problem dependent, and influences
the numerical stability during sequential elastic analyses [28]. The nominal stress 1i

o
 in the

previous iteration i  1 is described in Eq. 8 in terms the maximum 1
,max
i
v
 and minimum

1
,min
i
v
 von Mises stresses for all elements m = 1 to Nm.

At the end of each analysis iteration i, the yield conformity of all statically admissible stresses is
ensured by the load multiplier i , namely

c,c,1

,1 ,
min ,..., m

m

Ni
i i
v v N




 

 
 
 
 

. (10)

The collapse load capacity col of the structure is computed from

 max | {1, , }i
col i imax     , (11)

where imax is the maximum number of analysis iterations.
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Modulus Smoothing Process

The modulus smoothing technique processes the computation of i
kE in each analysis iteration by

considering the weight average of the member modified modulus values i
mE enveloping the

domain Ωs
k , and can be written using a Heaviside-type weight smoothing function W(x, y) as
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The elastic modulus i
mE of a smoothing domain Ωs

k adopted in Eq. 8 and hence Eq. 6 reads
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where i
jE is an elastic modulus i

mE associated with the j-th subdomain enveloping the
smoothing edge k.

Automatic Adaptive ES-FE Module

Modulus Compensation Error Indicator

The error function adopted within the automatic adaptive elastic ES-FE analysis procedures is
based on the variations of some elastic moduli. In essence, the m-th ES-FE enters plasticity with
the reduction of its stiffness (or modulus i

mE ) value. Hence, the specific error indicator observes
the changes of elastic moduli i

mE of all generic members {1 }mm , ,N  obtained at an initial
iteration i = 0 and one at i

col  (called i = icol), and can mathematically be expressed by

 0       1,...,icol
m m m mE E m N    (14)

A global error indicator collected for the whole structure system containing Nm ES-FEs is

1


mN

m
m

  (15)

where 0
mE and icol

mE are the elastic moduli of the m-th element at i = 0 and icol, respectively.

Adaptive Mesh Algorithm

The well-known Dorfler criterion [29] is adopted to determine the set M containing all
potential ES-FEs to be refined in the step, where the minimal set  m M satisfies

ICCM2020, 9th -12th August 2020

114 



 


m M

m  with (0, 1)   (16)

where (0, 1)    is known as an adaptive coefficient. The set N contains the structural area
lying outside the set M of potential member refinements, and as is clear Ω=Ω  Ω    M N and
Ω  Ω M N , where Ω is the set containing all ES-FEs.

The proposed method applies the algorithm [26] that automatically refines the meshes  m M

(i.e., the regions contain expansive plastic stress distributions) and coarsens the meshes n N 
(those with relatively uniform moduli developed), simultaneously. The adaptive meshes follow
suit the newest node bisection. Fig. 2 graphically depicts the three-node ES-FE mesh  m M

refined into two new children triangles (viz., connecting the peak to a midpoint of the longest
edge of the element). The midpoint is set in a subsequent refinement as the peak point. Vice
versa, the coarsen scheme combines the two adjacent meshes defined within the set n N 
into a single larger-size mesh.

Figure 2. Newest node bisection implementation for refining and coarsening ES-FE meshes.

The pseudo code summarizing the automatic adaptive iterative elastic ES-FE analyses is

described.

Step I: Initialization

 Initialize ES-FE structural model and parameters at i = 0: material properties (i.e., elastic

Young’s moduli 0i
mE
 , yield stresses c ,m and Poisson’s ratio v), modification factor

0,( 0.5] , threshold coefficient 1)(0, , maximum number of analysis iterations imax

and adaptive steps rmax.

 Update: i = i + 1 and 1 0i i
m mE E  for all m three-node elements. Go to Step II.

Step II: Adaptive iterative elastic ES-FE analyses

For r = 1 to rmax (called the maximum number of adaptive steps)
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o For i = 1 to imax

 Perform the elastic ES-FE analysis by assembling the stiffness equations in Eq. 6, and

determine the stress resultants i
v ,m in Eq. 7 for all Nm three-node elements.

 Calculate the maximum load multiplier i in Eq. 10.

 Adjust the elastic Young’s moduli i
mE of critical elements m in Eqs. 8 and 9.

 Determine the elastic moduli i
kE associated with all smoothing domains Ωsk using an

area-weighted average Eq. 13.

End;

o Determine the collapse load limit r
col and associated mechanisms.

o Compute the modulus compensation error indicators m and the global indicator  in

Eqs. 14 and 15, respectively.

o Determine the set M in Eq. 16 and the remaining one N for refining and/or
coarsening the localized areas of the domain based on the newest vertex bisection.

End;

The proposed analysis approach was completely encoded within a MATLAB modelling
environment.

An Illustrative Example

This example considers a plane strain double-edge notched specimen in Fig. 3. The automatic
adaptive iterative elastic ES-FE approach was adopted to capture the collapse load limit solution
αcol of the structure. The problem establishes the computational burdens associated with
volumetric locking at an incompressibility condition. Such condition describes plastic
deformations, and often establishes in standard elastic analyses having the value of Poisson’s
ratio close on 0.5 as concluded in [30][31]. The structure adopted the Poisson’s ratio of 0.499999
and von Mises yield criterion throughout. A uniform lateral load of 0.144α was applied at both
edges. The von Mises material (unitless) properties were E = 70, v = 0.3 and the yield stress of
σy = 0.243.

The upper-right quarter of the specimen in Fig. 3b was modeled with 16 initial ES-FEs. The
reference collapse load solution was reported for αcol,ref = 1.1316 (e.g., [32][33]). The approach
adopted a modification factor of λ = 0.05 and the maximum number of analysis iterations of
imax = 300. The threshold (adaptive) coefficient θ = 0.6 was adopted. Both the simple uniform
and adaptive mesh constructions were performed.
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Figure 3. Double-edge notched specimen (a) geometry and loading, (b) ES-FE model with 16
initial elements.

The proposed numerical methods successfully processed the collapse load solutions for uniform
mesh refinement in one case (called ES-FEM) and automatic mesh adaptivity in the other case
(adaptive ES-FEM). The results reported are plotted in Fig. 4, in which both analyses obtained
the solution convergence to the lower-bound limits as the number of meshes are sufficient.
Clearly, the automatic adaptive mesh scheme performed better, and computed the collapse load
limit of αcol = 1.117 with 2392 ES-FEs.

Figure 4. Collapse load solutions αcol computed for various degrees of freedom Nd.

The numerical stability was obtained by the present analysis scheme. As shown in Fig. 5 for the
model with 2452 degrees of freedom, the progress increment of load multipliers  i was achieved
through a series of successive elastic ES-FE analysis solves. Moreover, the plot in Fig. 6 displays
some adaptive meshes performed during the analysis procedures. It is clear that the discrete mesh
pattern progressively refined over the structural body with localized stress singularity. This
agrees very well with the literature [25]. The corresponding distributions of elastic moduli
illustrate in Fig. 7 the development of inelastic stresses (yield line pattern) of the structure.
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Figure 5. Load multiplier responses α i associated with analysis iterations i for the adaptive ES-
FE model with 2452 degrees of freedom (Nd = 2452).

Figure 6. Automatic adaptive ES-FE meshes.

Figure 7.Modified modulus distributions associated with adaptive ES-FE meshes.
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Conclusions

The paper presents an iterative automatic adaptive ES-FE analysis approach that efficiently
captures the collapse load limit of ductile material structure. The scheme is based on the
implementation of a simple three-node ES-FE method incorporating the newest node bisection
algorithm enabling the simultaneous non-uniform mesh refining and coarsening processes. This
advantageously provides the computational advantages, in which the plastic limit analysis can be
performed by the solutions of elastic analysis approaches. What is important is it well preserves
the distinct features underpinning the ES-FE framework in overcoming the challenges related to
stress singularity and volumetric locking at modest computing efforts.
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Abstract 

This paper presents a time-domain boundary element method (BEM) for viscoelastic wave 

scattering by many cavities in 3-D infinite space. The convolution quadrature method (CQM) 

is applied to the convolutions of a time-domain boundary integral equation (BIE) to improve 

the numerical stability of BEM. Scattering of an incident plane wave by cavities is solved by 

the developed time-domain BEM. The incident plane wave propagating in a viscoelastic solid 

in time-domain is obtained by using the inverse Fourier transform of that in frequency-domain.  

The hybrid parallelization using OpenMP and MPI is used to save the computational time and 

memory. Large-scale multiple scattering wave fields in a viscoelastic solid are demonstrated to 

verify the time-domain BEM discretized by the CQM. 

 

Keywords: Convolution quadrature method, boundary element method, time-domain, 

scattering problems, viscoelastic wave propagation 

 

Introduction 

The boundary element method (BEM) has been applied to various engineering problems for 

several decades [1]. In particular, the BEM is known as a powerful numerical technique to solve 

scattering problems in an infinite space. Therefore, many numerical examples obtained by using 

BEM for scalar and elastic wave propagation can be seen in papers. In general, the time-domain 

BEM [2] needs the closed form of the fundamental solutions for the problem to be solved. Such 

closed form of the fundamental solutions can be obtained for scalar and elastic wave 

propagation in a homogeneous, isotropic and infinite space without any difficulties. However, 

the explicit fundamental solutions cannot be derived mathematically in time-domain for the 

problems where we have to consider the dispersion of wave propagation, such as viscoelastic 

and poroelastic wave propagation [3]. Fukui et al. proposed a time-domain BEM for 2-D 

viscoelastic wave propagation using the Fourier transform [4]. Schanz [3] has solved 

viscoelastic and poroelastic problems using the convolution quadrature method for the time-

discretization of the time-domain boundary integral equation, which is called CQBEM. The 

convolution quadrature method (CQM) [5] is a method to overcome the stability of the 

numerical calculation of convolution integrals. 2-D Elastic wave scattering by cavities in 

viscoelastic and poroelastic infinite media has been solved by using the CQBEM by Saitoh et 

al. [6][7]. The fast multipole method (FMM), proposed by Greengard and Rokhlin [8], was used 

in [7] to accelerate matrix-vector products of boundary integral equations. It is necessary to 

solve various viscoelastic wave problems using the CQBEM for the further development of the 

time-domain BEM.  
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In this research, 3-D elastic wave scattering by cavities in a viscoelastic infinite space is solved 

by using the CQBEM. This type of 3-D scattering problem was solved by the classical time-

domain BEM for a homogeneous isotropic elastic medium [9]. In general, solving 3-D wave 

problems using the time-domain BEM requires much computational time and storage. The 

supercomputer of Kyoto University is utilized to solve large-scale wave problems in this 

research. First, in this paper, the CQM is reviewed in brief. Then, the classical time-domain 

BEM formulation and application of the CQM to convolution integrals of time-domain 

boundary integral equations are described following an examination of governing equations for 

3-D viscoelastic wave propagation. Problems involving the scattering of an incident plane wave 

by cavities in a 3-D viscoelastic medium are solved to confirm the developed code. A hybrid 

parallelization using MPI (Message Passing Interface) and OpenMP is utilized for efficiently 

solving large-scale wave problems.        

Viscoelastic wave problems 

Let us consider the elastic wave scattering by an object 𝐷̅  with surface 𝑆 = 𝑆1 ∩ 𝑆2  in a 

viscoelastic solid 𝐷, as shown in Fig.1. The displacement 𝑢𝑖(𝒙, 𝑡) at the position 𝒙 and time 𝑡 

satisfies the equation of motion in time-domain as follows:  

 

𝜇(𝑡) ∗ 𝑢̇𝑖,𝑗𝑗(𝒙, 𝑡) + (𝐾(𝑡) +
1

3
𝜇(𝑡)) ∗ 𝑢̇𝑗,𝑖𝑗(𝒙, 𝑡) = 𝜌𝑢̈𝑖(𝒙, 𝑡)    in  𝐷   

 

(1) 

𝑢𝑖 = 𝑢̅𝑖    on   𝑆1,     𝑡𝑖 = 𝑡𝑖̅   on   𝑆2,     𝑆2 = 𝑆 \ 𝑆1 
 

(2) 

 

where 𝜌 is the density,  𝜇(𝑡) and 𝐾(𝑡) are the relaxation functions for share modulus and bulk 

modulus. The symbol * shows the convolution. In addition, ( ),𝑖  and ( )̇  show the partial 

derivative with respect to the space 𝜕/𝜕𝑥𝑖  and time 𝜕/𝜕𝑡. The bar ( ̅ ) indicates prescribed 

boundary conditions for the displacement 𝑢𝑖  and its corresponding traction component 𝑡𝑖 . 

When an incident wave 𝑢𝑖
in(𝒙, 𝑡) hits the boundary surface 𝑆 at time 𝑡 = 0, the time-domain 

boundary integral equation (BIE) can be obtained as follows:  

 

𝐶𝑖𝑗(𝒙)𝑢𝑗(𝒙, 𝑡) = 𝑢𝑖
in(𝒙, 𝑡)

+ ∫ 𝑈𝑖𝑗(𝒙, 𝒚, 𝑡) ∗ 𝑡𝑗(𝒚, 𝑡)𝑑𝑆𝒚 − ∫𝑇𝑖𝑗(𝒙, 𝒚, 𝑡) ∗ 𝑢𝑗(𝒚, 𝑡)𝑑𝑆𝒚
𝑆𝑆

 

 

(3) 

 

 
 

Figure 1.  Viscoelastic wave scattering model. 
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where 𝐶𝑖𝑗 is the free term which depends on the boundary surface of the position 𝒙. 𝑈𝑖𝑗(𝒙, 𝒚, 𝑡) 

and 𝑇𝑖𝑗(𝒙, 𝒚, 𝑡)  are the fundamental solutions for displacements and tractions for 3-D 

viscoelastic wave propagation in time-domain. In general, the fundamental solutions 

𝑈𝑖𝑗(𝒙, 𝒚, 𝑡)  and 𝑇𝑖𝑗(𝒙, 𝒚, 𝑡)  cannot be obtained by an explicit form in time-domain for 

viscoelastic wave propagation as mentioned in previous section. This fact causes the difficulty 

of the time-domain BEM formulation for viscoelastic wave propagation. Therefore, in this 

research, the convolution quadrature method (CQM), first proposed by Lubich [5], is applied 

to the time-convolutions of BIE in Eq. (3). Applying the CQM to the time-convolutions of 

Eq.(3) and taking the limit as 𝒙 ∈ 𝐷 to 𝒙 ∈ S, Eq. (3) can be written at 𝑛-th time step as follows: 

 
1

2
 𝑢𝑖(𝒙, 𝑛Δ𝑡) = 𝑢𝑖

in(𝒙, 𝑛Δ𝑡)

+ ∑ ∑[𝐴𝑖𝑗
𝑛−𝑘(𝒙, 𝒚𝛼)𝑡𝑗

𝛼(𝑘Δ𝑡) − 𝐵𝑖𝑗
𝑛−𝑘(𝒙, 𝒚𝛼)𝑢𝑗

𝛼(𝑘Δ𝑡) 

𝑛

𝑘=1

𝑀

𝛼=1

] 

 

 

(4) 

 

where Δ𝑡 shows the time increment, 𝑦𝛼 is 𝛼-th representative point of boundary elements and 

𝑢𝑗
𝛼(𝑘𝛥𝑡)  and 𝑡𝑗

𝛼(𝑘𝛥𝑡)  are displacements and tractions at 𝑦𝛼 , respectively. 𝐴𝑖𝑗
𝑚(𝒙, 𝒚)  and 

𝐵𝑖𝑗
𝑚(𝒙, 𝒚) are influence functions, which are defined as follows: 

 

𝐴𝑖𝑗
𝑚(𝒙, 𝒚) =

ℛ−𝑚

𝐿
∑ ∫𝑈̂𝑖𝑗(𝒙, 𝒚, 𝑠𝑙)𝑒

−2𝜋𝑖𝑚𝑙
𝐿

𝑆

𝑑𝑆𝒚

𝐿−1

𝑙=0

 

 

(5) 

 

𝐵𝑖𝑗
𝑚(𝒙, 𝒚) =

ℛ−𝑚

𝐿
∑ ∫𝑇̂𝑖𝑗(𝒙, 𝒚, 𝑠𝑙)𝑒

−2𝜋𝑖𝑚𝑙
𝐿

𝑆

𝑑𝑆𝒚

𝐿−1

𝑙=0

 

 

(6) 

 

In Eqs.(5) and (6), ℛ , 𝐿 , and 𝛿(𝑧𝑙) are the CQM parameters. The Laplace-parameter 𝑠𝑙  is 

defined by 𝑠𝑙 = 𝛿(𝑧𝑙)/𝛥𝑡, 𝑀 is the number of boundary elements and 𝑖 is the imaginary unit. 

In addition, 𝑈̂𝑖𝑗(𝒙, 𝒚, 𝑠𝑙) and 𝑇̂𝑖𝑗(𝒙, 𝒚, 𝑠𝑙) are the fundamental solutions for the displacements 

and tractions in Laplace-domain, which are obtained by the Laplace-transform of 𝑈𝑖𝑗(𝒙, 𝒚, 𝑡) 

and 𝑇𝑖𝑗(𝒙, 𝒚, 𝑡), respectively. The form of Eqs. (5) and (6) is identical to the Fourier transform. 

Therefore, Eqs. (5) and (6) can be rapidly calculated by using the FFT when the total time-step 

number 𝑁 is equal to 𝐿. The discretized time-domain BIE (4) is rearranged at 𝑛-th time step as 

follows: 

 

1

2
𝑢𝑖(𝒙, 𝑛Δ𝑡) + ∑[𝐵𝑖𝑗

0 (𝒙, 𝒚𝜶)𝑢𝑗
𝛼(𝑛Δ𝑡) − 𝐴𝑖𝑗

0 (𝒙, 𝒚𝛼)𝑡𝑗
𝛼(𝑘Δ𝑡)

𝑀

𝛼=1

= 𝑢𝑖
in(𝒙, 𝑛Δ𝑡)

+ ∑ ∑[𝐴𝑖𝑗
𝑛−𝑘(𝒙, 𝒚𝛼)𝑡𝑗

𝛼(𝑘Δ𝑡) − 𝐵𝑖𝑗
𝑛−𝑘(𝒙, 𝒚𝛼)𝑢𝑗

𝛼(𝑘Δ𝑡) 

𝑛−1

𝑘=1

𝑀

𝛼=1

] 

 

 

 

(7) 

 

In the 𝑛-th time step, the incident wave term 𝑢𝑖
in(𝒙, 𝑡) and the rest terms in the right hand side 

of Eq.(7) are known in advance. Therefore, the discretized time-domain boundary integral 

equation (7) is solved by step-by-step from the first time step 𝑛 = 0.   
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Incident waves in time-domain 

As mentioned before, the longitudinal and shear waves possess the dispersion property. The 

wave velocities cannot be obtained in closed forms as in the case of the fundamental solutions 

for 3-D viscoelastic wave propagation. Therefore, the incident wave 𝑢𝑖
in(𝒙, 𝑡) also cannot be 

obtained in the closed forms as well as the wave velocities. Two incident waves 𝑢𝑖
in(𝒙, 𝑡) used 

in the following sections are defined in this section in advance. For example, assuming the 

Ricker wavelet [10] propagating to 𝑥1 direction as the incident wave 𝑢𝑖
in(𝒙, 𝑡) in time-domain, 

we can obtain  𝑢𝑖
in(𝒙, 𝑡) using the inverse Fourier transform of 𝑢𝑖

in(𝒙, 𝜔) in frequency-domain 

as follows: 

  

𝑢𝑖
in(𝒙, 𝑡) = 𝑢0𝛿𝑖1𝐹−1 [2𝑡0√𝜋 (

𝜔𝑡0

2
)

2

𝑒−(
𝜔𝑡0

2
)

2

𝑒𝑖(𝑘𝑥1+𝜔𝑡𝑠)] 

 

(8) 

 

 

where 𝜔 is the angular frequency and 𝐹−1 shows the inverse Fourier transform. In addition, 𝑘 

is the wave number and 𝛿𝑖𝑗 is the Kronecker delta. 𝑢0 is the amplitude of an incident wave. 𝑡0 

and 𝑡𝑠  correspond to the peak frequency 𝜔0 = 2𝜋/𝑇0  and maximum peak, respectively, in 

time-domain. Figure 2 shows the time histories of the non-dimensional displacements 𝑢1/𝑢0 

versus non-dimensional time 𝑡/𝑇0  for 𝑡0 = 𝑇0  and 𝑡𝑠 = 3𝑇0  where 𝑇0 = 2𝑎/𝑐𝐿0 . 𝑐𝐿0  is the 

initial wave velocity given by 𝑐𝐿0 = √(𝐾 + (4/3)𝜇0)/𝜌   where 𝜇0 is relaxation function for 

initial share modulus. Three-element standard linear model is considered for viscoelastic effect. 

As seen in Fig.2, the Ricker wavelet decays with time and space.  

 

Next, the following incident wave propagating in an isotropic material is considered: 

 

𝑢𝑖
in(𝒙, 𝑡) = {

1

2
𝛿𝑖1𝑢0 {1 − cos𝜔0 (𝑡 −

𝑥1

𝑐
)}      for  

𝑥1

𝑐
≤ 𝑡 ≤ (2𝜋 +

𝑥1

𝑐
)

1

𝜔0
,

 0    for otherwise,

   

 

(9) 

 

If the problem is isotropic and homogeneous, the incident wave velocity 𝑐 takes a constant 

value. Extending Eq. (9) to viscoelastic and homogeneous, we obtain 

 
Figure 2. The time variations of 𝒖𝟏/𝒖𝟎 of 

the incident wave calculated by Eq.(8) at 

𝒙𝟏/𝒂 = 0.0, 1.0, 2.0 and 3.0. 

 
Figure 3. The time variations of 𝒖𝟏/𝒖𝟎 of 

the incident wave calculated by Eqs.(9) 

and (10) at 𝒙𝟏/𝒂 =  0.0, 5.0, 10.0 and 

15.0. 
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𝑢𝑖
in(𝒙, 𝑡) = 𝑢0𝛿𝑖1𝐹−1 [

𝜔0
2(1 − 𝑒𝑖𝜔𝑇0)

2𝑖𝜔(𝜔2 − 𝜔0
2)

𝑒𝑖𝑘𝑥1] 
 

(10) 

 

Figures 3 shows the incident wave forms obtained by calculating Eqs. (9) and (10). Three-

element standard linear model is also considered. As you can see, the incident wave amplitudes 

𝑢1/𝑢0 decrease as the incident waves propagate to 𝑥1 direction and as time advances because 

of viscoelastic effect. These incident waves are used for the following numerical examples.  

Numerical examples 

Two kinds of numerical examples are shown in this paper. In the following numerical examples, 

The boundary of a spherical cavity with radius 𝑎 is discretized into 384 boundary elements 

using a piecewise constant approximation. A supercomputer at Kyoto university in Japan, is 

utilized for the computation. The three-element standard linear model as shown in Fig.4 (d) is 

considered. 

Wave scattering by a spherical cavity in 3-D viscoelastic medium 

As a first numerical example, the scattering problem of the incident plane wave defined by 
Eq.(8) hitting a spherical cavity with radius 𝑎 in a viscoelastic solid D, as shown in Fig.4(a), is 

solved by the CQBEM. Figures 4(b)-(c), and (e)-(f) show the total displacements around the 

cavity at 𝑥1-𝑥2 (𝑥3 = 0) and 𝑥2-𝑥3 (𝑥1 = 0) plane in Fig.4(a). The CQM parameters, 𝑁 and 𝐿, 

are given by 𝑁 = 𝐿 = 256. In addition, time increment 𝑐𝐿0Δ𝑡/𝑎 is set as 𝑐𝐿0Δ𝑡/𝑎 = 0.0611. 

The parameters of the three-element standard linear model are 𝜇𝑅/𝜇0 = 0.5, 𝐾/𝜇0 =  1.0, 

 
Figure 4. Time histories of boundary displacement 𝒖𝟏/𝒖𝟎. 

(a) analysis model (b) 𝒕/𝑻𝟎 = 𝟐. 𝟗𝟑 (c) 𝒕/𝑻𝟎 = 𝟓. 𝟗𝟗 (d) three-element standard 

linear model (e) 𝒕/𝑻𝟎 = 𝟓. 𝟗𝟗 and (f) 𝒕/𝑻𝟎 = 𝟕. 𝟖𝟐. 
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𝜏𝜎 = 𝑇0 and 𝜏𝜖 = 0.5𝑇0 where 𝜇𝑅 is relaxation function for share modulus, and 𝜏𝜎 and 𝜏𝜖 are 

stress relaxation time and strain relaxation time, respectively. We set time 𝑡/𝑇0 = 0.0 at the 

moment the incident wave in Eq. (8) hits a boundary of the spherical cavity of Fig.4(a). As 

shown in Fig.4(b) at 𝑡/𝑇0 = 2.93  and (c) at 𝑡/𝑇0 = 5.99 , the incident Ricker-wavelet is 

scattered by the cavity. Then, scattered waves are generated by the interaction between the 

incident wave and the cavity and propagate isotropically, as shown in Fig.4(e) at 𝑡/𝑇0 = 5.99 

and (f) at 𝑡/𝑇0 = 7.82.  

Wave scattering by many cavities in 3-D viscoelastic medium 

Next, wave scattering by many cavities, as shown in Fig.5(a), is solved using the CQBEM. The 

numerical calculation in this section is made for the rectangular arrangements of 4 × 4 × 4 =
64 spherical cavities, and the cavity spacing 3𝑎 between two adjacent cavities along the 𝑥1, 𝑥2 

and 𝑥3 axis as shown in Fig.5(a). The incident plane P-wave defined in Eq.(10) is considered 

for this calculation. The CQM parameters, 𝑁 and 𝐿, are given by 𝑁 = 𝐿 = 128. In addition, 

time increment 𝑐𝐿0Δ𝑡/𝑎 is set as 𝑐𝐿0Δ𝑡/𝑎 ≃ 0.0346. Time 𝑡/𝑇0 = 0.0 was set at the moment 

the incident waves hit the far left cavities in Fig.5(a). The parameters of the three-element 

standard linear model are 𝜇𝑅/𝜇0 = 0.85, 𝐾/𝜇0 =  5/3, 𝜏𝜎 = 0.5𝑇0 and 𝜏𝜖 = 17𝑇0/40. There 

are a total of 384 × 64 = 24576 boundary elements with 24576 × 128 × 3 (element number 

× time steps × unknowns per element) = 9,437,184 unknowns. A hybrid parallelization using 

MPI and OpenMP is applied to solve this large scale problem efficiently [7]. Figures 5(b)-(f) 

show the total displacements |𝒖| = √𝑢1
2 + 𝑢2

2 + 𝑢3
3  on each cavity surface at 𝑡/𝑇0 =

0.28, 1.04, 2.56, 4.09 and 5.54. As can be observed in these figures, the total displacement |𝒖| 
shows large values according to the incident wave propagation. The maximum values of the 

total displacement |𝒖| in each time-step show smaller values as the incident wave propagates. 

 
Figure 5. Time histories of boundary displacement 𝒖𝟏/𝒖𝟎. (a) analysis model (b) 𝒕/𝑻𝟎 =
𝟎. 𝟐𝟖 (c) 𝒕/𝑻𝟎 = 𝟏. 𝟎𝟒 (d) 𝒕/𝑻𝟎 = 𝟐. 𝟓𝟔 (e) 𝒕/𝑻𝟎 = 𝟒. 𝟎𝟗 and (f) 𝒕/𝑻𝟎 = 𝟓. 𝟓𝟒. 
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The computational time required for this case was about 550s using 64 MPI processes and 68 

OpenMP parallelization per node.  

Conclusions 

In this paper, a convolution quadrature time-domain boundary element method for 3-D 

viscoelastic wave propagation in an infinite space was developed. The CQM and piecewise 

constant approximation were used for time and spatial discretization of the boundary integral 

equation. Incident plane waves which propagate in viscoelastic solids were defined using the 

Fourier transform. A large scale scattering problem was efficiently solved by using the 

supercomputer of Kyoto University. This method has a potential to investigate a wave scattering 

by cracks and inclusions. The fast multipole method (FMM) and H-matrix method will be 

applied to the formulation introduced herein for efficient calculation in the near future.  
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Abstract 

In this paper, the ALE (Arbitrary Lagrangian-Eulerian) seamless immersed boundary method 

(ALE SIBM) with the overset grid for a rotating object is proposed and its effectiveness is 

discussed. In the ALE SIBM with the overset grid system, a main-grid and sub-grids are the 

Cartesian grids and the main-grid is generated throughout the computation domain and the sub-

grids are generated only around each object. This sub-grid moves following the object by the 

ALE approach. Therefore, even if the object moves, the position of the object on the sub-grid 

does not change. In the past study, this method has been applied only to translating the object, 

not to rotating the object. In the present method, independent coordinate systems are set for the 

main-grid and the sub-grid in order to apply to rotational movement. As a result, coordinate 

transformation of the governing equations by rotation of the sub-grid following the object is 

unnecessary. In order to verify the effectiveness of the present method, flows around a 2-

dimensional rotating circular cylinder and an elliptic cylinder ware considered. In the 

simulation of the flow around a 2-dimensional rotating circular cylinder, the results obtained 

by the present method ware in good agreement with the reference results. Therefore, it was 

shown that good results were obtained even when the sub-grid was rotated in the present method. 

In the simulation of the flow around a 2-dimensional rotating elliptic cylinder, it is expected 

that the results are improved by applying the present method because the position of the 

boundary of the elliptic cylinder changes on the single grid. From the above, it can be expected 

that flow simulations including an object with translation and rotation can be efficiently 

performed by applying the present method. 

Keywords: Computational Fluid Dynamics, Cartesian Grid Approach, Immersed Boundary 

Method, Incompressible Flow, Overset grid 

 

Introduction 

In recent years, various kinds of flows are handled by computational fluid dynamics, and the 

moving boundary problem is handled more and more. Conventionally, the boundary fitted 

coordinates are used for simulations of flow including objects and the grid is regenerated with 

a movement of the objects. However, automation of the grid regeneration is difficult for the 

objects with complicated shape. Whereas, in the Cartesian coordinates, the grid generation is 

easy and computational efficiency is very good. One of the Cartesian grid approach for the 

objects with complicated shape is Immersed Boundary Method (IBM) [1]. In the IBM, the 

object is expressed as a cluster of virtual spots (virtual boundary). And the additional forcing 

term is added to the governing equation so as to satisfy the velocity condition on the virtual 

boundary. In order to estimate the additional forcing term, the direct forcing estimation [2] is 

well adopted. However, in this method, the unphysical pressure oscillations occur near the 
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virtual boundary because of the pressure jump. In order to remove these pressure oscillations, 

the Seamless Immersed Boundary Method (SIBM) [3] was proposed. In the IBM or the SIBM 

for the moving boundary problem, it is necessary to update the position of the virtual boundary 

on the grid with the movement of the object. This causes an increase in the computational time. 

Therefore, the simulation of the flow around a moving object by the ALE (Arbitrary 

Lagrangian-Eulerian) SIBM combining the ALE approach [4] and the SIBM was performed 

[5]. In the ALE SIBM, the position of the virtual boundary on the computational grid does not 

change because the computational grid follows the movement of the object. As a result, the 

computational time can be reduced. However, in the conventional ALE SIBM, it is difficult to 

apply it to independently moving multiple objects because the entire computational grid follows 

the object. Therefore, the ALE SIBM with the overset grid system for independently moving 

multiple objects was proposed [6]. In the ALE SIBM with the overset grid system, only sub-

grid follows each moving object on the main-grid fixed in the computational domain. In the 

study, the movement of the object and the sub-grid was limited only to translational motion. 

However, the motion of an actual object includes translational motion and rotational motion. 

Therefore, in this paper, the ALE SIBM with the overset grid system corresponding to rotational 

motion is constructed and its effectiveness is verified. 

ALE Seamless Immersed Boundary Method with Overset Grid 

Governing Equations  

The governing equations are the continuity equation and the incompressible Navier-Stokes 

equations based on ALE formulation. In the Navier-Stokes equation based on the ALE 

formulation, the moving velocity of the computational grid is considered in the advective term. 
The non-dimensional continuity equation and incompressible Navier-Stokes equations are 

written as, 

    
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0,     (1) 

    
𝜕𝑢𝑖

𝜕𝑡
= 𝐹𝑖 −

𝜕𝑝

𝜕𝑥𝑖
+ 𝐺𝑖,     (2) 

    𝐹𝑖 = −(𝑢𝑗 − 𝑐𝑗)
𝜕𝑢𝑖

𝜕𝑥𝑗
+

1

𝑅𝑒

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
,     (3) 

where 𝑅𝑒 denotes the Reynolds number defined by 𝑅𝑒 = 𝑈𝐿/𝑣. 𝑈, 𝐿, and 𝑣 are the reference 

velocity, the reference length and the kinematic viscosity, respectively. The last term of Eq. (2), 

𝐺𝑖, denotes the additional forcing term for the IBM. 𝐹𝑖 denotes the convective and diffusion 

terms. And, 𝑐𝑗 is the moving velocity component of the computational grid for the ALE method. 

In this paper, 𝑐𝑗 = 0 at the main-grid because the ALE method is only applied to the sub-grid. 

 Computational Methodology 

The incompressible Navier-Stokes equations (2) are solved by the second order finite difference 

method on the collocated grid arrangement. The convective terms are discretized by the second 

order fully conservative finite difference method [7]. The diffusion and pressure terms 

discretized by the usual second order centered finite difference method. The time derivative 

terms are discretized by the forward Euler method. For the time integration of the Navier-Stokes 

equations, the fractional step approach [8] based on the forward Euler method is applied. The 

resulting pressure equation is solved by the SOR method. 
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 Seamless Immersed Boundary Method 

In order to apply the SIBM, it is necessary to estimate the additional forcing term in the Navier-

Stokes equations, 𝐺𝑖. In order to estimate the additional forcing term, there are mainly two ways, 

that is, the feedback [9][10] and direct [2] forcing term estimations. In this paper, the direct 

forcing term estimation is adopted in accordance with the previous studies [3]. The direct 

forcing term estimation is shown in Fig. 1. In the figure, 𝐼, 𝐽 are the grid index. For the forward 

Euler time integration, the forcing term can be determined by 

    𝐺𝑖 = −𝐹𝑖
𝑛+

𝜕𝑝

𝜕𝑥𝑖

𝑛
+

𝑈̅𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑡
,     (4) 

where 𝑈̅𝑖
𝑛+1 denotes the velocity linearly interpolated from the velocity on the near grid point 

and the velocity (𝑢𝑣𝑏) determined by the velocity condition on the virtual boundary. Namely, 

the forcing term is estimated as the velocity components at next time step satisfy the relation, 

𝑢𝑖
𝑛+1 = 𝑈̅𝑖

𝑛+1. In the SIBM, the forcing term is added not only on the grid points near the virtual 

boundary but also in the region inside the virtual boundary shown in Fig. 2 in order to remove the 

unphysical pressure oscillations near the virtual boundary. In the region inside the boundary, the 

forcing term is estimated by satisfying the relation, 𝑈̅𝑖
𝑛+1 = 𝑈̅𝑏, where 𝑈̅𝑏 is the velocity which 

satisfies the velocity condition at the grid point. 

 

  
Figure 1. Direct forcing estimation.           Figure 2. Forcing points in SIBM.  

 

 ALE Method with Overset Grid System 

In this paper, the overset grid system as shown in Fig. 3 is used to apply the ALE SIBM to flow 

including a moving object. The overset grid system consists of a main-grid and sub-grids. In the 

ALE SIBM with the overset grid system, a main-grid and sub-grids are the Cartesian grids and 

the main-grid is generated throughout the computation domain and the sub-grids are generated 

only around each object. This sub-grid moves following the object by the ALE approach. 

Therefore, even if the object moves, the position of the object on the sub-grid does not change. 

That is, the forcing point does not change. In this paper, independent coordinate systems are set 

for the main-grid and the sub-grid in order to apply to rotational movement. As a result, 

coordinate transformation of the governing equations by rotation of the sub-grid following the 

object is unnecessary. 

In the present method, physical quantities are interpolated at grid points as shown in Fig. 4. The 

quantity values at the boundary cell on the sub-grid are interpolated from the main-grid. In 
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addition, on the main-grid, the quantity values in the region overlapping the sub-grid are 

similarly interpolated from the sub-grid. At this time, each component of the velocity vector is 

converted according to the coordinates of each grid. The grid points associated with these 

interpolations in the main-grid change as the sub-grid moves. However, these grid points can 

be easily determined in the present method because both the main-grid and the sub-grid are the 

Cartesian grid. 

 

  
Figure 3. ALE method with overset grid.             Figure 4. Interpolated points.  

 

Flow Around a 2D Rotating Circular Cylinder 

In order to validate the present method, the flow around a 2-dimensional rotating circular 

cylinder is considered. The computational domain is shown in Fig. 5. The reference length is 

the diameter of the circular cylinder and it is 1. The center point of the circular cylinder is 

located to (𝑥, 𝑦) = (5, 5.5) . The circular cylinder rotates counterclockwise at an angular 

velocity 1 around the center point.  

Regarding the computational grid, the grid resolution of the main-grid is 1 40⁄  and the grid 

resolution of the sub-grid is 1 80⁄ . The size of the sub-grid is a square with 1.2 sides. In this 

paper, a simulation using the single grid is also performed for comparison with the present 

method using the overset grid. The grid resolution of the single grid is 1 40⁄ . In the rotating 

circular cylinder, the virtual boundary does not change even in a single grid. Therefore, the 

result of this simulation using the single grid can be expected to be as reliable as the result of a 

stationary object. 

On the inflow boundary, the velocity is fixed by the uniform flow (𝑢 = 1, 𝑣 = 0) and the 

pressure is imposed by the Neumann condition obtained by the normal momentum equation. 

The velocity is extrapolated from the inner points and the pressure is obtained by the 

Sommerfeld radiation condition [11] on the outflow and side boundaries. On the virtual 

boundary and inside the virtual boundary, the velocity condition is imposed by the angular 

velocity of the circular cylinder. The Reynolds number is set as 𝑅𝑒 = 20 . Under these 

conditions, the flow field is steady. 

In Figs. 6, 7, the pressure contours around the circular cylinder are shown. The pressure 

contours around the circular cylinder on the overset grid are in good agreement with ones on 

the single grid. In Fig 7, there is a difference in the pressure contours inside the virtual boundary 

between There is a difference between the grid. This is expected to be due to the difference in 

numerical error caused by the rotation of the sub-grid. However, the pressure contours inside 
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the virtual boundary are not very important. Therefore, the pressure contours in the present 

method using the overset grid is good. 

 
Figure 5.  Computational domain for rotating circular cylinder 

 

 

           
(a) Overset grid                                              (b) Single grid 

Figure 6.  Pressure contours around the circular cylinder 

 

 

           
(a) Overset grid                                              (b) Single grid 

Figure 7.  Close-up view of pressure contours 
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In Table 1, the comparison of the drag and the lift coefficients are shown. In this paper, these 

coefficients in the single grid and reference results [12] are shown for comparison. The drag 

and the lift coefficients in the present method are estimated by 

 

    𝐶𝐷 =
− ∫ (𝐺𝑥−𝑢𝑖

𝜕𝑢

𝜕𝑥𝑖
−

𝜕𝑢

𝜕𝑡
)𝑑𝑠𝑂

1

2
𝜌0𝑈0

2𝐷
.     (11) 

    𝐶𝐿 =
− ∫ (𝐺𝑦−𝑢𝑖

𝜕𝑣

𝜕𝑥𝑖
−

𝜕𝑣

𝜕𝑡
)𝑑𝑠𝑂

1

2
𝜌0𝑈0

2𝐷
.     (12) 

where 𝑂 indicates the region to which forcing term is applied in the SIBM (see Fig. 2). And, 𝜌0 

is the reference density, and 𝐷 is the diameter of the circular cylinder. These coefficients are 

estimated similarly in the single grid case. In the present method using the overset grid, these 

quantitative values slightly fluctuate as seen in Fig. 8 because the sub-grid rotates. Therefore, the 

quantitative values obtained by the present method in Table 1 are time average values. The 

quantitative values obtained by the present method are in good agreement with reference ones. 

Therefore, it was shown that good results were obtained even when the sub-grid was rotated in 

the present method. 

 

Table 1. Drag and lift coefficients      

                              𝑪𝑫            𝑪𝑳 

  Overset grid       2.29       -1.20 

  Single grid         2.26       -1.40 

  Ta [12]               2.12       -1.10 

               

 

 

 

 

 

Figure 8. Time histories of the drag and  

lift coefficients for the circular cylinder 

Flow Around a 2D Rotating Elliptic Cylinder 

Subsequently, the present method is applied to the flow around a 2-dimensional elliptic cylinder. 

When IBM is applied to a rotating elliptic cylinder on the single grid, the force points are 

updated each time because the position of the virtual boundary changes with time. In the present 

method, the position of the virtual boundary does not change because the sub-grid follows the 

elliptic cylinder. The computational domain is shown in Fig. 9. The reference length is the 

length of the major axis of the elliptic cylinder and it is 1 and the length of the minor axis is 

0.5. The center point of the elliptic cylinder is located to (𝑥, 𝑦) = (5, 2.5). The elliptic cylinder 

rotates counterclockwise at an angular velocity 2𝜋 10⁄  around the center point. Regarding the 

attack angle of the elliptic cylinder, the peak of the long axis is initially oriented in the flow 

direction (𝑥-direction) and the attack angle at this time is defined as 𝜃 = 0°. 
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The grid resolution and boundary conditions are the same as in the case of the rotating circular 

cylinder. The Reynolds number is set as 𝑅𝑒 = 40. 

 
Figure 9.  Computational domain for rotating elliptic cylinder 

 

In Fig. 10, the pressure contours around the elliptic cylinder at 𝜃 = 72° (𝑡 = 22) are shown. 

Although these pressure distributions are almost the same, it is observed that the pressure values 

are different behind the elliptic cylinder. This is considered to be because of that the position 

of the virtual boundary changes on the single grid unlike in the case of the circular cylinder. It 

is expected that the pressure contours near the elliptic cylinder are improved by applying the 

present method because the validity of the present method was shown in the simulation of the 

flow around a rotating circular cylinder. 

 

           
(a) Overset grid                                              (b) Single grid 

Figure 10.  Pressure contours around the elliptic cylinder (𝜽 = 𝟕𝟐°) 

 

In Fig. 11, the time histories of the drag and the lift coefficients for one cycle of the rotation are 

shown. Regarding the drag coefficient, these phases are slightly shifted however are in good 

agreement with each other. Regarding the lift coefficient, it is observed that a difference occurs 

in the process of changing from 𝜃 = 180° (𝑡 = 22.5) where the major axis is in the 𝑦-direction 

to 𝜃 = 180° (𝑡 = 25). It is considered that the difference between these methods has been 

greatly expressed at this time because the boundary of the elliptic cylinder moves largely against 

the flow.  
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Figure 11.  Time histories of the drag and lift coefficients for the elliptic cylinder 

 

Conclusions 

In this paper, the ALE SIBM with the overset grid for a rotating object was proposed and its 

effectiveness was was verified. In the simulation of the flow around a 2-dimensional rotating 

circular cylinder, the results obtained by the present method ware in good agreement with the 

reference results. Therefore, it was shown that good results were obtained even when the sub-

grid was rotated in the present method. In the simulation of the flow around a 2-dimensional 

rotating elliptic cylinder, a difference was observed between the result on the single grid and 

the result obtained by the present method because the position of the virtual boundary changes 

on the single grid. Therefore, it is expected that these results are improved by applying the 

present method. From the above, it can be expected that flow simulations including an object 

with translation and rotation can be efficiently performed by applying the present method. 

In this paper, the size and rotation speed of the sub-grid were limited. In the present method, it 

is desired to investigate the influence of these because the grid point at which the physical 

quantity is interpolated changes. It may also be promising to consideration of the introduction 

of the shape adapted Cartesian sub-grid [13]. 

References 

[1] Peskin, C.S. and McQueen, D.M. (1989) A three-dimensional computational method for blood flow in the 
heart I. Immersed elastic fibers in a viscous incompressible fluid, Journal of Computational Physics, 81(2), 
372-405. 

[2] Fadlun, E.A., Verzicco, R., Orlandi, P. and Mohd-Yosof, J. (2000) Combined immersed-boundary finite-
difference methods for three-dimensional complex simulations, Journal of Computational Physics, 161(1), 
35–60. 

[3] Nishida, H. and Sasao, K. (2006) Incompressible Flow Simulations Using Virtual Boundary Method with 
New Direct Forcing Terms Estimation, Proceedings of International Conference on Computational Fluid 
Dynamics 2006, 185–186. 

[4] Chan, R.K.-C. (1975) A generalized arbitrary Lagrangian-Eulerian method for incompressible flows with 
sharp interfaces, Journal of Computational Physics, 17(3), 311-331. 

[5] Tajiri, K., Nishida, H. and Tanaka, M. (2014) Large eddy simulation of turbulent flow using seamless 
immersed boundary method, Proceedings of 8th International Conference on Computational Fluid Dynamics, 
1-13 (ICCFD8-197). 

ICCM2020, 9th -12th August 2020

135 



[6] Tajiri, K., Nishida, H. and Tanaka, M. (2018) ALE Seamless Immersed Boundary Method with Overset Grid 
System for Multiple Moving Objects, Proceedings of 10th International Conference on Computational Fluid 
Dynamics, 1–10 (ICCFD10-47). 

[7] Morinishi, Y., Lund, T.S., Vasilyev, O.V. and Moin, P. (1998) Fully conservative higher order finite 
difference schemes for incompressible flow, Journal of Computational Physics, 143(90), 90-124. 

[8] Rhie, C.M. and Chow, W.L. (1983) Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge 
Separation, AIAA Journal, 21(11), 1525-1532. 

[9] Goldstein, D., Handler, R., and Sirovich, L. (1993) Modeling a no-slip flow boundary with an external force 
field, Journal of Computational Physics, 105(2), 354–366. 

[10] Saiki, E.M. and Biringen, S.  (1996) Numerical simulation of a cylinder in uniform flow: application of a 
virtual boundary method, Journal of Computational Physics, 123(2), 450–465. 

[11] Kawakami, K., Nishida, H. and Satofuka, N. (1994) An open boundary condition for the numerical analysis 
of unsteady incompressible flow using the vorticity-streamfunction formulation (in Japanese), Transactions 
of the Japan Society of Mechanical Engineers Series B, 60(574), 1891–1896. 

[12] Ta. P. L. (1975) 𝐸́tude numerique de l’ 𝑒́coulement d’un fluide visqueux incompressible autor d’un cylinder 
fixe ou en rotation, Journal de m𝑒́canique, 14 (109). 

[13] Urano, A., Tajiri, K., Tanaka, M., Yamakawa, M. and Nishida, H. (2020) ALE Seamless Immersed Boundary 
Method with Overset Grid System Adapted to the Shape of an Object, Journal of Mechanical Engineering 
Research and Developments, 43-1, 67-75. 

ICCM2020, 9th -12th August 2020

136 



Effect of nano-silica on fracture properties and crack extension resistance 
of high-performance concrete 

*Ngo Van Thuc1, †Bui Tien Thanh2, Nguyen Thi Cam Nhung2, Nguyen Thi Thu Nga3, 
Nguyen Duyen Phong4 and Lam Thanh Quang Khai1

 
1Mien Tay Construction University, Vietnam. 

2Department of Bridge and Tunnel Engineering, University of Transport and Communications, Vietnam. 
3Facility of Technical Fundamental, University of Transport Technology, Vietnam 

4Department of Underground and Mining Construction, University of Mining and Geology, Vietnam. 

*Presenting author: nvthuc34@gmail.com  
†Corresponding author: btthanh@utc.edu.vn 

Abstract: 
Concrete in the curing process will appear microcracks inside. They will grow and be 
connected to form some obvious cracks due to temperature and load changes during 
extraction. With the propagation of cracks, the sudden fracture can occur to concrete 
structures. The paper will evaluate the effect of nano-silica on the fracture properties and 
crack extension resistance of high-performance concrete during the complete fracture process. 
The crack extension resistance of high-performance concrete including nano-silica will be 
calculated based on the softening laws and the results obtained from the three-point bending 
test of beam samples with a notch according to Rilem's recommendation. In addition, the 
initial fracture toughness and unstable fracture toughness will be determined to estimate the 
crack propagation stability. Mechanic properties such as compressive strength, tensile 
strength, and elastic modulus are also determined to calculations in the model. Finally, the 
crack extension resistance curves for high-performance concrete are established based on a 
programming method. 

Keywords: fracture, high-performance concrete, nano-silica, crack extension resistance 
 
1. Introduction 
The incorporation of nanomaterials into high-performance concrete has been documented, 
which can significantly improve the mechanical properties and durability of concrete. The use 
of nanometer-sized silica materials in high-performance concrete is considered a new step 
compared to silica fume materials (micrometer sizes). Nanometer-sized ultrafine silica 
particles help trigger pozzolanic reactions, which remove the unstable components of 
Ca(OH)2 that produce high-performance pozzolan gel products. For high-performance 
concrete (HPC) with nano-silica (NS) added, the mechanical properties such as compressive 
strength, flexural strength, elastic modulus, and stress-deformation characteristics are 
significantly improved according to Recent studies of the author [1]. In the studies using NS 
in HPC [2] [3] [4], the influence of nano-silica on the fracture characteristics of concrete was 
mentioned, but there were no specific studies for evaluation. 

According to Mindess [5], fracture mechanics can now be used to design and evaluate 
concrete structures. According to Ricardo et al. [6], concrete containing silica fume will have 
better fracture parameters than. Silica fume has the effect of increasing the consistency, 
improving the C-S-H structure, and increasing the quality of the interface transition zone 
between mortar and aggregate. Fracture energy, fracture toughness, length characteristics are 
all developed higher when using silica fume, the brittleness of HPC tends to decrease. 
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According to Zhang et al. [2], fracture characteristics are essential for the safety and durability 
of HPC structures. The improvement of pore structures in HPC with chemical and mineral 
admixtures increases the density of the interface transition zone of mortar and aggregate, thus 
affecting the fracture properties of concrete. Silica ultrafine particles will help mortar's 
performance and consistency is higher than, increasing the cohesion between cement particles 
and aggregate, the fracture characteristic of concrete is also improved significantly. The 
presence of ultrafine particles will improve the microstructure and change the fracture 
behavior of concrete. 

In recent decades, many researchers have described the crack extension resistance of concrete 
through typical R and KR curves such as Hilsdorf and Brameshuber [7], Karihaloo [8], Mai 
[9], Bazant and Jirasek [10], Planas et al. [11], Reinhart et al. [12], Xu and Reinhart [13], 
Kumar and Barai [14], Dong et al. [15]. Among them, a proposed method for assessing crack 
extension resistance according to the KR curve is based on studies of Reinhart et al. [12], Xu 
and Reinhart [16] [ 17] [18]. In the studies of Xu et al., the fundamental relationship between 
the cohesion force operating in the fictitious crack zone and the KR crack extension resistance 
curve for the fracture completely in concrete when considering the cohesive stress along the 
fictitious zone is considered to be a critical factor. 

To understand the fundamental relationship between cohesive stress operating in the virtual 
crack zone and the crack extension resistance curve KR for the fracture process of high-
performance concrete as well as the influence of nano-silica to the cohesive stress along the 
fictitious crack zone, the method of assessing the resistance to crack extension under the KR 
curve based on stress intensity coefficients and the fictitious model will be used.  In this 
method, the KR crack resistance is obtained by combining the initial crack toughness ini

IcK , 
which is the inherent strength of the material against the crack's appearance, with cohesive 
toughness C

IK  representing the contribution of cohesive stress along the fictitious crack area. 
The KR crack extension resistance curve was calculated by equations established based on the 
softening rule of concrete proposed by Reinhart and Xu [12]. Parameter of fracture 
characteristics and two load curves - crack mouth extension displacement (P - CMOD), load - 
deflection (P - δ) of concrete from a three-point bending test following the standard with 
crevice primer will be used for calculation. 

2. Effect of nano-silica to fracture characteristics of high-performance concrete 

2.1. Nano-silica 

Research using NS product (Aerosil 200) of Evonik chemical company (Belgium) with 
dimensions from 5-50nm, the typical surface area of (200 ± 25)m2/g. The results of SEM 
analysis experiments to evaluate nano silica's size and shape are shown in Figure 1. From 
Figure 1, it can be seen that the nanoparticles are spherical with an average size of about 
13nm. 
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Figure 1. Nano-silica and SEM analysis results 

2.2. Prepare the experiment 

2.2.1. Mix proportions 

HPC contains NS is designed with typical intensity of 70MPa calculated by the ACI method 
[19]. HPC's composition with 0%, 0.5% and 1.5% NS ratios were used for the fracture 
characterization test. The percentage of superplasticizer is selected according to the 
manufacturer's recommendations and is adjusted in practice to ensure the workability of the 
concrete mixture. 

Table 1. Composition of high-performance concrete using nano-silica 

Mix code 

Material 

Cement Fine 
Aggregate 

Coarse 
Aggregate SF NS SP Water 

W/B  

(kg) (kg) (kg) (kg) (%) (lit) (lit) 

0%NS 544.21 674.68 1049.75 28.64 0.00 5.44 154.67 0.27 

0.5%NS 541.34 673.68 1049.75 28.64 0.50 6.53 154.67 0.27 

1.5%NS 535.61 671.67 1049.75 28.64 1.50 7.62 154.67 0.27 

Note: NS – Nano-silica, SF – Silica fume, SP – Superplasticizer, W/A – Water/Binder. 

2.2.2. Manufacturing experimental samples 
The study used a three-point bending test of beam samples with a notch to determine the 
fracture characteristics of concrete according to Rilem's recommendation [20]. The beam 
sample used in the three-point bending test is a prism of size 500x100x100mm with a 2mm 
widens of the notch. The notch depth is 25mm, and the ligament area is 100x75mm2 (Figure 
2). 
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Figure 2. Three-point bending test of the beam sample 

All notches are cut on a surface perpendicular to the top of the sample during casting. Test 
beams after 28 days shall be made the notch on the 21st day. After that, the samples are cured 
until the day of testing. 

2.3. Experimental methods 

Experiment with three-point bending beams with the notch used to determine the fracture 
parameters of concrete, and the test is described as shown in Figure 3. The fracture test is not 
the same as the strengthen test or other mechanical properties, load control is not used but 
instead by controlling displacement or crack mouth opening displacement on the sample. All 
three-point bending tests are carried out in closed-loop condition, using the Control 
experiment machine. The parameters measured during the experiment were the load, the 
displacement of the beam measured by the linear variable differential transformer (LVDT), 
the crack mouth open displacement (CMOD) was measured by using an extensometer with an 
experimental layout as shown in Figure 3. 

  

 

Figure 3. Three-point bending test of HPC beam sample using nano-silica 

In RILEM's recommendations [20], it is necessary to conduct experiments so that the rate of 
increase in mid-span displacement is a constant of 0.2 mm/min. However, the study proposes 
a small change can be made to this requirement. Instead of performing experiments under 
mid-span displacement control, the tests were performed under crack mouth open 
displacement (CMOD) control.  

2.4. Experimental results 

Extensometer 

LVTD 
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2.4.1. Effect of nano-silica on the relationship of load and crack mouth open displacement (P 
- CMOD) 

The P - CMOD curve of non-NS concrete has a significant slope after reaching the peak 
(Pmax), the force value decreases rapidly when the CMOD is very small. When adding nano-
silica into the concrete at a rate of 0.5% and 1.5%, the resulting P - CMOD curve has a 
marked change. In the early stages, the concrete is still in the elastic stage; all samples' curves 
tend to grow the same, as shown in Figure 4. The difference begins to appear at the stage 
when the curves are about to peak, the top of the curve of concrete using NS is higher than 
unused concrete. These can easily understand that the concrete's tensile strength using NS is 
higher than not using. 

 
Figure 4. Relationship diagram between load and crack mouth open displacement 

Crack mouth open displacement corresponding to Pmax (CMODc) of beam samples using 
0.5% and 1.5% NS increased compared to control samples (0%), respectively 77.80% and 
107.40%. The displacement of cracks widened when the sample was completely destroyed 
(CMODmax) of beam samples using 0.5% and 1.5% NS increase compared to the control 
sample (0%), respectively 18.75% and 39.31%. From the CMOD results, the contribution of 
nano-silica particles in minimal amounts can significantly improve the toughness of concrete. 

2.4.2. Effect of nano-silica on the relationship between load and deflection (P-δ)) 

The relationship between the load and deflection (P-δ) of high-performance concrete with 
additional NS ratios is shown in Figure 5. For the NS-using concrete, the curve P-δ thicker, 
the nonlinear phase of the curve becomes longer, and the load decreases more slowly. 

The displacement between maximum spans (δmax) of the three-point bending test surveyed on 
the concrete beam, based on Figure 5, can be seen that δmax increases when comparing 
samples using NS from 0.5% to 1.5 % of the control sample (0% NS). 
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Figure 5. Relationship diagram between load and deflection 

Observation Figure 5 shows the change of the relationship curves between the load and 
deflection in the middle of the span showing that the area under the P-δ curve and the 
horizontal axis (WF) of the graph vary in the proportion of NS. Use the integral method to 
calculate the area under the P- δ curve. The results showed that WF increased by 21.42% 
when the NS ratio was 0.5% and 58.71% when the NS ratio was 1.5%.  

2.4.3. Effect of nano-silica on fracture energy (GF) 
The change in the value of fracture energy when the ratio of NS varies from 0%, 0.5%, 1.5% 
is shown in Figure 6. Compared to concrete samples without NS, the beams using NS with 
fracture energy increased by 21% and 58%, respectively, NS ratio is 0.5% and 1.5% of binder. 

 
Figure 6. Facture energy results of HPC using NS 

From the GF results of the gradation of concrete using more NS, it shows that the energy 
required for fracture is higher. 
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2.4.4. Effect of nano-silica to characteristic length (lch) 
Basing on the characteristic length of the fracture process zone to evaluate the brittleness of 
high-performance concrete mixes with the change of NS content. This parameter was 
determined based on the energy parameters of GF, tensile strength, and elastic modulus. In 
particular, the tensile strength and elastic modulus were taken from the previous research 
results of the authors [1]. The result of the calculation is shown in Figure 7. 

 
Figure 7. Calculation results of characteristic length 

The results of calculating the lch of the samples using NS are higher than the samples without 
NS. Based on the assessment, according to the CEB-FIP standard [21]. It can be seen that 
non-NS concrete is more brittle than aggregate using NS. 

3. The crack extension resistance of high-performance concrete using nano-silica 
3.1. Approach to calculate the resistance to crack expansion of concrete 
To evaluate the effect of nano-silica on the crack extension resistance of concrete, the 
evaluation method, according to KR(Da) of Xu et al., Is based on the concrete softening law 
applied [22] [17] [23]. In this method, the KR crack propagation resistance is obtained by a 
combination of initial crack toughness ini

IcK , which is the inherent intensity of the material 
against the occurrence of propaganda cracks, together with, C

IK is the cohesive toughness of 
the crack propagation strength due to the contribution of the cohesive stress along the crack 
propagation zone.   

 ini C
R Ic IK K K= +       (1) 

In the finite element calculations for concrete structures based on Hillerborg's cohesive crack 
model [24], a bilinear softening rule to describe the softening properties of concrete materials 
was used and widely used by many researchers. The bilinear softening traction-separation law 
has also been used in the search for analytical expressions of the crack resistance curve [23]. 
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Figure 8. The bilinear softening traction-separation law 

According to Xu and Reinhardt [23], the general formula for calculating the cohesion strength 
for three-point bending test of beams is as follows: 

                                    
0

1( ) 2 ( ) , /
a

C
I

a

x aK a x F adx
a D

σ π D =  
 ∫                             (2) 

while: 

  
1 3/2 1/2

3/2

2

3.52(1 / ) 4.35 5.28 /,
(1 / ) (1 / )

1.30 0.30( / ) 0.83 1.76 1 1
1 ( / )

x a x a x aF
a D a D a D

x a x x a
a a Dx a

− −  = −  − − 

 −     + + − − −   
  −  

        (3) 

The stages of fracture can be characterized by four different crack propagation sites [52]. The 
first station is a = a0, and the second is a0 ≤ a ≤ ac, the third is ac ≤ a ≤ aw0 and finally a > aw0. 

According to the four different stages of crack propagation, the cohesive strength is calculated 
using the general formula (2). The cohesion stress corresponds to the four crack propagation 
phases proposed by Xu and Reinhardt [23]: 

(a) Case: a = a0   

                               σ(x) =0                                       (4) 

(b) Case: a0 ≤ a ≤ ac 

  

Figure 9. Cohesion stress distribution during crack propagation stage a0 ≤ a ≤ ac 

Cohesive stress distribution function along the coherent cracking area: 

0 0( ) (w) ( (w))( ) / ( )     tx f x a a aσ σ σ= + − − −    (5) 

(c) Case: ac ≤ a ≤ aw0 
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ft
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Figure 10. Cohesion stress distribution during the crack propagation stage ac ≤ a ≤ aw0 

Cohesive stress distribution function along the coherent cracking area: 
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      (6) 

(d) Case: a > aw0 

  
Figure 11. Cohesion stress distribution form during crack propagation stage a > aw0 

Cohesive stress distribution function along the coherent crack zone: 
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      (7) 

3.2. The result of calculating resistance to crack extension 

The sequence of calculations is set in a series programmed by commercial software Mathcad. 
The fracture parameters and the P - CMOD relationship curve of high-performance concrete 
using NS obtained from the experiment will be applied to the calculation.  

 

Table 1. Criteria for calculating cracking resistance 

Mix 
code 

f'c 
(MPa) 

ft 
(MPa) 

E 
(MPa) 

GF 
(N.mm/mm2) 

W0 
(mm) 

H0 
(mm) 

S×D×B (mm) 

0%NS 82.10 5.43 45533 0.200 0.133 3.0 400×100×100 

0.5%N
S 

84.09 5.76 47620 0.242 0.151 3.0 400×100×100 

1.5%NS 87.10 6.23 50131 0.316 0.183 3.0 400×100×100 

ft

(CTODc)

W a0
x

a
D

W(a0)

ft

 (CTODc)

W0

a0

x
a

D
aw0 - a0
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3.2.1. Initial crack toughness 

  
Hình 12. Effect of NS to initial crack toughness of HPC 

Observe Figure 12, showing that the NS content significantly influences the initial crack 
toughness of the HPC. When the ratio of NS increases, ini

IcK  increases accordingly, indicating 
that when using NS will help HPC prevent cracks from appearing better. 

3.2.2. Cohesive crack toughness 

The calculation results of cohesive toughness were base on the crack propagation length Da is 
shown in Figure 13. 

 

Figure 13. Effect of NS to cohesive crack toughness of HPC 

Observe the curves in Figure 13, in the segment after the crack propagation, the values C
IK  

corresponding to the crack propagation lengths (Da) of the HPC using NS are higher than the 
available type. This change influence of NS to the cohesive characteristic of the surfaces after 
cracking, which enhances the strength of cohesive. 
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3.2.3. The crack extension resistance  

The crack extension resistance is the result of the combined initial toughness ( ini
IcK ) and 

cohesive toughness ( C
IK ), as shown in Figure 14. 

 
Figure 14. Effect of NS on crack extension resistance in HPC 

The curves in Figure 14, clearly show the influence of NS on the crack extension resistance 
corresponding to the load stage (P) and crack propagation length (Da). The crack resistance 
curve corresponding to HPC gradients using 1.5% NS has a starting point that is higher than 
the other mixture, and the values along the crack are similarly more significant. The results of 
the cracked resistance curves were observed, showing high similarity to the crack extension 
resistance curves calculated by other authors [15] [17] [23]. 

4. Conclusion 

The fracture characteristics of high-performance concrete were investigated through the 
modification of silica nano content in gradients. When using NS in HPC helps improve 
fracture energy and ductility of HPC. The results show that the level of fracture characteristics 
are significant, with the ratio of used NS is 1.5%. 

Fracture toughness values due to the inherent toughness of the material (initial toughness), the 
strength caused by the adhesive stress along the crack (cohesive toughness), is improved 
when using NS in HPC. 

The crack extension resistance curve is calculated using Mathcad programming software 
based on the formulas established based on applying the bilinear softening traction-separation 
law. The result of the crack resistance of HPC using NS will be higher than the control type. 
These curves can be used in assessing the crack propagation stability of HPC. 
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Abstract 

A node-based smoothed point interpolation method based on the generalised gradient 

smoothing technique is proposed for coupled hydro-mechanical analysis of geomechanical 

problems. In the proposed method, the problem domain is first discretised with the use of a 

simple triangular background mesh which is used for the selection of the supporting nodes for 

shape function construction as well as forming node-based smoothing domains. Weakened 

weak formulation is applied for spatial discretisation of the coupled partial differential 

equations. Both displacement and pressure fields are interpolated over the problem domain 

using the point interpolation shape functions. A three-point time discretisation scheme with 

variable time steps is used for temporal discretisation of the governing equations. Two 

benchmark numerical examples with analytical/reference solutions are then used to investigate 

the accuracy and the efficiency of this method compared to the conventional finite element 

method.  

Keywords: Geotechnical engineering, coupled analysis, saturated porous media, smoothed 

point interpolation method, meshfree methods. 

1 Introduction 

Smoothed point interpolation methods (SPIMs) are a rather new class of numerical methods in 

which the generalised gradient smoothing technique is used, making the calculation of the 

derivative of independent variables unnecessary. In these methods [1], governing equations are 

written in the weakened weak (𝑊2) form which, unlike the weak form used in the conventional 

finite element method (FEM), eliminates the necessity of the compatibility of the approximation 

functions over the problem domain. This brings several advantages to the SPIMs with respect 

to the FEM such as being computationally efficient and having superior accuracy in stiffness 

estimation which has been extensively investigated in solid mechanics problems [2]. 

However, applications of SPIMs to coupled geomechanical problems are limited in the 

literature [3-6] and the main focus of these studies have been on the edge-based SPIMs 

(ESPIMs) and cell-based SPIM (CSPIMs).  The goal of this paper is to study the application of 

two different node-based SPIMs i.e. NSPIM and NSRPIM in linear and nonlinear coupled 

geomechanical problems to investigate how gradient smoothing operation in NSPIMs affects 
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the accuracy and the efficiency of the calculated property matrices of the domain. The 

performance of the NSPIMs are compared to that of the linear FEM using the same triangular 

background mesh for benchmarking. The comparative study is performed through two 

numerical examples with benchmark solutions.  

2 Notation 

The compact matrix-vector notation where bold letters indicate matrices and vectors are 

adopted in this paper. A two-dimensional plane strain setting is assumed. The differentiation 

operator is defined as follows,  

                                             𝑳𝑑 =

[
 
 
 
 

𝜕

𝜕𝑥1
0

0
𝜕

𝜕𝑥2

𝜕

𝜕𝑥2

𝜕

𝜕𝑥1]
 
 
 
 

                                                              (1) 

with 𝑥1 and 𝑥2 being space coordinates. 𝜵 is the gradient operator expressed as 𝜵 = 𝑳𝑑
T𝜹, with 

𝜹 = [1 1 0]T. The divergence of a vector is shown with 𝑑𝑖𝑣(𝒗) = 𝜵𝑇𝒗.  The outward unit 

normal matrix at any point of interest is expressed as,  

                                                                 𝑳𝑛 = [
𝑛1 0
0 𝑛2

𝑛2 𝑛1

]                                                                  (2) 

in which 𝑛1 and 𝑛2 are the components of the unit normal vector at the point of interest in the 

𝑥1 and 𝑥2 directions, respectively. An over-dot indicates time derivative of the corresponding 

parameter. Voigt notation is adopted throughout where second order stress and strain tensors 

are written as column matrices, and the fourth order constitutive tensor is written as a square 

matrix [7]. The sign convention of geomechanics is adopted where compressive stresses and 

strains are taken as positive. 

3 Governing equations 

The equations governing the behaviour of a saturated porous medium are obtained based on 

two interacting models: the deformation model and the flow model. The deformation model is 

based on the equilibrium of the porous medium. Assuming small strains and ignoring inertia 

forces, the deformation model is expressed as [8].  

                                                                         𝑳𝑑
𝑇𝝈 + 𝜌𝒈 = 𝟎                                                                (3) 

where 𝛔 is the total stress vector, 𝜌 is the density of the porous medium, and 𝐠 = [0 𝑔 0]T 

is the gravity acceleration vector with 𝑔 being the gravitational constant.  
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The flow model can be obtained from the combination of mass balance equation for the fluid 

phase with Darcy’s law for the fluid flow in porous media, resulting in, 

                                              𝑑𝑖𝑣 [
𝒌𝑓

𝜇𝑓
(𝜵𝑝𝑓 + 𝜌𝑓𝒈̅)] − 𝑎𝑓𝑝̇𝑓 + 𝑑𝑖𝑣(𝒖̇) = 𝟎                                    (4) 

where 𝐠̅ = [0 𝑔]T, 𝒖 is the displacement vector of the soil skeleton, and 𝑝𝑓 is the fluid 

pressure. 𝐤f is the intrinsic permeability of the medium, 𝜇f is the dynamic viscosity of the fluid, 

and 𝜌f is the density of the fluid. Assuming the solid grains are incompressible, 𝑎f = 𝑛𝑐f where 

𝑛 is the porosity of the porous medium and 𝑐f is the compressibility of the fluid phase. 

Equations (3) and (4) are further coupled through the Terzaghi’s effective stress principle: 

                                                                       𝝈 = 𝝈′ + 𝑝𝑓𝜹                                                             (5) 

where 𝛔′ indicates the effective stress. To complete the governing equations, an incremental 

constitutive law is also needed, 

                                                                      𝑑𝝈′ = 𝑫𝑒𝑝𝑑𝜺                                                                 (6) 

where 𝐃ep is the tangent elasto-plastic constitutive matrix, and 𝑑𝛆 is the strain increment for 

the solid matrix obtained as follows,   

                                                                       𝑑𝜺 = 𝑳𝑑(𝑑𝒖)                                                                 (7) 

Elastic isotropic material is considered in the first example and for the nonlinear example 

associated Mohr-Coulomb behaviour is assumed. The formulation and implementation of the 

elastic isotropic, and Mohr-Coulomb constitutive models can be found in the standard literature 

[9], hence they are not discussed here.  

The required boundary conditions for solving the governing equations can be expressed as 

follows for the deformation model, 

                                                                 𝒖(𝒙, 𝑡) = 𝒖̅                 𝑜𝑛 𝛤𝑢                                              (8-1) 

                                                                 𝑳𝑛
𝑇𝝈(𝒙, 𝑡) = 𝒕̅             𝑜𝑛 𝛤𝑡                                               (8-2) 

where 𝛤𝑢 and 𝛤𝑡 are restricted regions of the boundary of the domain corresponding to the 

prescribed displacement (𝒖̅) and prescribed traction (𝒕̅), such that 𝛤 = 𝛤𝑢  ∪  𝛤𝑡 and 

𝛤𝑢  ∩  𝛤𝑡 = ∅  with Γ being the external boundary of the domain of interest.  

For the flow model, the boundary conditions are as follows, 
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                                                          𝑝𝑓(𝒙, 𝑡) = 𝑝̅𝑓(𝑡)             𝑜𝑛  𝛤𝑝                                              (9-1)        

                                                        −𝑳𝑛𝒗𝑟(𝒙, 𝑡) = 𝑞̅(𝑡)       𝑜𝑛  𝛤𝑞                                                (9-2)       

where 𝒗𝑟 is the fluid velocity relative to the solid phase. 𝛤𝑝 and 𝛤𝑞 are regions of the boundary 

of the domain corresponding to the prescribed pore fluid pressure (𝑝̅) and prescribed flux (𝑞̅), 

again satisfying 𝛤 =  𝛤𝑝  ∪  𝛤𝑞 and 𝛤𝑝  ∩  𝛤𝑞 = ∅. 

Finally, the initial conditions at 𝑡 = 0 are given as 

                                                               𝒖(𝒙, 0) = 𝒖0(𝒙)             𝑜𝑛 𝛺                                              (10) 

                                                            𝑝𝑓(𝒙, 0) =   𝑝𝑓0(𝒙)            𝑜𝑛  𝛺                                            (11)    

where 𝛺 is the problem domain. 

4 Node based smoothed point interpolation method 

4.1 Construction of smoothing domains and support nodes selection schemes  

In NSPIMs, a triangular background mesh is first generated over the domain and then, the 

smoothing domains are constructed around the nodes of the background mesh as shown in  

figure 1. Similar to the standard FEM, the domain is discretised into 𝑛𝑒 elements with 𝑛𝑛 nodes 

such that Ω = ⋃ Ω𝑖
𝑒𝑛𝑒

𝑖=1  and Ω𝑖
𝑒 ∩ Ω𝑗

𝑒 = ∅ for 𝑖 ≠ 𝑗 where Ω𝑖
𝑒 stands for the domain of the 𝑖th 

element. The total number of 𝑛SD smoothing domains are then constructed on top of the 

triangular background mesh, again in such a way that Ω = ⋃ Ω𝑖
𝑆𝐷𝑛𝑆𝐷

𝑖=1  and Ω𝑖
𝑆𝐷 ∩ Ω𝑗

𝑆𝐷 = ∅ for 

𝑖 ≠ 𝑗 where Ω𝑖
𝑆𝐷 is the domain of the 𝑖th smoothing domain. The triangular background mesh 

also serves as a means for the selection of the supporting nodes at each point of interest. In this 

study, T3 scheme is used for NSPIM (i.e. NSPIM-Tr3) in which the three nodes of the cell 

hosting the point of interest are adopted. On the other hand, T6 scheme is used for NSRPIM 

(i.e. NSRPIM-Tr6) in which in addition to the three nodes of the host cell, another three remote 

nodes of the three neighbouring cells are also adopted.  
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Figure 1. Schematic representation of a typical node based smoothing domain (blue 

nodes are adopted in T3 scheme and All blue and red nodes are considered for T6 

scheme) 

4.2 Function approximation 

The point interpolation method (PIM) using polynomial basis functions is used in this study to 

construct shape functions in the NSPIM-Tr3 and for the NSRPIM-Tr6, the polynomial bases 

are augmented with the radial basis functions resulting in the radial point interpolation method 

(RPIM) shape functions. Interested readers are referred to [2, 10, 11] for more details on these 

shape functions.  

4.3 Strain field construction 

In NSPIMs, unlike the FEM that uses the compatible strain, a constructed stain field is used in 

the formulation. The strain field is constructed using the assumed displacement filed, without 

introducing additional degrees of freedom. The constructed strain in NSPIMs are referred to as 

the smoothed strain which is constant over each node based smoothing domain, and defined as 

follows [10]:  

                                                         𝜺̂𝑘 =
1

𝐴𝑘
𝑆𝐷 ∫ 𝑳𝑛𝒖(𝒙) 𝑑𝛤

𝛤𝑘
𝑆𝐷                                               (12)  

where 𝛆̂𝑘 is the smoothed strain over the 𝑘th node based smoothing domain (𝛺𝑘
SD) having the 

area of 𝐴𝑘
𝑆𝐷 and the boundary of 𝛤𝑘

SD(𝑘 = 1,… , 𝑛SD), and 𝑳𝑛 is the outward normal matrix 

defined earlier in the paper. Writing displacements in terms of shape functions, the smoothed 

strain for the 𝑘th smoothing domain can be related to the nodal displacements, 
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                        𝜺̂𝑘 = (
1

𝐴𝑘
𝑆𝐷 ∫ 𝑳𝑛𝑵𝑢(𝒙) 𝑑𝛤

𝛤𝑘
𝑆𝐷 )𝒖 = ∑ [

𝜑̂1𝑖
0

0 𝜑̂2𝑖

𝜑̂2𝑖
𝜑̂1𝑖

] {
𝑢1𝑖
𝑢2𝑖

}𝑞
𝑖=1 = 𝑩̂1𝒖                    (13)  

with 

                                      𝑵𝑢(𝒙) = [
𝜑1(𝒙) 0

0 𝜑1(𝒙)
…

𝜑𝑞(𝒙) 0

0 𝜑𝑞(𝒙)
]
2×2𝑞

                           (14) 

                                             𝑩̂1 = [

𝜑̂11
0

0 𝜑̂21

𝜑̂21
𝜑̂11

…

𝜑̂1𝑞
0

0 𝜑̂2𝑞

𝜑̂2𝑞
𝜑̂1𝑞

]

3×2𝑞

                                              (15)  

                                         𝒖 = [𝑢11
𝑢21

𝑢12
𝑢22

⋯ 𝑢1𝑞
𝑢2𝑞]𝑇                                    (16) 

and 

                                              𝜑̂𝑖𝑙 =
1

𝐴𝑘
𝑆𝐷 ∫ 𝜑𝑖(𝒙)

𝛤𝑘
𝑆𝐷 𝑛𝑙(𝒙)𝑑𝛤,       𝑙 = 1,2                                         (17) 

where 𝑞 is the total number of supporting nodes of all the Gauss points on the boundaries of the 

𝑘th smoothing domain. 𝑢1 and 𝑢2 are the components of displacement in 𝑥1 and 𝑥2 directions, 

respectively. 𝐁̂1 is constant over each smoothing domain. The integration in Eq. (17) can be 

easily obtained using the Gauss integration scheme, by summing the contribution of all the 

segments of the boundary of the 𝑘th smoothing domain. 

5 Discretisation of the governing equations and numerical algorithm 

Fully discretised governing equations obtained by applying three-point time discretisation 

approach with variable time steps presented in [12] are as follows, 

                                      𝐊T
t+α∆t𝐔t+α∆t + η𝐐𝐏t+α∆t − 𝐅u

t+α∆t = 𝟎    (18) 

𝜂𝑸𝑇(𝑎𝑼𝑡+𝛼∆𝑡 − 𝑏𝑼𝑡 + 𝑐𝑼𝑡−𝛥𝑡) − 𝛥𝑡𝑯𝑷𝑡+𝛼∆𝑡 − 𝑎𝑓𝑺(𝑎𝑷𝑡+𝛼∆𝑡 − 𝑏𝑷𝑡 + 𝑐𝑷𝑡−𝛥𝑡) −

𝛥𝑡𝑭𝑝
𝑡+𝛼∆𝑡 = 𝟎        

   (19)                                                                                 

where 𝐔 is the vector of nodal displacements, 𝐏 is the vector of the nodal pore fluid pressures, 

𝐅u is the vector of nodal forces, 𝐅p is the vector of nodal fluxes, and 𝐐, 𝐒 and 𝐇 are the global 

property matrices of the system, evaluated by assembling the corresponding local property 

matrices computed over the smoothing domains.  
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Eq. (18) and Eq. (19) form a fully coupled equation system that must be solved at each time 

step. The system of equations is nonlinear in general; hence a modified Newton-Raphson 

iterative process is adopted in this study to obtain the numerical solutions at each time step. 

More details are reported in [3-6]. 

6 Numerical examples 

Two benchmark examples are studied in this section to thoroughly examine the NSPIMs 

discussed in the previous sections in coupled problems of geomechanics. At each case, the 

numerical solutions of the NSPIMs are compared to those of the standard linear FEM obtained 

using the same triangular mesh for benchmarking. Analytical solutions are available for the first 

example, hence thorough error analyses are performed. For the second example, analytical 

solutions are not available, therefore numerical solutions obtained using the FEM with a very 

fine mesh is adopted as reference solutions. 

For quantitative assessment of each numerical technique, few error norms are adopted. The 

displacement and pore pressure error norms are defined as follows: 

                                                 𝐸𝑑 = √
∑ ((𝒖𝑖

𝑒𝑥𝑐−𝒖𝑖
𝑛𝑢𝑚)

𝑇
(𝒖𝑖

𝑒𝑥𝑐−𝒖𝑖
𝑛𝑢𝑚))

𝑛𝑛
𝑖=1

∑ ((𝒖𝑖
𝑒𝑥𝑐)

𝑇
𝒖𝑖

𝑒𝑥𝑐)
𝑛𝑛
𝑖=1

                                               (20) 

                                                            𝐸𝑝 = √
∑ (𝑝𝑓𝑖

𝑒𝑥𝑐−𝑝𝑓𝑖
𝑛𝑢𝑚)

2𝑛𝑛
𝑖=1

∑ (𝑝𝑓𝑖
𝑒𝑥𝑐)

2𝑛𝑛
𝑖=1

                                                       (21) 

in which the superscripts exc and num for both 𝒖 and 𝑝𝑓 stand for the exact and numerical 

solutions, respectively, and subscript 𝑖 denotes the node number. Similarly, to measure the error 

in stress solution at nodes, we use, 

                                               𝐸𝑠 = √
∑ ((𝝈𝑖

𝑒𝑥𝑐−𝝈𝑖
𝑛𝑢𝑚)

𝑇
(𝝈𝑖

𝑒𝑥𝑐−𝝈𝑖
𝑛𝑢𝑚))

𝑛𝑛
𝑖=1

∑ ((𝝈𝑖
𝑒𝑥𝑐)

𝑇
𝝈𝑖

𝑒𝑥𝑐)
𝑛𝑛
𝑖=1

                                                 (22) 

6.1 Example 1: One dimensional consolidation  

The first example involves Terzaghi’s one dimensional consolidation problem, as illustrated in 

Figure 2. A fully saturated porous medium with the height of 𝐻 = 10𝑚 and width of 𝐵 = 1𝑚 

is subjected to a sudden loading of 𝑞 = 10 𝑘𝑃𝑎 at time 𝑡 = 0. The surface of the medium is 

assumed to be fully drained and the other boundaries of the domain are impermeable. The base 

of the domain is fully fixed, and the left and right sides of the domain are fixed against 

horizontal displacement only. Isotropic linear elastic behaviour is assumed for the solid 
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skeleton, with the following properties: 𝜇𝑓 = 1 × 10−6 𝑘𝑃𝑎 𝑠, 𝑘𝑓 = 10−12  𝑚2, 𝐸 = 10 𝑀𝑃𝑎 

and 𝜈 = 0.3. This problem involves both deformation and flow through the porous media, so 

the combining effects of the stiffness matrix, permeability matrix and the coupling matrix of 

the domain are studied. 

 

Figure 2. Schematic representation of the computational domain along with the 

observation points used for analyses of the one-dimensional consolidation problem. 

The numerical results obtained using different methods in terms of dimensionless surface 

settlement (
𝑢

𝑢𝑢𝑙𝑡
 with 𝑢𝑢𝑙𝑡 being the ultimate surface settlement) versus dimensionless time 

(𝑡𝐷 =
𝐸𝑘𝑓(1−𝜈)

𝜇𝑓(1+𝜈)(1−2𝜈)𝐻2 𝑡), and dimensionless excess pore fluid pressure (
𝑝𝑓

𝑞
) versus 

dimensionless time at three depths of interest (points A, B and C shown in Figure 2), are 

presented in Figures 3. Also included in these figures are the analytical solutions to the problem 

[13].The numerical results are obtained using a regular triangular mesh consisting of 63 nodes 

and 80 elements (mesh #1 in Table 1). Initial dimensionless time step of  ∆𝑡D0 =

0.0001346 (∆𝑡0 = 1𝑠) and the time step growth factor of 𝛼 =1.1 are used in the analyses.  
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(a) 

 

(b) 

Figure 3. Analyses of the one-dimensional consolidation problem with different methods 

for  

(a) 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒍𝒆𝒔𝒔 𝒔𝒖𝒓𝒇𝒂𝒄𝒆 𝒔𝒆𝒕𝒕𝒍𝒆𝒎𝒆𝒏𝒕 ; (b) 𝐝𝐢𝐦𝐞𝐧𝐬𝐢𝐨𝐧𝐥𝐞𝐬𝐬 𝐞𝐱𝐜𝐞𝐬𝐬 𝐩𝐨𝐫𝐞 𝐩𝐫𝐞𝐬𝐬𝐮𝐫𝐞  

For all methods, excellent agreement exists between the numerical and analytical solutions. In 

order to quantitively compare the NSPIMs with FEM, various error norms of the solutions are 

obtained for different discretisation densities detailed in Table 3 at two dimensionless times of 

𝑡𝐷 = 0.1083 and 𝑡𝐷 = 0.8018 reached using ∆𝑡𝐷0 = 0.0001346 and 𝛼 = 1.1.  

Table 1. The properties of different mesh configurations used for the analysis of the one-

dimensional consolidation problem. 

Mesh number Number of nodes Number of elements Average nodal spacing, h (m) 

1 63 80 0.4558 

2 104 150 0.3437 

3 205 320 0.2374 

4 306 500 0.1917 

 

Figures 4 to 6 compare the convergence rates of the solutions in terms of displacement, pore 

fluid pressure and stress of the solutions.  
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(a) 

 

(b) 

Figure 4. Displacement error norms versus mesh size for one-dimensional 

consolidation problem at dimensionless time (a) 𝒕𝑫 = 𝟎. 𝟏𝟎𝟖𝟑 ; (b) 𝒕𝑫 = 𝟎. 𝟖𝟎𝟏𝟖 

 

(a) 

 

(b) 

Figure 5. Excess pore fluid pressure error norms versus mesh size for one-dimensional 

consolidation problem at dimensionless time (a) 𝒕𝑫 = 𝟎. 𝟏𝟎𝟖𝟑 ; (b) 𝒕𝑫 = 𝟎. 𝟖𝟎𝟏𝟖 
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(a) 

 

(b) 

Figure 6. Stress error norms versus mesh size for one-dimensional consolidation 

problem at dimensionless time (a) 𝒕𝑫 = 𝟎. 𝟏𝟎𝟖𝟑 ; (b) 𝒕𝑫 = 𝟎. 𝟖𝟎𝟏𝟖 

 

According to Figures 4,5 and 6 all of the error norms indicate that the NSRPIM-Tr6 is more 

accurate than the NSPIM-Tr3 and FEM. In general, the results of the FEM are similar to those 

of the NSPIM-Tr3, although the FEM is more accurate than the NSPIM-Tr3 at early stages of 

the consolidation in estimation of the displacements.  

To quantitatively assess the efficiency of different NSPIMs and FEM in this example, the values 

of various error norms and the computational time of the analyses for each NSPIM, normalised 

by those of the FEM and presented in Table 2. Efficiency of each NSPIM compared to the FEM 

is defined as the inverse of the product of the normalised error norms and the computational 

time ratios. The efficiency assessment is performed using mesh configuration number 1 (Table 

1) at an arbitrary time of 𝑡𝐷 = 1.0.  

Table 2. Comparison of the computational efficiency of the NSPIMs and FEM 

in terms of various error norms in 1D consolidation problem. 

Numerical 

method 
Displacement 

Excess pore 

water 

pressure 

Stress 
CPU 

time 

Relative 

efficiency 

FEM 1.000 1.000 1.000 1.0000 1.00 

NSPIM-Tr3 0.829 0.912 0.930 1.0662 1.334 

NSRPIM-Tr6 0.248 0.299 0.797 1.9560 8.651 

 

Table 2 shows that although CPU times are higher in NSRPIM-Tr6 compared to the FEM, this 

method is more efficient that FEM owing to its higher accuracy. The NSPIM-Tr3 and FEM are 

similar considering the efficiency.  

ICCM2020, 9th -12th August 2020

159 



 

 

6.2  Example 2: Two-dimensional consolidation  

Performance of the NSPIMs in elasto-plastic problems of saturated porous media are studied in 

this example where consolidation of a saturated soil layer subjected to a strip loading is 

considered. No analytical solution is available for this problem, hence the reference solution is 

obtained using an FEM analysis with a very fine mesh, which is in perfect agreement with the 

solutions reported in [14]. 

The load is applied through a flexible, smooth, and impervious strip footing of a half width 𝑎, 

placed on a free draining soil surface, as shown in Figure 7. The lateral extent of the soil layer 

from the centre of the strip load is assumed to be 𝑊 = 16𝑎 and the depth of the clay layer is 

taken as 𝐻 = 8𝑎, as also shown in Figure 7. The soil layer is assumed to be on an impervious 

nondeformable bedrock.  

 

Figure 7. The geometry and boundary conditions, along with the mesh used in the 

numerical analysis of the problem of two-dimensional elasto-plastic consolidation. 

It is assumed that the soil skeleton is an ideal elasto-plastic material obeying a Mohr-Coulomb 

yield criterion and the flow rule is associated. The material parameters are assumed 𝐸 =

2000 𝑘𝑃𝑎, 𝜈 = 0.3, 𝑐 = 10 𝑘𝑃𝑎, 𝜑 = 𝜓 = 20°, where 𝜑 is the friction angle and 𝜓 is the 

dilation angle. Soil permeability is assumed 
𝑘𝑓

𝜇𝑓
𝛾𝑤 = 1 × 10−5 𝑚/𝑑𝑎𝑦. Due to symmetry, only 

half of the domain is modelled in the numerical analyses, as shown in Figure 7. A non-uniform 

triangular mesh consisting of 508 nodes and 952 elements (shown in Figure 7) is used in all the 

analyses.  
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It is assumed that the vertical pressure of the footing is increased linearly from zero at 𝑡D = 0 

to 𝑤 = 100 kPa at time 𝑡D = 0.01, and remains constant afterwards, with the dimensionless 

time defined 𝑡𝐷 =
𝐸𝑘 𝑡

2𝛾w(1+𝜈)(1−2𝜈)𝑎2 [4, 14].  

The linear loading is simulated through 10 steps of 𝛥𝜔 = 10 kPa with ∆𝑡D = 0.001 and 

 𝛼 = 1.0. The time step growth factor is subsequently increased to 𝛼 = 1.1 for the rest of the 

analysis in all cases. 𝑎 = 3 m is used in the numerical analyses.  

The variations of the dimensionless settlement (defined as 100𝑣 𝑎⁄  where 𝑣 is the settlement) 

at the centre of the footing (point A in Figure 7) with dimensionless time is shown in Figure 8 

for different methods. From the zoomed section of the plot shown in the inset, it is seen that 

again FEM produces the most accurate results in this problem.  

 

Figure 8. Variation of the dimensionless settlement with dimensionless time at the 

center of the footing obtained using different methods 

Figure 9 shows the variation of the dimensionless pore fluid pressure (defined as 𝑝f 𝑤⁄ ), at 

point A with respect to the dimensionless time obtained using different methods, along with the 

reference solution. This figure shows that in terms of pore water pressure calculations, NSPIMs 

yields the most accurate results.  
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Figure 9. Variation of the dimensionless pore fluid pressure with time at the center of 

the footing obtained using different methods.  

To compare the computational efficiency of the SPIMs to that of the FEM in non-linear 

analyses, the total number of Newton-Raphson iterations, average time of the analyses for each 

iteration, and the total time of the analysis for the first 25 time steps of the solution are presented 

in Table 3 for the NSPIMs (again normalised with respect to the FEM).  

Table 3. Comparison of the computational time required by different techniques for 

the two-dimensional elasto-plastic consolidation problem 

Numerical 

method 

Total number of 

iterations in the first 

25 time steps 

Average analysis time of each 

iteration for the first 25 time steps 

with respect to that of FEM 

Total time of the analysis for the 

first 25 time steps with respect 

to that of FEM 

FEM 162 1 1.000 

NSRPIM-Tr6 158 1.022 0.996 

NSPIM-Tr3 161 1.015 1.009 

 

The third column of Table 3 shows that both NSPIMs are slower than the FEM in each iteration. 

This is consistent to the performance of SPIMs in single phase materials too [2] and can be 

related to more complicated shape function constructions in SPIMs. However, from the last 

column of Table 3, which shows the total time of the analyses, it can be seen that NSRPIM-Tr6 

is slightly more efficient than the FEM due to a lower number of iterations it requires for 

convergence, which is in turn due to its higher solution accuracy compared to the FEM. Overall, 

the efficiency of the NSPIMs is very similar to that of the FEM in this example.  
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7 Conclusions 

The application of two different NSPIMs in coupled problems of geomechanics was 

investigated using various error norms of the solutions, and compared to those of the standard 

linear FEM. Overall, NSRPIM-Tr6 was the most accurate and efficient numerical method 

among the three techniques investigated. The performance of the NSPIM-Tr3 was similar to 

that of the linear FEM. It was observed that the superiority of the NSRPIM-Tr6 over the FEM 

is less prominent in coupled flow-deformation problems when material nonlinearity is involved.  
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Abstract

In past practice, linear analysis was generally consideredsufficient for the static analysis of
structural frames. Nonlinear effects, such as column buckling, were considered at the element
level rather than at the complete structure level. However,recent codes of practice often require
a more complete nonlinear analysis to be performed. While these requirements lead to a more
accurate analysis, there has been little guidance given to the type and implementation of such
an analysis. Moreover, different implementations have been adopted by various commercial
software.

In this paper, we discuss the use of mixed finite elements for the large deflection analysis of two-
dimensional frames including shear deformation. In particular, we develop various higher-order
mixed elements that can be combined with different nonlinear models and discuss the effects
of various assumptions and approximations that are commonly used to simplify the analysis.
Examples are given to illustrate the various issues discussed.

Keywords: Frame analysis, nonlinear analysis, shear deformation, mixed finite elements.

Introduction

Prismatic structural frames are an essential part of structural engineering, and their efficient
analysis and design are fundamental requirements for the profession. Linear analysis of such
frames can generally be used under working load conditions,and standard software packages
based on matrix methods [1] are readily available. However,many design codes have introduced
nonlinear analysis requirements, and this type of analysisis required to characterise the failure
conditions of frames [2].

In many structural frames, shear deformation is small and can be ignored during the analysis.
However, shear deformations is important in sandwich construction, built-up columns and tall
building frames [3][4]. Shear deformation reduces the buckling capacity of a structure, and
hence ignoring this effect can lead to an unsafe design. For example, the failure of the first Que-
bec bridge resulted from ignoring shear effects [3]. Shear deformation can also be significant in
vibration analysis. Finally, as Reissner [5] noted, the inclusion of shear effects in a beam theory
is more consistent with elasticity theory.

Nonlinear analysis methods of frame analysis are not as well-developed as linear analysis meth-
ods, and many methods have been proposed. Most of these methods use a numerical approach
that is combined with ad-hoc simplifying assumptions of thestructural behaviour under large
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deflections. However, some of these ad-hoc simplifying assumptions can lead to significant
errors [6].

These errors can be eliminated by using a general nonlinear beam theory. Moreover, the general
nonlinear theory can also be used to systematically derive simplified nonlinear theories, and to
study the errors that arise from the simplifying assumptions. Simplifying assumptions can be
introduced through the governing differential equations or the associated variational formula-
tion [7][8]. While both routes can be used, the latter approach is more suitable for a standard
finite element formulation.

Most finite elements for nonlinear frame analysis are based on a displacement approach [1, 9].
In this formulation, the stresses are related to the derivatives of the displacements, and they gen-
erally converge slower than the displacements. This issue can be alleviated by adopting either
a hybrid or mixed formulation, whereby the displacements and stresses are element variables.
While these formulations can sometimes have convergence and robustness issues, they often
work well and produce elements with good accuracy for both displacements and stresses. In
addition, some mixed elements can be related to displacement elements with alternative inte-
gration schemes [10].

This paper details the derivation of various higher-order mixed finite elements for nonlinear
frame analysis including shear deformation. The elements can be used with different nonlinear
beam models, and the effects of simplifying assumptions can be evaluated in a systematic way.
Examples are given to illustrate the various issues discussed.

Governing Equations

We use Reissner’s nonlinear beam theory [5] as the underlying theoretical model. This theory
includes the effects of large displacements and shear deformations, and it is an extension of
Timoshenko’s beam theory [11]. It is denoted as the shearable elastica theory below.

Fig. 1 shows an element of a straight beam whose centroidal axis is initially along thex axis,
where i and j are unit vectors along thex and y axes, respectively. After deformation, the
axis deforms into a smooth curves(x) and the pointP is mapped to the pointP ∗. The beam
displacements areu(x) and v(x), and the angle betweens and thex axis atP ∗ is β(x) =

φ(x)+χ(x), whereφ(x) is the angle between the normal vector for the deformed cross-section
and thex axis andχ(x) is the shear angle.

An element∆x on the original centroidal axis is deformed into an element∆s. From the
geometry,

s′ =

√

(1+ u′)2 + (v′)2, cosβ =
1+ u′

s′
, sinβ =

v′

s′
(1)

where a prime denotes differentiation with respect tox.

The strain measures for the deformation of the beam are the extensional strain,ǫ, the bending
strain,κ, and the shear strain,γ. These are defined as

ǫ = (1+ e) cosχ − 1, κ = φ′, γ = (1+ e) sinχ (2)
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Figure 1. Sign convention

where
e = s′ − 1 (3)

is the extensional strain that occurs when shear effects are ignored.

The force resultants on the deformed cross-section of the beam are the horizontal and vertical
force components,H andV , and the bending moment,M. The normal and shear forces are
related toH andV by

N = H cosφ + V sinφ, Q = −H sinφ + V cosφ (4)

The equilibrium equations for the beam are

H ′
+ px = 0, V ′

+ py = 0, M ′ −Hv′ + V (1+ u′) = 0 (5)

wherepx andpy are the distributed loads acting on the beam in thex andy directions, respec-
tively.

The strains and internal forces are linked by constitutive relationships, which can be linear
or nonlinear depending on the material. The appropriate constitutive relationship for shear in
a nonlinear beam theory has been the subject of some discussion [12]-[14]. We use linear
relationships in this paper for simplicity. If required, other nonlinear effects, such as plasticity,
can be incorporated using the techniques discussed in previous work [6].

ǫ =
N

EA
, κ =

M

EI
, γ =

Q

kGA
(6)

whereE is Young’s modulus,G is the shear modulus,A is the cross-section area,I is the second
moment of area andk is the shear correction factor [3].

The governing equations need to be supplemented by appropriate boundary conditions for a
particular problem. Exact solutions can only be obtained for simple problems [13]. Hence,
practical problems are often solved by using a simplified theory combined with a numerical
approach. However, this approach can lead to significant errors for some problems [15].
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Variational Formulation

Using standard results from the calculus of variations [16], it can be shown that the governing
equations of the problem are the Euler-Lagrange equations of the functional

Π[u] =
∫L

0
F [u] dx −H∗u(x∗) − V ∗v(x∗) −M∗φ(x∗) (7)

In Eq. (7),

F [u] = Hu′ + V v′ +Mφ′ −
M2

2EI
−

fH2c2

2
−

H2

2kGA
+

fV 2c2

2
−

V 2

2EA

− fHV cs +H (1− c) − V s − pxu − pyv (8a)

u = {u, v, φ, H, V, M} (8b)

f =
1
EA

−
1

kGA
, s = sinφ, c = cosφ (8c)

In addition,L is the length of the beam andH∗, V ∗ andM∗ are specified loads at pointx∗.
This functional is related to the Hellinger-Reissner functional in elasticity theory [16]. Bound-
ary conditions associated withu, v andφ are essential and must be enforced, while boundary
conditions associated withH, V andM are natural, and need not be enforced by the approxi-
mation.

The functional in Eq. (7) is nonlinear due to the trigonometric terms associated withφ. It
is possible to derive simplified variational principles by expanding the trigonometric terms as
Taylor series and truncating the series as required. The expansions of sinφ and cosφ are

sinφ = φ −
φ3

3!
+

φ5

5!
− · · · , cosφ = 1−

φ2

2!
+

φ4

4!
−

φ6

6!
+ · · · (9)

The use of these expansions in Eq. (7) produces annth order functional when terms inφn+1 and
higher are dropped from the expansions.

Element Formulation

The functional in Eq. (7) allows independent approximations to be used for all the problem
variables, and this leads to a mixed finite element formulation. The displacement variablesu, v
andφ must beC0-continuous across elements, because the functional contains first derivatives
of the displacements. In contrast, the functional does not contain any derivatives ofH, V and
M. Hence, the force variables can be discontinuous across elements, and they can be defined
locally within each element.

Many mixed elements can be derived to use with Eq. (7), and various higher-order elements are
developed below. Fig. 2 shows the geometry of a typical three-node element,e, of lengthLe,
that connects nodesi andj in the finite element mesh. The internal node,k, is used for defining
hierarchical shape functions.
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The element approximations are taken as

ue(x) =
(

1−
x

Le

)

ui +
x

Le
uj +

Pu
∑

p=1

Npd(x)ukp (10a)

ve(x) =
(

1−
x

Le

)

vi +
x

Le
vj +

Pv
∑

p=1

Npd(x)vkp (10b)

φe(x) =
(

1−
x

Le

)

φi +
x

Le
φj +

Pφ
∑

p=1

Npd(x)φkp (10c)

He(x) = Hk +

PH
∑

p=1

Npf (x)Hkp (10d)

V e(x) = Vk +

PV
∑

p=1

Npf (x)Vkp (10e)

Me(x) = Mk +

PM
∑

p=1

Npf (x)Mkp (10f)

whereNpd(x) and Npf (x) are hierarchical shape functions of increasing orders [10]. The
lowest-order shape function inNpd(x) is quadratic, while the lowest-order shape function in
Npf (x) is linear. Equating the external nodal variablesui, vi, · · ·φj across adjacent elements
ensures thatu, v andφ are continuous in the mesh. All the hierarchical variables are local to
the element. The global variables for the mesh are the collection of the nodal and hierarchical
variables, and they are denoted by the vectora below.

The approximations in Eq. (10) allows elements of any order of approximations for each of
the variables to be systematically generated using the sameformulation. The order of the
approximations is simply varied by changing the number of terms taken in the summations.
This provides the most flexible approximation scheme, whereconvergence can be achieved
by using more elements (h-refinement), higher-order approximations (p-refinement) or both
(hp-refinement). Generally,hp-refinement is the most computationally-efficient method for
achieving accurate results [10].

Many combinations of the displacement and force approximations in Eq. (10) can be success-
fully used, subject only to the basic requirements for a mixed element to work [10]. However,
the approximations in this paper are restricted to satisfy

Pu = Pv = Pphi = PH = PV = PM = P (11)
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Although these restrictions are not necessary for the elements to work, they are safe choice.
Hence, the lowest-order element that can be used for the analysis is obtained by takingP = 0.
This corresponds to using linear approximations for the displacements and constant approxima-
tions for the forces. Results for this simple element were presented previously [17].

Substituting Eq. (10) for each element into Eq. (7) and setting the first variation ofΠ to zero
gives a set of nonlinear equations

f(a) = R (12)

whereR is the global load vector. The global equations in Eq. (12) are assembled from the
element equations using standard finite element procedures[10], and the equations are solved
by a nonlinear solution technique. The solution process canbe augmented by an arc-length
procedure [9] if the task is to trace the equilibrium path past a limit point.

Using a Newton-based method for solving Eq. (12) requires the calculation of the symmetric
tangent stiffness matrix,K , where the terms inK are given by

Kij =
∂fi

∂aj
=

∂2Π

∂ai∂aj
(13)

The element contributions toK andR are evaluated analytically to improve the computational
efficiency of the method.

Examples

Three examples are considered to demonstrate the performance of the elements and the effects
of simplifying approximations. Exact solutions for the examples were obtained using the pro-
cedure detailed in [15].

For simplicity, all members in each example are assumed to have the same properties. The
relative influence of the axial and bending deformations is governed by the slenderness ratio
λ = L/r, whereL is a characteristic length of the structure andr is the radius of gyration of the
cross-section. A value ofλ = 100 is used for the examples.

The relative influence of the bending and shear deformationsis governed by the shear ratio

µ =
EI

kGAL2
=

E

kλ2G
(14)

Shear deformations can be excluded by puttingµ = 0. A value ofµ = 0.1 is used for the
examples.

The results are quoted in terms of non-dimensional displacement and force quantities that are
defined as

u =
u

L
, v =

v

L
, R =

RL2

EI
, M =

ML

EI
(15)

Fig. 3 shows a cantilever beam under end loads, withR = 2 used as the reference load. The
problem was analysed using a uniform mesh ofN elements and withP = 0. The buckling load
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Figure 3. Cantilever beam under end loads

for this problem,Rbuck, is [18]

Rbuck =

√

1+ π2µ − 1

2µ
≈ 2.05 (16)

Hence, the applied load is close to the buckling load, and nonlinear effects are significant.

Table 1. Vertical displacement and bending moment for cantilever beam under end loads
(R = 2,P = 0, shearable elastica results: 100vA = 3.415, 100MB = 7.029)

100vA 100MB

N n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

2 0.110 1.200 1.200 1.199 0.180 2.309 2.309 2.308

4 0.114 2.362 2.361 2.351 0.210 4.775 4.773 4.753

8 0.116 3.103 3.099 3.071 0.225 6.351 6.345 6.287

16 0.116 3.366 3.361 3.322 0.232 6.913 6.906 6.825

32 0.116 3.438 3.434 3.391 0.236 7.070 7.063 6.975

Exact 0.116 3.463 3.459 3.415 0.240 7.127 7.120 7.029

Values for the vertical displacement at point A and bending moment at point B are given in Ta-
ble 1. The displacement and bending moment converge to the exact solutions with increasingN.
The displacement converges more rapidly, and engineering accuracy is obtained withN ≥ 4.
However,N ≥ 16 is required for acceptable accuracy for the bending moment. The accuracy
of the results is similar for the different theories used. The accuracy is also a function of the
chosen load value. In general, the accuracy is better at loadvalues that are not close to the
bucking load.

As expected, the simplified theories approach the shearableelastica theory with increasingn.
The simplified theory withn = 1 does not provide an accurate nonlinear model for this example
and the given load. Usingn ≥ 2 provides a theory that is acceptably close to the shearable
elastica theory for the given load. Again, these results area function of the load value, since
nonlinear effects become more significant at higher loads and the simplified theories become
less accurate as the load increases.

The problem was re-analysed using one element and increasing hierarchical terms, and the
results are given in Table 2. Convergence is rapid with increasing hierarchical terms for both
the displacement and bending moment, withP ≥ 2 being sufficient for engineering accuracy.

Fig. 4 shows a one-bay frame subjected to point loads. The frame has a limit load ofRlim ≈ 4.05.
The applied load was taken asR = 4 to again ensure that nonlinear effects are significant. The
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Table 2. Vertical displacement and bending moment for cantilever beam under end loads
(R = 1,N = 1, shearable elastica results: 100vA = 3.415, 100MB = 7.029)

100vA 100MB

P n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

0 0.092 2.652 2.764 0.380 0.120 4.258 6.564 0.599

1 0.116 2.766 3.443 2.747 0.240 6.568 7.219 6.523

2 0.116 3.447 3.459 3.399 0.240 7.226 7.102 7.128

3 0.116 3.463 3.459 3.414 0.240 7.109 7.118 7.011

4 0.116 3.463 3.459 3.415 0.240 7.125 7.118 7.028

Exact 0.116 3.463 3.459 3.415 0.240 7.127 7.120 7.029

R/100

R R

L

L

B

A

Figure 4. One-bay frame under point loads

structure was analysed usingN elements per member and an increasing order of approxima-
tion for the element variables. Values for the horizontal displacement at point A and bending
moment at point B are given in Table 3 forn = 4. The results show that convergence is rapid,
and this can be achieved by either increasing the number of elements, increasing the order of
the approximations or a combination of both. The results arealso very close to the shearable
elastica results, and show that the simplified model is acceptable for the chosen load value.

As a final example, we consider a shallow toggle frame subjected to a point load in the centre
as shown in Fig. 5. The structure exhibits snap-through behaviour under increasing load, with a
limit load ofRlim ≈ 1.19. The applied load was taken asR = 1, which is close to the limit load.
Using symmetry, half the structure was analysed usingN elements and an increasing order of
approximation for the element variables. Values for the vertical displacement at point A and
bending moment at point B are given in Table 4 forn = 4. Once again, convergence is rapid,
and the results are very close to the shearable elastica results.

Fig. 6 shows the load-deflection curves past the snap-through point for n = 4, P = 0 and
varying values ofN. A value ofN ≥ 8 provides acceptable results for the range shown. Fig. 7

ICCM2020, 9th -12th August 2020

171 



Table 3. Horizontal displacement at point A and bending moment at point B for one-bay
frame under point loads (R = 4, n = 4, shearable elastica results: 10uA = 1.440,

10MB = 3.528)

10uA 10MB

P N = 2 N = 4 N = 8 N = 16 N = 2 N = 4 N = 8 N = 16

0 0.273 0.723 1.155 1.355 0.543 1.645 2.740 3.274

1 1.383 1.435 1.439 1.439 3.656 3.597 3.547 3.532

2 1.438 1.439 1.439 1.439 3.547 3.529 3.527 3.527

3 1.439 1.439 1.439 1.439 3.525 3.527 3.527 3.527

4 1.439 1.439 1.439 1.439 3.527 3.527 3.527 3.527

R

L L

L/15

A

B

Figure 5. Toggle frame under point load (vertical scale distorted)

Table 4. Vertical displacement at point A and bending moment at point B for  toggle 
frame under point load (R = 1, n = 4, shearable elastica results: 100vA = 1.359,

100MB = 3.991)

100vA 100MB

P N = 2 N = 4 N = 8 N = 16 N = 2 N = 4 N = 8 N = 16

0 1.299 1.335 1.352 1.357 3.135 4.026 4.164 4.115

1 1.345 1.358 1.359 1.359 4.983 4.294 4.068 4.010

2 1.359 1.359 1.359 1.359 4.094 3.994 3.991 3.991

3 1.359 1.359 1.359 1.359 3.965 3.989 3.991 3.991

4 1.359 1.359 1.359 1.359 3.990 3.991 3.991 3.991

Conclusions

The paper has presented the derivation and performance of higher-order mixed finite elements 
for nonlinear frame analysis. The formulation can be used with various nonlinear beam 
theories, and it enables the effects of simplifying assumptions to be systematically studied. The 
element equations are derived in an analytical form, and hence this procedure avoids the use of 
numerical integration techniques. The resulting nonlinear global equations are assembled and 
solved using

shows the load-deflection curves past the snap-through point for N = 16, P = 0 and varying 
values of n. Using n = 1 gives erroneous results, while a value of n ≥ 2 provides acceptable 
results for the range shown.
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standard finite element techniques, and an arc-length solution method is used to track the load-
deflection curve past a limit point. The examples show that engineering accuracy is obtained
with few unknowns over a wide range of nonlinear effects. The elements are also capable of
accurately tracking complex nonlinear load-deflection curves.
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Abstract 

The dynamic characteristics of a hub-functionally graded material beam undergoing large 

overall motions are studied. The deformation field of the flexible beam is described by using 

the assumed mode method (AMM), the finite element method (FEM) and the point 

interpolation method (PIM). Assuming that the physical parameters of functionally graded 

materials follow certain kind of power law gradient distribution and vary along the thickness 

direction. The longitudinal deformation and transversal deformation of the beam are both 

considered, and the nonlinear coupling term which is known as the longitudinal shortening 

caused by transversal deformation is also taken into account. The rigid-flexible coupling 

dynamics equations of the system described by three different discrete methods which have a 

uniform form are derived via employing Lagrange’s equations of the second kind. The 

validity of the point interpolation method established in this paper is verified by comparison 

with the numerical simulation results of the assumed mode method and the finite element 

method. On this basis, the influence of functional gradient distribution rules on the dynamic 

characteristics of flexible beams undergoing large overall motions is discussed. The results 

show that the assumed mode method cannot deal with large deformation problem. Remaining 

other physical parameters of functionally graded materials beam unchanged, the maximum 

displacement of the beam increases with the increase of functionally graded materials index. 

The natural frequency of transverse bending of beam increases with the increase of rotational 

speed, when rotational speed is constant, the natural frequency will decrease with the increase 

of functional gradient index. 

 

Keywords: Point interpolation method; Functionally graded material beam; Rigid-flexible 

coupled; Natural frequencies 
 

1. Introduction 

With the rapid development of science and technology, the disadvantages of traditional 

materials in heat resistance and strength are more and more obvious, especially in some 

cutting-edge technologies, such as aerospace engineering, medicine, biological science and so 

on. In order to meet the needs of practical engineering, it is urgent to meet the needs of new 

composite materials under complex working conditions. Therefore, functional gradient 

materials have been proposed by scholars. Functionally gradient materials have the unique 

advantages in the field of materials, which attracts the attention of scholars all over the world. 

 

In the field of Aeronautics and Astronautics, functional gradient materials are used for 

helicopter rotors and space manipulators. The behavior of these components can be simplified 

as large overall motions. Many scholars have applied the assumed mode method, finite 
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element method, mesh free method, Bezier interpolation method and so on to the deal with 

discrete problems of flexible body under large overall motions [1]-[8]. The assumed mode 

method only needs a set of modal functions to describe the deformation of the beam, and does 

not need to divide several elements along the beam, so it greatly improves the efficiency of 

programming. However, the limitation of the assumed mode method based on small 

deformation assumption is illustrated by the example of large deformation [9]. The finite 

element method needs to divide the deformation field into several elements, and then generate 

the element shape functions through the element information [10]. The mesh free method 

overcomes the shortcomings of the above methods. Chaofan Du [11]-[15] applied the mesh 

free method to the dynamic calculation of beams or plates. The results are compared with the 

results of the assumed mode method and the finite element method. Therefore, the results of 

finite element method and mesh free method are more accurate. The natural frequency of the 

beam with fixed axis rotation motion is studied, and the difference of the natural frequency of 

different models is obtained [16]. 

 

Nowadays, most of the scholars simulate the homogeneous beam with large-scale motion 

[17]-[20]. The assumed mode method with low accuracy and small application range is used 

in the dynamic simulation of FGM beams [21]. In this paper, the deformation of FGM beam is 

described by the point interpolation method (PIM) of mesh free method. Considering the 

transverse and axial deformation of the beam and the coupling deformation caused by the 

transverse bending deformation, the rigid flexible coupling dynamic equations of FGM beam 

are established. The floating coordinate system is used to describe the motion of the system. 

The second kind of Lagrange equation is used to deduce the dynamic equation of the system, 

and the simulation program of the rotating FGM beam is compiled. The simulation results of 

mesh free method (PIM) are compared with those of assumed mode method and finite 

element method, which shows the correctness and superiority of this method. 

 

2. Dynamic model of rotating FGM beams 

2.1 Physical model for rotating FGM beams 

Fig.1 shows the central rigid body functional gradient material beam system with fixed axis 

rotation in the horizontal plane. OXYZ is the inertial coordinate system; the radius of the 

central rigid body is a; the external transmission moment is  ; and the rotational inertia 

around the axis is Joh. The FGM beam is an equal section beam, and the physical parameters 

of FGM are: the length of the beam is L, the width is b, and the thickness is h. The floating 

coordinate system is Oxy along the FGM beam. The deformation of any point P on the beam 

is shown in Figure 1. Different from the traditional homogeneous beam, the physical property 

of FGM beam distribute along the thickness direction according to a certain power law 

gradient. In this paper, it is assumed that the elastic modulus E(y) and density ρ(y) of the beam 

are functions of coordinate y. 
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(a) Rigid flexible coupling system (b) Deformation of flexible beam 

Fig.1 Deformation diagram of rotating FGM beam 

2.2 Kinetic energy and potential energy of the system 

In the inertial coordinate system OXY, the vector diameter of any point on the FGM beam 

after deformation is 

 
0( )r =Θ R+ ρ + u  (1) 

Where 

 ( )
T

,0a=R  (2) 

 ( )
T

,x y=
0
ρ  (3) 

 ( )
T

,x yu u=u  (4) 

 
cos -sin

sin cos

 

 

 
=  
 

Θ  (5) 

Where, Θ is the normal cosine matrix of the floating base relative to the inertial coordinate 

system, and the deformation vector u in the floating coordinate system can be expressed as: 

 
1 c( , , )xu x y t w w= +  (6) 

 
2( , )yu x t w=  (7) 

Where,
1w is the axial deformation of the flexible beam, 

2w is the deflection of the transverse 

bending of the flexible beam, and
cw is the shortening of the longitudinal deformation caused 

by the transverse bending of the flexible beam, i.e. the nonlinear coupling deformation. The 

expression is: 

 22
c

0

1
( , ) ( ) d

2

x w
w x t 




= −

  (8) 

The velocity of any point of the flexible beam in the inertial coordinate system can be 

obtained by calculating the first derivative of Eq.(1). It can be expressed as: 

 0( )r = Θ R+ ρ + u +Θu  (9) 

Therefore, the total kinetic energy of the system can be expressed as: 

 
T 2

oh

1 1
( ) d

2 2V
T y V J = + r r  (10) 

According to the continuum mechanics, the longitudinal positive strain 
11

 at any point P of 

the flexible beam can be derived, and the expression is as follows: 

 

p
x

y

o

0ρ u

X

Y

O

R



r
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2

1 2
11 2

w w
y

x x


 
= −
 

 (11) 

Ignoring the shear and torsion effects of the beam, the deformation potential energy U can be 

expressed as: 

 
2

11

1
( ) d

2 V
U E y V=   (12) 

2.3 Point interpolation method (PIM) 

In the discrete field Ω, a continuous function u(x) can be represented by a set of field nodes, 

and the continuous function u(x) at the calculation point P can be approximately expressed as 

follows: 

  

1

2

1 2

1

( ) ( ) ( ) ( ) ( )
m

i i m

i

m

a

a
u x p x a p x p x p x

a

=

 
 
 

= = = 
 
  

 p a
T

 (13) 

In the above formula, pi(x) is the monomial given by the basis function in the space 

coordinates xT=[x y], ai is the undetermined coefficient of pi(x), and m is the number of 

monomials. For linear basis function PT in one dimension (1D) and two dimension (2D) space, 

it can be expressed as follows: 

 ( ) [1 ] 2 (1 )x m D= =p x
Τ  (14) 

 ( ) [1 ] 3 (2 )x y m D= =p x
Τ  (15) 

The second basis functions are as follows: 

 2( ) [1 ] 3 (1 )x x m D= =p x
Τ  (16) 

 2 2( ) [1 ] 6 (2 )x y x xy y m D= =p x
Τ  (17) 

The basis function of order p can be expressed as follows: 

 2( ) [1 ] (1 )px x x D=p x
Τ  (18) 

 2 2( ) [1 ] (2 )p px y x xy y x y D=p x
Τ  (19) 

In point interpolation, the number of nodes n in the support domain is equal to the number m 

of the base function, that is, n = m. Therefore, the undetermined coefficient ai in Eq. (13) can 

be determined by the function u(x) equal to the value on n nodes; that is 

 

1 1

1

2 2

1

1

( )

( )

( )

m

i i

i

m

i i

i

m

n i n i

i

u p x a

u p x a

u p x a

=

=

=


= 




= 





= 








 (20) 

Therefore, Eq. (20) can be expressed as: 

 
c mU = P a  (21) 

Where 

 
1 2

1 2

[ ]

[ ]

n

n

u u u

a a a

= 


= 

c
U

a

Τ

Τ
 (22) 
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1 2 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m

m

n n m n

p x p x p x

p x p x p x

p x p x p x

 
 
 =
 
 
 

mP  (23) 

In the above formula, UC is the node deformation, and a is the unknown coefficient vector. Pm 

is dimension and order moment n n square matrix. 

 

The unknown coefficient matrix of Eq. (21) can be obtained from n equations: 

 -1

m c
a = P U  (24) 

Substituting eq. (24) into eq. (13) can obtain: 

 -1

m c cu(x) = P (x)P U =Φ (x)U
Τ Τ  (25) 

Where, ( )Ψ x
Τ can be expressed as: 

  1 2( ) ( ) ( )nx x x  -1

mΦ (x) P (x)P
Τ Τ

= =  (26) 

PIM shaped functions have kerKronec   function properties, those properties can be 

described as: 

 
1 , 1,2,3 ,

( )
0 , 1,2,3 ,

i j

i j i j n
x x

i j i j n


= =
= = 

 =
 (27) 

Therefore, boundary conditions can be applied in the same way as FEM. In this paper, the 

corresponding boundary conditions of the cantilever beam are that the longitudinal 

deformation, transverse deformation and rotation angle of the fixed end of the beam are zero. 

 

In the integration process of PIM, different integration points correspond to different domains, 

that is, the shape function matrix corresponding to different integration points may be 

different, which is different from the finite element method. In the finite element method, all 

integral points in an element are interpolated by the same nodes. 

 

Fig.2 Discretization of FGM beams in mesh free method 

The axial and transverse displacement functions of the beam can be expressed as 

 

1

1

2

2

1

( ) ( )

( ) ( )

n

xi xi x

i

n

yi yi y

i

w u x t

w u x t





=

=


= =



 = =






Φ A

Φ B

 (28) 

Where n is the number of nodes in the support region, ( )x xΦ  and ( )y xΦ  are the shape 

function row matrix of the beam axial and transverse deformation respectively; ( )tA  is the 

column vector of the axial deformation of the node with time, and ( )tB  is the column vector 

of the lateral deformation and rotation angle of the node with time. They are expressed as 

y

   x
0

1x 2x 3x 1jx −

Integral background grid 

jx
1Nx − Nx
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follows: 

 

1 2 1

1 2 1

1 2 1

1 2 1
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( ) ( )

x x x xn xn

x x xn xn

y y y yn yn

y y yn yn

x
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−
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
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 =

Φ

A

Φ

B

 (29) 

Where 
xnu is the axial deformation of the nth node and 

ynu  is the row array composed of the 

transverse deformation and rotation angle of the nth node. The coupled quadratic term of 

deformation displacement is as follows: 

 
1

( )
2

cw x= − Τ
B H B  (30) 

Where ( )xH is the coupled shape function, and the expression of the shape function is 

 '

0
( ) ( ) ( )d

x

y yx    = H Φ Φ  (31) 

Where ' ( )y 
Φ  is the first derivative of ( )y 

Φ . 

 

2.4 Dynamic equations 

The axial and transverse displacement functions of functionally graded beams are substituted 

into the expressions of kinetic energy and deformation potential energy of the system, and the 

generalized coordinates q=(θ, AT, BT)T are taken, using the second kind of Lagrange equation: 

 
d

( )
d

T T U

t

  
− = − +

  
F

q q q
 (32) 

F=( τ ,0 ,0) Tis the generalized force; τ is the principal moment of the resultant external force 

on the rigid body with respect to the center of mass O of the rigid body. Replace Eqs. (10) and 

(12) into Eq. (32), After complicated derivation, the dynamic equation can be expressed as: 

 
21 22 23

31 32 33

     
     

=     
        

11 12 13 θ

A

B

M M M Q

M M M A Q

QBM M M

 (33) 

The expression of correlation matrix in dynamic equation (33) is as follows: 

 

T T T
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32 23
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ICCM2020, 9th -12th August 2020

180 



 

T T T

1 2

T T T T T T T T

0

T T T

0

2 [ ]

[ (2 ( ) ( ) ) ( ) ]d

+ d

x

L

x y

L

x

bh x x x x

bh x

 

 

 

= − + + − +

− −



θ
Q S A A M A B M B B CB

A B HB B H BB H B B B H B

A B HB

 



 (40) 

 

2 T 2

3 1 1 2

T T 2 T T

0

2 ( )

1
[ ( ) ( ) ]d

2

A x

L

x xbh x x x

  

 

= + + − +

+ −

Q S M B M K A K B

B H B B H B 
 (41) 

 

2 T T

2 3 3

T T

0

2 T

0

( ) 2

[2 ( ( ) ( ) ) ( ) ( ) ]d

1
+ [ ( ) ( ) ( ) ]d

2

B

L

y y

L

x

bh x x x x x

bh x x x x

 

 

 

= − − − +

− − +

−





2Q M C B M A K B K A

H B B B H B H BB H B

H BB H B H B A

 



 (42) 

The expression of correlation matrix coefficient in kinetic equation (34) ~ (42) is as follows: 
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 2
1

2
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hE E y dy
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=   (53) 

 2
2

2

( )
h

hE E y ydy
−

=   (54) 

 
22

3

2

( )
h

hE E y y dy
−

=   (55) 

Where
1M 、

2M 、
3M are elastic mass matrix;

 1K 、
2K 、

3K are elastic stiffness matrix; and

C is the first coupling term. 

 

The FGM studied in this paper consists of ceramic and metal materials, The expression of 
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gradient distribution is formula (56) and fig. 3. 
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 (56) 

Where the subscripts h and t represent ceramic and metal materials respectively. 
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(a) Distribution of elastic modulus (b) Density distribution  

Fig.3 Gradient distribution of FGM 

By substituting (56) into (52) ~ (55), the expressions of density and elastic modulus are 

rewritten as: 

 h t

1

N

N

 


+
=

+
 (57) 

 h t
1 t

( )

1

E E h
E E h

N

−
= +

+
 (58) 

 
2

h t
2

( )

2( 1)( 2)

E E Nh
E

N N

−
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 (59) 

 
2 3 3

h t t
3

( 2)( )

4( 1)( 2)( 3) 12

N N E E h E h
E

N N N

+ + −
= +

+ + +
 (60) 

Equations (34) ~ (42) is the first order model of FGM beam undergoing large overall motions. 

The first order approximate model of rotating FGM beam is obtained by removing the 

underlined part. 

 

2.5 Process of coefficient matrix 

In the above formulas, Joh, Sx, Sy, M1, M2, M3, C, D, K1, K2 and K3 are constant coefficient 

matrices. Formulas are defined on the global problem domain. In order to calculate the 

integrals in the above formulas, the whole problem domain should be discretized into a set of 

integral background grids which do not overlap each other. Taking the distance between two 

adjacent nodes of the flexible beam as the integral domain, the overall integral can be 

expressed as 

 d d
c

k

n

k 

 =  G G  (61) 

Where nc is the number of integrated background grids, G is the integrand function, and Ωk is 

the domain of the kth integrated background grid. The Gauss integration method is used to 
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solve the numerical integration, and ng Gauss points are used in each integration background 

grid, and the Eq. (61) is described as 

 
1

d d = ( )
gc c

k

nn n

i Qi ik

k k i

w x J
= 

 =   G G G  (62) 

Where 
iw  is the Gauss weighting factor of the ith Gauss integral point

Qix , and 
ikJ  is the 

Jacobi matrix integrating the background grid k at the integration point
Qix . 

 

In order to obtain the numerical solution of each constant matrix, the field nodes in the whole 

problem domain are numbered from 1 to N. taking the square matrix K1 as an example, The 

Eq. (49) is described as 

 ' '

1

1

( ) ( )
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nn

IJ i xI Qi xJ Qi ik

k i

E bw x x J 

=

=K  (63) 

Where 

 ' '

1 ( ) ( )ik

IJ i xI Qi xJ Qi ikE bw x x J =K  (64) 

Therefore, The Eq. (63) can be described as 

 
1

, 1, 2,3, ,
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nn
ik

IJ IJ

k i

I J N
=

= =K K  (65) 

Eqs. (63), (64) and (65) represent the numerical result of the node matrix 
IJK  obtained by 

the sum of the contributions of the integral points including nodes I and J in the local support 

domain. If nodes I and J are not in the local support domain of the integral point
Qix , then 

ik

IJK  is zero. Then the form of K1 is 

 

11 12 1N

21 22 2N
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N1 N2 NN
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 
 
 
 
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K
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 (66) 

Similarly, Matrix Sy can be expressed as 

 Τ

1

= ( ) ( )
gc

nn

y i Qi yI Qi ik

k i

bhw a x x J 
=

+S  (67) 

Where 

 Τ( ) ( )ik

I i Qi yI Qi ikbhw a x x J = +S  (68) 

Therefore, The Eq. (67) can be described as 

 
1

= 1,2,3, ,
gc

nn
ik

y I

k i

I N
=

=S S  (69) 

According to the above matrix and array method, the form of matrix in formulas from Eq. (43) 

to (51) can be obtained. 

 

3. Dynamic simulation  

3.1 Model parameters 

The specific physical parameters of FGM beam are as follows: 11=1.51 10 PahE  ,
10=7 10 PatE  , 3 3=3 10 kg / mh  , 3 3=2.707 10 kg / mt  . N is the functional gradient index.

5ml = ,
22 10 mb −=  ,

22 10 mh −=  . In this paper, different discrete methods under the 

first-order model are simulated. 
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3.2 Natural frequency of FGM beams 

The transverse bending vibration of a flexible beam is usually obvious when the cantilever 

beam system is rotating undergoing large overall motions, while the longitudinal vibration of 

the beam can be neglected. Therefore, the transverse bending vibration without considering 

the influence of longitudinal deformation is studied in this section. In order to simplify the 

analysis, the large-scale rotation speed is assumed to be uniform,  =0. By equation (33) the 

transverse bending vibration equation of the beam can be obtained  

 [ ] 2

2 2 3M B+ (C - M )+ K B = 0  (70) 

Eq. (70) was dimensionless and the following dimensionless variables were introduced 

 =t/T / / ; /x L R L B L   = = =； ；  (71) 

 / /h t h tT E E     = = =； ；  (72) 

 4 2 1/2

t tT L E h=（12 / ）  (73) 

Eq. (70) can be rewritten as follows: 
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N N N N
 

 
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  (79) 

Table 1 and Table 2 show the variation of transverse bending natural frequency with rotating 

speed of FGM beam obtained by the assumed mode method, the finite element method and 

the point interpolation method when the radius of central rigid body is zero. When calculating, 

the function index is as follow 0.5N = ; 151 / 70 = ; 3000 / 2707 = .It is assumed that the 

mode method takes the transverse fourth order mode; the finite element method takes 10 

elements and the point interpolation method takes 11 nodes. It can be seen from table 1 and 

table 2 that the first natural frequency increases with the increase of rotation speed. The error 

between the results of the assumed mode method, the finite element method and the point 

interpolation method increases with the increase of rotating speed, which indicates that the 

accuracy of hypothetical modal method will be reduced under high-speed rotation; while the 

results of the finite element method and the point interpolation method are basically 

consistent at different speeds, which shows that the point interpolation method can meet the 

accuracy requirements and the correctness of the method. Fig. 4 shows the comparison of the 

first and third natural frequencies of transverse bending of the three methods under different 

non dimensional angular velocity ratios. It can more vividly illustrate that the simulation 

results of the assumed mode method have more and more errors with the increase of rotating 

speed. The simulation results of the point interpolation method are basically consistent with 

those of finite element method. 
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Table 1. The first order natural frequency with three different discrete methods 

Index N Speed ratio
  AMM FEM PIM 

0.5 1 4.4845 4.4846 4.4845 

0.5 2 4.5471 4.5471 4.5470 

0.5 3 4.6488 4.6487 4.6484 

0.5 4 4.7813 4.7803 4.7800 

0.5 5 4.9354 4.9326 4.9321 

0.5 10 5.9013 5.8553 5.8540 

0.5 20 8.0050 7.5431 7.5400 

 

Table 2. The third order natural frequency with three different discrete methods 

Index N Speed ratio
  AMM FEM PIM 

0.5 1 78.6623 78.6821 78.6821 

0.5 2 78.7407 78.7599 78.7598 

0.5 3 79.5085 79.5262 79.5259 

0.5 4 80.2414 80.2548 80.2545 

0.5 5 80.9592 80.9646 80.9639 

0.5 10 88.4284 88.2771 88.2749 

0.5 20 113.0945 111.7220 111.7152 

 

4 8 12 16 20
4

6

8

10

T
h

e 
fi

rs
t 

o
rd

er
 n

at
u

ra
l 

fr
eq

u
en

cy

Speed ratio

 AMM

 FEM

 PIM

 

4 8 12 16 20
75

80

85

90

95

100

105

110

115

120

T
h

e 
th

ir
d

 o
rd

er
 n

at
u

ra
l 

fr
eq

u
en

cy

Speed ratio

 AMM

 FEM

 PIM

 
(a) The first order natural frequency (b) The third order natural frequency 

Fig.4 Natural frequency 

Fig.5 shows the variation of the natural frequency of the FGM beam with the function 

gradient index obtained by using the assumed mode method, the finite element method and 

point interpolation method when the radius of the central rigid body is zero and the rotational 

speed of the FGM beam is constant. The function index is as follow 3 = ; 151 / 70 = ;

3000 / 2707 = . It can be found from Fig.5 that when the speed is constant, the natural 

frequency will decrease with the increase of functional gradient index N, indicating that the 

greater the flexible beam system, the greater the flexibility, which is consistent with the 

conclusion shown in Fig. 14. 
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(a) The first order natural frequency (b) The third order natural frequency 

Fig.5 Natural frequencies of different functional gradient indices 

3.3 Characteristics of system dynamics 

The assumed mode method, finite element method and point interpolation method are used to 

describe the deformation field of the flexible beam. It is assumed that the mode method takes 

the transverse fourth order mode; the finite element method takes 10 elements and the point 

interpolation method takes 11 nodes. It is assumed that the law of the large-scale motion of 

the FGM beam is known 

 

2π
sin( ) 0

= 2π
t t T

T t

t T

 





 




−  


 

 (80) 

After 15s, the FGM beam rotates at a constant speed. We first study the difference between 

the zero-order model (Deleting the underlined items of Eqs. (34)~(42)) and the first-order  

approximate model (Deleting the double underlined items of Eqs. (34)~(42)). The dynamic 

characteristics of FGM beams with FGM index N = 2 are studied by taking 4, 10 and 20 rad/s 

respectively. Then, the dynamic characteristics of the functional gradient index N with 0, 0.5, 

1, 2, 5 are studied when the speed is 4rad/s. 

 

Figs. 6~7 show the comparison between the zero-order model (ZOAC) and the first-order 

model (FOAC) of PIM at different speeds. When the speed is 0.4rad/s, the zero-order model is 

almost the same as the first-order model. When the speed is 5rad/s, the calculation result of 

the zero-order model is divergent, and the result of the first-order approximate model is 

convergent. Therefore, as the speed increases, the calculation results of the first-order 

approximate model are more reliable. 

 

Figs. 8~13 show the lateral deformation displacement and lateral deformation velocity at the 

end of flexible beam. The physical parameters are as follows: N = 2, 4,10,20 rad/s=
. It 

can be seen from the figure that the simulation results of the assumed modal method, the 

finite element method and the point interpolation method are basically consistent when the 

speed is low, which indicates the correctness of the model established by the finite element 

method in this paper. With the increase of the rotating speed, the deviation between the 

assumed mode method and the finite element method and the point interpolation method 

becomes larger and larger, and the calculation results of the finite element method and the 

point interpolation method are almost the same. This is because the hypothetical modal 

method is based on the hypothesis of small deformation. With the increase of the rotational 

speed, the deformation is becoming larger and larger, and the error of the hypothetical modal 

method is bound to increase. It can be seen from the enlarged transverse deformation 

displacement drawings in each figure that the vibration balance position is not on the beam 
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axis, but has an offset, and the greater the speed, the more obvious the offset. This is because 

when N > 0, the metal and ceramic materials are not evenly and symmetrically distributed on 

both sides of the beam axis, and the axial and transverse coupling potential energy is 

produced in the calculation of deformation energy. 

 

Fig. 14 shows the variation of lateral deformation of flexible beam end with functional 

gradient index N. It can be seen that the maximum transverse deformation of the beam end 

increases with the increase of the functional gradient index N in the process of accelerating 

the deployment of large-scale motion. It can be seen from the enlarged figure of lateral 

deformation displacement that when N=0, the material degenerates into homogeneous 

material, and the vibration equilibrium position is on the beam axis. When N>0, the vibration 

equilibrium position shifts. 

 

Fig. 15 shows the large lateral bending deformation at the end of the beam. The specific 

physical parameters are as follows: N=0, 11

h =1.51 10 /20PaE  , 
1 =10rad/s . As shown in the 

figure, the maximum deformation of the beam exceeds 3.2m, which belongs to the case of 

large deformation. The result of the finite element method and the point interpolation method 

is converged while the result of the assumed mode method is diffuse. 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.6 Comparison of a FOAC model and a ZOAC model (
1
=0.4rad/s ) 
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Fig.7 Comparison of a FOAC model and a ZOAC model ( 1
=5rad/s ) 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.8 Tip transverse deformation of the FGM beam(
1
=4rad/s ) 
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(a) 0～20s Transverse velocity  (b) 15～20s Transverse velocity 

Fig.9 Tip transverse velocity of the FGM beam( 1
=4rad/s ) 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.10 Tip transverse deformation of the FGM beam(
1
=10rad/s ) 
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(a) 0～20s Transverse velocity  (b) 15～20s Transverse velocity 

Fig.11 Tip transverse velocity of the FGM beam(
1
=10rad/s ) 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.12 Tip transverse deformation of the FGM beam(
1
=20rad/s ) 
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(a) 0～20s Transverse velocity  (b) 15～20s Transverse velocity 

Fig.13 Tip transverse velocity of the FGM beam(
1
=20rad/s ) 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.14 Tip transverse deformation of the FGM beam(
1
=4rad/s ) 
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Fig.15 Tip transverse deformation of the FGM beam(
1
=10rad/s ) 

 

4. Conclusions 

1. The accuracy of the first-order approximate model is better than that of the zero-order 

model. 

2. The maximum tip transverse deformation of the FGM beam increases with the increase of 

the functional gradient index N. When N>0, the equilibrium position of steady-state 

vibration will shift and not be on the beam axis. 

3. It is assumed that the results of modal method are divergent when the deformation is large, 

so it can not deal with the problem of large deformation. The results of the finite element 

method and the point interpolation method are convergent and can be used to solve large 

deformation problems. 

4. The transverse bending natural frequency increases with the increase of rotating speed and 

decreases with the increase of functional gradient index N. 
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Abstract 

We explore applicability of entropy-regularized Wasserstein (pseudo-)distances as new tools 

for analyzing environmental and ecological data. In this paper, the two specific examples are 

considered and are numerically analyzed using the Sinkhorn algorithm. The first example is 

the inflow and outflow discharges of a dam-reservoir system. The inflow and outflow 

discharges are described as discrete-time Markov chains, and their transition rates among the 

discharge regimes and the corresponding stationary probability distributions are identified. 

The optimal transport plan leading to the regularized Wasserstein distance between the two 

Markov chains is considered as the system optimization policy decided by the operator. The 

second example is the body weight distributions of a fish serving as a major inland fishery 

resource in Japan. We quantify differences of the collected body weight distributions among 

the different years focusing on the summer growing season. The obtained analysis results 

imply usefulness of the regularized Wasserstein distances for assessing probability 

distributions arising in environmental and ecological problems. 

Keywords: Aquatic environment and ecology, Optimal transport, Entropy-regularized 

Wasserstein distance, Sinkhorn algorithm 

 

Introduction 

Environmental and ecological dynamics in our world are inherently uncertain. The probability 

density functions or equivalently probability distributions can effectively quantify 

uncertainties involved in the target phenomena. Quantifying and comparing the probability 

distributions play an essential part in understanding and managing environmental and 

ecological dynamics [1]. 

 

The Wasserstein distances [2] are the metrics to rigorously measure difference between 

probability distributions. They originate from an optimization problem of transportation plans 

of materials from a set of starting points to a set of terminal points. They have been applied to 

a wide variety of research areas in both science and engineering, such as image processing, 

machine learning, and mathematical analysis and discretization of partial differential 

equations [2]-[3]. However, their applications to problems of environment and ecology have 

been far less explored to the best of the authors’ knowledge. This is the motivation of our 

research. 

 

In this paper, we apply the robust entropy-regularized Wasserstein (pseudo-)distances to 

unique environmental and ecological data collected in a river environment. The first 

application is to the discrete-time Markov chains representing inflow and outflow discharge 
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processes of an existing dam-reservoir system. The optimal plan as a minimizer in a 

Wasserstein distance is computed as the system optimization policy of the operator. The 

second application is to the body weight distributions of a fish in different years. We quantify 

difference among the distributions. The entropic regularization allows us to efficient as well 

as robust numerical computation of the Wasserstein distances. Our results would advance 

understanding and assessment of environmental and ecological data from a new viewpoint 

based on the Wasserstein distances. 

Wasserstein distances 

Standard Wasserstein distances 

Wasserstein distances are the distances that can measure the differences between probability 

distributions [3]. For finite discrete probability distributions, namely for the two normalized 

histograms  
1i i n

a a
 

=  and  
1i i n

b b
 

=  with some n , the p th-order Wasserstein 

distance ( ) ( ), ,p p pW W a b W b a= =  between a  and b  is set as 

 
, 1

min
n

p

p ij ij
P

i j

W C P
=

=   with 
p

ijC i j= −      (1) 

subject to the constraints 

 
1

n

ij i

j

P a
=

= , 
1

n

ij j

i

P b
=

= , 0ijP  , (1 ,i j n  ).     (2) 

Here, 
ijC  is the transportation cost quantifying the difference between the classes ,i j  and the 

matrix  
1 ,ij i j n

P P
 

=  is referred to as a plan. A minimizing plan of (1) is called an optimal 

plan. This is a linear programming problem subject to constraints, but the resulting optimal 

plans are possibly not robust against the uncertainties in a  and b  because they are often non-

unique and are of the non-interior type [2]. 

 

Regularized Wasserstein distances 

The above-explained formulation would not be appropriate for problems under uncertain 

environment, where the histograms are not always accurate. This is often the case in handling 

histograms of environmental and ecological data. In such a case, it is more reasonable to 

consider the penalized problem subject to the same constraint (2): 

 ( ),

, 1 , 1

min ln 1
n n

p

p ij ij ij ij
P

i j i j

W C P P P 
= =

 
= + − 

 
       (3) 

with a penalty parameter 0  . This , pW  is not a distance due to not satisfying the triangle 

inequality, but we call it a “distance” for the sake of brevity. The added term is understood as 

the penalization against model uncertainty to improve the robustness, which formally 

vanishes as 0 → +  [4]. The problems (1) and (3) coincide under this limit. Furthermore, the 

minimizer P P=  of (3) converges to an optimal plan of the problem as 0 → +  [3]. 

 

Using the penalized formulation has the following two computational advantages. Firstly, the 

optimal plan P P=  is unique in (3) because the regularized problem is  -convex. Secondly, 
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there exists a simple, fast, and stable algorithm for numerically finding P : the Sinkhorn 

algorithm [3]: 

 ( )

( )

1

1

m i
i n

m

ij j

j
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u

K v

+

=
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 and 

( )

( )
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 (1 ,i j n  , 0m  )     (4) 

with positive initial guesses ( ) ( )0 0
,i iu v  (1 i n  ), from which P  is obtained as 

 
( ) ( )

, lim
m m

ij i ij j
m

P u K v
→+

=  (1 ,i j n  ).     (5) 

Here, we have set ( )exp /ij ijK C = − . Computational efficiency of the algorithm has been 

demonstrated in Cuturi [5]. Our implementation of the algorithm is based on the logarithmic 

rewriting [3] to avoid computational instability with small  . Notice that 
,

p

pW  is increasing 

with respect to  . We terminate the algorithm if the differences ( ) ( )1
ln ln

m m

i iu u
+
−  and 

( ) ( )1
ln ln

m m

i iv v
+
−  become smaller than a sufficiently small error threshold ( 710−  in this paper). 

Wasserstein distances 

Regularized Wasserstein distances 

The first application is the inflow and outflow discharges of a dam-reservoir system in H 

River in Japan. The system has been operated from 2011 for multiple purposes including 

water resources supply and flood mitigation. Hourly inflow and outflow discharges data of the 

dam-reservoir system are available from April 1 in 2016. 

 

We identify hourly discrete-time and discrete-state Markov chains of the inflow and outflow 

discharges using the collected data from April 1, 2016 to September 31, 2019. Seasonality of 

the data is not considered in this paper for the sake of simplicity, but will be addressed 

elsewhere. The discharge regimes are classified as follows:  )1,i i iS s s +=  ( 1 i n  ) with 

1is i= −  (m3/s) (1 11i  ) and ( )10 8 11is i= + −  (m3/s) (12 i n  ), 41n = , and 42S = + . 

This non-uniform partition has been employed because the average discharges are around 5.5 

(m3/s) for both the inflow and outflow records. We remark that, in this case, the system 

operation policy depending on the cost 
ijC  and the penalty parameter   can be identified as 

the probability matrix  1

, 1 ,i ij i j n
a P
−

 
 if 0ia   for all i . 

 

Fig. 1 shows the estimated transition matrices  ijq q=  of the Markov chains of the inflow 

and outflow discharges. The estimated results show that the Markov chain for the outflow is 

closer to diagonally-dominant, meaning that the regime transitions occurred less frequently 

than in the inflow. The stationary probability distributions of the inflow (  
1i i n

a a
 

= ) and 

outflow discharges (  
1i i n

b b
 

= ) are used to numerically compute the regularized 

Wasserstein distances. Although not presented, it has been found that they are indeed 

increasing with respect to   as theoretically expected. 
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Figs. 2 and 3 show the optimal plans P  for 1,2p =  with 0.01 =  and 10 = . The optimal 

plan is sparser for smaller  , implying its less robustness against perturbation of the input 

data. The computational results clearly indicate that the optimal plans are such that the 

discharges are significantly decreased through the dam-reservoir system for the lower regimes 

1 11i   where the discharges are smaller than 10 (m3/s). Considering the Markov chains 

estimated in Fig. 1 and the optimal plans in Figs. 2 and 3, this dam-reservoir system is serving 

as a filter to lower the lower flow and to a less transient flow. It is important to see that this 

characteristic of the system is visible both for the cases 1p =  and 2p = , although they are 

somewhat different for relatively high flow regimes , 12i j  . 

 

 

Figure 1. Transition probabilities of the Markov chains for the inflow discharge (Left) 

and outflow discharge (Right) 

 

 
Figure 2. Optimal plans with 1p =  for 0.01 =  (Left) and 10 =  (Right) 
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Figure 3. Optimal plans with 2p =  for 0.01 =  (Left) and 10 =  (Right) 

 

Body weights of a fish species 

The second application focuses on the collected body weight distributions of the fish 

Plecoglossus altivelis altivelis as a major inland fishery resource in Japan [6]. The fish is one 

of the most important incomes for inland fishery cooperatives in the country. In addition, the 

fish is a key species in the aquatic ecosystems in and around river environment. Therefore, 

their growth dynamics are of critical importance. The life history of the fish is not explained 

here, but is found in Yoshioka et al. [7]. An important fact is that they have a one-year life 

history and grow significantly in summer, during which harvesting the fish is carried out. 

 

We collected the body weight distributions of the fish at the beginning of August in 2017, 

2018, 2019 in H River, and obtained the statistical estimates as demonstrated in Table 1. The 

data for 2017 and 2018 is found also in Yoshioka et al. [6, 8]. Fig. 4 plots their distributions. 

The average values are around 56 to 57 (g) and the standard deviations around 18 to 19 (g). 

All the distributions have positive skewness values around 1. The collected data implies that 

the distributions are qualitatively the same. 

 

An interest from a fisheries viewpoint is whether there exist significant quantitative 

differences among the three distributions. Figs. 5 and 6 plot the computed regularized 

Wasserstein distances , pW  for 1,2p =  with respect to the different values of  . There are at 

least two important findings from the figures. Firstly, the distance between 2017 and 2018 are 

the largest for both 1,2p = . On the other hand, the relationship of the distances between 2018 

and 2019 and that between 2017 and 2019 are opposite between 1,2p = , especially when   

is small. In fact, 0.01,1W  are 0.159 and 0.193 between 2018 and 2019 and that between 2017 

and 2019, respectively. On the other hand, 0.01,2W  are 0.222 and 0.201 between 2018 and 2019 

and that between 2017 and 2019, respectively. This finding suggests that exploring a more 

biologically reasonable 
ijC  would be required. Nevertheless, the results suggest a significant 

difference between the data of 2017 and 2018. 
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Table 1. The collected data of the body weights of the fish 

 

 2019 2018 2017 

Total number of caught fishes 227 189 234 
Average (g) 56.4 57.3 55.6 

Standard deviation (g) 18.2 18.5 19.1 
Skewness 0.95 1.16 0.78 

 

 

Figure 4. The body weight distributions in 2017 (Red), 2018 (Green), and 2019 (Blue) 

 

Figure 5. , pW W=  for 1p =  with respect to  : The distance between 2017 and 2018 

(Red), 2018 and 2019 (Green), and 2019 and 2017 (Blue) 

 

Figure 6. , pW W=  for 2p =  with respect to   (the same legend with Fig. 5) 
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Conclusions 

The entropy-regularized (pseudo-)Wasserstein distances were applied to analyzing the unique 

environmental and ecological data. The application to the dam-reservoir system identified the 

optimal plan representing the system operation policy. Another application on the fish growth 

distributions quantified the differences among the collected distributions of the fish in 

different years.  

 

Our results suggest that the regularized Wasserstein distances can serve as new tools for 

analyzing environmental and ecological data. A future reach topic would be computing the 

optimal plans of different dam-reservoir systems across the country, or across the globe, with 

which actual operational characteristics among them can be clarified. Analyzing applicability 

of the Wasserstein distances to other species, such as recently-found unique land-locked P. 

altivelis in Japan, is also an interesting topic. 
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Abstract 

Microfluidics have shown great promise in multiple applications, especially in biomedical 

diagnostics and separations. While the flow properties of these microfluidic devices can be 

solved by numerical methods such as computational fluid dynamics (CFD), the process of mesh 

generation and setting up a numerical solver requires some domain familiarity, while more 

intuitive commercial programs such as Fluent and StarCCM can be expensive. Hence, in this 

work, we demonstrated the use of a U-Net convolutional neural network as a surrogate model for 

predicting the velocity and pressure fields that would result for a particular set of microfluidic 

filter designs. The surrogate model is fast, easy to set-up and can be used to predict and assess 

the flow velocity and pressure fields across the domain for new designs of interest via the input 

of a geometry-encoding matrix. In addition, we demonstrate that the same methodology can also 

be used to train a network to predict pressure based on velocity data, and propose that this can be 

an alternative to numerical algorithms for calculating pressure based on velocity measurements 

from particle-image velocimetry measurements. Critically, in both applications, we demonstrate 

prediction test errors of less than 1%, suggesting that this is indeed a viable method. 

Keywords: Computational Fluid Dynamics, Microfluidics, Convolutional Neural Network, 

Surrogate Model 

 

Introduction 

Microfluidics have been applied to a variety of areas, especially in the area of biomedical 

diagnostics and cell separations [1-5]. Certain common features within these devices are the 

placement of solid columns, such as in the case of deterministic lateral displacement devices for 

cell separation, or for flow field sculpting [6, 7]. While it is possible to do a parametric 

optimization of these designs via actual experiments, these experiments can be difficult and time-

consuming. Numerical methods such as computational fluid dynamics (CFD) can thus be useful 

as a means of narrowing the design space prior to any actual fabrication, and are commonly used 

as part of the design process [8, 9].  

 

In addition, it can often be difficult to obtain full knowledge of pressure fields within 

microfluidic devices, even as pressure is typically used as a means of active control of valves 

within such devices [10]. In particular, while experimental methods such as particle image 

velocimetry (PIV) can be applied to obtain velocity field, other numerical methods have to be 

developed for calculating the pressure fields from the measured velocities [11-13]. 
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Hence, in this work, we further explore the use of data-driven machine learning methods for the 

above-mentioned two potential use cases in microfluidics: 1) predicting velocity and pressure 

fields for new microfluidic channel designs; and 2) predicting pressure fields from velocity field 

information. In particular, developments in methods such as neural networks have shown great 

promise as a surrogate model across multiple engineering domains in recent literature [14-16]. 

The convolutional neural network (CNN) architecture in particular, has been applied to several 

fluid dynamic problems with some success, with the U-Net model being a particularly promising 

choice [17, 18]. Importantly, we evaluate the sensitivity of the U-Net architecture to the choice 

of normalization parameter for the target outputs in this work, and show that the U-Net 

architecture can indeed be applied to the prediction of flow and pressure fields with root mean 

square errors below 1%. In addition, we also propose that the use of a dual model system, 

whereby we create a secondary model to predict the normalization parameter, can further 

improve the accuracy of the model with regards to the full pressure field.  

 

Methods 

Microfluidic Flow Scenarios 

For this work, the microfluidic scenario as depicted in Figure 1 was studied, representing a 

continuously repeating array of solid pillars in a microfluidic channel. The individual pillars 

extend for 10 μm, while the design parameters are assumed to be the gap between the pillars (G), 

and the lateral dimension of the individual small pillars (S). In total, simulations were run for S 

ranging from 10 to 30 μm in steps of 2 μm and G ranging from 20 to 50 μm in steps of 2 μm to 

create a total dataset of 176 individual flow scenarios. 

 

 
Figure 1. Schematic of microfluidic channel scenarios studied. Two parameterizations are 

studied in this work: 1) width of small pillar (S), and 2) width of inter-pillar gap (G). 

 

The Dirichlet input boundary condition is stipulated as a uniform velocity (Vin) of magnitude 

0.001 m/s, while a Dirichlet boundary condition of P = Pa is applied at the outlet. Periodic 

boundary conditions are specified on the two sides to simulate a continually repeating array of 

pillars in the flow. The steady-state velocity and pressure fields were obtained based on a 

pressure-projection scheme, with second order spatial discretization. Sample plots of the velocity 
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fields obtained for 1) S = 10 μm and G = 20 μm, and 2) S = 30 μm and G = 50 μm are provided 

in Figure 2.  

 

 
Figure 2. (a) and (b) are the U and V velocity fields obtained by CFD for the flow scenario with S = 10 μm and 

G = 20 μm while (c) and (d) are the U and V velocity fields obtained by CFD for the flow scenario where S = 

30 μm and G = 50 μm. 

 

U-Net Architecture and Model Training 

Based on prior positive results in literature, the U-Net architecture was selected for use in this 

work, as illustrated in Figure 3 [17]. The model was created in Python, and all network 

mathematical operations used were as implemented in the base Keras and Tensorflow packages. 

Briefly, the U-Net has a bowtie structure, comprising separate encoder and decoder halves. Each 

half is made up of sequential layers that comprise of a convolutional layer, a batch normalization 

layer and a non-linear activation component, with the choice of activation function being the 

leaky ReLU (0.2) in the encoder half and the ReLU function in the decoder half. Default network 

hyper-parameters were used based on prior work by Thuruey et al., with no further optimization, 

although a convolutional kernel of size 8x8 was used instead [17]. The Adam optimizer was used 

for training over 10k epochs, with a learning rate of 0.0004, and ‘mean squared error’ (MSE) as 

the loss function. In each of the following models, the dataset was split into a training dataset 

consisting of 150 cases, while a random subset of 26 cases was used as the test set for evaluation.  
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Figure 3. Schematic of the U-Net CNN architecture as implemented in this work. Different color arrows in 

the schematic represent the operations that were used at each stage. 

 

In order to enhance predictive performance, pre-processing of the data is crucial. Prior literature 

in the machine learning domain typically also recommends normalization of the input and output 

as the gradient descent-based optimization process can be hindered by extremes in input or 

output value magnitude [19, 20]. Hence, a few different normalization methods for the input and 

output data are evaluated in this work. 

 

U-Net Model Prediction for Pressure based on Velocity 

For the first scenario, we assume that the velocities are provided, and the pressure field is to be 

predicted (Models A1, A2 and A3). Hence, the x and y velocity fields (U and V) are specified as 

inputs, while the output field is pressure (P). Utilizing typical scales that would be used for non-

dimensionalization of the Navier-Stokes equations, we elected to normalize the input velocity 

fields by the magnitude of the input velocity (Vin).  

 

Inputs for Models A1, A2 and A3:  

𝑈𝑛𝑜𝑟𝑚
𝑖 =

𝑈𝑖

𝑉𝑖𝑛
           (1) 

𝑉𝑛𝑜𝑟𝑚
𝑖 =

𝑉𝑖

𝑉𝑖𝑛
           (2) 

 

Similarly, for Model A1, we used a scaling factor commonly used for non-dimensionalizing 

pressure in creeping flows, and further de-meaned the output pressure field by subtracting a 

‘typical’ pressure profile as obtained by averaging across all the training data. 

 

Output for Model A1: 

𝑃𝑛𝑜𝑟𝑚
𝑖 [: , 𝑦] =

𝐿

𝜇𝑉𝑖𝑛
∗ (𝑃𝑖[: , 𝑦] −

1

𝑛𝑡𝑟𝑎𝑖𝑛
∑ 𝑃𝑗[: , 𝑦]𝑛𝑡𝑟𝑎𝑖𝑛

𝑗=1 )      (3) 

 

where the superscripts i and j represent the individual flow scenarios, and y represents the yth 

coordinate of the domain. L and μ represent the length scale and the fluid viscosity respectively, 

and were defined as L = 0.001 m, and 𝜇 = 0.001 𝑃𝑎 ∙ 𝑠. 
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In addition, a second choice for renormalizing the pressure was by re-scaling the individual 

output pressures for every parametric flow scenario by the expected pressure difference between 

the input and output planes of the flow domain. Hence, we created a regression function for the 

average pressure difference due to the choices of S and G, and used that as a normalization 

function instead. 

 

Output for Model A2: 

𝑃𝑛𝑜𝑟𝑚
𝑖 [: , : ] =

𝑃𝑖[:,:]

𝑓(𝑆,𝐺)
          (4.1) 

𝑓(𝑆, 𝐺) = 𝑒5.9205𝑆0.093691𝐺1.931052        (4.2) 

 

where i represents the individual flow scenario, and f(S,G) is the regression function obtained for 

the dependence of pressure on S and G, as obtained by least-squares regression. 

 

Lastly, as a further proof-of-concept, in most typical microfluidic set-ups, the input and output 

pressures are typically easy to measure, or are actual control parameters for operation. Hence, in 

such experiments, we anticipate being able to use actual measurement values for the pressure 

differential between the inlet and outlet planes. Thus, we assumed the average pressure along the 

inlet plane of the fluid domain is known from experiments, and used that as a normalization 

factor in Model A3. 

 

Output for Model A3: 

𝑃𝑛𝑜𝑟𝑚
𝑖 [: , : ] =

𝑃𝑖[:,:]
1

𝑤
∑ 𝑃𝑖[𝑘,1]𝑤

𝑘=1

          (5) 

 

where i represents the individual flow scenario, and w represents the fluid cells along the inlet 

plane of the fluid domain. 

 

U-Net Model Prediction for Velocity and Pressure Fields 

For the second scenario, we assume that both velocity and pressure fields are unknown, although 

the geometry of the domain is specified. Hence, the following input and output fields are used 

instead: 

 

Inputs for Models B1 and B2:  

𝑈𝑖𝑛𝑝𝑢𝑡 = {  
0 , 𝑠𝑜𝑙𝑖𝑑 𝑑𝑜𝑚𝑎𝑖𝑛
0 , 𝑓𝑙𝑢𝑖𝑑 𝑑𝑜𝑚𝑎𝑖𝑛

        (6) 

 

𝑉𝑖𝑛𝑝𝑢𝑡 = {  
0 , 𝑠𝑜𝑙𝑖𝑑 𝑑𝑜𝑚𝑎𝑖𝑛
1 , 𝑓𝑙𝑢𝑖𝑑 𝑑𝑜𝑚𝑎𝑖𝑛

        (7) 

 

𝑉𝑂𝐹𝑖𝑛𝑝𝑢𝑡 = {  
1 , 𝑠𝑜𝑙𝑖𝑑 𝑑𝑜𝑚𝑎𝑖𝑛
0 , 𝑓𝑙𝑢𝑖𝑑 𝑑𝑜𝑚𝑎𝑖𝑛

        (8) 

 

The input velocities are normalized to be of values 0 or 1, rather than the characteristic input 

velocity, for similar reasons to the normalization of input velocities in Models A1 to A3. In 

addition, we add an input parameter, VOF, which is the inverse of the Volume-of-Fluid 
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parameter that is commonly used in immersed boundary methods to demarcate solid and fluid 

domains. In particular, the VOF parameter is assumed to be 1 when the component overlays a 

solid object in the domain, and is 0 otherwise. While the encodings for velocity and VOF appear 

similar, and the input field for U appears redundant in that it is uniformly 0 in this instance, the 

two input fields have been retained for generalizability across future scenarios, whereby the 

velocity boundary conditions might be non-zero in both spatial axes. 

 

A similar normalization was chosen for the output values for both velocity and pressure, 

whereby we re-scaled the velocity and pressure fields to optimally shift their range to be between 

0 and 1 or -1 and 1. Two separate models were compared, with a slight difference observed for 

the two instances. 

 

Outputs for Model B1: 

𝑃𝑛𝑜𝑟𝑚
𝑖 [: , : ] =

𝑃𝑖[:,:]
1

𝑤
∑ 𝑃𝑖[𝑘,1]𝑤

𝑘=1

          (9) 

𝑈𝑛𝑜𝑟𝑚
𝑖 =

𝑈𝑖

𝑉𝑖𝑛
           (10) 

𝑉𝑛𝑜𝑟𝑚
𝑖 =

𝑉𝑖−𝑉𝑖𝑛

3∗𝑉𝑖𝑛
          (11) 

 

Outputs for Model B2: 

𝑃𝑛𝑜𝑟𝑚
𝑖 [: , : ] =

𝑃𝑖[:,:]
1

𝑤
∑ 𝑃𝑖[𝑘,1]𝑤

𝑘=1

− 0.5         (12) 

𝑈𝑛𝑜𝑟𝑚
𝑖 =

𝑈𝑖

𝑉𝑖𝑛
           (13) 

𝑉𝑛𝑜𝑟𝑚
𝑖 =

𝑉𝑖−𝑉𝑖𝑛

2∗𝑉𝑖𝑛
          (14) 

 

In particular, we vary the normalization parameters across Models B1 and B2 in order to further 

evaluate the impact of the normalization on the predictive accuracy of the model. 

 

Results 

U-Net Model Prediction for Pressure based on Velocity 

After training, the root-mean-square errors (RMSEs) of the 3 models (A1, A2 and A3) are 

calculated on the test set, and the respective errors are presented in Figure 4. Sample pressure 

predictions are also presented in Figure 5. Based on the results from models A1 and A2, we 

noticed that the RMSE was significantly improved in variance by using the pressure difference 

between the input and output planes of the microfluidic component as a scaling parameter as 

compared to the average of the data-set. More importantly, when the pressure difference is 

accurately defined, as in Model A3, the U-Net model test RMSE is also best minimized with an 

average value of about 0.7%. 
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Figure 4. Test RMSEs for the 3 different ways of normalizing the pressure output field as defined by models 

A1 to A3. 

 
Figure 5. Sample U, V and P contour plots as obtained for this work for a flow scenario with G = 30 μm and S 

= 16 μm. (a), (b) and (c) are the U, V and P contour plots as obtained from CFD, while (d) is the pressure 

contour plot as obtained by the U-Net Model A3. 

 

U-Net Model Prediction for Velocity and Pressure Fields 

Similarly, two different normalization models are tested, and their test RMSEs are plotted in 

Figure 6, while sample velocity and pressure contour plots as obtained by CFD and Model B2 

are plotted in Figure 7. The results indicate that the choice of normalization can also impact the 

accuracy of the model, and indicate that Model B2 performs slightly better, with average RMSEs 

of 0.5% for pressure and 0.7% for velocities.  
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Figure 6. Test RMSEs for the 2 different ways of normalizing the velocity and pressure output fields as 

defined by models B1 to B2. 

 

 
Figure 7. Sample velocity magnitude and pressure contour plots as obtained by CFD and via our U-Net 

(CNN) Model B2 as presented in this work for the flow scenario with G = 34 μm and S = 14 μm. (a) and (b) 

are obtained by CFD while (c) and (d) are obtained by Model B2. 

 

Conclusions 

In this work, we demonstrate the application of a U-Net-based model to rapidly predict the 

pressure fields for a set of microfluidic channel designs, when velocity fields are known, such as 

in the case of PIV experiments, and also, for the prediction of both velocity and pressure fields 

when new designs are to be evaluated. We demonstrate that we can obtain prediction errors of 

less than 1% with an appropriate choice of normalization parameters, and also highlight that the 

normalization parameters can improve model prediction.  

 

While the microfluidic designs here are only a subset of many more complicated possibilities, 

this proof-of-concept work shows the potential for utilizing deep learning methods, and U-Net 

specifically, as a surrogate model for design evaluation and optimization in microfluidic 

applications. We anticipate that this method would be of interest to microfluidic 

experimentalists, as an easy to use surrogate model for rapid evaluation of different designs prior 

to fabrication. 

ICCM2020, 9th -12th August 2020

206 



Acknowledgments 

This study is supported by research funding from the Agency for Science, Technology and 

Research (A*STAR), Singapore under Grant No. A1820g0084. 

 

References 

1. Whitesides GM. The origins and the future of microfluidics. Nature. 

2006;442(7101):368-73. 

2. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. 

Medical & biological engineering & computing. 2010;48(10):999-1014. 

3. Joanicot M, Ajdari A. Droplet control for microfluidics. Science. 2005;309(5736):887-8. 

4. Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, et al. 

Microfluidics-based diagnostics of infectious diseases in the developing world. Nature medicine. 

2011;17(8):1015. 

5. Pandey CM, Augustine S, Kumar S, Kumar S, Nara S, Srivastava S, et al. Microfluidics 

based point‐of‐care diagnostics. Biotechnology journal. 2018;13(1):1700047. 

6. Stoecklein D, Lore KG, Davies M, Sarkar S, Ganapathysubramanian B. Deep learning 

for flow sculpting: Insights into efficient learning using scientific simulation data. Scientific 

reports. 2017;7:46368. 

7. McGrath J, Jimenez M, Bridle H. Deterministic lateral displacement for particle 

separation: a review. Lab on a Chip. 2014;14(21):4139-58. 

8. Glatzel T, Litterst C, Cupelli C, Lindemann T, Moosmann C, Niekrawietz R, et al. 

Computational fluid dynamics (CFD) software tools for microfluidic applications–A case study. 

Computers & Fluids. 2008;37(3):218-35. 

9. Zhou T, Liu T, Deng Y, Chen L, Qian S, Liu Z. Design of microfluidic channel networks 

with specified output flow rates using the CFD-based optimization method. Microfluidics and 

Nanofluidics. 2017;21(1):11. 

10. Oh KW, Lee K, Ahn B, Furlani EP. Design of pressure-driven microfluidic networks 

using electric circuit analogy. Lab on a Chip. 2012;12(3):515-45. 

11. Santiago JG, Wereley ST, Meinhart CD, Beebe D, Adrian RJ. A particle image 

velocimetry system for microfluidics. Experiments in fluids. 1998;25(4):316-9. 

12. Van Oudheusden B. PIV-based pressure measurement. Measurement Science and 

Technology. 2013;24(3):032001. 

13. Williams SJ, Park C, Wereley ST. Advances and applications on microfluidic 

velocimetry techniques. Microfluidics and Nanofluidics. 2010;8(6):709-26. 

14. Lore KG, Stoecklein D, Davies M, Ganapathysubramanian B, Sarkar S, editors. 

Hierarchical feature extraction for efficient design of microfluidic flow patterns. Feature 

Extraction: Modern Questions and Challenges; 2015. 

15. Guo X, Li W, Iorio F, editors. Convolutional neural networks for steady flow 

approximation. Proceedings of the 22nd ACM SIGKDD international conference on knowledge 

discovery and data mining; 2016. 

16. Mengistu T, Ghaly W. Aerodynamic optimization of turbomachinery blades using 

evolutionary methods and ANN-based surrogate models. Optimization and Engineering. 

2008;9(3):239-55. 

ICCM2020, 9th -12th August 2020

207 



17. Thuerey N, Weißenow K, Prantl L, Hu X. Deep learning methods for Reynolds-averaged 

Navier–Stokes simulations of airfoil flows. AIAA Journal. 2020;58(1):25-36. 

18. Ribeiro MD, Rehman A, Ahmed S, Dengel A. DeepCFD: Efficient Steady-State Laminar 

Flow Approximation with Deep Convolutional Neural Networks. arXiv preprint 

arXiv:200408826. 2020. 

19. Sola J, Sevilla J. Importance of input data normalization for the application of neural 

networks to complex industrial problems. IEEE Transactions on nuclear science. 

1997;44(3):1464-8. 

20. Kim D. Normalization methods for input and output vectors in backpropagation neural 

networks. International journal of computer mathematics. 1999;71(2):161-71. 

 

ICCM2020, 9th -12th August 2020

208 



 

Response spectrum method considering specific dominant natural modes of 

double layer truss domes subjected to earthquake motions 

K. Ishikawa 
Department of Architecture and Civil Engineering, University of Fukui, Japan. 

ishikawa@u-fukui.ac.jp 

Abstract 
This study deals with a practical calculation method of seismic design loads of double layer 
truss domes considering the vibration characteristics such as the participation factor and the 
specific dominant mode. The purpose of this study is to investigate symmetry and asymmetry 
shapes of the vibration mode and the static equivalent seismic load due to earthquake motions. 
The calculation method of the seismic load is proposed using the response spectrum method 
and the validity is shown in comparison with the time history analysis. The characteristic 
response of the dome occurs subjected to vertical and horizontal earthquake motions. The 
seismic response is easily obtained by means of the eigenvalue analysis. The accuracy is also 
verified by a good agreement with the time history analysis of the dome subjected to the 
artificial vertical and horizontal earthquake motions. The proposed method can be used to 
predict statically the performance to transmit horizontal seismic loads. 

Keywords: Double layer truss domes, Response spectrum method, Time history analysis, 
Vertical and horizontal earthquake motions, Equivalent static load, Dominant natural mode. 

Introduction 

This study deals with a practical calculation method of the earthquake responses such as the 
acceleration, the velocity and the displacement of double layer latticed domes subjected to 
vertical and horizontal earthquake motions. It is known that time history analyses is effective 
to obtain the responses of the dome precisely. On the other hand, the analysis of the dome is 
carried out by means of computer simulation systems.  
Several performance prediction methods have been developed for this purpose, however, the 
earth-quake resistance capacity of spatial structures re-quires the variation of the form and the 
support con-dition. On the other hand, it is very difficult to apply them to wall type spatial 
structures. For the perfor-mance design, several prediction methods such as a pushover analysis 
and an adaptive capacity spectrum method have been developed for structures such as buildings 
and bridges. 
The purpose of this study is to propose the calculation method using the equivalent static 
seismic load by means of a response spectrum method. The vibration characteristics of the dome 
are obtained by the eigenvalue analysis. The seismic responses are also easily calculated by 
using the vibration characteristics such as the participation factor and the specific dominant 
mode. The accuracy is shown in comparison with the time history analysis of the dome 
subjected to vertical and horizontal earthquake motions. In addition, it is seen that the proposed 
method can be used to predict the earthquake responses of the dome by means of static analysis. 

Configurations of Double Layer Truss Domes  

At first, the time history analysis is carried out in order to investigate dynamic responses of the 
domes subjected to vertical and horizontal earthquake motions. 

ICCM2020, 9th -12th August 2020

209 



H 

R1 
θ 

R2 

L 

Analysis Domes and Member Characteristics 

The analysis model deals with the double layer truss domes which have around 30m in the span 
and 1.5 m in the layer spacing as shown in Fig.1. The other configurations of the analysis domes 
are shown in Table 1. The member characteristics are also shown in Table 2 and Fig.2. 
As far as the boundary condition is concerned, the nodes in the outer circumference of the 
domes are constrained for all directions as a pin support. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Analysis models of double layer truss domes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Configuration of analysis models 
Half open angle (deg) θ 30 45 60 
Span (mm) L 30000 30000 30000 
Rise (deg) H 4000 6000 8000 
Rise-Span ratio H/L 0.133 0.200 0.267 
Layer spacing (mm) h 1500 1500 1500 
Radius of curveture of 
upper face(mm) R1 30125 21245 17381 

Radius of curveture of 
lower face(mm) R2 28625 19745 15881 

Table 2. Member characteristics 
Critical slenderness ratio 120 
Upper and lower slenderness ratio 80 
Web slenderness ratio 100 
Yield stress（N/mm2） 235 
Allowable tension stress （N/mm2） 156 
Upper and lower allowable compression stress

㎟  
107 

Web allowable compression stress（N/mm2） 86 
Upper and lower compression strength（N/mm2） 161 
Web compression strength（N/mm2） 129 

X 
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Figure.2 Member characteristics (A: sectional area, λ: slenderness ratio) 

Static Equivalent Seismic Loads 

An earthquake proof design of ordinary buildings is carried out using the seismic load and 
distribution according to the standard seismic design code of each country. It is difficult for 
structural engineers to determine the loads and distributions applied on spatial and shell 
structures, which have a unique structural configuration. 

Seismic design coefficients 

Seismic design coefficients of the domes are neccesary to calucalate the design seismic load 
applied on roof type domes for their safety verification against earthquake motions. 

 

θ=60° 

θ=45° 

θ=30° 

ICCM2020, 9th -12th August 2020

211 



As shown in Fig.3, the roof type dome is induced by ground motion with amplification 
characteristics of the surface layer (B) in relation to predominant periods of the layer. The input 
ground motion (C) for the design is to be defined for the engineering bedrock (the layer A), 
with the shear wave velocity being about 400 m/sec or more. 
The inertia force FH must be set up considering the most important factors as follows: 
 

FH=KH ∙ W 
 

KH=Z ∙ kH ∙ K0 
 
Where KH=the seismic design coefficient, W=the weight of the dome, Z=the seismic hazard 
zoning coefficient, kH=the seismic design coefficient determined by the structural amplification 
ratio, and K0=the standard seismic design coefficient. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Earthquake response of a structure with a double layer truss dome 

Distributions of Static Equivalent Seismic Loads 

The static equivalent seismic load is derived by using the participation vectors and the 
acceleration response spectrum. The static seismic load distributions are shown in Fig. 4. It is 
seen that the horizontal and vertical distributions of the dome show asymmetry and symmetry 
shape, respectively. 
 
 
 
 
 
 

(a) Asymmetry shape                          (b) Symmetry shape 
Figure 4.  Distributions of static equivalent seismic load distribution (θ=30°) 

 
The natural periods and the vibration modes of the dome are obtained by means of the 
eigenvalue analysis. The first and the third natural periods such as T1 and T3 are shown in Figs.5, 
respectively. The corresponding vibration mode shapes are also shown in Figs.5, respectively. 
It is seen that the vertical vibration mode shapes such as the third mode of θ=30°in Fig.5. 
 
 
 
 

B: Surface layer 
 

C: Bottom of building basement 
 A: Engineering bedrock 

(1) 
 

(2) 
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(1) 

(2) 

(3) 

(4) 

(5) 

 
 
 
 

First mode: T1=0.162(s)                          Third mode: T3=0.131(s) 
Figure 5. The first and third vibration mode shapes and natural periods T1 and T3 

Response Spectrum Method by means of the Static Equivalent Static Seismic Load 
applied at the Dome 

In the earthquake-proof design of the dome, the design seismic load is calculated considering 
the vibration characteristics of the substructure. On the other hand, the methodology and the 
calculation standard are not enough to calculate the seismic design load. The practical 
estimation method is proposed by the response spectrum and the participation factor. 
The estimation equation of the maximum response acceleration of each node in the dome is 
proposed and verified with respect to the accuracy in comparison with the dynamic numerical 
analysis. 
The maximum acceleration of the node “i” in the “j”th vibration mode is given as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑗𝑗 = 𝛽𝛽𝑗𝑗 ∙ 𝑆𝑆𝑆𝑆�𝑇𝑇𝑗𝑗 ,ℎ𝑗𝑗� ∙ 𝐷𝐷𝑗𝑗 𝑖𝑖 

Where jAcci is the estimated acceleration of the node “i”.  βj is the modal participation 
coefficient of the “j”th vibration mode. SA(Tj , hj) is the acceleation response spectrum with 
respect to the “ j” th natural period Tj and damping ratio hj. And jDi is the “j”th vbration mode 
value of the node “i” .  
The earthquake-proof design of building structures is carried out by means of the static analysis 
using the seismic load and the load distribution. The static seismic load distribution is also used 
in the design of the dome. The horizontal distribution on the dome is affected by the first 
vibration mode value and the vertical distribution is affected by the second vibration mode, 
respectively. 
The horizontal static seismic load “Fi

H” at the node “i” is given by using the “j”th modal 
participation coefficient jβand the first mode value j𝐷𝐷𝑖𝑖𝐻𝐻. 

𝐹𝐹𝑖𝑖𝐻𝐻 = 𝑆𝑆𝑖𝑖𝐻𝐻 ∙ 𝐶𝐶0 ∙�𝑊𝑊𝑖𝑖

𝑁𝑁 

𝑖𝑖=1

 

 The horizontal static seismic load “Fi
V” at the node “i” are given by using the “j”th modal 

participation coefficient jβand the second mode value j𝐷𝐷𝑖𝑖𝑉𝑉. 

𝐹𝐹𝑖𝑖𝑉𝑉 = 𝑆𝑆𝑖𝑖𝑉𝑉 ∙ 𝐶𝐶0 ∙�𝑊𝑊𝑖𝑖

𝑁𝑁 

𝑖𝑖=1

 

The horizontal seismic load of the design static is given by 
 

𝑆𝑆𝑖𝑖𝐻𝐻 =
𝑚𝑚𝑖𝑖 ∙ 𝐷𝐷𝑖𝑖𝐻𝐻𝑗𝑗

 

∑ 𝑚𝑚𝑖𝑖 ∙ 𝐷𝐷𝑖𝑖𝐻𝐻𝑗𝑗
 𝑁𝑁

𝑖𝑖=1
 

𝑆𝑆𝑖𝑖𝑉𝑉 =
𝑚𝑚𝑖𝑖 ∙ 𝐷𝐷𝑖𝑖𝑉𝑉𝑗𝑗

 

∑ 𝑚𝑚𝑖𝑖 ∙ 𝐷𝐷𝑖𝑖𝑉𝑉𝑗𝑗
 𝑁𝑁

𝑖𝑖=1
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Where  
 Co= SA(Tj , hj) /g,  mi is mass of node “i”, j Di H is the “j”th horizontal vibration mode value at 
node “i”. Wi is the weight at node “i”, SA(Tj , hj) is the acceleation response spectrum (Fig.8) 
with respect to the “j” th natural period Tj and damping ratio hj=0.02 and g is the gravity 
acceleration.  j Di

V is the “j”th vertical mode vibration value at node “i”, Wi is the weight at node 
“i”.  

Vibration Characteristics such as Natural Period and Dominant Mode of the Domes 

The natural period and the effective mass ratio of the domes are obtained by means of the 
eigenvalue analysis, respectively. The dominant mode are determine by the effective mass ratio. 
The obtained vibration characteristics such as the natural period and the dominant mode are 
shown in Table 5. The two corresponding vibration modes are also shown in Fig.5, respectively. 
It is seen that the dome appears in the first ( θ=30°and  60°)or second  ( θ=45°) vibration 
mode. On the other hand, the vertical vibration shape of the dome appears in the third  ( θ=30°

and  45°) or fourth ( θ=60°) vibration mode. The study focuses on the horizontal and vertical 
earthquake response of the dome subjected to horizontal and vertical earthquake motions. 
 

Table 3. Eigenvalue analysis 

θ 
(degree) 

Dominant 
mode No. 

Effective mass 
ratio 

Natural period  
of “j” th : Tj (sec) 

H V H V T1 T2 T3 T4 
30 1  3  0.290 0.399 0.162 0.162 0.131 0.105 
45 2  3  0.545 0.276 0.155 0.155 0.109 0.102 
60 1  4  0.593 0.192 0.162 0.162 0.136 0.104 

 

Dynamic Responses of the Time History Analysis  

The time history analysis of the dome is carried out to verify the accuracy of the estimation 
value of the static equivalent seismic load applied on the dome by the proposed method. The 
numerical integration method uses the Newmarkβ method in the vibration equation. Since it 
has been known that the case of β=1/4 will be unconditionally stable for most nonlinear 
problems, β=1/4 is used in this study. The Rayleigh damping is used and both of the first and 
second damping factors are taken to be 0.02.  

Input Vertical and Horizontal Artificial Earthquake Motions on Surface Ground 

In conventional earthquake-response analysis, the most common approaches to use waves 
observed either at the ground surface. 
The basic thinking behind setting up input ground motion for the seismic design and the 
analyses is described in this section. There are two basic focal points: 
(1) Designing is to basically a two-phase design procedure, Level 1 (moderate earthquake 
motion) and Level 2(severe earthquake motion), with seismic design carried out for these 
earthquake inputs. 
(2) The time history analysis of the dome is carried out using the vertical and horizontal motions. 
The artificial seismic waves with the phase of the five observed earthquake motions are used. 
The surface layer amplification is considered in the waves. The motion fits the target 
acceleration response spectrum in Fig.6 of the damage limit artificial earthquake motion with a 
phase characteristic (Level 1) and the damping factor 0.05. The peak ground accelerations of 
the vertical and the horizontal earthquake motions are shown in Table 4. The average value of 
the horizontal and vertical motions is 119 and 62 cm/sec2 , respectively. 
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Table 4. PGA (Peak ground acc.: cm/sec2) of the used input earthquake motion 

Used phase characteristic PGA   Used phase characteristic PGA 
El Centro-NS (1940)    112    El Centro-UD (1940)      62 
Taft-EW (1952)    129    Taft-UD (1952)      57 
Hachinohe-NS (1968)   120    Hachinohe-UD (1968)     75 
Tohoku-NS (1978)    102    Tohoku-UD (1978)      64 
Kobe-NS (1995)    133    Kobe-UD (1995)      52 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 6.  Target acceleration response spectrum (damping factor h=0.05) of the damage 
limit artificial earthquake motion with a phase characteristic (Level 1) (moderate 
earthquake motion) 
 
The acceleration response spectrum SA(T, h=0.02) in case of in case of the damping factor 
h=0.02 is shown in Fig.7 using the input horizontal and vertical earthquake motions. The 
spectrum such as SA

H(T, h) and SA
V(T, h) are used in the proposed equations (2) and (3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Acceleration response spectrum (damping factor h=0.02) of the damage limit 
artificial earthquake motion with a phase characteristic (Level 1:moderate earthquake 
motion) 

Horizontal wave 

Vertical wave 
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Comparison between the Time History Analysis and the Response Spectrum Analysis 

The time history analyses are carried out to verify the accuracy of Eqs. (2) and (3) by using the 
damage limit earthquake motions with the phase of the observed earthquake motions. It is seen 
in Fig. 9 that the values of the horizontal and vertical maximum response displacement by 
means of proposed static method show a good agreement with the time history analyses. It is 
noted that the values are calculated by using just the modal participation coefficient and the 
vibration mode value at the dominant mode. 
 
 
 
 
 
 
 
 
 

Figure 8. Node number of dome ridgeline 
 
 

 
 

 
 

 
 

Figure 9. Accuracy verification of response disp. using equivalent seismic force in 
comparison with time history analyses at max. disp.  (The node no. is shown in Fig.8.). 

(b) Max disp. occurs at nodes 4, 8 and 6, respectively (θ=45°). 

(a)Max disp. occurs at nodes 4, 5 and 7, respectively (θ=30°).               

(c) Max disp. occurs at nodes 5, 8 and 6, respectively (θ=60°). 
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Conclusions 

The study deals with the dynamic responses on the domes subjected to vertical and horizontal 
earthquake motions. The design seismic coefficient of the applied load distribution considering 
the vertical response effect is also actually necessary for the safety study in the earthquake proof 
design. The study proposes the response spectrum method of calculating the static equivalent  
seismic loads for the applied load for the earthquake-proof design on the domes. The loads are 
easily obtained by means of the eigenvalue analysis. The accuracy is also verified by a good 
agreement with the time history analysis of the domes subjected to the damage limit artificial 
vertical and horizontal earthquake motions. The static equivalent seismic loads can be used to 
obtain statically the stress and the displacement for the seismic design.  
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Abstract 
Designing a controller with strong coupling dynamic model is extremely challenging and is 
more serious in continuum manipulator control problems. In this article, a dynamic control 
method based on deep reinforcement learning (RL) is used for the robust control of a 
continuum manipulator. According to the dynamic equation of the continuum manipulator, a 
model-based reinforcement learning optimized sliding mode controller is proposed. 
According to the limited observation state of the system, the agent learns and corrects the 
control parameters online to optimize the slope of the sliding surface, and realize the dynamic 
adaptive tracking control under the uncertainty of the model. Under the dynamic adaptive 
tracking control, the results show that the strategy network can give the appropriate control 
parameters according to the system state and output mechanism saturation problem. The 
efficacy of the approach on a difficult tracking control problem with highly nonlinear 
dynamics is demonstrated. Results indicate that the RL optimized sliding mode method is 
faster than the sliding mode method and only requires a small control increment. 

Keywords: Robust Control, Reinforcement Learning, Continuum Manipulator 

 
Introduction 

Since the introduction of the continuum robot[1], its good bending performance has 
made it very adaptable in many nonstructural environments as well as narrow and limited 
working environments with many obstacles, and the continuum manipulator has broad 
application prospects in special environments. However, compared with the traditional 
discrete manipulator, the continuum manipulator has difficulty with the estimation of the 
deformation state under the action of external force or contact with the environment, and it 
also has great difficulty with the modeling and control of the continuum manipulator. In the 
case of inaccuracy and poor controllability, the accessibility and accuracy at the end are likely 
to be greatly reduced. Therefore, reasonable and effective modeling and controller design is 
necessary. 

Several research studies have been performed for kinematic and dynamic modeling of 
continuum robots[2]-[7]. For this kind of nonlinear model with strong coupling, Te[8] 
proposed the head following control method to realize the navigation of continuum robots in 
the complex nonstructural environments. Thomas[9] learned a particular global solution for 
inverse kinematics problem by supervised learning without any prior knowledge about the 
system. Michael[10] presented a model-less hybrid control approach that regulates the tip 
position/force of continuum manipulators under unknown constraints along the manipulator's 
body. Falkenhahn[11] developed a model-based dynamic PD-controller to address the 
tracking issue for continuum robots. Many controllers on continuum manipulator control are 
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based mostly on kinematics control, or model-based feedforward feedback control, which 
requires manual determination of numerous relevant control parameters and a large workload. 
Moreover, due to the change of the surrounding environment or the existence of uncertain 
factors, the control parameters should not be constant during this operation. The parameters 
must be corrected in real time to be used directly in the actual system. 

In recent studies, many reinforcement learning methods have been applied to robot 
control problems[12]-[15]. Neppalli[16] used the asynchronous normalized advantage 
function (NAF) algorithm to complete the door opening action of the rigid manipulation. 
Kai[17] proposed FollowNet, a neural architecture for approximating the action value 
function directly from the language and visual inputs. Then the motion command is learned 
by the deep Q network (DQN) algorithm and applied to the navigation task of the robot in the 
two-dimensional workspace. Understanding and following instructions provided by humans 
allows the robot to navigate effectively in unknown situations. Tianhao[18] designed a state-
wide response model predictive controller for the four-axis aircraft, and then linked the 
collected sensor information with the system status data to train the end-to-end strategy 
learning network; Anusha Nagabandi[19] used neural networks to fit mobile robot dynamics 
models that have been dynamically predicted, initialized by a supervised learning strategy 
network, and then through reinforcement learning training The strategy is fine-tuned to 
complete the path planning and control of the mobile robot, which is highly dependent on the 
initial strategy. Although there has been extensive research work, some studies are based on 
the over-simplified models or require the supervised learning to fulfill the network 
initialization. The high-precision online autonomous control of continuum robots needs to 
construct a more advanced learning control method considering the dynamic model. At 
present, the research on the dynamic control of a continuum manipulator is still scarce. 

 In this paper, an adaptive robust control strategy based on reinforcement learning is 
proposed for the continuum manipulator under the consideration of environment disturbances 
and robot output saturation. The control parameters of the sliding mode slope coefficient for 
the manipulator are optimized in real time by reinforcement learning. The contradiction 
between stability, accuracy and rapidity is properly solved, and the control feasibility of the 
difficult control system is solved. 

The Dynamic Equation of the Continuum manipulator 

Some scholars have studied the dynamics of continuum manipulators. In this section, the 
dynamic model of the continuum manipulator OctArm[20](Fig.1) established by Farzin[21] is 
adopted. 
 

 
Figure 1.  The continuum manipulator OctArms[20] 
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As shown in Fig.2, the continuum single section analytical model introduced here 
consists of three modules stacked together in series. The three modules effectively represent 
the dynamic behavior of the hardware, so more complex models are not motivated[20]. Each 
module is considered to consist of two symmetrical spring-damped structures with the 
constant curvature bending assumption. ijk and ijc are the elastic coefficient and damping 
coefficient for the drivers. Therefore, there are 6 degrees of freedom for a continuum 
manipulator with 3 modules, including the local centroid coordinates l  and rotation angle α  
in each module. 
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Figure 2.  Assumed structure for the analytical model of a section of a continuum 

manipulator 

Define generalized coordinates T
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The dynamic control equation established by Farzin can be written as : 
= ( ) + ( ) + ( )GQ M q q C q,q q G q       (1) 

where 66R ×∈M  is the inertia matrix of the system, 66R ×∈C is the stiffness matrix of the 
system, and 16R ×∈G  is the coefficient matrix caused by the elastic potential energy and 
gravitational potential energy of the system: 
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where iI  is the moment of inertia of the rigid rod in each module, il0 is the initial the value 
of il . 

The generalized force in the system FQQ FG = is expressed as an appropriate weighted 

FQ combination with input force F : 
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The Robust Controller 

As shown in the previous section, the dynamic model of continuum manipulators has 
higher nonlinearity. Considering external disturbances, modeling errors, and limited output of 
the actuator, it is difficult to perform online real-time tracking control. The sliding mode 
control algorithm is an excellent nonlinear control algorithm. Well-designed sliding surface 
parameters can improve the dynamic quality of the system's response process. Reinforcement 
learning provides feasibility to optimize control parameters online. By reinforcement learning 
of the deep deterministic policy gradient (DDPG) algorithm, the controller performance is 
optimized to achieve stable and efficient tracking results. Fig.3 shows the structure of this 
controller. 

DDPG

Sliding Mode 
Controller

Dynamic 
Model

u qdq
c

e

 
Figure 3.  Reinforcement learning optimized robust controller  
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A.  Sliding mode controller 

Consider the modeling error, parameter variation and other uncertain factors as external disturbance f , 
and the control input vector u=F, then the dynamic equation can be written as: 

( ) ( , ) ( )u u u+ + = +M q q C q q q G q u f  

 
   (2) 

where 
MQM 1-

Fu =  
CQC 1-

Fu =  
GQG 1-

Fu =  
Δ -Δ -Δ -Δu u u=f u M q C q G      (3) 

Define the sliding mode surface function as: 
ecexs +=)(  , ),,,diag(= 621 ccc Lc     (4) 

The tracking error vector q-q=e d  , dq is the expected value of the generalized coordinates. Take the 
exponential approach law as: 

ηssεs -)sgn(-=               (5) 

ε , η are the coefficient matrices of the approach law. Then the sliding mode control 
protocol of the system can be derived as: 

 fGqCηssεceqMu -))sgn(( uu
d

u +++++=      (6) 

B. Reinforcement learning optimized sliding mode controller 

In this paper, the deep reinforcement learning algorithm of the deep deterministic policy 
gradient is used to optimize the control parameters of the sliding mode controller online. 

We adopt the standard Markov decision process (MDP) formalism for this work, which is 
composed of the state ts  in state space S, the action ta  in action space A, a stationary 
transition dynamics distribution 1( | , )t t tp s s a+ described by the discrete dynamic equation of the 
manipulator, and the reward function ),( ttt asre .The goal of reinforcement learning is to obtain 
the optimal strategy θπ parameterized by θ  to maximize the return expectation reward 

∑=
−=

T

ti ttt
ti asreasR ),(),( γ  of long-term T in which ),( ttt asre is the reward value obtained 

by taking action ta  under state ts , and γ is the discounting factor. Thus, the action value 
function can be represented by Eq.(7). 

])([][)( ∑=
−====

T

ti iii
ti

ttttt ,asreγEa,as|sRE,asQ                                 
(7) 

The deep deterministic policy gradient is a typical improved actor-critic (A-C) framework 
algorithm, which absorbs the characteristics of the replay buffer and independent target 
network in the deep Q network (DQN).  

The main net contains two deep neural networks, actor net ( | )s µµ θ parameterized by 
uθ and critic net ( , | )QQ s a θ  parameterized by Qθ , used to approximate the deterministic 

policy ( )sθµ and action-value function )(s,aQ . The DDPG algorithm has an independent target 
network. After each iteration, the parameterτ of the main net is updated to target network 
parameters by the moving average(AG) method according to Eq.(8). 

(1 )θ τθ τ θ′ ′= + −       (8) 
For N transitions ( 1,,, +iiii sreas ), the critic network updates the value function by 

minimizing the loss function: 
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The actor network updates the action policy using the sampled policy gradient: 
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It is difficult to calculate the exact optimal value of Eq.(6) directly through reinforcement 

learning, since the dynamics and reward functions are nonlinear which might cause the 
controller to fail to obtain a reasonable solution in a wider action space. However, it makes a 
good effect on optimizing control parameters to improve control quality issues. For control 
from Eq.(6), good sliding mode parameters c can effectively reduce the approach time and 
weaken the chattering. The learning network is trained by the DDPG algorithm. The critic net 
evaluates the control performance according to the current state of the system, and the actor net 
optimizes the sliding mode controller parameters c . 

Simulation Result 

Table 1 shows the parameters of a single module of the continuum manipulators. 

Table 1. Parameters of the Continuum manipulator 

Parameters Symbol Value 

Mass of single modules m(kg) 0.5 

Moment of inertia J(kg·m2) 49.375 10−×  

Elastic coefficient k 1.2 

Damping coefficient c 0.03 

 
For the DDPG network structure, the input of the actor net is the state vector s , and the 

output is the action vector a  corresponding to the six control parameters. Actor net includes 
two layers. The first layer contains 300 nodes, the activation parameter is relu, and the second 
layer dimension is 6, the activation function of which is tanh so that the network output falls 
within the action’s boundary. The critic network consists of a three-layer neural network. The 
input layer contains two branches, corresponding to the state vector s  and the action vector a . 
After the combination, the corresponding action-values are output through the two-layer fully 
connected layer. The Gauss noise is added to the actor policy as the action noise caused by 
f in Eq.(2). 

During this simulation, the environment is updated at 0.1 s intervals, and the 
observations we can use are only the elongation and rotation angle of the three-section arm. 
Based on this result, the reward function can be designed. It is necessary to simultaneously 
measure the control accuracy and control time caused by the dynamics with strong 
nonlinearity and coupling. The reward function is as shown in Eq.(11). We assume that the 
target control effect is achieved when the angle of various sections of the robot is stable, and 
the reference trajectory error is more than 50 time steps within a certain range (0.1s per time 
step). 
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The reward value is negatively correlated with the Euclidean distance of tracking error. 
nu ,Γ  is the weighting factor of the control increment. When nu ,Γ  becomes larger, it suggests 

that the smaller the corresponding torque change is, the higher the corresponding reward 
value. Goal indicates whether the current manipulator has reached the control target, and if so, 
the reward value will increase. 

In this experiment, the learning rate of the actor network and the critic network is 0.01, 
the reward discount value is 0.9, and the soft replacement value is 0.01. We consider the 
control target region to be the range interval value of the reference trajectory tracking 
error: 001.0±=rangee  The model trains 300 episodes, and each episode contains 3000 steps. 
The desired general coordinate is defined as: 
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Figure 4.  Tracking error for length nl  

 
Figure 5.  Tracking error for angle nα  
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Fig.4 and Fig.5 show the control effects of the sliding mode controller optimized by 

reinforcement learning in terms of module length and angle. The controller designed in this 
paper can keep the tracking error of the system stable after 15s, and the desired tracking effect 
can be achieved under the interference of the system. 

 
Take module 2 as an example for the tracking angle 2α . Fig.6 shows the module 2 

tracking error based on the sliding mode controller and reinforcement learning optimized 
sliding mode controller under a disturbance. The tracking error of the reinforcement learning 
optimized sliding mode controller is always lower than the sliding mode controller during the 
adjustment process. The former has a shorter settling time than the latter, which indicates that 
in the case of external disturbance, the controller designed in this paper has better control 
performance than the sliding mode controller.  

After achieving the stable goal defined by goalk , the controller of the reinforcement 
learning optimization does not cause the tracking error develop to a more stable direction, 
which is related to the the reward function setting and the stable target definition. This result 
will continue to be explored in subsequent studies. 

 
Figure 6.  Angle comparison for two controllers  

 

 Fig.7 shows the module 1 control input 1u based on the sliding mode controller and the 
reinforcement learning optimized sliding mode controller under a disturbance. During the 
adjustment process, the control input of the former changes significantly less than the latter, 
and it has a shorter settling time. This indicates that under the interference, the controller 
designed in this paper has good robustness and can generalize further optimization according 
to the direction of the reward function. 

 
Figure 7.  Control input comparison for two controllers 
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Conclusions 

By studying the motion of continuum manipulators, a trajectory tracking controller based 
on reinforcement learning is proposed to satisfy the performance objectives required in the 
presence of interference, parameter disturbance and model uncertainty. From the simulation 
results, in the presence of interference, a robust sliding mode controller that achieves good 
tracking performance using reinforcement learning. Reinforcement learning adjusts the 
control parameters online to prevent system oscillations caused by disturbances, and to 
improve the system robustness. 

In future research, we will focus on the use of learning algorithms for autonomous online 
planning and tracking control on prototypes of continuum manipulators. 
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Abstract 

Laser Powder Bed Fusion (LPBF) is a metal additive manufacturing method that manufactures 
products with high density and quality. The LPBF process, involving multiple physical phenomena, 
is controlled by several parameters such as laser power, scanning speed, material properties, etc. 
We present a coupled grain growth and heat transfer modeling technique to understand the 
materials microstructure evolution during the cooling process of LPBF. In specific, the phase-field 
model is considered as functions of temperature combined with transient heat transfer equation to 
simulate the crystallization of the melt pool. In the simulation, the computational domain for phase-
field calculation and the magnitude of the driving force of order parameters are defined using 
current temperature distribution. Additionally, the change of order parameters generates latent heat 
to affect the cooling process. The finite element method using a staggering strategy is employed to 
solve the coupled governing equations on an irregular geometry.   

1 Introduction 

Metal Additive Manufacturing comparing to traditional manufacturing methods, possesses higher 
flexibility and efficiency. Among all the metal Additive Manufacturing methods Powder Bed 
Fusion (PBF) method provides the highest density. The basic idea of PBF is to wield a horizontally 
distributed metal particles, namely Powder Bed, using high power laser beam iteratively into an 
objective geometry. In each iteration, a new layer of metal particles is paved on the previous layer, 
and the laser will scan through the section of objective geometry at current heights.[1] 

During the PBF process, the laser scanning through the powder bed generates temperature high 
enough to completely melt the particles resulting in a melt pool on the track of the laser. Studies 
show that material particles usually experience extreme conditions such as large temperature 
gradient, large stress, etc. which makes the result hard to predict. The controllable parameters, 
including size distribution of powder particles, power, and scanning speed of laser, scanning 
strategy including depth of powder bed, could also impact the geometry and temperature 
distribution of melt pool thus final result. Both experimental and numerical studies have been 
carried on in understanding the mechanisms. [2]-[9]  

As the melt pool cools down, material with temperature lower than melting point starts to solidify. 
This phase change process determines the final microstructure, which is closely related to material 
properties, at that position since previous studies have pointed out that the trend of grains growth 
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is related to the temperature gradient and cooling rate. To better understand how manipulating the 
PBF process could influence the result, an approach is necessary for simulating the microstructure 
development during the cooling down of the melt pool.[11][12] 

There are many numerical methods available for simulation of the Grain Growth process, among 
which the most popular ones are Monte Carlo model, Cellular Automata model, and the Phase-
field method. Monte Carlo model demands the calculation region be a regular lattice. Each lattice 
will be assigned a grain orientation, and it has a probability of shifting to a neighbor orientation on 
each time step.[13][14] Cellular Automata is a collective name for a certain kind of models. Same 
as Monte Carlo method Cellular Automata is carried on regular square lattices. Those methods are 
inspired by topological behaviors of the grains, for example, the grain boundary moving speed 
relating to boundary curvature or grain growing speed relating to the temperature gradient, etc., 
and emphasize those behaviors using specific algorithms in the simulations. [15][16][17] Monte 
Carlo model and Cellular Automata model are not so computationally intensive. Generally 
speaking, neither of them demands governing equations. However, the limitation is visible too. 
Monte Carlo method only fits the grain size with the experiment result, but the anisotropic 
behaviors of grains, namely the shape of the grains, are hard to capture. Also, these two methods 
require regular lattices, so they may not be suitable for geometry with high complexity. 

Phase-filed method has been applied to study many microstructure evolution problems and 
interface development problems such as solidification, fraction, etc.[18][19][20][21] Generally 
phase-field models introduce a specific form of free energy and develop its governing equation 
based on it.[22] In its interpretation of Grain growth, each orientation of grain is represented by an 
order parameter. The boundary of the grains forms a thin stripe area in the 2D scenario or a thin 
membrane area in 3D. The order parameters are ranged between 0 and 1 where 0 means that this 
point is not occupied by this orientation, and 1 means this point is occupied by this orientation. 
When crossing over the boundary, order parameters vector changes drastically from one 
representing an orientation to one representing another. On the whole computational area of order 
parameters, there is no specific mark discriminating boundary and cells, for example, a list of 
elements that are on cell boundaries, other than the order parameters, which are all smoothly 
changing variables. So almost all space discretization methods for calculation PDE on a particular 
area could be applied like finite element method or finite difference method etc. As a result, Phase-
field method has high flexibility to fit in more complex geometries.[23][24][25] 

We represent a numerical method to predict grain structure in high-temperature gradient metal 
solidification scenarios such as the solidification in the PBF process. The numerical method would 
be based on the Phase-field method coupled with thermal information. Finite element method 
(FEM) is employed to solve the coupled phase-filed governing equation. And an example of 
simulation of a benchmark result is given. 
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2 Methodology 

To describe the crystallization process during a laser-based AM process, a coupled, transient grain 
growth and heat transfer framework is developed in this section. We combine the phase-field model 
with the transient heat transfer equation followed by the Finite element solution to predict the grain 
structure, including the grain size, shape, and orientation, during the cooling process.  

2.1 Governing equations 

The grain growth process can be modeled by the phase-field model in which order parameters are 
introduced to described the orientation of a grain. In specific, the order parameter equation is 
modified from the Allen-Cahn equation, which was used to describe grain growth process by LQ 
Chen [8], by involving a temperature coefficient γ  as 

 ( ) 3 2 22 )(i
i i i j i

j i
L T k

t
η η η η ηγ η

≠

 
+ + − ∇ 

∂
− −


=

∂ 
∑  , (2.1)  

Where iη  is the i th order parameter, T the temperature, L  the mobility, and k  the gradient 
coefficient. The order parameter iη  is picked form a set of order parameters [ ]iη η  which has in 
all en  elements. Each order parameter stands for a possible cell orientation. Two types of boundary 
are applied which are Dirichlet boundary condition and Neumann boundary condition for order 
parameter calculation which are 

 η η=  on d∂Ω  (2.2) 

 i n hη∇ =  on n∂Ω   (2.3) 

In this model the order parameter simulation is triggered and couple with temperature distribution 
of the cooling down process of the melt pool. For temperature calculation, consider employing heat 
transfer equation which is  

 ( )
2

p diff L
i i

T TC k Q Q
t x x

ρ η∂ ∂
− = +

∂ ∂ ∂
 , (2.4) 

where T , ρ , diffk and pC  stand for temperature density, heat diffusion coefficient, and heat 

capacity. On the RHS of the equation Q  is the general heat source, ( )Q η is the latent heat 
generated due to change of order parameter. Eq. (2.1) and (2.4) are the coupled governing 
equations that are solved for. Three types of general heat boundary conditions are considered in 
this work which are essential condition, fixed flux condition, and conduction boundary conditions: 

 T T=  on e∂Ω   (2.5) 
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 diff i u
i

Tk n h
x

∂  = ∂ 
 on flux∂Ω   (2.6) 

 ( )diff i c
i

Tk n h T T
x
∂

= −
∂

 on cont∂Ω   (2.7) 

2.2 Numerical Solutions 

The governing equations can be solved by employing the finite element method. The weak form 
of Eq. (2.1) and (2.4) could be gained from applying the Weighted Residual method which leads 
to 

 
( ) ( )

3 2( 2 )

n d

i
e i i i j e e i

j i

e en h dl dl
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t

γ γη φ η η η η φ φ η

η φ η η φ

Ω Ω
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−

= − − +
∂

−

+ + ∇ ∇

∇ − −

∫ ∫ ∑

∫ ∫





,  (2.8) 
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( )( ) ( )
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i
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T ds ds dl
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t
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φ φ

φ

ρ φ φ

φ

η
Ω Ω Ω

Ω∂ ∂Ω

∂

∂
= −

∂

−

∂

−

∂
− + ∇ −

∂

∇ − − −

∫ ∫ ∫

∫ ∫





 , (2.9) 

where eφ  and tφ  are the weighted functions for the governing equations and boundary conditions 
of the order parameters and temperature field, respectively. Since the finite element interpolation 
scheme satisfies the Kronecker Delta property at the Dirichlet boundary, the essential boundary 
condition can be applied by adding an additional term on the residual after rearranging the global 
matrix. So the last term in LHS of both (2.8) and (2.9) is canceled.  

Applying divergence theorem on Eq. (2.8) gives 

 3 22( )i
e i i i j e e i e

j i
n dlds L Lk ds

t
η φ η η η η φ φ η η φ

≠
Ω Ω ∂Ω

+ +
∂

− ∇ ∇= ∇− − +
∂∫ ∫ ∑ ∫  . (2.10) 

In this work, only case for Neumann boundary condition is insulation so 0h = . Substitute (2.3) into 
(2.10) we have: 

 3 22 )(i
e i i i j e e i

j i
ds L Lk ds

t
η φ η η η η φ φ η

Ω Ω
≠

+ +
∂

− ∇= − −
∂

∇∫ ∫ ∑   . (2.11) 

Similarly, applying divergence theorem gives  

 ( )( ) ( )
flux cont

p diff L ut t ct t tTds ds dl dlTC k Q Q h h T T
t

φ φ φ φ φρ η
Ω Ω Ω ∂∂ Ω

∂
+ + −

∂
∇ ∇ = + +∫ ∫ ∫∫ . (2.12) 
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Eq. (2.11) and (2.12) are the final weak form of the governing equations. 

For time discretization Euler Implicit Method is applied for Eq (2.12) which gives 

 
( )( )

1 11

cont

flux cont

t t
t t t c

t
p diff

t
L pt t t u t c l

C T tk t

t t

T ds h

C
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++
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∂
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+

∂

∇

∆

∇ +

+

=

+∆ +

+ ∆ ∆

+ ∆

∫
∫ ∫

∫
∫


 . (2.13) 

While discretizing Eq. (2.11) the value of order parameters is taken from the previous time step 
because it’s a third-order polynomial of order parameter which is less computational efficient in 
implicit form. In addition, the cross-terms for the order parameters and temperature, i.e., 𝛾𝛾(𝑇𝑇) and 
𝑄𝑄(𝜂𝜂), in the governing equations are evaluated explicitly based on the information at time t to 
avoid nonlinearity of fully-discretized equations. Use the value of the next time step for gradient 
energy term for stability. Eq. (2.11) could be rewritten as 

 ( ) 1 3 2( )( 2 )
t

t
i e e i e i i i i j

j i

tLk ds t dsLηφ φ η φ η η η η η
+

Ω Ω
≠

−+ ∆ ∇ ∇ = ∆ + +− ∑∫ ∫ .  (2.14) 

Consider the Petrov-Galerkin Method, namely the test functions and order parameters use the same 
shape function which could be written as 

 

i i

e e
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T

η η
φ φ

φ φ

 ≈
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 ≈

  (2.15) 

where pN  indicates the shape function corresponding to the pth node while pφ   and p
iη   are the 

nodal values. Here the Einstein summation convention is employed for the repeated index. 

Doing the substitution rewrite Eq. (2.13) and (2.14) into 
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N N h

N

T d

C T N t

t

ρ

η ρ

+ +

∂

∂Ω

∂

Ω Ω

Ω

Ω

+ ∆ ∆

∆ + +

∆

+

+

+ ∆

=∫

∫ ∫

∫

∫
 , (2.16) 

and 

ICCM2020, 9th -12th August 2020

232 



 

1

3 2

(

(

)

( ( ) 2 ( ) ))

tq p p
r r i

t

q p p p p p p r r p p
i i i i

q p

j
j i

tLkB B ds

N N t N N N N ds

N N

L

η

η η η η η

+

≠

Ω

Ω
+− −

+ ∆ ==

∆ +

∫

∑∫
  (2.17) 

Where p
rB  is the Cartesian coordination rx  derivative of shape function pN . 

In this work, isoparametric elements are employed. In 2-D cases Shape Functions could be 
expressed using isoparametric coordinate such as 

 






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,

M

N

NN

N

θ γ

 
 
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 


  (2.18) 

The derivative matrix of shape function in isoparametric coordinate is then 

 

 

 
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 

 , (2.19) 

Which can be transformed into Cartesian coordination using the Jacobian matrix such that 
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  (2.20) 

Rearranging Eq.(2.16) and Eq.(2.17) gives the final form of Finite element equation which is 
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where 

 ( )( )pqp q
r r

q p tL T kB B dsK N Nη γ
Ω

+= ∆∫  , (2.22) 

 
( )

( )
3 2

(

( ) 2 ( ) )

(

)

q

i

q p p p p
i i

p p r r p p
i i j

j

t

T

i

N N t N

N N N ds

R L Tη γη η

η η η
≠

Ω
∆ +− −

+

=

∑
∫

 , (2.23) 

 ( )
cont

qp p q p q
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p q
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and 
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flux cont

q qp q p q
dif

tt q

c

q q p q
L p

f

T

u

ds

k N N h dl N N h T dl

R T t Q Q C T N N

t t

η η ρ
Ω

Ω∂ ∂Ω

= ∆ + +

+ ∆+∆∫ ∫

∫
 . (2.25) 

qpKη  and qp
TK  are defined as the global stiffness matrix. 

Equation (1.20) can be solved using a fully implicit approach. Nevertheless, the solution of the 
order parameters requires a frequent update of the variable domain, which is determined by the 
current temperature distribution. Solving the order parameters and temperature field 
simultaneously may lead to convergence issues. Thus, a staggering strategy is adopted for the 
numerical solutions of Eq(2.21). In specific, the order parameters are calculated, assuming 
isothermal condition by using the temperature from the previous time step. Then the latent heat is 
given using the order parameters from both time steps as 

 ( )
1t t

i i i iQ H
t

ηη ηη
η

+
−

=
∆

   (2.26)  

Secondly, substitute the latent heat into (2.21) for the temperature of the next time step. After the 
temperature of the new time step is solved, the next iteration starts. 
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2.3 Initial and boundary conditions for the order parameters 

The global geometry is meshed into separated elements, but only some of them are involved in the 
Phase-field simulations. The global stiffness matrix and Residual are constructed with their element 
matrices. Those elements together are referred to as the computational area of order parameters in 
this work. 

For the initial condition of Grain Growth simulation using Phase-field starting from the liquid phase, 
all the order parameters are initialized with a random value distributed in a very small range 
centered at zero. The free energy tends to minimize itself, and the liquid phase is not a minimum, 
so the order parameters would start developing to a solidified phase. Around the vicinity of zero, 
the dominant driving force for the order parameters is provided by the derivative of free energy. 
When the value of order parameter is among 0 to 1, the first-order term of Eq. (2.1) in the bracket 
is dominating while the contribution of the third-order term could be ignored. That gives 
exponential-like growth to order parameters when they are all around zero. Among them, there will 
be an orientation that preserves the largest order parameter. The max order grows much faster than 
the others and suppresses them because of the third term in the bracket. As the value of order 
parameters gets close to the solid phase, the gradient term starts to become the main influence. The 
influence is not on the value point itself, but the points around it. If a value point has already 
solidified and the points around it are still near the liquid phase, it tends to turn the around points 
into the solid phase the same to itself. As a result, there will be some points sporadically distributed 
on the computational area of order parameters where the cores of the cells are formed and propagate. 
When two cells meet during development, they merge into one if they are of the same order, or an 
interface would be formed if they are different.  

The same initialization method for the liquid phase would be used in this work. During the 
simulation, when the average temperature of an individual element drops below maxT  which is a 
given constant, the values of all parameters would be initialized, and the element would be included 
in the computational area of order parameters. On the other hand, if the temperature of a solidified 
element rise above maxT , the order parameters would be reset to zero, and the element would be 
removed from the computational area of order parameters. 

As the solidified material cools down, the grain growth process stops, giving the final grain 
structure. In the simulation, when the temperature of an element drops below a given constant minT  , 
the element would be removed from the computational area of order parameters, and all the order 

Figure 1 Staggering stragtegy 
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parameters of it would remain fixed at that time step. Moreover, if the temperature of a solidified 
element reaches minT  , it would be included in the computational area of order parameters. 

The temperature coefficient ( )Tγ  is defined among the range [ ]min max,T T . ( )Tγ  should be an 
increasing function for the grain growth process is more active when the temperature is higher.  

There are three kinds of boundaries of the computational area of order parameters, namely liquid 
boundary, solid boundary, and geometry boundary. The solid boundary and liquid boundary are 
self-explaining while the geometry boundary refers to the boundary that the computational area of 
order parameters coincident with the global geometry’s boundary.  

According to the experiment result, the grain growth direction is the same as the temperature 
gradient. The interfaces propagate nearly perpendicular to the contours of the temperature field. So 
the boundary between the computational area of order parameters and liquid is set to insulation 

because on insulation boundary 0n
x
η∂

=
∂
  , which means that the cell interface would be 

automatically perpendicular to the boundary. Also, insulation boundary is applied to the geometry 
boundary. The solid boundary is applied to fixed boundary conditions for the continuity of the 
boundary in final results. 

2.4 Spatial discretization 

For the finite element method, the meshing strategy is always a critical issue impacting the result. 
As mentioned above, interfaces are formed during the simulation. Unlike Monte Carlo method or 
Cellular Automata, the interfaces in phase-field method the interfaces have space continuity. So 
the mesh for Phase-field calculation must be fine enough to capture the interfaces otherwise the 

Figure 2: Grain boundary 
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result would be unjustifiable. Depending on the type of element and shape function applied, the 
mesh size could vary. However, the element size should always be larger than the interface width. 

Due to the fact that the heat conduction equation has been proved to be stable and converging, and 
the order parameter simulation is only carried on at high-temperature area, The mesh for the parts 
that probably only temperature calculation is involved, on the other hand, could be much coarser. 
This strategy of meshing can improve the efficiency of the simulation significantly. 

 

 

Algorithm 

Table 1 Algorithm 

Algorithm  

Step 1: Update the computational area of order parameters ( )TΩ   using temperature information. 
Set all elements with average temperature among [ ]min max,T T  activated in Phase-field calculation. 

Step 2: Update the global stiffness matrix Kη  and residual 
t

Rη   for the new computational area 
of order parameters. 

Step 3: Apply fixed boundary condition to solid boundary condition. Solve for swap matrix Ls  
using  
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 
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Step 4: Solve for stiffness matrix and residual for order parameters in new DOF coordination : 


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Step 5: Solve for new order parameters under boundary condition   
1

i

t t t

i iK R Kη η ηη η
+
= −  

Step 6: Swap order parameter back to original coordination [ ]


1
1

t
t

Ls
η

η
η

+

+  
=  

  
 

Step 7: Solve for the latent heat 

1t t

i i i i
LQ H

t

ηη ηη
+
−

=
∆

 

Step 8: Solve for temperature ( )1
,

t tqp p q
T TK T R T η

+
=   

Step 9: Back to Step 1 if the max simulation time is not reached yet, otherwise terminate. 

 

3 Simulation Example 

The scenario of the simulation is the solidification of a melt pool of the PBF process. All the initial 
temperature information and the shape of the melt pool is gained from a PBF simulation.  

  

Figure 3: Geometry and initial temperature distribution 

The result of the simulation has been validated with the experiment result. The dimension of the 
geometry is 1000 800 360 mµ× ×  . The material is set to be aluminum. During the PBF simulation, 
a Gaussian distributed heat flux simulating laser beam is applied which takes form as  

 
( )( ) ( )( )

2 2exp 2 c cx x t y y tAPq
r rπ

 − + −
= −  

 
  (3.1) 
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where A  is a constant related to laser absorption, P  and r  are power and radius respectively.   The 
approach employed for PBF simulation is the Hot Optimal Transportation Meshfree Method 
(HOTM). [26] 

The simulation of this work takes place on a section of the geometry at the center of the laser beam 
on the last time step. No heat source is introduced to simulate the scenario when the laser is 
suddenly retracted.  

The size of the geometry is 800 mµ  in width and 360 mµ  in height. For the right, the left and 
bottom edge of the geometry insulation boundary condition is applied. For the top boundary, the 
convection boundary condition is applied. 

  

 

As mentioned above the simulation for order parameters is not carried on for the whole geometry. 
Only a part of the geometry that contains the whole melt pool is employed as the computational 
area for the order parameters. Consider a half ellipse area centered at the middle point of the top 
edge with semi-major axis equals to 75 mµ  and semi-minor axis equals to 60 mµ . At the initial 
time step, all nodes on the edge of the half ellipse are below the melting temperature. Since the 
melt pool is shrinking as cooling, the liquid area will not exceed this half ellipse area. So it’s 
justifiable to define the half ellipse area as order parameters computational area of order parameters, 
which has a much finer mesh than other areas. The average element size for order parameter 
computational area is 0.5. The initial grain is generated next. Set all the element activated then do 
the pure Phase-field simulation until all the domain has been covered by completely developed 
grains. 

 

Table 2: Constants specification 

Constant  Value 

Dimension of the order parameter vector 2 10.1k m sµ −=  

 

/K 

Figure 4: Mesh for the whole geometry and Mesh for the melt pool 
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Mobility coefficient 

 

12 10 ^ 6L s−= ×  

Time step interval 

 

0.2 10 ^ 8dt s= × −  

Dimension of the order parameter vector 25grainN =  

Activated temperature min max[ , ] [800 ,900 ]T T K K=  

Latent heat coefficient over density and 
h  i  

/ 350pH C Kρ =   

Heat diffusivity 7 2 2 1/ 9.75*10pk C kg m s Kρ µ − − −= ⋅ ⋅ ⋅  

 

All the coefficients of the Phase-field model are the same as how they were set in grains 
initialization. As the simulation goes on the liquid melt pool shrinks and the grains start to grow at 
the direction the liquid-solid interface proceeds. The trend of growing coincident with the 
temperature gradient as the melt pool cools down. The result is shown in Fig 5. 

How the temperature range affects the final result is 
also examined, simulations with different 
temperature windows have been done for 
comparison. Three different temperature ranges are 
tested: [750,900]  , [800,900]  and [850,900]  . From 
the comparison of the results from different activate 
temperature ranges, some conclusions could be made. 
As the temperature range decreases, the average time 
for a particular location to be activated for Phase-field 
simulation gets longer. With larger temperature range 
the cell boundary tends to be smoother, and the 
average grain size increases, the average length-width 
ratio decreases. 

Next, the effect of the heat coefficient function ( )tγ  

is investigated. In the examples above ( )tγ is just a linear function with value 0.5 at minT  and 2 at 

maxT  . Although how the temperature affects the grain growth is unknown, the way ( )tγ affects the 

final result can be studied. ( )tγ  is an increasing function for grain growth is more activated when 
the temperature is higher. In this work, three types of ( )tγ  are considered which is 

 

 

Table 3: Average length width ratio for 
different temperature range 

Temperature range Value 

[750,900] 10.418 

[800,900] 9.788 

[850,900] 9.511 
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 . (3.2) 

 

 

    

    

Figure 5 shows the development of order parameter vector 
magnitude of time step 1, 2500, 5000, 9050 and temperature 

distribution of time step respectively. At time step 9050 all the 
average temperature of the elements drop below Tmin, so the 

grains development is completed. 
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The total time steps for ( )1 tγ , ( )2 tγ , ( )3 tγ  to complete calculation is 9000, 9050, and 9000, which 
are very resembling. That suggests the average developing time period for elements are not affected. 
However, for convex ( )tγ the Phase-field driving force higher at the same temperature comparing 
to concave one. So the cells in Fig A are more coarsened and developed than ones in Fig C while 
the linear scenario is between them. 

 

In the results above, the figures shown are all contour of the magnitude of the order parameter 

vector [ ]η  . The orientation of each cell is stored in [ ]η  . Figure 8 is the contour of 
1

Ngrain

i
i

Arg iη
=

= ×∑ , 

from which the difference between each orientation is represented. Figure 8 shows the result of 
Benchmark 2018-002 

A B 

C 

Figure 7: A: Final result for convex heat 
coefficient function; B: linear; C: concave. 
Time step of A,B and C: 9000, 9050, 9000 

Figure 6 Heat coefficient functions 
 

Figure 8 Orientations for cells 
 

Figure 9 Experimental result of AM 
Benchmark 2018-002 
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4 Conclusion and Discussion 

In this work, a thermal coupled phase-filed model is presented. The model is based on Allen-Cahn 
equation and heat transfer equation. By introducing latent heat and temperature coefficient, order 
parameters and temperature field are coupled. Finite element method is introduced to solve the 
weak forms of the governing equations numerically. An example of benchmark simulation is 
shown. The model demonstrates the feasibility of simulating microstructure development in the 
PBF process using phase-filed method. The phase-field model for the grain growth process can be 
applied to irregular geometry by using the Finite Element method. The columnar shaped cell with 
the growing direction compatible to the temperature gradient is generated as a result which 
resembles the experiment results. By adjusting minT   , maxT  and ( )tγ  the grain structure can be 
manipulated. In addition, the model is based on solving a set of governing PDEs such that many 
mature numerical methods can be applied to ensure accuracy, efficiency, and stability. 

Currently, the result provides shapes of the grains and interfaces, but specific orientation is not 
given. A method is needed for assigning orientations to each order parameter according to statistic 
results from the experiment. Improvement of the governing equations and the form of free energy 
density for different materials and scenarios and higher accuracy may be investigated. Though the 
columnar shaped cells are simulated, the definition of the coefficient related to the coupling of heat 
and Phase-field model, namely the heat coefficient function ( )Tγ , maxT and minT   are based on the 
assumption made from basic material properties. More works are needed for investigating the 
mechanism of the coupling and matching up the simulation results and experiments. These 
improvements should be addressed in more details. 
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Abstract 

It is known that one of the most progressive and most used in world medical practice friction 

couples in total hip arthroplasty (THA) is a couple including ceramic elements. This is due to 

the fact that currently, due to the influence of negative factors of a deteriorating environment, 

the age rejuvenation is noted for patients who already need a total hip replacement (THR) in 

terms of indicators and for which it should has the longest service life. The popularity of 

ceramics is due to the fact that it has the highest wear resistance, it and its wear products are 

bio inert  and practically do not cause osteolysis due to the response of the immune system to 

these ones.  

But ceramics has a very important drawback: it is fragile and with significant dynamic loads, 

for example, when jumping from a height, it can be destroyed in mating with the tapered neck 

of the THR stem. To prevent this factor, a number of known designs have been proposed in 

which a ceramic head mates with the neck of a stem by means of a plastic or metal sleeve that 

is not fixed motionlessly to the head. This creates a movable joint in the indicated site during 

THR operation due to the effect of cyclic loads. The presence of a soft plastic sleeve 

aggravates the process, leading to loosening of the unstable connection between the head and 

neck, instability in the elements of the THR, impaired joint biomechanics and manifestation 

of pain syndromes, and, consequently, the need for revision arthroplasty.  

The main goal of the work is to develop the design of a THR with a modular ceramic head 

having metal properties in mating with the tapered neck and ceramic properties on the bearing 

surface of a friction couple by creating a low-cost, low-toxic, durable joint of alumina or 

zirconium ceramic and titanium alloy to obtain a soldered connection, operable in human 

synovial fluid. Using finite element analysis, a qualitative and quantitative assessment of the 

strength and stiffness of the proposed head design was performed. 

 Using a head of this design will allow not only to realize the main advantages of a ceramic-

ceramic friction couple in THR, but also ensure that there are no breaking loads for ceramics 

at the tapered place of the head and stem, as well as undesirable physicochemical processes in 

this conjunction, for example, fretting-corrosion which is also known to be present and in 

existing commercial ceramic THR. The indicated advantage is due to the presence of 

homogeneous biocompatible metal materials (Ti-based alloy) in their join.  

Keywords: total hip replacement; ceramic friction couple; ceramic head; soldering  

 

Introduction 

In world medical practice, there are currently many different designs of total hip arthroplasty 

(THA), the use of which is due to certain clinical indications. They differ both in the method 

of fixation (cement and cementless) and in the clinical frequency of use (primary and revision 

hip replacement). But they all represent a modular design of an artificial spherical joint of 
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total hip replacement (THR), which usually includes a prosthesis stem jointed to the spherical 

head by means of a conical neck, and an acetabular cup, in turn, consisting of several 

components including a liner. In this case, the head and liner compose a friction couple, 

which can be divided into two groups according to the hardness characteristics of the 

materials used in it. The first is a solid head (metal or ceramic) and a soft liner made of ultra-

high molecular weight polyethylene (UHMWPE), and the second is a solid head and liner 

(metal, ceramic, or sapphire single crystal). 

As practice shows, approximately 85% [1] of all THR failures occurs due to the response of 

the human immune system to debris (wear products) released in the friction couple, which 

leads to osteolysis and aseptic loosening of the THR elements, i.e. disturbance of its fixation 

in bone tissues and the need for further revision arthroplasty. For this reason, the use of 

friction couples with solid materials aims to reduce the wear rate compared with a friction 

couple including UHMWPE, and thereby extend the lifespan of the THR. However, according 

to literature, the THR with an ideal friction couple has not yet been obtained, since these 

couples with solid materials have a number of significant drawbacks that limit their clinical 

use [2].  

Briefly, these friction couples can be described as follows. As the metal in the friction couple 

including metal, CoCr alloy is used, which has a significantly lower wear rate than 

UHMWPE, the wear particles are much smaller in size, and their number is much larger. In 

addition, it turns out that the sensitivity of the immune system is affected by the total surface 

area of the particles, which in the case of a metal on metal pair is only 30% less than that of a 

couple including UHMWPE [2]. At the same time, the join of the THR stem neck made of 

VT1-0 titanium alloy with the head is an electrolytic couple, where fretting-corrosion occurs 

in the host environment, adding the amount of foreign particles to the body. VT1-0 titanium 

alloy is such a grade in the classification of materials of the Russian Federation and 

corresponds to approximately the well-known grade of Ti-6Al-4V titanium alloy. Moreover, 

Co and Cr ions are toxic in nature, have the ability to spread throughout the body and 

accumulate in its vital tissues, which in more than 5% of cases can lead to very serious 

allergic complications.  

Another couple of ceramics includes components (head, liner) made of alumina or zirconium 

ceramics, the latter of which can be stabilized with yttrium. Ceramics have high hardness and 

wear resistance, are almost bio inert, and, it would seem, have ideal properties as the material 

of a friction couple. But it has a very important drawback - fragility, and when the head is 

coupled with the conical neck of the stem there is a possibility of a ceramic head cracking in 

case of intense dynamic loads. In this case, at the revision arthroplasty, it becomes necessary 

to hip replacement only with a ceramic couple, since it is not possible to extract from the 

tissues all small sharp fragments of collapsed ceramics, which, if they fell into a friction 

couple, especially with using UHMWPE, would lead to catastrophic avalanche-like wear of a 

new couple. In addition, in some cases, a squeak occurs in the ceramic friction couple, which 

reduces the quality of life, especially in young patients who are shown such THR with a high 

level of resource. In [1], it was studied that a friction couple of ceramic head on UHMWPE 

liner has one of the lowest friction coefficients, which, moreover, is a low-cost friction couple 

in all respects, which would be a serious incentive to increase the number of hip arthroplasty 

by reducing the cost of the implant while increasing its reliability and resource. In addition, 

the wear of a friction couple with UHMWPE was evaluated numerically in studies [3-5]. 

It becomes obvious that it is possible to increase the reliability of the THR if it were possible 

to solve the issue of high-quality motionless fixation of the ceramic head with the stem neck. 

For this, a number of designs have been proposed in which a cylindrical hole is made in the 

ceramic head for mating with the stem neck, into which a plastic gasket is inserted [6]. Since 

the head, as a rule, is secured from axial movement in the acetabular component while during 
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Figure 1. Scheme of a two-

element head [8] 

 

THA, if there are certain dynamic loads during the THR operation, this will contribute to the 

creation of axial cyclic forces leading to relative displacement of the head and stem in their 

cylindrical join. The presence of a soft plastic gasket sharps the process, leading to loosening 

of the weak connection between the head and neck, instability in the THR elements, impaired 

joint biomechanics and the manifestation of pain syndromes, and, therefore, the need for 

revision arthroplasty.  

A different solution was proposed and promoted by Smith & Nephew, which made a head of 

all-metal zirconium alloy (97.5% zirconium and 2.5% niobium), and on its surface formed a 

layer of zirconium ceramic (zirconium oxide), called OXINIUM, by a special process of 

blowing the head oxygen and its diffusion into the crystalline structure of a metal alloy [7]. 

According to the advertising of the company, such a head has the property of metal and 

ceramics at the same time, which should prevent the breaking of ceramics and increase the 

wear resistance of the THR. But the thickness of the ceramic layer at the specified head does 

not exceed 7 microns, at the border of which there is a sharp decrease in hardness. In addition, 

despite the advertising materials of the company, the degree of adhesion of the ceramic layer 

to the base metal at such a thickness remains debatable. At the same time, there is a high 

probability of breaking the ceramic layer when foreign abrasive bodies get into a friction 

couple, since there is still not enough long-term reliable information on the performance of 

THRs with such materials in vivo. In addition, the head has an increased mass due to the high 

specific gravity of the zirconium alloy, which shifts the center of mass of the entire THR from 

the position of the center of mass of the natural joint, increasing the shoulder of the dynamic 

component of the load at the THR and stimulating the weakening of its fixation. 

Also known is the design of the head, consisting of two elements, external and internal [8]. 

The outer element 1 is made of hollow alumina (Al2O3) or zirconium (ZrO2) ceramics and its 

outer surface has a spherical convex shape, and the inner cavity can have any shape 

convenient for the manufacturing process, for example, close to spherical (Fig. 1). At the 

same time, this surface should have rough processing for 

good adhesion with the internal element 2, which is a 

metal base with an axial conical hole 3 made in it. The 

metal for the internal element can serve as the titanium 

alloy VT1-0, as the purest alloy and biocompatible with 

the autoimmune system of the body. The conical hole 

serves to securely join the THR stem neck 4 and has the 

dimensions of Morse cones traditionally used in the 

manufacture of hip replacements (16/14 or 14/12 over a 

length of 1 inch). The thickness of the ceramic layer is 

determined by its sufficient strength and rigidity when 

working with both a UHMWPE liner and a ceramic one. 

But the indicated head design does not indicate how it is 

possible to obtain the upper ceramic layer on the spherical 

surface of the titanium alloy and their strong adhesive 

bonding with significantly different coefficients of 

thermal expansion of these materials. 

A more detailed analysis of the use of the above friction couples used in modern THA is 

considered in the study [2]. 

The aim of this study is to develop the design of the head of a THR, which has the properties 

of a metal in join with the stem neck and the properties of ceramics on the bearing surface of a 

friction couple and having a lower mass than the head of an all-metal zirconium alloy. 
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Figure 2. 3-D model of a THR 

assembly composition 

 

Figure 3. An axisymmetric finite element 

model of the head with liner and stem neck 

one of the analyzed options for such a model 

 

Development of the THR head design 

To achieve the stated goal, the head design is proposed as the head much more 

technologically advanced which is presented in the THR assembly composition in Fig. 2 and 

is in the stage of process on patenting for invention. Here 1 is the liner for acetabulum cup, 2 

and 3 are the elements of the composite head, 4 is the THR stem neck, on which the head is 

installed. Element 2 of the head can be made of ceramic based on zirconia partially stabilized 

with yttrium oxide ZrO2(Y2O3), corundum-zirconium composite ceramic Al2O3 – ZrO2 

(Y2O3) or ceramic based on alumina Al2O3. Element 3 of the head acts as an intermediate 

sleeve between the ceramic element 2 and the stem neck 4 and is made of titanium alloy VT1-

0, has an external cylindrical or conical shape with a deaf end and contains an axial deaf 

conical hole for a taper 16/14 or 14/12. The THR stem is also made of VT1-0, which thereby 

eliminates the occurrence of fretting corrosion in their join. In the indicated figure, elements 

at positions 1 and 4 are shown only as conjugate elements. Elements 1 and 2 constitute a 

couple of sliding friction in the THR. The elements of the head 2 and 3 are interconnected 

motionless by means of high-temperature soldering, the technological process of which is 

currently developed and is in the process on patenting for invention. 

 

   

Materials and methods 

To theoretically substantiate the proposed head design, a three-dimensional model was 

developed in which the analyzed head is articulated on one side with the conical THR stem 

neck and, on the other, with liner 1 of the acetabulum (Fig. 2). The end face of the liner is 

perpendicular to the longitudinal axis of the neck. To simplify the simulation model, a force F 

is applied to the stem neck and acts along its axis. Then, through the Morse cone, it is 

transmitted to the corresponding elements of the head and then the liner, the outer surface of 

which is fixed from all movements. The magnitude of the force is 2.6 kN, which exceeds the 

weight of a person with support on one leg by more than 2.5 times and is a projection onto the 

longitudinal neck axis of the maximum value of the vertical force of 3 kN acting on the joint, 

according to ISO Standard [9]. Such a solution allowed us to create an axisymmetric finite 

element model of the head with liner and cup in only one quarter of it and thereby 

significantly increase the accuracy of the calculation by increasing the number of finite 
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elements without thereby increasing the calculation time. Fig. 3 shows one of the analyzed 

options for such a model. There is no gap between the head and the liner, which provides a 

solution in excess. 

Three standard external head diameters are used in the designs of THR: 22, 28 and 32 mm. 

Moreover, the larger its diameter is, the higher the reliability of the implant, since it is more 

resistant to dislocation. From these positions, a head with a diameter of 32 mm was adopted 

for study. 

During the study, the following parameters were used as variable values. Material for 

the ceramic layer: alumina ceramics (Al2O3) - with Young's modulus = 370 ... 380 GPa, 

Poisson's ratio = 0.22, tensile strength in bending = 300 ... 350 MPa; yttrium stabilized 

zirconia ceramics (ZrO2 / Y2O3) - with Young's modulus = 200 ... 210 GPa, Poisson's ratio = 

0.3, ultimate tensile strength in bending = 750 ... 1050 MPa. Materials for liner: UHMWPE 

obtained by melting from GUR 1020 resin, with Young's modulus = 1400 MPa, Poisson's 

ratio = 0.46, yield strength = 21.9 MPa; two mentioned types of ceramics. For the inner 

element of the head and for the stem neck, VT1-0 titanium alloy was used: Young's modulus 

= 112 GPa, Poisson's ratio = 0.32, and yield strength = 265 MPa. With these materials, the 

thickness of the outer ceramic element of the head at its end with hole was varied for the two 

standard cones mentioned above. 

In the ANSYS software environment, the contact problem of the interaction of the outer 

ceramic element of the head with the inner element of titanium alloy was solved, while both 

the inner surface of the ceramic element with the rough option was accepted as the contact 

surface, the most relevant to the actual contact conditions, and the outer surface of the element 

made of titanium alloy. As a result of the solution, we obtained patterns of the distribution of 

contact pressures and strains on the contact surface, as well as stresses and strains in all 

components of the finite element model over the thickness of their section. 

To be sure of the reliability of the results, the developed model was divided into a grid of 

finite elements bricks and wages, giving the values of the simulation parameters closest to the 

actual values. In this case, the calculations were performed for various mesh sizes, i.e. 

different amounts of finite elements, until the error in the magnitude of the obtained contact 

pressures, as the most sensitive to the accuracy of the calculations, turned out to be less than 

5%. 

 

  

a)                                                                    b) 

Figure 4. Chats of changes in contact pressure on the number of finite elements for a 

head with ceramic: a) alumina; b) zirconium 

 

This study was performed for two types of ceramics with a liner made of UHMWPE. It turned 

out that the necessary accuracy of calculations is already being achieved, approximately, with 

48500 elements. Fig. 4 shows the dependence of the maximum contact pressure on the 

number of finite elements for a head with two types of ceramics. In addition, the figure also 

shows the values of contact pressures if the outer surface of the titanium element also acts as a 
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contact surface. As can be seen from Fig. 4a, alumina ceramics are most sensitive to the 

number of finite elements and the contact pressures for it and the titanium alloy are different, 

since the mechanical characteristics of these two materials are quite different, and in the case 

of zirconium ceramics, the pressures practically coincide (Fig. 4b), which due to the very 

close mechanical characteristics of the materials. 

Based on the analysis performed, all further calculations were carried out in the presence of 

48500 finite elements in the model, varying the thickness of the ceramic element of the head 

from 1 to 3 mm at its end with hole, the size of the Morse cone, the type of ceramics, and the 

liner material (UHMWPE or ceramics). 

Results and discussion 

Initially, a study was made of the head design, where aluminum oxide ceramics acts as a 

ceramic element, the liner is made of UHMWPE and the size of the cone is 16/14. Fig. 5a 

shows charts of maximum contact pressures on the contact surfaces of both ceramics and a 

titanium alloy depending on the thickness of the ceramic element at its end with hole.  

 

   
                                      a)                                                                         a) 

  
                                      b)                                                                         b) 

  
                                       c)                                                                         c) 

Figure 5. Charts of changes depending on the thickness of the alumina ceramic element: 

a) maximum contact pressures on the surfaces of ceramics and titanium alloy; b) 

maximum stresses and c) von Mises strains in the stem neck, in two elements of the head 

(titanium alloy and ceramic) and the liner. Vertically left is for Morse cone  16/14, right 

is for 14/12 one 
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Figures 5b and 5c show charts of the maximum stresses and von Mises strains also depending 

on the thickness of the ceramic element in the stem neck, in two elements of the head 

(titanium alloy and ceramics) and liner. In this case, the calculation results for the cone 16/14 

are shown vertically on the left, and for 14/12 on the right. 

Looking at the results (Fig. 5) vertically from the left for the cone 16/14, it can be seen that, as 

the thickness of the ceramic element of the head increases, the contact pressures both on the 

ceramic surface and on the surface of the titanium alloy increase uniformly, since the contact 

area in this case decreases. Moreover, they differ by a certain amount, since the mechanical 

characteristics of this ceramics and titanium alloy differ. The equivalent stresses and von 

Mises strains in terms of the thickness of the solid components (ceramic and titanium 

elements of the head) and the stem neck tend to increase, varying slightly from 1 to 2 mm in 

thickness and increasing more intensively from 2 to 3 mm. The highest stresses and least 

strains among these components are experienced, apparently, by ceramics for the reason 

indicated above. The maximum stresses in it at a thickness of 3 mm are approximately 94 

MPa. The above parameters practically do not change depending on the thickness of the 

ceramics with UHMWPE liner, since it has the weakest mechanical characteristics in this 

composition.  

 

  

      a)                                                                     a) 

  

                                       b)                                                                    b) 

  

                                       c)                                                                     c) 

Figure 6. Charts of changes depending on the thickness of the zirconium ceramic 

element: a) maximum contact pressures on the surfaces of ceramics and titanium alloy; 

b) maximum stresses; and c) von Mises strains in the stem neck, in two elements of the 

head and in the liner. Vertically left is for cone 16/14, right is for 14/12 one  
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If we now pay attention to the results of the right vertical part of Fig. 5 for the cone 14/12, we 

can see a decrease in contact pressure in magnitude with a ceramic thickness of 3 mm by 

about 35%. But the von Mises stresses in ceramics and in the titanium components of the 

composition practically switched places in magnitude. This is because the dimensions of the 

titanium element in the head have increased. 

 

  

                                       a)                                                                        b) 

  
                                       c)                                                                        d) 

Figure 7. Charts of changes depending on the thickness of the zirconium ceramic 

element of the head for cone 16/14: a) and b) maximum contact pressures on the 

surfaces of ceramics and titanium alloy with liner from alumina and zirconia ceramics, 

respectively; c) and d) the maximum von Mises stresses in the stem neck and in two 

elements of the head with similar liner materials 

 

Next, a study was made of the head design, where zirconia ceramics were adopted as a 

ceramic element for a head with a cone 16/14 (Figure 6 vertically to the left) and for a cone 

14/12 (Fig. 6 vertically to the right) and UHMWPE liner. Considering the presented charts, it 

becomes obvious that the qualitative picture of changes in the analyzed parameters of strength 

and stiffness of the proposed THR composition for two sizes of cones approximately 

coincides with the above study. Existing differences are observed in the quantitative 

assessment of contact pressures and von Mises stresses in solid components (elements of the 

head and stem neck). The contact pressures in the ceramic element of the head decrease in 

magnitude by approximately 35%, and the von Mises stresses decrease by 25%. Moreover, 

the pressure on the contact surfaces of both ceramic and titanium elements of the head almost 

coincided. All this is due to the very close mechanical characteristics of these materials. 

A THR composition was also studied, where aluminum oxide or zirconium ceramic 4 mm 

thick with a zirconium ceramic element of the head was adopted as the liner material. Fig. 7a 

and 7b show charts of changes in the maximum contact pressures on the surfaces of ceramics 

and titanium alloys with liner from alumina and zirconia ceramics, respectively, depending on 

the thickness of the zirconium ceramic element of the head for cone 16/14. And in Fig. 7c and 

7d there are charts of the maximum von Mises stresses in the stem neck and in two elements 

of the head with similar liner materials. Unlike the UHMWPE soft liner, with a solid ceramic 

liner for these two types of ceramics, the contact pressure decreases with an increase in the 

thickness of the ceramic element of the head from 1 to 2 mm (by about 12%), and from 2 to 3 
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mm, it remains practically unchanged. This is due to the presence of a solid liner that 

contributes to an increase in contact area. Von Mises stresses uniformly increase in thickness 

by 20 ... 30% depending on the type of ceramics and stronger in alumina, due to its greater 

rigidity. 

 

   

                                       a)                                                                       b) 

  
                                       c)                                                                        d) 

  
                                        e)                                                                       f) 

 

Figure 8. Von Mises stress distribution in the components of the analyzed THR assembly 

composition: a) zirconia ceramic liner; b) head element made of zirconium ceramic; c) a 

head element made of titanium alloy; d) the stem neck; e) UHMWPE liner; f) pressure 

distribution on the contact surface of the zirconium ceramic element of the head 
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For a more complete analysis, Fig. 8 presents the von Mises stress distribution patterns in the 

components of the analyzed THR assembly composition: in the head element made of 

zirconium ceramic, the head element in titanium alloy, the stem neck, the liner made of 

zirconium ceramic, the liner made of UHMWPE. Fig. 8f shows the pressure distribution on 

the contact surface of the zirconium ceramic element of the head. 

Consider the distribution of the indicated stresses and pressures and their topology on the 

presented components of the THR. The picture of maximum stresses and their location on the 

ceramic element of the head (Fig. 8a) in the area of  join with the cone once again confirms 

the dangerous place of ceramic failure, when stresses from the inner surface contribute to its 

rupture. In the head element with a titanium alloy (Fig. 8b), the maximum stresses were found 

in the depth of the conical hole in the area of mating with the edge of the stem neck, where the 

thickness of the specified head element is practically maximum and, therefore, its minimum 

compliance. This is also confirmed by the place of their occurrence on the very stem neck 

(Fig. 8c). In addition, such a picture can also be strengthening due to the presence of an edge 

effect. As for the liners, on a rigid ceramic liner (Fig. 8d), the maximum stresses are located 

on its inner surface near the equator, where the place of action of the maximum contact 

pressures is located (Fig. 8e). On a soft liner made of UHMWPE (Fig. 8e), the maximum 

stresses also act in the equator region, but from the outside, due to the low rigidity of the liner. 

It should also be noted that in all elements of the head and liners there are no serious stresses 

in the area of their dome, and pressures at this place on the contact surface, which confirms 

the relative safety of these areas for indicated THR components. 

Conclusion  

A two-element head design of the THR has been developed, which has the properties of a 

metal in join with the stem neck and the properties of ceramics on the bearing surface of a 

friction couple and having a lower mass than the head of an all-metal zirconium alloy. This 

has become possible, since the titanium alloy VT1-0 is used for the internal element of the 

head, which has a specific gravity of almost 2 times less. For the first time, one of the possible 

technologies for the production of this head design was proposed and developed, which 

consists in the motionless connection of its ceramic and titanium element by high-temperature 

soldering. 

To justify the found constructive solutions, a three-dimensional model of the THR 

composition was developed, consisting of a two-element head, mated on one side with a 

tapered stem neck of a titanium alloy and on the other hand with an liner made of UHMWPE 

or ceramics, as well as a finite-element model of the specified composition and selected the 

accuracy of it calculation. 

As a result of the calculations, a qualitative and quantitative assessment of the strength and 

stiffness of all components of the composition was made, where the thickness and grade of 

the material of the ceramic element of the head, the size of the standard Morse cone for the 

stem neck, and the liner material (UHMWPE or the ceramics mentioned above) were adopted 

as variable parameters. Based on the analysis of the distribution of stresses and strains, the 

zones of their maximum values were revealed, which confirmed the initial assumptions that 

the most dangerous area for the ceramic element of the head is the zone at the beginning of 

the conical hole in the head, where they contribute to the rupture of this element. The 

magnitude of the stresses also depends on the size of the Morse cone: with a decrease in its 

diameter, the stresses decrease, since the thickness of the titanium element in the head 

increases with the same thickness of the ceramic.  

The grade of ceramics also affects the stresses in the ceramic element of the head, which 

increase for alumina ceramic, since it is more rigid, and decrease for zirconium ceramic, since 

it is less rigid and very close in mechanical characteristics to the titanium alloy. 
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Similarly, the contact pressure depends on the material of the liner, which increases with the 

thickness raise of the ceramic element of the head with a soft liner made of UHMWPE, and 

decreases with a rigid ceramics, since the deformation of the elements of the head increases, 

which contributes to an increase in the contact area and a decrease in the intensity of stress 

growth. 

Summing up the results of the research, it can be noted that the THR assembly composition, 

which needs to be treated with great attention, includes an UHMWPE liner and an aluminum 

oxide ceramic element of the head, the thickness of which can be recommended to be taken 

within 2 ... 3 mm, without increasing it more, so as further increases in the intensity of stress 

growth are observed. With a thickness of 3 mm, the safety factor of the respective 

components, based on the above mechanical characteristics of their materials with a standard 

cone 16/14, is approximately: for a liner made of UHMWPE - 6; for aluminum oxide ceramic 

liner - 5; for a head element made of alumina ceramics - 3.2; for a head element made of 

titanium alloy - 3.7; for the stem neck - 4.3. The obtained values of these factors show a 

sufficient margin of safety for all components and make it possible to increase the load for the 

THR. Refinement of the magnitude of the indicated thickness can be carried out in accordance 

with technological expediency. 

Further research can be directed towards a similar analysis of standard head diameters of 22 

and 28 mm, as well as clarification of the calculations performed in this study, when the 

necessary clearance will be present between the head and liner adopted in the practice of THR 

production. In addition, it is supposed to carry out simulation study of the developed head for 

impact in the LS Dyna software environment, conduct such test on the actual unit and 

compare the results. 

Thus, the studies performed make it possible to advance along the path of creating a high-

quality THR. 
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Abstract

In this paper, the node-based smoothed finite element method is improved with linear strain
functions (NS-FEM-L) and applied for contact analysis using triangular elements. The
smoothed strains are formulated by a complete order of polynomial functions and normalized
with reference to the central points of smoothing domains. They are one-order higher than
those adopted in the finite element method (FEM) and the standard smoothed finite element
method. When using linear functions to describe strains in smoothing domains, solutions are
more accurate and stable. The contact interfaces are discretized by contact point pairs using a
modified Coulomb frictional contact model. The contact problems are solved via converted
into linear complementarity problems which can be tackled by using the Lemke method.
Numerical implementations are conducted to simulate the contact behavior, including the
bonding-debonding, contacting-departing and sticking-slipping. The effects of various
parameters related to friction and adhesion are intensively investigated. The comparison of
numerical results produced by the NS-FEM-L and those of the FEM-Q4 demonstrates the
validity and efficiency of the proposed method.

Keywords: Contact analysis, Node-based smoothed finite element method, Linear strain
function, Linear complementarity problem

1 Introduction

Contact problems play important roles in many fields such as mechanics and civil engineering
[1][2]. Due to the non-smooth contact interfaces and uncertain contact regions, they are
strongly nonlinear and difficult to be analytically solved. Many numerical methods have been
proposed to solve these problems, including the finite element method (FEM) [3]-[5],
boundary element method [6] and meshless methods[7][8]. The FEM is the most widely used
approach because it is efficient and stable. Different kinds of elements can be selected in the
computation, such as triangle, quadrangle, hexagon and polygon. Triangular elements are
often preferred because of the simplicity and the adaptability for complex geometries.
However, FEM models meshed by triangles have the over-stiff behavior. To overcome this
problem, Liu et al. proposed the smoothed finite element method (S-FEM) within the G space
theory and using the gradient smoothing technique [9]-[11]. In this method, structures are
discretized by smoothing domains, which can be created based on nodes, edges or faces of the
elements, instead of original triangles. Each smoothing domain contains sub-regions
contributed by several neighboring elements [12][13], which makes S-FEM softer than FEM.
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Some models have special properties, for example, the edge-based smoothed finite element
method (ES-FEM) models are often ultra-accurate [14]. The node-based smoothed finite
element method (NS-FEM) often produces upper bound solutions [15]. Based on the gradient
smoothing technique, the approximated smoothed strain in each smoothing domain is a
constant. However, it is in fact a piecewise constant function. Because the smoothing region is
constructed based on several nearby elements. The constant smoothed strain can be regarded
as a weighted average of compatible strains in the sub-regions. It is evident that some
information is omitted in such a rough operation. This approximation makes the model
over-soft and may cause spurious non-zero energy modes when applied for vibration analysis
[16]. Recently, Liu and Li improves the S-FEM by reconstructing high-order strain functions
which are normalized with reference to the center point in smoothing domains [17][18].
Different from the constant strains in existing approaches, the reconstructed strains could be
linear or second order while described by a set of polynomial functions. The unknown
parameters are determined based on the equivalence of compatible strains and smoothed
strains for the same region in an integral sense. It was found that the linear strain NS-FEM
successfully avoid the spurious non-zero energy modes. Besides, the accuracy of stress
solutions are improved greatly [18].

When solving contact problems numerically, one of the key challenges lies on the constraints
at the contact interfaces, especially when the geometric domains of contact bodies have
complex boundaries. The well-known techniques to deal with constraints includes the
Lagrangian multiplier method [19][20], penalty method [21] and the augmented Lagrange
method [22][23]. The augmented Lagrange method is a combination of the penalty and the
Lagrange multiplier techniques. The contact constrains can also be treated by formulated into
mathematical programming [24][25] or linear complementarity problems (LCP) [26][27].
Lotstedt proved that a properly formulated LCP can always produce effective solutions [28].
These techniques are always incorporated with numerical methods in discrete calculation.

In this work we extend the linear strain NS-FEM with linear complementarity formulation to
solve contact problems. The rest of the paper is organized as follows: Section 2 is a brief
problem statement. In Section 3, the NS-FEM is introduced, including the reconstruction
process of linear strain functions. Section 4 presents the discretized equations. Finally
numerical results of three examples are given and examined.

2 Problem statement

For the elastic solid contact problems with bn bodies under external forces. The
configuration of the entire system can be assumed as i

n
i
b  1 , where the thi contact body

i is bounded by )()()( i
c

ii
u    , where )(i

u , )(i
 and )(i

c denote respectively the
displacement boundary, the traction boundary and the contact boundary (Fig. 1).

Figure 1: The configuration of the ith contact body.

Considering the modified Coulomb friction contact with small displacement on the contact
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interface, as shown in Fig. 2, the contact interface between body i and j is consist of
surface )(i

c and )( j
c . )(i

tx and )( j
tx represent respectively the position of contact

point-pairs on the corresponding contact interfaces at time t . The position of contact points at
time tt  are denoted as:

,,        ,)()()( jikkk
t

k
tt  uxx (1)

where )(ku is the displacement increment during time interval t .

Generally, the contact traction ̂ and the contact gap ĝ between contact point pairs are

analyzed using local coordinate systems. Assume body i and j as master and slave contact

bodies respectively and set a local coordinates on master contact surface )(i
c , the contact gap

at tt  can be represented in this system as:

),()(ˆ )()( ggθxxθg   t
i
tt

j
tt (2)

where T
sn ]ˆ,ˆ[ˆ ggg  , )()( i

t
j
tt xxg  and )()( ij uug  are the initial and incremental gaps

described by global coordinates. Thus T
sn ],[ θθθ  can be regarded as a transfer matrix from

global to local coordinates, where ],[ yxn nnθ , ],[ xys nnθ are respectively the unit

normal and tangential vectors at point )(i
tx on the master surface. Similarly, the contact

traction in local coordinates can be written as T
sn ]ˆ,ˆ[ˆ τ .

Figure 2: The configuration of contact interfaces at time t (left) and tt  (right).

For the modified Coulomb friction contact model with normal adhesion and tangential
slipping strength. The Kuhn-Tucker condition [29] between the contact traction and gap is:

,0|ˆ|   ,|ˆ|   with   0|ˆ|)|ˆ(|    :tangental
,0ˆ   ,ˆ   with   0ˆ)ˆ(       :normal  





ssssss

nnnnnn

gg
gg



 (3)
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where n and s
 are respectively the threshold of normal adhesion for tension and

tangential strength for slipping. Take into account the tangential adhesion in the Coulomb

friction model, nss  ˆ , where s and  denote the tangential adhesion for slipping

and the frictional coefficient, respectively.

When the normal adhesion in Eq. (3) becomes zero ( 0n ), it will be degraded to the

classical unilateral contact model. Then the relationship between the normal traction and gap

becomes: (1) 0ˆ n and 0ˆ ng when the bodies are departing; (2) 0ˆ n and 0ˆ ng , when

they are contacting. If the normal adhesion is positive ( 0n ), the normal model could be:

(1) 0ˆ n and 0ˆ ng when the bodies are debonding; (2) 0ˆ  nn  and 0ˆ ng when

the normal adhesion occurs.

Similarly, for tangential model, the tangential traction in the contact interface is within the

maximum critical value and they stick when ss  |ˆ| , that is 0ˆ sg . When the tangential

traction approaches the threshold ( ss  ˆ ), the contact bodies start to slip ( 0ˆ sg ).

The normal and tangential contact models are similar to the constitutive model of ideal plastic
material. They can be coupled together and the contact constraint complementarity can be
represented as:

,0)ˆ()ˆ(

,0|]ˆ|,ˆ[)ˆ(
,0]ˆ|ˆ|,ˆ[)ˆ(











g
T
c

T
sng

T
nssnnc

ff

gggf
f

(4)

where )ˆ(cf and )ˆ(gf g denote respectively the contact yield function and distance function.

Eq. (4) represents the contact yield criterion, that is the modified Coulomb friction law here.
When the normal and tangential adhesion become zero, it will degrade to the classical
Coulomb friction contact model. It is evident that this contact can represent almost all the
contact behaviors. When the contact yield criterion is not satisfied, the contact gap is zero. In
other words, the contact bodies are contacting or sticking in the normal direction or sticking in
the tangential direction. When the contact yield criterion is satisfied, the considered bodies
will separate or slip in one or both directions. For the convenience of computation, the slack

variables λ̂ and δ̂ are introduced into Eq. (4):
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
















0ˆˆˆ
0ˆˆˆ

0ˆˆ

sssn

sssn

nnn





(5)

and

 
sssnn gg  ˆˆˆ          ,ˆˆ (6)

where ]ˆ,ˆ,ˆ[ˆ
_ssn  λ and ]ˆ,ˆ,ˆ[ˆ


ssn δ denote respectively the normal, positive and

negative residual strength of tangential contact traction and the slack variables of contact
interval. Then we have the following equations while coupled with the linearly
complementarity problem:

,0ˆ    ,0ˆ    ,0ˆˆ
,0ˆˆˆ

,0ˆˆˆˆ







δλδλ

gδH

λατH

T

g

c

(7)

in which
T

c 










110

1ˆ 
H ,

T

g 










110
001

Ĥ , T
sn αα ],[ˆ α . Here Eq. (7) are

respectively the matrix form of the contact yield criterion, the flow equation of the contact
distance and the complementarity function showing the relation between the residual strength
of contact traction and the contact distance obtained by the Kuhn-Tucker condition.

3 Node-based smoothed finite element method

3.1 Smoothed Galerkin weak form

For a solid occupying domain  subjected to body force b , displacement boundary

conditions on u and the external applied traction t on t . It undergoes arbitrary virtual

displacement u which will give rise to virtual strain ε and internal displacement, we
have:

      


t c
dδdδdδdδ TTTTT 0τθutubucεε (8)

where c is a matrix of material constants, τ is a unknown traction.

The smoothed strain ε at location x is generally obtained by using the strain smoothing
operation as:

  ds
k

)()(~)( xxxεxε  (9)

where )(xε is the compatibility strain used in FEM, s
k is the thk smoothing domain and

 is a weight function which satisfied:

1)(  ds
k

xx (10)

There are several types of smoothing domains: edge-based, node-based, face-based and
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cell-based. In this work we concentrated on only the node-based model whose smoothing
domains are obtained by connecting the center of elements and the mid-point of edges, as
shown in Fig. 3.

Figure 3: The node-based smoothing domain based on triangular elements.

3.2 Smoothed strain functions

3.2.1 Constant strain function

The weight function should satisfy the locally support, positive and the unity properties. In
this work we use the Heaviside-type function:

,
0

/1
)(









s
k

s
k

s
kA

x
x

xx (11)

where s
kA is the area of the smoothing domain. Then the smoothed strain can be regarded as:

,1
 

 s
k

s
k

d
A

d ns
k

uLLuε  (12)

where

.
0

0 T

xy

yx
n nn

nn








L (13)

When using linear displacement functions, the smoothed strain ε in the smoothing domain
is a constant.

Note that compatible strains in each finite element is a constant when using linear
displacement functions. Node-based smoothing domains are constructed by several parts of
neighboring finite elements. Thus the smoothed strains in smoothing domains are piecewise
constant functions. Therefore, the constant strain is a rough approximation for the real strain
which may loss accuracy.

3.2.2 Linear strain function

In this work we construct linear strain fields by using a set of polynomial functions which are
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normalized with reference to the central point of the smoothing region (such as ),( ccc yxx )

),()()( 0
c

y
c

x yyxx  εεεxε (14)

where 0ε , xε and yε are undetermined coefficients. Based on the theory of the smoothing

technique, the compatible strain ε~ and the smoothed strain ε for the same computation

region are equal in an integral sense when weighted by a continuous function )( cxx  , that

is:

.)()()()(~  
s

k
s
k

dωdω cc xxxxεxxxxε (15)

Substituting Eq. (14) into Eq. (15), we have:

.)(])()([)()(~
0 xxxεεεxxxxε dyyxxd cc

y
c

x
c

s
k

s
k

  
 (16)

To determine the three unknown coefficients, three linearly independent weight functions are
created based on the first and the second moment of the smoothing domain with respect to its
center as:

22
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 xxxxxx  (17)

where 0m is the zeroth moment of the area, that is s
kAm 0 , and
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Substituting the new weight functions into Eq. (16), we have:
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Then we have a system of linear equations which can be written in matrix form as:
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The above moments can be obtained by formulas provided by Liggett [30]. Since the three
smoothing functions are nominal of different orders, the columns and rows of M are
linearly independent and reversible. Then the unknowns can be solved by

).(~)( 1 cc
d xεMxε 

 (22)

Besides, by using the Green’s divergence theorem for )(~ cxε , we have:
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Assume

,,,2,1,)()( Nkk  uxφxu (24)

Eq. (23) can be written as:
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Finally the linear strain function can be expressed as:

kk
ccccc yyxx uxBuBBBMxε )()]()([)( 210

1   (26)

where )(xB is the new strain-displacement matrix. The NS-FEM with linear strain functions

is briefly named as NS-FEM-L.

4 Discretized equations

In contact analysis, contact constraints are imposed by contact point-pairs and all these nodes
should satisfy contact equations. As shown in Fig. 4, the contact interface consists of contact
boundary of the master body and the slave body. In order to avoid the master contact surface
from penetrating too much into the slave contact surface, the grid of the slave contact surface
should be properly refined.

4.1 Search for contact point-pairs

Because the master and slave contact points on the contact interface are normally incomplete
match and the slave contact points should be denser, it is necessary to construct the contact
point pairs on the master and slave contact surfaces, including the node-to-node contact (A-F)
and node-to-projected point (C-C0) (Fig. 4). When using the Penalty method or Lagrange
method, multiple searches either before or after the contact are required. The linear
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complementarity formulas used in this article requires search only once before contact
analysis.

To set up the contact point-pairs, we first compute the distance between the slave contact
node and all the nodes on the master contact surface and remember the nearest one. If the
shortest distance is zero, then this is a node-to-node contact point-pair. Otherwise a local
search is required to set up a node-to-projected point. For example, the nearest master contact
node for slave contact node C is node G and the distance between them is not zero. Then we
find its neighboring master contact points are node F and node H, in which the node F is
closer. Thus the slave contact node C corresponds to the master contact block F-G. By
computing the projected point on the this block the node-to-projected point is created.

Figure 4: Contact point pairs in the discretized contact interface.

4.1 Discrete formulation for contact interfaces

The contact gap between the contact point pair is:

.)()(
ckck

m
F

s
Ak uψuug  (27)

When point-pair A-F is a node-to-node pair, ],[ IIψ ck , T
FAck ],[ uuu  . When it is a

node-to-projected point pair, T
kkck ],,[

21
ψψIψ  , T

kkAck ],,[
21

uuuu  , where iu and

),( 21 kkii ψ represents the displacement increment and shape functions at the support nodes

of the projected point on the master contact surface. The contact traction can be represented
within local coordinates as:

,ˆˆ ktkk τττ  (28)

in which tkτ and kτ represent respectively the initial and incremental contact traction of the

thk contact point-pair. Assume there are cn contact point-pairs on the contact interface, the

displacements can be expressed as:
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ck for the slave contact point. And T
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i
ck ψ for the master contact point and there are two support nodes on the master

contact surface. Then by using the constraints of contact point-pairs, the fourth item in Eq. (8)
can be discretized as:
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where )()()( i
ck

ii
k ψθG  . By substituting Eq. (29) and using linear integration, we have:
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where ),,2,1]([ )()(
c

i
ck

i
c nkLdiag L , )(i

ckL is the length of the contact point-pair. Finally, Eq.

(8) can be written in matrix form as:

,)()()()()( iiiii FτCUK  (32)

where )()()( i
c

Ti
k

i LGC  , )(iΚ is the smoothed stiffness matrix and )(iF can be obtained as

those in FEM.

4.3 Linear complementary formulations

When using the modified coulomb contact model, the increment form of the complementary
equations can be obtained by substituting Eq. (2), (27) and (28) into Eq. (7):
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in which )(ˆ cck HH  , ̂kα , ggk HH ˆ , ckkk ψθG  , )( kk nθθ  , kk λλ ˆ , kk δδ ˆ ,

tkktk gθG  , where  and α are the frictional coefficient and adhesion of the contact

interface, kn is the unit outward vector at slave contact point of the thk point-pair at the

initial time. After assembling all the contact point pairs on the contact interface we have:
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where ][ ckc diag HH  , ][ gkg diag HH  , tG , τ , λ , α , tτ̂ and δ are obtained by

assembling sequentially all tkG , kτ , kλ , kα , tkτ̂ and kδ . G is assembled by

sequentially in row and as global numbering of nodes in column for kG .

Finally, by assembling all the discretized formulations on the contact interface, the above
complementarity equations can be rewritten as:
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where C , F and U can respectively obtained by assembling all )(iC in row and all )(iF ,
)(iU in column as global numbering of nodes.

Note that when the thi contact body is suspended without displacement boundaries or
constraints for rigid body movement, the stiffness matrix maybe singular. Then it should be
modified to avoid the singularity, such as:
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)( IK ii Kdiag  is a small artificial damping matrix and  ,,max )(
11

)(
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is the maximum value of diagonal elements in matrix )(iK .  is a undetermined parameter.

By eliminating U and τ from the first three equations, we have the following standard
linear complementarity problem with the fourth constraints:
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. By using the

Lemke method [31], the contact traction and the displacement of the entire domain are
obtained as follows:
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5 Numerical results

In this section three examples are presented to examine the introduced method. To investigate
the convergence of strain energy, the relative error E is defined as:

     ,
ref

refnum

e
ee

E


 (39)

where nume and refe are numerical and reference solutions of the strain energy, respectively.

5.1 Contact between two elastic bodies

Firstly, consider the contact between two elastic bodies A and B with the dimensions of
2m110 and 2m48 , respectively, as shown in Fig. 5. The upper body A is subjected to a

uniform pressure MPa1p on the top. They are under plane stress conditions and the

material parameters of Young's modulus and Poisson's ratio are MPa102aE , MPa106bE
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and 35.0 ba  , respectively. Due to the symmetry, only the right half is modeled.

Symmetric boundary conditions are considered along the symmetric axis.

Figure 5: (a) Contact between two elastic bodies subjected to uniform pressure on the
top; (b) the right half model with symmetric conditions.

Fig. 6(a) shows the convergence of strain energy calculated by different methods with respect
to the number of degrees of freedom. Contact parameters of the tangential adhesion and

frictional coefficients are chosen as MPa10s and 0.9 . The reference value of the

strain energy in this situation is 258.187KNm , which is obtained by using the FEM-Q4 on a
mesh with 25600 quadrilateral elements. All the solutions approach the reference solution
with the increase of degrees of freedom and it is evident that the NS-FEM-L is the most
accurate. Fig. 6(b) compares the relative errors of the above strain energies with the
characteristic length of mesh. All the models converge linearly with the decrease of lengths of
elements and solutions of the NS-FEM-L has the smallest error. The standard NS-FEM has
the largest convergence slope due to the super-convergence property.

(a) (b)
Figure 6: Numerical strain energies with degrees of freedoms (a) and the relative errors
(b) for the contact of two elastic bodies.
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Fig. 7 investigates the effect of the tangential adhesion on normal and tangential contact
traction as well as the tangential relative slip with the tangential adhesion from MPa1.0 to
0.25MPa using a mesh with 686 nodes. We find that the normal contact traction increase
from the center to right and become nearly singular on the right end. The tangential contact
traction gradually increase until reaching the tangential adhesion. Thus the larger is the
tangential adhesion, the slower is the increase rate of the tangential contact traction. The
tangential relative slip will not occur before the tangential contact traction reaches the value
of the tangential adhesion. While compared with those produced by FEM-Q4 (with 629
elements), the solutions of the NS-FEM-L agrees well.

(a) (b)

(c)
Figure 7: Normal (a) and tangential (b) contact traction and tangential relative slip (c)
on contact interface for the contact of two elastic bodies with different tangential
adhesion.
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(a) (b)

(c)
Figure 8: Normal (a) and tangential (b) contact traction and tangential relative slip (c)
on contact interface for the contact of two elastic bodies with different frictional
coefficients.

5.2 Contact of a semi-cylinder on a flat foundation

Consider an infinitely long elastic semi-cylinder on a flat elastic foundation, which is
subjected to a triangular distributed load P, as shown in Fig. 9. Here a half model is used
because of the symmetry. The dimensions of the two elastic bodies are m1R and

20.25m2 and the material parameters are taken as MPa21aE , 0.3a and

MPa996bE , 245.0b , respectively. The potential contact area equals to )8sin(R . To

investigate the effect of the load magnitude we use a discretization of 478 nodes for body A
and a 103 mesh for the elastic foundation in the computation. Fig. 10 presents the normal
contact traction and the tangential relative slip at the contact interface with loads equal to

MPa35.0 , MPa54.0 and MPa55.0 . We can observe that the length of contact region, the
maximum normal contact traction and the tangential relative slip all increase as the load rises.
The results of the NS-FEM-L are in good agreement with those of the FEM-Q4 also in this
case.
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Figure 9: A semi-cylinder on a flat foundation subjected to a triangular load and its half
model with symmetric condition.

(a) (b)
Figure 10: The normal contact traction (left) and tangential relative slip (right) by
different load magnitude for the contact of elastic semi-cylinder on a flat elastic
foundation.

5.3 Flat punch on an elastic foundation

A two-dimensional flat punch resting on an elastic foundation is modeled with a uniformly

distributed load 0p on the top of the punch. The width and height of the punch are w2 and

h respectively while the dimensions for the foundation are W2 and H , as shown in Fig.
11. The geometrical parameters are selected and normalized as wh 6.1 , wH 2 and

wW 6.1 . Similarly, only half of the punch and the foundation is modeled due to the
symmetry. The analytical solution of the contact stress for a rigid punch subjected to a
pressure load in an infinite half plane is:

22

0

1
2

wx
ptn





(40)
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Figure 11: A flat punch on an elastic foundation subjected to a uniform load.

Fig. 12 shows the normal and tangential contact traction on the contact interface calculated
with different frictional coefficients: 0.1, 0.15, 0.2 and 0.25. They increase significantly when
approaching the right end because of singularity. Then the effect of the tangential adhesion is
considered on the same mesh. Fig. 13 presents the normal and tangential traction with the
tangential adhesion from 1MPa.0 to MPa52.0 . Compared with those with different
frictional coefficients, these solutions are more stable near the right end. All these figures
demonstrate the accuracy of the NS-FEM-L which agrees well with the reference values.

(a) (b)
Figure 12: The normal (a) and tangential (b) contact traction for the flat punch on the
elastic foundation with different frictional coefficients.
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(a) (b)
Figure 13: The normal (a) and tangential (b) contact traction for the flat punch on the

elastic foundation with different tangential adhesion.

Next we investigate the effect of the ratio of Young’s modulus of the punch ( pE ) and the

foundation ( fE ) fp EEk  . Using the model as shown in Fig. 11 with coefficients of

friction and adhesion equal to zero. Both the punch and the foundation are homogeneous
materials and the ratio of k between them are selected as 0.01, 1/3, 1, 3 and 100,

respectively. The other parameters are selected as MPa10fE , the Poisson's ratio

3.0 pf  and the uniform load MPa10 p . Fig. 14 (a) shows the normal contact traction

on the contact interface with different ratio. We find that: (1) the stiffer is the punch(such as
100k ), the smaller is the normal contact traction at the region away from the right end; (2)

Because of the singularity, when the punch become stiffer, the normal contact traction at the
right corner point increases significantly; (3) When the punch is much softer, such as

01.0 , the normal contact traction is approaching the value of 0p .

(a) (b)
Figure 14: Normal contact traction with different ratio of Young's modulus  (a) and
r (b) for flat punch on an elastic foundation.
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To investigate the effect of the functionally graded materials on the normal contact traction
between the punch and the foundation, we assume the Young's modulus of the foundation as:

,)()( 00 WxEEExE Rf  (41)

where 0E and RE denote respectively the Young's modulus at the middle and the right of

the foundation. The ratio of the Young's modulus at the punch and the middle of the

foundation is chosen as 1000  EEk p . Other parameters are 3.0 pf  , MPa10 p

and MPa100 E . The ratio of the Young's modulus between the right and middle of the

foundation is 0EEr R , whose value is taken as 1, 2, 5 and 10 in the computation. Fig. 14(b)

shows the variation of the normal contact traction on the contact interface with different ratio
r . We can observed that when r increases, the normal contact traction in the center
decreases while the values at the right end augmented greatly. This is due to the singularity at
the right end corner. It demonstrated that when the Young's modulus gradually decreases from
the center of the foundation to its right end, the singularity at the right end reduces.
Meanwhile the toughness of the elastic foundation maintains.

6 Conclusion

In this paper, the node-based smoothed finite element method with linear strain field
(NS-FEM-L) is presented and applied for contact analysis incorporating with a formulation of
linear complimentarity problems. The smoothed strains in smoothing domains are constructed
by a complete order of polynomial functions instead of using the gradient smoothing
technique which produce a constant strain. Unknown parameters are determined based on the
equivalence of compatible strains and smoothed strains for the same region in an integral
sense. Three contact models are investigated with the modified Coulomb friction. The effect
of the tangential adhesion and the friction coefficient are considered. Numerical results show
and compare solutions of the normal and tangential contact traction as well as the tangential
slip. The NS-FEM-L can well simulate the contact/departing, adhesion/debonding and
sticking/slipping. And all the solutions are in good agreement with reference values as well as
those produced by FEM-Q4.
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Abstract
In this paper, a novel boundary element method (BEM) is proposed, which is based on the
scaling functions of B-spline wavelet on the interval (BSWI). The conventional interpolation
functions are replaced by scaling function to develop the basic functions and BSWI elements.
Different from other wavelet methods is that we are supposed to transform the coefficient
matrix from wavelet space to physical space through a transformation matrix, which is an
extremely necessary tool to allocate nodes with freedom, but there is an additional condition
that we have to guarantee its non-singularity. At last, the numerical example verifies that
comparing with traditional boundary element method, the BSWI elements have a desirable
performance, such as higher precision and fewer elements. Furthermore, it effectively
enriches the wavelet-based boundary element method library.
Keywords: B-spline wavelet; Wavelet boundary elements; Transformation matrix;
Scaling function; Integral equation

Introduction

Inspired by the finite element method, boundary element method was developed as an
accurate and efficient numerical analysis method in engineering domain. By means of its
advantages of reducing dimension, high precision, and handling infinite fields easily, it is
argued by many researches. Basu considered that boundary element method and FEM have
successfully taken over the finite difference method and Ritz type method [1]. However, the
beginning of BEM is so late than FEM that many aspects are not mature, it is very necessary
to solve various problems of BEM. Due to many basis functions for structural analysis and the
superiority of multiresolution properties, the wavelet numerical methods play an important
role in engineering fields, which by using the scaling or wavelet functions to define
interpolating functions [2], furthermore, the wavelet scale could be altered freely to meet
specific requirements and improve calculated accuracy. Recently, the adaptive wavelet BEM
was used to deal with boundary integral equations and getting excellent fruits [3].
1D and 2D wavelet-based elements have been constructed and employed to beam-bending
and plate-bending problems, respectively [4][5]. But Daubechies wavelets have a big
drawback which is lacking a specific expression, which may cause some traditional integral
methods are not provide ideal accuracy [6]. Therefore, to compute link coefficients is critical,
but the variant Jacobians may bring about many limitations, the paper [7] has a detailed
introduction. It is worth noting that B-spline wavelets have specific expressions and better
fitting characteristic. However, Owing to the original B-spline wavelets are defined on the
whole square integrable real space )(2 RL , employing it as interpolating functions would lead
to the data unstable [8]. For the purpose of breaking this limitation, Quak and Chui developed
BSWI elements and proposed the reconstruction algorithm and fast decomposition, and had
been used to handle the first-kind integral equations [9][10]. However, the construction of B-
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spline wavelet element is in wavelet space, when we analyze a difficult problem, it is difficult
to guarantee the interconnection between element ingredients, which restricts the widespread
applications. The paper [6] gives us a transformation matrix and construct one-dimensional
wavelet finite elements on the interval [0,1] and solve many structural problems. In this paper,
the BSWI element and transformation matrix will be applied to boundary element method, the
same accuracy would be obtained when using fewer BSWI elements.

The introduction of B-spline wavelet

Because of function  xf can be transformed from ],[ ba to ]1,0[ via a formula
   abax  / , it just needs to construct interval wavelet on ]1,0[ . In this paper, the order

is represented by letter m and scaling is letter j . To develop a B-spline function space of
thm order, the first task is dividing the interval into  )(2 Zjj segments on the interval ]1,0[ .

In the outside of endpoint, 1m nodes are added, respectively, and considering them as

multiple nodes. Let   12
1





m
mk

j
k

j

 be the nodal sequence, we can easily obtain that nodal number
is 122  mj . B-spline functions are constructed by nodal sequence, which also can be used
to form the thm order nested B-spline subspace ]1 ,0[

jV . Its basic function can be expressed as

  12,12,  jj
m

j
km mkkxNB ， (1)

Where supp ],[,
j
km

j
k

j
kmB   , )(xNm are cardinal splines. Let     j

km
j
km B ,,  be the

scaling functions of BSWI, then
  12dim 1,0  mV j
j (2)

Paper [9] gives the thm order at the 0 scale B-spline functions and corresponding wavelets, j
scale at m order BSWI scaling functions can be got by the following formulas:

 
   
   

   
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






functionsboundarymmk
functionsboundaryinnermkk

functionsboundarymk

jjljl
kmm

jlljl
m

ljl
km

j
km

j 12,,22221
122,,022

01,,12

2,

0,

,

,











 (3)

For the purpose of getting at least an inner wavelet, scale and order must satisfy 122  mj .
Let 0l , for each 0jj  , the scaling functions can be got via Eq. (3). All of the scaling
functions of BSWI23 are depicted in Fig 1.( th3 scale at the order 2).

Figure 1. BSWI scaling function for scale=3 at the order m=2
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1D BSWI transformation matrix

For the purpose to ensure the stability of solving and introduce boundary conditions, one
method is to transform coefficient matrix from wavelet space to physical space. Considering a
two-dimensional potential problem, the relevant governing equation is shown as

      yxxxu ,0, 21 (4)

Where  represents differential operator,  is solving domain and the  represents the
boundary of domain  . Dividing  into subdomains i , every i can be mapped into

  1,0|  s by a transformation formula. When we employ BSWImj scaling functions,
the number of nodes is   12dim 1,0  mVn j

j , and the segments are 1 nh .
Corresponding nodal sequence is below

Figure 2. The nodal sequence of iΓ

Adapting BSWImj Scaling functions to be the interpolation function, the unknown field
function  u is

    ej
km

k

mk

j
km

j

au φa 




 ,

12

1
, (5)

Where )]()()()([ 12,22,2,1,  j
m

j
m

j
mm

j
mm jj  φ indicates a row vector which

includes BSWImj scaling functions, and ][ 12,22,2,1,
j
m

j
m

j
mm

j
mm

e
jj aaaa
 a denotes a

column vector of combining with wavelet coefficients. In order to eliminate the vector ea , it
needs to introduce vector eu , which can be expressed as

][ 121 nn
e uuuu  u (6)

The corresponding vector is )]()()()([ 121 n
T

n
TTTe  φφφφR   which is relevant to

scaling functions. Then, we can get an expression
eee aRu  (7)

According to Eq. (10), we could obtain
eee uRa 1)(  (8)

Substituting ea of Eq. (8) with Eq. (11), we get the final expression, as is shown below
eeu uRφ 1)()(  (9)

Where the wavelet-based element shape function is 1)(  ee RφN .

Wavelet-based boundary element
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The relevant governing equation was shown in Eq. (4) and boundary conditions are shown in
Eq. (10)

221121 ),(),( 



 xxq
n
uqxxuu (10)

Where u and q indicate the known value of the potential on the boundaries 1 and the
potential gradient on the boundaries 2 , respectively, n is the outward unit normal direction
vector of the boundary. The fundamental solution of 2D potential problems is

r
u 1ln

2
1


 (11)

Where QPr xx  . According to Gauss formula and Green’s function and let the source
point locate on the boundary, the boundary integral equation can been given as

)(
)(

),()(
)(
)(),()( '

'

''
'

'

'
''' Qd

Qn
QPuQu

Qn
QuQPuPcu 








 


 (12)

Where 'P and 'Q represent the source and field points on the boundary, respectively,



2

c ,  denotes the angle between tangents of 'P on  . After discretizing the boundary

 , )( 'Qu and )( 'Qq (the value of
)(
)(

'

'

Qn
Qu


 )of each element can be interpolated by BSWI

scaling functions, that is
eeeeu uNuRφ  1)()( (13)
eeeeq qNqRφ  1)()( (14)

Where ][ 121 nn
e uuuu  u , )]()()()([ 121 n

T
n

TTTe  φφφφR  

][ 121 nn
e qqqq  q , )]()()()([ 12,22,2,1,  j

m
j
m

j
mm

j
mm jj  φ

From now on, we can deal with the other processes easily, which is same to the conventional
boundary element method. It is necessary to say that singular integrals can be handled with
traditional methods.

Numerical example

In this section, we take an example of temperature field. The solving domain and boundary
conditions are shown in Fig.3, where a=10, b=20. Analytical solutions are 2/22 yxu  .
For comparison, we also adapt the traditional 3-node quadratic element, and define an error
formula ( merror mi

i ii /)(
1 


 Uu ) between calculated and actual solutions where m

represents the number of interior points in the domain, U denote the actual solutions and u
are the calculated results. Four-point Gaussian integral and Logarithmic integral are used in
the whole processes.
Table 1 demonstrates the results of BSWI23 (8 elements), BSWI22 (14 elements) and
traditional 3-node quadratic element (24 elements), all of them are close to actual values.
Compared with traditional method, the numerical example fully verifies that BSWI elements
have a better computational precision with few elements.
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Table 1. The results of different elements

Coordinate x Temperature

(y=0) Actual 3-node BSWI22 BSWI23

11.5 -132.25 -132.18 -131.99 -132.06

13 -169.00 -168.91 -168.63 -168.74

15 -225.00 -224.82 -224.47 -224.64

17 -289.00 -288.59 -288.31 -288.53

18.5 -342.25 -343.72 -341.37 -341.68

Error 0 0.4405 0.5492 0.3717

Conclusions

In this paper, the 1D BSWI elements are applied to the boundary element method. The
numerical example testifies its good performance, such as higher precision and efficiency,
few elements. Especially when we ensure that the transformation matrix is not singular, the
node could be allocated freely as needed. Therefore, BSWI elements are an efficient tool that
can be employed to boundary element method.
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Abstract 

Commonly, variance-based global sensitivity analysis methods are popular and applicable to 
quantify the impact of a set of input variables on output response. However, for many 
engineering practical problems, the output response is not single but multiple, which makes 
some traditional sensitivity analysis methods difficult or unsuitable. Therefore, a novel global 
sensitivity analysis method is presented to evaluate the importance of multi-input variables to 
multi-output responses. First, assume that a multi-input multi-output system (MIMOS) 
includes n variables and m responses. A set of summatory functions  G x  and  H x  are 
constructed by the addition and subtraction of any two response functions. Naturally, each 
response function is represented using a set of summatory function. Subsequently, the 
summatory functions  G x  and  H x  are further decomposed based on the high dimensional 
model representation (HDMR), respectively. Due to the orthogonality of all the decomposed 
function sub-terms, the variance and covariance of each response function can be represented 
using the partial variances of all the decomposed function sub-terms on the corresponding 
summatory functions, respectively. The total fluctuation of MIMOS is calculated by the sum 
of the variances and covariances on all the response functions. Further, the fluctuation is 
represented as the sum of the total partial variances for all the s-order function sub-terms and 
the total partial variance is the sum of n partial variances for the corresponding s-order 
function sub-terms. Then, the function sensitivity index (FSI) sFSI  for s-order function sub-
terms is defined by the ratio of the total partial variance and total fluctuation, which includes 
first-order, second-order, and high-order FSI. The variable sensitivity index (VSI) iVSI  of 
variable ix  is calculated by the sum of all the FSIs including the contribution of variable ix . 
Finally, numerical example and engineering application are employed to demonstrated the 
accuracy and practicality of the presented global sensitivity analysis method for multi-input 
and multi-output system. 

Keywords: Global sensitivity analysis (GSA), High dimensional model representation 

(HDMR), Variance and covariance decomposition, multi-input multi-output system (MIMOS) 

 

1 Introduction 

Sensitivity analysis (SA) is an effective tool for quantifying the influence of input variables to 

output response and can identify the influential variables and help designers clearly recognize 

what should be of great concern
 
[1, 2]. It has been widely used in many engineering practical 

problems, such as structural design [3, 4], parameter identification [5]. In order to solve 

different types of engineering problems, researches on sensitivity analysis methods have been 

continuously promoted. Generally, SA is classified into two categories: local sensitivity 

analysis (LSA) and global sensitivity analysis (GSA). LSA methods are usually used to 

evaluate the local effect on output response when the small perturbation occurs on the 

nominal value of input variable. The main disadvantages of LSA are that it does not account 
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for interactions between parameters. GSA as a general and comprehensive approach takes into 

account all the variation range of the parameters in entire range space. It aims at determining 

which input variables have more important influence on the output response and shows the 

ranking of influential variables [6, 7]. The frequently-used GSA methods include regression 

methods, screening-based methods, variance-based methods, and meta-model methods, and so 

on [7, 8]. Although Sobol’ method based on variance decomposition is more popular among 

these GSA methods, its interactions cannot be further decomposed, which makes the ranking 

of influential variables highly likely to be wrong, especially strong non-linear system [7-10]. 

To further decompose the effects of interactions, Liu et al. [7] improved the Sobol’ method by 

the combination of variance decomposition and partial derivation integral. However, these 

GSA methods that are only effective for a multi-input single output system (MISOS) are not 

suitable for a multi-input multi-output system (MIMOS).  

Recently, it has attracted wide attention in terms of SA to MIMOS. Scholars have done some 

work. Gamboa et al.
 
[11] defined a generalization of Sobol sensitivity indices based on the 

trace of covariance matrix for multi-output system. Cheng et al [12] developed a multivariate 

output GSA method by employing multi-output support vector regression (M-SVR). Xu et al. 

[13] proposed a mapping-based hierarchical sensitivity analysis method to calculate 

sensitivity indices of multilevel systems with multidimensional correlations. Nevertheless, 

these multivariate output GSA methods are used to assess the effects of multi-inputs to multi-

outputs only considering the contribution of variances but ignoring the contribution of 

covariances. Hence, this paper presents a novel GSA method for MIMOS comprehensively 

considering the influence of variance and covariance. 

2 Global Sensitivity Analysis Method for Multi-inputs Multi-outputs ICCM 2020 

2.1 Variance Decomposition 

Consider a square-integrable-function  xf  defined in the unit hypercube 

 | 0 1,  1,2 ,n

iR x i n    x ， . The performance function decomposition can be given as: 

        0 12 1 2

1 1

, , , ,
n

i i ij i j n n

i i j n

f f f x f x x f x x x
   

     x   (1) 

If the integral with respect to its own variable is zero for any function term of HDMR, namely 

  
1 2 1 2

1

1 2 1 2
0

, , , d 0, , , , ,1
s si i i i i i k s sf x x x x k i i i i i i n         (2) 

The Sobol’ function sub-terms can be uniquely determined as follows: 

  0 df f  x x   (3) 

    0 di i k

k i

f x f f x


    x   (4) 

        0

,

, dij i j i i j j k

k i j

f x x f f x f x f x


      x   (5) 

Any two different Sobol’ functions satisfy the orthogonal condition as follows, 

    
1 2 1 2 1 2 1 2

1

0
, , , , , , d 0.

s s s si i i i i i j j j j j jf x x x f x x x  x   (6) 

The variance decomposition can be given by integrating  2f x , 

 12

1 1

n

i ij n

i i j n

D D D D
   

       (7) 

The sensitivity index and total sensitivity index is calculated respectively 

 1

1 1 21 1 .s

s

i i tot

i i i i s

D
S S S i i i n

D
       ， ，   (8) 
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2.2 Multivariate Output Sensitivity Indices 

For a multi-inputs multi-outputs system, its output responses can be represented as follows, 

      1 2 1 2[ , , , ] [ , , , ].m my y y f f f y x x x   (9) 

First, a set of summatory function is constructed using any two output responses as follows, 

 
     

     

,

,
,1 , .

k l k l

k l k l

G f f
k l m

H f f

  
 
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x x x

x x x
  (10) 

According to the high dimensional model representation in Eq. (1), the Eq. (9) can be 

rewritten by  
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  (11) 

The function sub-terms of Eq. (10) can be calculated referring to the Eqs. (3)~(5). According 

to Eq. (9), its response functions can be respectively represented by  ,k lG x  and  ,k lH x  as 

follows, 
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  (12) 

The sum of the variances of  kf x  and  lf x  can be calculated by 

            , ,1
Va +Va = Va Va

2

k l k l k lf f G H 
 

x x x x   (13) 

where  Va   is a variance operator. In Eq. (12),   ,Va k lG x  and   ,Va k lH x  can be 

represented by  
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


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







    


 

 (14) 

The covariances of  kf x  and  lf x  can also be calculated as follows, 

           , ,1
Cov , = Va Va

4

k l k l k lf f G H 
 

x x x x   (15) 

where  Cov   is a covariance operator. 

The total fluctuation of  kf x  and  lf x  can be calculated by the sum of variances and 

covariance, namely 

           , =Va +Va Cov ,k l k l k lTF f f f fx x x x   (16) 
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Substituting Eqs. (12)~(14) into Eq. (15), it can obtain the total fluctuation as follows, 
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  (17) 

where 
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  (18) 

For a MIMOS with n input variables and m output responses, a more general decomposition 

can be given as follows, 
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 (19) 

The sensitivity index for each decomposed function sub-term can be defined by 

 1

1

1,2, ,

1 21,2, ,
,1

TF

s

s

m

i i

i i sm

TD
FS i i i n       (20) 

The sensitivity index of variable is given by 

 1tot

i iVS FS  . (21) 

3 Numerical Example and Engineering Application 

To demonstrate the feasibility and practicability of the proposed GSA method, a numerical 

example and an engineering application are considered. 

3.1 Numerical Example 

A set with two functions is constructed as follows, 
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 

 
 

1 2 2

1 2 1 2

2 2 2

1 2 1 2

, 0,1 .
f x x x x

f x x x x

   


  

x
x

x
  (22) 

According to the variance decomposition, the partial variance matrix of  1f x  and  2f x  is 

0.154,0.189,0.007

0.022,0.154,0.007

 
 
 

. According to the covariance decomposition, the partial covariance 

vector of  1f x  and  2f x  is  0.053 0.169 0.007 ， ， . The SA results based on the average 

method and trace of covariance matrix are  0.311 0.720，  and  0.358 0.670， , respectively. 

Obviously, the results of these two methods ignore the influence of covariance. The SA 

results using the proposed method is  0.577 0.442， , which is different from the results of the 

average method and trace of covariance matrix due to taking into account the contribution of 

covariance. The comparisons of SA results are provided, as shown in Fig. 1. The numerical 

example demonstrates that the proposed method is more suitable for MIMOS than some 

traditional methods. 

0
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0.3

0.4
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0.8
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Trace of covariance matrix

The proposed SA method

1x 2x
 

Fig.1 Comparison of SA results using different methods. 

3.2 Engineering Application 

Nowadays, vehicle lightweight and safety design becomes an increasingly critical issue. Liu 

et al. [3] presented a composite B-pillar structure with ply drop-off to improve the 

crashworthiness of side impact and roof crush. The finite element model of the ply drop-off 

B-pillar consists of four parts, as shown in Fig. 2. The thickness of each part which depends 

on the number of lay-up is regarded as design variable. The design objectives consist of roof 

strength which stands for the maximum crushing force in roof crush, B-intrusion which stands 

for the intrusion of B-pillar in side impact, and B-velocity which stands for the maximum 

intrusion velocity of B-pillar in side impact. According to the samplings in Table 3 from Ref. 

[3], the response surface models on roof strength, B-velocity, and B-intrusion can be 

established  as follows, 
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  (23) 

 
Fig. 2 Structure design of composite B-pillar with ply drop-off [3]. 

Before the optimization design for the B-pillar with ply drop off, SA is implemented to assess 

the importance of variables. The SA results using the proposed method are 0.423, 0.058, 

0.502, 0.016, respectively. The results indicate that the influence of variables 1x  and 3x  are 

important and the influence of variables 2x  and 4x  are ignored. It is helpful to implement 

further optimization design of B-pillar with ply drop-off. 

4 Conclusions 

Some traditional sensitivity analysis (SA) methods only consider the influence of variance 

decomposition and ignore the influence of covariance decomposition, which makes the SA 

results for MIMOS inaccurate. Hence, this paper develops a novel global sensitivity analysis 

method (GSA) based on variance and covariance decomposition to identify the importance of 

multi-inputs to multi-outputs. It is convenient to the variance and covariance decomposition 

of multi-output responses using a set of the constructed summatory functions. The function 

sensitivity index is defined by the ratio of the partial fluctuation of the decomposed function 

sub-term and total fluctuation. Further, the variable sensitivity index is calculated by the sum 

of all function sensitivity index including the effect of variable. The numerical example and 

engineering application demonstrate that the presented GSA method is feasible and practical. 
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Abstract 

This paper presents a cell-based smoothed finite element method (CS-FEM) for solving two-

dimensional contact problems with the bi-potential formulation. The contact force and the 

relative displacement are coupled with each other and solved by Uzawa algorithm. Three 

contact states are investigated accurately. The CS-FEM is performed with six different kinds 

of smoothing domains which are constructed by dividing the background element into 

different regions. Three numerical examples are presented to verify the accuracy of the 

method. The effect of the friction coefficient for the contact are also investigated. All 

solutions agree well with reference values. The results produced by the CS-FEM are more 

accurate than those of the traditional FEM. Besides, the CS-FEM can provide both upper 

bound and lower bound solutions for the strain energy while using different smoothing 

domains. 

Keywords: Contact analysis, CS-FEM, Bi-potential formulation, Uzawa algorithm 

1. Introduction 

The contact problems exist everywhere in life. For example, the contact between the tire and 

the road, the contact between the shaft and the bearing, the contact between the knife and the 

flesh in virtual surgery, etc. They play important roles in many engineering applications [1][2]. 

 

There are two reasons contributed to the non-linearity of the contact problems [3][4]. One is 

that both the contact surfaces and their positions change during the contact process. The other 

one is the non-linearity of contact conditions, including the non-penetration of contact bodies 

and the tangential friction conditions. The widely used contact algorithms in engineering 

applications are the penalty function method [5]-[8], the Lagrange multiplier method [9]-[12] 

and the linear complementarity techniques [13]-[16]. The bi-potential method proposed by De 

Saxcé and Feng provides an effective tool for dissipative constitutive modelling [17][18]. 

Applying the augmented Lagrangian method to the law of contact, the implicit equation of the 

projection on the Coulomb’s cone is equivalent to the original contact inequality. There has 

demonstrated that the Uzawa algorithm is more efficient when compared with the Newton 

method [19]. There are many researches and applications in impact, hyperelasticity, wear and 

other problems [20]-[23]. 

 

The finite element method (FEM) is one of the most effective numerical methods for solving 

contact problems. Other widely used approaches include the boundary element methods 

[24][25] and the meshless methods [26]-[28]. The smoothed finite element method (S-FEM) 

proposed by Liu et al. is a weakened weak form method based on the G-space theory [29]. 

When using different kinds of smoothing domains which are based on cells, edges, nodes and 

faces of the background elements, the cell-based smoothed finite element method (CS-FEM), 
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the edge-based smoothed finite element method, the node-based smoothed finite element 

method and the face-based smoothed finite element method are created [30]-[33]. So far, the 

S-FEM has been widely used in various fields, including the acoustics [34], materials science 

[35], vibration [36], fluid-structure coupling [37], and electromagnetics [38]. The S-FEM has 

also been applied to solve contact problems [16][26][39][40]. 

 

In this paper, the CS-FEM with quadrilateral elements is used to solve the two-dimensional 

contact problems within the bi-potential framework. The contact forces can be solved using 

the Uzawa algorithm. The rest of the paper is organized as follows: in Section 2, the 

governing equations and the contact criterion are introduced. Section 3 illustrates the 

smoothed finite element method, especially the CS-FEM. The smoothed Galerkin weak form 

is obtained by using the smoothing strain technique. In Section 4, the contact analysis is 

performed within the bi-potential framework. The Uzawa algorithm is applied to solve the 

contact force. Finally, three numerical examples are presented to examine the numerical 

accuracy of the proposed method. 

2. Problem statement 

2.1 Governing equations 

Considering an elastic contact body with domain i  and the force boundary condition 
i

f , 

the displacement boundary condition 
i
u , the contact boundary condition i

c  as shown in Fig. 

1. 

 
Figure 1. Contact body 

 

The governing equation of this contact body is: 

 0T
f + =  (1) 

with 

 

T

T

on 

     on 

         on 

f

c

u

 = 


= 
 = 


t

r

u u

L

L





     

   (2) 

where   is a differential operator which can be written for 2D problems as follows: 

 

0

0

x

y

y x

  
 

 
 
     

 =   (3) 
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The stress 
T

    xx yy xy   =   . The body force 
T

  x yf f =  f  and displacements 
T

=   x yu u  u . 

t , u  and r  are the loads, displacements and contact forces on the boundary, respectively. L  

is the matrix of the unit normal vectors defined by: 

 

   0

   0

x n

y n

y n x n

  
 

=  
 
     

L .  (4) 

2.2 Contact criterion 

The Signorini condition mainly describes a normal contact relationship. It has the following 

three characteristics at each contact point, they are the geometric condition of non-penetration, 

the static condition of non-adhesion and the mechanical complementary condition. Therefore, 

the following formula expresses the relationship between the normal distance 
nx  and normal 

contact force 
nr
  for any contact point  . The Signorini condition is defined as: 

 
0

( , ) 
0   0

n

n n

n n n

x
Signor x r

r x r



 

  

 
 

 =

 (5) 

 

In order to satisfy the tangential criterion of contact, the Coulomb friction rule is adopted and: 

 

0   

( , ) 
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t t t
t t n
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Coul
r

  
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



 = 


 
 = −



x r

x r x
x r

x

 (6) 

where 
t


x  and 

t


r  are the tangential components of the spacing vector and the contact force 

vector for contact point α, respectively.   is the friction coefficient. 

 

Let K  represents the Coulomb’s cone which is expressed as: 

  3  such that  0t nK r 

 =  − r r   (7) 

The contact satisfies a complex non-smooth dissipative law including the separating, sticking 

and sliding. By combining Eqs. (5) and (7), the contact criterion can be written as: 

 

: 0   and r 0

     : 0 and int( )

      : 0 and bd( ) with 

n n

t t

t
t t t n
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Sticking K

Sliding K r
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 
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 


 =

= 

  = −

x r

x
x r r

x

  (8) 

where int( )K  and bd( )K  represent the interior and the boundary of Coulomb’s cone. Eq. 

(8) is called the Signorini-Coulomb conditions. 

3. Cell-based smoothed finite element method 

3.1 Galerkin weak form 

For problem domain  , by introducing a weight function  , Eq. (1) can be transformed into 

an equivalent integral form: 

 
T Τd d 0

 
 +  =  f     (9) 
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Using Green’s divergence theorem, we can convert Eq. (9) to: 

 T T Td d d d 0
f c



   
( − − −  =   C φ f t r)      (10) 

where C  is the material matrix. The physical equation is =C  , where ε  is the vector of 

strain. The weight function takes the variation of displacement as = u  and the Galerkin 

weak form can be got: 

 ( ) ( ) ( )
T T TT( ) d d d d 0

f c

δ δ δ δ
   

− − −  =   C u f u t u r    (11) 

where δ = u . 

3.2 Smoothed Galerkin weak form 

In S-FEM, the smoothed strain   is calculated by the strain smoothing operation as: 

 ( ) ( ) ( )d
s

W


= − x x x x    (12) 

where s  is the smoothing domain which can be created based on nodes, edges, cells of the 

background elements. In this work the CS-FEM model is adopted with six different kinds of 

smoothing regions as shown in Fig. 2. W  is a smoothing function that should be positive over 

the local support domain and satisfies the unity property ( )d 1
s

W


−  = x x . 

 
Figure 2. Six different smoothing domains based on a quadrilateral element: 1SD, 2SDs, 

3SDs, 4SDs, 8SDs, 16SDs 

 

Here the Heaviside-type smoothing function is adopted: 

 
1/     

( )
0        

s

s

A
W

 
− = 



x
x x

x
  (13) 

where A  is the area of the smoothing domain. Substituting Eq. (13) into Eq. (12) and using 

the Green’s divergence theorem, the smoothed strain can be obtained: 

 

( )d

1
  ( ) d d

1
  d

s

s s

s

W

W
A

A



 



=  − 

= −  − + 

= 



 



u x x

x x u Lu

Lu



  (14) 

where s  is the boundary of the smoothing domain. Note that only boundary integration 

instead of domain integral is required in this calculation. 

 

By substituting Eq. (14) into Eq. (11), the following smoothed Galerkin weak form can be 

obtained: 
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 ( ) ( ) ( )
T T TT( d d d d 0

f c

δ δ δ δ
   

− − −  =   C u f u t u r)    (15) 

3.3 Discretized system of equations 

Assume the displacement function as: 

  su(x) = N(x)d    x   (16) 

where vector ( )N x  and d  represent the shape function and nodal displacements respectively.  

 

Substituting Eq. (16) into Eq. (14), the smoothing strain   can be written as: 

 
1

d
sA 

=  = Lu d    (17) 

where   denotes the smoothed strain matrix which can be calculated as: 

 

0
1

d 0     
s

x

y s

y x

b

b
A

b b



 
 

=  =  
 
 

 LN(x) x   (18) 

with 

 ,

1

1
( )    ,

pN

G

h h p p p

p

b n l h x y
A =

= = N x   (19) 

where 
pN  represents the number of segments of the boundary s , 

,h pn  and 
G

px  are 

respectively the outward unit normal and Gauss points on each segment, 
pl  represents the 

length of the p-th segment. 

 

Substituting Eq. (16) and Eq. (17) into Eq. (15), we can get the discretized algebraic system of 

equations: 

 
T T T T

1 1 1 1 1

d d d 0
e s e e e

e ef ec

N N N N N

s

e s e e e

A
  

= = = = =

− −  −  =     B CBd N f N t N r   (20) 

where eN  and sN represent the number of background elements and smoothing domains. e  

represents background element. ef  and ec  represent the boundary of forces and contact 

forces per element. For simplicity of description, we can use the following symbols: 

 
T T

1 1

d d
e e

e ef

N N

ext

e e
 

= =

= +   F N f N t   (21) 

 
T

1

d
e

ec

N

e


=

= R N r   (22) 

 
T

1 1

e sN N

int s

e s

A
= =

=F B CBd   (23) 

where extF  is the external forces. R  is the contact forces. intF  is the internal forces. 

 

The Eq. (20) can be rewritten as: 

 
ext +Kd = F R   (24) 

where K  is stiffness matrix obtained by: 

 
T

1 1

e sN N

s

e s

A
= =

=K B CB   (25) 
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Here Eq. (24) cannot be solved directly because both d  and R  are unknown quantities. In our 

work we compute the contact force R  on the contact surface first. Then the displacements d  

can be solved by taking R  as an external force. 

4. The contact within the bi-potential framework 

4.1 Contact kinematics 

Considering two elastic bodies 1  and 2  coming into contact, as shown in Fig. 3. 1P  is the 

contact points on the boundary 1 . 2P  is the normal projection point of the contact point 1P  

on the boundary 2 . For 2D problems, we can set up a local coordinate system based on the 

normal and tangential vector at point 1P . The initial gap g between 1P  and 2P  is determined 

by a contact collision detector as shown in Fig. 3: 

 
Figure 3. Contact kinematics 

 

Assuming: 

 1 1 1 2 2 2(P )     (P )= =d d dΦ Φ d   (26) 

where 1d  and 2d  denotes respectively the nodal displacements in 1  and 2 . 1Φ  and 2Φ  are 

integration matrix in corresponding regions. If we consider the case with cN  contact points 

1P  ( )1 cN =  on 1 , and 
2P  is the normal projection points of the contact points 

1P  on 

2 . The relative position between 
1P  and 

2P  is: 

 
2 1(P ) (P )  = −d d d   (27) 

In local coordinates it can be expressed as: 

 
t nx x  = +d t n   (28) 

where 

 

T

T

t

n

x

x










   
= =   

  

t d
x

n d
.  (29) 

Substituting Eq. (26) and Eq. (27) to Eq. (29), we get: 

 

1

T T
11 2

T T

21 2

2

d

d    0   0

d    0    0

d

x

yt

xn

y

x

x





 
 

   −  
=    

−    
 
 

t ΦtΦ

n Φ Φn
  (30) 

By defining the transformation matrix T as: 

 

T

1 2 T

 0
    

 0

k

k

k

   
 

 = − =   
 

t
T T

Φ
T T

n

Φ
  (31) 
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Eq. (30) can be written as: 

  =x T d   (32) 

whose incremental form is: 

 ( 1) ( )i i  + = +x T d g   (33) 

where (0 ) g =g . 

 

In the local reference coordinate system, the contact force 
r  can be defined as: 

 
t nr r  = +r t n   (34) 

Applying the contact virtual work principle: 

 T T    =r x R d   (35) 

We have: 

 T  =R T r   (36) 

The whole system of equations of cN  contact points can be written as: 

 
T =


= +

R T r

x Td g
  (37) 

with 
T

1  =  T T T , 
T

1 Nc =  x x x , 
T

1 Nc =  r r r ,
T

1 Nc =  g g g . 

4.2 The contact solution method  

For a contact point, the bi-potential function of the contact law can be written as: 

 ( , ) ( ) ( )c n K n tb x r


     
−

− =  − + +x r r x   (38) 

where ( ,0− = − , and ( )K

 r  is the indicator function and it can be described as: if 

K

r , ( ) 0K




 =r ; otherwise ( )K




 = +r . 

 

The Eq. (38) can be further expressed as an implicit subnormal form: 

 

( , )
    

( , )

( )

c

c

b

r

b

x

 




 




 −
− 



 −


 −

x r
x

x r
   r

  (39) 

So, using the augmented Lagrangian method [41], the Eq. (38) and Eq. (39) can be equivalent 

to the following projection form on the Coulomb’s cone: 

 *Proj ( )K

 


=r r   (40) 

where *
r  represents the vector of augmented contact force, and it is given by: 

 * * *  with t

       = − = +r r x x x x n   (41) 

where   is the bi-potential coefficient. In this work, the reciprocal of the maximum value of 

the diagonal elements of the matrix D  as given in Eq. (45) is selected. 

 

By summarizing the above equations and Eq. (8), there will be three contact situations within 

the bi-potential framework. They are 
* K

r  (sticking), 
* *K

r  (separating) and 

* 2 *( )K K

  −r  (sliding), respectively, as shown in Fig. 4. 
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Figure 4. Coulomb cone and contact projection operators 

 

Consequently, we can define the projection operation by: 

 

* * *

* * * *

* * *
* *

2 *

: Proj ( ) 0     if  

     : Proj ( )   if  

      : Proj ( ) ( )( )  else
1

K t n

K t n

t n t
K

t

Separating r

Sticking r

r
Sliding







  

   

  
  












=  −

= 

−
= − −

+

r r

r r r

r r
r r n

r

  (42) 

4.3 Equilibrium equations of contact points 

The system of equations related to each contact point is: 

 

T

*Proj ( )

ext

K

 






= +


=

+Kd = F T r

x Td g

r r

  (43) 

eliminating d  leads to the following system of equations: 

 

1 T 1

*Proj ( )

ext

K

 

− − = + +


=

x TK T r TK F g

r r
  (44) 

Here, we can define some variables to make the equation more intuitive. 

 

1 T

1ˆ
ext

−

−




+

D = TK T

x = TK F g
  (45) 

where D  is named as the global Delassus operator [42]. 

For a contact system containing cN  contact points, the contact points are coupled with each 

other. So, Eq. (44) can be transformed into an implicit system of equations. 

 1,

*

ˆ
( , ) 0

Proj ( )

cN

K

     


  

 

= 

 
− − − 

= = 
 −
 

x D r D r x
r x

r r

   (46) 

Where 1 T  −=D T K T , 
T

 1( , ) 0
Nc = = r x   . 

4.4 Uzawa algorithm  

Uzawa algorithm is a local iterative algorithm to solve implicitly Eq. (46). The calculation 

procedure mainly includes predictor and corrector for contact forces. 
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*( 1) ( ) ( ) ( ) ( )

( 1) *( 1)

: ( )

: Proj ( )

i i i i i

t

i i

K

Predictor

Correntor


    

 

 +

+ +

= − +

=

r r x x n

r r
  (47) 

where i  and 1i +  are iteration numbers. 

 

Algorithm Uzawa algorithm to solve contact problem 

assume: (0)  0=r  , (0) (0  g)=g , (0) 1 (0)

ext

 −= +x TK F g .  

for (  1 to i = )  

        for (  1 to cN = )  

        *( 1) ( ) ( ) ( ) ( )( )i i i i i

t

     + = − +r r x x n  ;  

    ( 1) *( 1)Proj ( )i i

K

 + +=r r  ;  

        ( 1) ( 1) ( ) ( )

1,

ˆ
cN

i i i i     

  

+ +

= 

= + +x D r D r x ; 

        end for 

        if (

( 1) ( )

( 1)
ε

i i

gi

+

+

−


r r

r
 ) 

break ; 

        end if 

end for 

where   is the total number of contact iteration. ε g
 is a user-defined convergence coefficient. 

5. Numerical examples 

In this section, we will use three numerical examples to examine the efficiency of the contact 

analysis while combining the CS-FEM and the bi-potential formulation. For Q4 element, the 

characteristic length can be defined [29]: 

 / eh A N=   (48) 

where A  is the area of whole body. The strain energy error errore  and the convergence ratio 

k  are defined as: 

 
n r

error

r

E E
e

E

−
=   (49) 
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i im
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i i

i im

e h h
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h h
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= =

= =

 
− 

 =
 

− 
 

 

 

  (50) 

where nE  and rE  are the numerical solution and reference solution of the strain energy, 

respectively. mN  is the number of mesh models. In this work  6mN = . 

5.1 Frictionless contact of the flat and cylindrical bodies 

Consider the contact of a crossed cylindrical-flat arrangement as shown in Fig. 5 (a). The 

diameter of the cylindrical sample is 12 mm . The bottom is a block, and its thickness is 

10 mm  [41]. This problem can be simplified to a plane strain model as shown in Fig. 5 (b). 
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The displacements are uniformly distributed on top of cylindrical body Ω1 while a full 

constraint is applied at the bottom of the flat body Ω2. 

 
               (a)                                                  (b) 

Figure 5. (a) Model of the crossed cylindrical-flat; (b) Plane strain model 

 

In this example, the Young’s modulus and Poisson’s ratio of the two bodies are 
7

1 2 10 Pa=  ME  , 1 3=0.  and 8

2 2 10 Pa=  ME  , 2 3=0.  respectively. When using different 

number of nodes and elements are listed in Table 1, the problem domain meshed with 

quadrangles are given in Fig. 6. 

Table 1. The number of nodes and elements of two elastic bodies. 

No. M1 M2 M3 M4 M5 M6 Ref. 

Nodes 345 767 1237 1977 3050 4272 36175 

Elements 299 699 1151 1871 2920 4118 35755 

 

 
   M1                                      M2                                      M3 

 
 M4                                      M5                                     M6 

Figure 6. Six different mesh models  

 

5.1.1 Convergence of strain energy solution 
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While choosing U 0.  = 01y mm− . Fig. 7 (a) compares the solutions of CS-FEM with different 

number of smoothing domains. From which we observed that all the solutions converge to the 

reference solution with the number of degrees of freedom increases. The reference value of 

the strain energy is obtained by the FEM-Q4 with 35755 quadrilateral elements, as shown in 

Table 1. And Fig. 7 (b) shows the convergence of the strain energy with respect to the 

characteristic length. Note that although the accuracy of CS-FEM-1SD is higher, it is unstable 

when the constraint is insufficient. 
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           (a)                                                                       (b) 

Figure 7. Numerical solutions (a) and the convergence of strain energy (b)   

 

According to the above figures, several phenomena can be drawn: 1) As the number of 

degrees of freedom increases, the strain energy solution of CS-FEM-1SD converges from the 

lower bound and CS-FEM-2SD to 16SD converges from the upper bound. 2) When using the 

displacement boundary condition, the CS-FEM-1SD provides a lower bound solution while 

the other models provide upper bound solutions. All the results produced by CS-FEM are 

more accurate than those of the FEM-Q4. 3) These calculation methods are approximately 

linear convergent, CS-FEM-1SD has the largest convergence ratio 1.87, the others 

convergence ratios are from 1.52 to 1.56. 4) The accuracy of CS-FEM-1SD is almost 5 times 

higher than the FEM-Q4 when using the same quadrilateral elements. CS-FEM-4SD is more 

stable, and its accuracy is more than 40% higher than the FEM-Q4. 

 

5.1.2 Hertz contact verification 

In order to investigate the accuracy of the CS-FEM within the bi-potential framework to solve 

the contact problem, here we adopt the Hertz theoretical solution for comparison [43]. The 

contact pressure distribution of this model is: 

 
2

1 2

0 2
( ) (1 )

x
p x p

a
= −   (51) 

where x  is the distribution of nodes on the contact surface. a  and 0p  are the half-width of the 

contact area and the maximum contact pressure, respectively, which can be expressed as: 

 1 2

*

4
( )

Pr
a

E
=   (52) 

 
*

1 2

0 ( )
PE

p
r

=   (53) 

where P  is the contact reaction force, *E  is the composite modulus and it can be written as: 
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2 2

* 11 2

1 2

1 1
( )E

E E

  −− −
= +   (54) 

r  is the relative curvature: 

 1

1 2

1 1
( )r
r r

−= +   (55) 

The flat body 2  is an infinite plane and 2r → . thus, we have 1r r= . 

For comparison, we use three boundary conditions: 
1U 0.002=  y mm− , 

2U 0.006=  y mm−  and 

3U 0.  = 01y mm− . CS-FEM-4SD and the mesh M6 are adopted for discretization. Then, the 

contact reaction forces corresponding to different boundary conditions are 1 14983= .471 NP , 

2 52873= .824 NP  and 3 96133= .574 NP  respectively. Fig. 8 (a) shows the normal contact 

stress and the analytical solution of Hertz contact. We can find that the contact reaction force 

and the normal contact stress will increase when using larger displacements on the boundary. 

All the solutions agree well with the theoretical solution. Fig. 8 (b) shows the tangential 

relative slip on the contact surface with respect to the contact length. 
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Figure 8. Normal contact stress (a) and tangential relative slip on the contact surface (b)  

 

5.1.3 Analysis of penetration 

Fig. 9 shows the penetration of different methods for solving the contact problem within the 

bi-potential framework. Since the largest penetration produced by CS-FEM-1D is less than 
203 10 mm−  , it can be neglected in the calculation. 
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Figure 9. Penetration by using different methods 
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5.2 Contact between two elastic bodies 

Considering the two elastic bodies 1  and 2  as shown in Fig. 10. The displacements are 

uniformly distributed on top of cylindrical body 1  while a full constraint is applied at the 

bottom of the flat body 2 . 

 
Figure 10. Contact between two elastic bodies 

 

In this example, a plane strain model is used. When using different number of nodes and 

elements are listed in Table 2, the problem domain meshed with quadrangles are given in Fig. 

11. 

 

Table 2. The number of nodes and elements of elastic body Ω1 

No. M1 M2 M3 M4 M5 M6 Ref. 

Nodes 66 231 496 861 1326 1891 51681 

Elements 50 200 450 800 1250 1800 51200 

 

 
M1                                            M2                                           M3 

 
M4                                            M5                                           M6 

Figure 11. Six different mesh models for two elastic bodies 

 

5.2.1 Convergence of strain energy solution 

While choosing U 0.  = 04y m−  and the friction coefficient =0.8 . Fig. 7 (a) compares the 

solutions of CS-FEM with different number of smoothing domains. From which we observed 

that all the solutions converge to the reference solution with the number of degrees of freedom 

increases. The reference value of the strain energy is obtained by the FEM-Q4 with 35755 

quadrilateral elements, as shown in Table 1. Fig. 7 (b) shows the convergence of the strain 
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energy with respect to the characteristic length. Note that although the accuracy of CS-FEM-

1SD is higher, it is unstable when the constraint is insufficient. 
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Figure 12. Numerical solutions (a) and the convergence of strain energy (b) 

 

According to the above description, this example can also get a similar phenomenon to Fig. 7: 

As the number of degrees of freedom increases, the strain energy solution of CS-FEM 

converges from the lower bound and the upper bound. When using the displacement boundary 

condition, the CS-FEM-1SD provides a lower bound solution while the other models provide 

upper bound solutions. All the results produced by CS-FEM are more accurate than those of 

the FEM-Q4. The difference is (1) The CS-FEM-1SD has the largest convergence ratio 1.69, 

the others convergence ratios are from 1.43 to 1.49. (2) When using the same quadrilateral 

elements, the accuracy of the CS-FEM-1SD is almost 6 times higher than the FEM-Q4. The 

CS-FEM-4SD is more stable, and its accuracy is more than 30% higher than the FEM-Q4. 

 

5.2.2 Effect of friction coefficient 

In the following contact analysis, we consider the effect of friction coefficients. The CS-FEM-

4SD and M6 model are selected. The friction coefficients are selected as 0.1, 0.15, 0.2, 0.25.  
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Figure 13. Normal contact stress (a) and tangential contact stress (b)  

 

Fig. 13 (a) and (b) shows the normal and tangential contact stress of the contact point using 

different friction coefficients. We can find that the normal contact stress will become higher at 

the right end, and the tangential contact force will rise first, and then will become higher at the 

right end when the friction coefficient increases. Fig. 14 (a) and (b) shows the tangential 
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relative slip and the ratio of contact forces which we can observe the contact states (sticking 

or sliding) of different contact points. 
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Figure 14. Tangential relative slip (a) and the evolution of contact states (b)  

 

5.2.3 Analysis of penetration 

Fig. 15 shows the penetration of different cases. Since the largest penetration produced by 

CS-FEM-1D is less than 168 10 m− , it can be neglected in the calculation. 
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Figure 15. The comparison of penetration when using different methods 

 

5.3 Contact between two elastic bodies with large slips 

Finally, we consider the two elastic bodies 1  and 2  with large slip as shown in Fig. 16. 

The displacements are uniformly distributed on top of 1  while a full constraint is applied at 

the bottom of 2 . 

 

In this example, a plane stress model is used. When using different number of nodes and 

elements as listed in Table 3, the problem domain meshed with quadrangles are given in Fig. 

17. 
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Figure 16. Contact between two elastic bodies with large slip 

 

Table 3. The number of nodes and elements of two elastic bodies Ω1 and Ω2. 

No. M1 M2 M3 M4 M5 M6 Ref. 

Nodes 65 214 449 770 1177 1670 27377 

Elements 43 172 387 688 1075 1548 26875 

 

  
M1                                            M2                                           M3 

  
M4                                            M5                                           M6 

Figure 17. Six different mesh models for two elastic bodies 

 

5.3.1 Convergence of strain energy solution 

While choosing U 100  = 15 =  Ux ymm mm−， and the friction coefficient μ = 0.2. In the 

following analysis, the multi-step loading is used with 100 load steps. Fig. 18 (a) compares 

the solutions of CS-FEM with different number of smoothing domains. From which we 

observed that all the solutions converge to the reference solution with the number of degrees 

of freedom increases. The reference value of the strain energy is obtained by the FEM-Q4 

with 26875 quadrilateral elements, as shown in Table 3. And Fig. 18 (b) shows the 

convergence of the strain energy with respect to the characteristic length. Note that although 

the accuracy of CS-FEM-1SD is much higher than the other models, it could be unstable 

when the constraint is insufficient. 
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Figure 18. Numerical solutions (a) and the convergence of the strain energy (b)   

 

According to these figures, we can get the similar phenomenon with the previous two 

examples: 1) The CS-FEM-1SD has the least convergence ratio 1.0, the others convergence 

ratios are from 1.43 to 1.48. 2) When using the same quadrilateral elements, the accuracy of 

the CS-FEM-1SD is almost 5 times higher than the FEM-Q4, and the accuracy of the CS-

FEM-4SD is more than 30% higher than the FEM-Q4, Note that the CS-FEM-4SD is more 

stable. 

 

5.3.2 Effect of friction coefficient and load step 

In the following contact analysis, the CS-FEM-4SD and M6 model are selected. The friction 

coefficients are 0.05, 0.1, 0.15, 0.2, respectively. Fig. 19 (a) and (b) shows the normal and 

tangential contact stress of the contact point using different friction coefficients at load step 

100. We can find that as the friction coefficient increases, the upward trend of normal contact 

stress on the contact surface will be more obvious. The left end of the contact surface 

decreases while the right end of the contact surface increases. The tangential contact stress 

will become higher at the right end. 
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Figure 19. Normal contact stress (a) and tangential contact stress (b)  

 

We define the friction coefficient is 0.2 to calculate the normal and tangential contact stress of 

the contact point at different load steps as shown in Fig. 20. We can find that both normal and 

tangential contact stress increase steadily in the process of loading. 
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              (a)                                                                      (b) 

Figure 20. Normal contact stress (a) and tangential contact stress (b)  

 

Fig. 21 shows the ratio of contact forces which we can observe the contact states (sticking or 

sliding) of different contact points A, B and C. We can find that during the loading process, 

they are all in a sliding state, and as the loading progresses, the sliding will be more stable. 
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         Figure 21. Evolution of contact states                         Figure 22. Penetration  

 

5.3.3 Analysis of penetration 

In the penetration analysis, the CS-FEM-4SD model is selected. The friction coefficient is 0.2. 

Fig. 22 shows the penetration of the three points A, B and C during the loading process within 

the bi-potential framework. We can find that the contact force is different, and the 

corresponding penetration is also different. This is because the accuracy of the contact 

criterion is controlled by contact forces rather than displacements. We also find that the 

penetration can reach the order of 171.5 10  mm− , which shows a very high precision of our 

approach. 

6. Conclusion 

In this work, the CS-FEM is applied with six different smoothing domains based on 

quadrilateral background elements for solving contact problems. The smoothed Galerkin 

weak form and the discrete form are derived at first. Then multi-points coupling effect is 

considered within the bi-potential framework with the exact Signorini-Coulomb condition. 

The Uzawa algorithm is used to solve the contact force. This method can effectively simulate 

the three states of separating, sliding and sticking. 
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Through the study of numerical examples, we can get the following conclusions: 

(1) As the number of degrees of freedom increases, the strain energy solution obtained by CS-

FEM with different smoothing domains can converge to the reference solution with 

different smoothing domains. CS-FEM-1SD converges from the lower bound and CS-

FEM-2SD to 16SD converges from the upper bound. 

(2) When using the displacement boundary condition, the CS-FEM-1SD provides a lower 

bound solution while the other models provide upper bound solutions. All the results 

produced by CS-FEM are more accurate than those of the FEM-Q4. 

(3) The solution of CS-FEM-1SD is the most accurate. When using the same background 

elements, its accuracy more than 5 times higher than those of the FEM-Q4. But this model 

could be unstable when the constraint is insufficient. CS-FEM-4SD has a higher stability 

in solving contact problems, and its accuracy can be more than 30-40% relative to the 

FEM-Q4 solution when using the same background elements. 
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Abstract 

The basic principles of symmetry together with rules of the method of superposition are often 

applied in science, technology and in engineering. In Ancient Greece the term “symmetria” 

related to art as well as to science. In art principles of symmetry are considered with esthetic 

aspects particularly in area of searching of good proportions. In science the concept of 

symmetry was extended to the study of periodic structures and later to consider invariance in 

physics, while in mathematics especially importance took  new meaning of mirror or bilateral 

and later rotational symmetry [1]. The method of superposition refers in particular for all the 

linear systems states and implies, that the net response caused by two or more stimuli is the 

sum of the responses that would have been caused by each stimulus individually [2]. Due to 

application of such properties one can solve a complex or difficult problem in at least two 

relatively easy and simple stages. The paper presents some selected examples of 

implementation of rules of symmetry and principle of superposition in the methods of 

architectonic and engineering design worked out by the author. 

Keywords: Computational method, truss system, statically indeterminate system, symmetry, 

principle of superposition, space structure, tall building, foundation, airplane structure. 
 

1. Two-stage method of computation of statically indeterminate trusses  
  

There are numerous methods commonly used for calculation of statically indeterminate 

systems starting from e.g. the force method, the displacement method, iterations methods like 

the method of successive approximations, the finite elements method etc., which were 

invented in the past and they are still modified and adapted to requirements of needs of the 

appropriate computer software [3]. The two-stage method of approximate calculation of 

statically indeterminate trusses has been developed during initial static analyses of certain 

types of tension-strut structures, see Fig.1. 

Fig. 1.  Schemes of plane tension-strut truss systems, a) basic configuration, b) 
configuration of the overloaded structure 

The overloaded basic plane truss, see Fig. 1b, can be considered as the statically determinate 
system, what directly indicates that it can be calculated by application of one of the simple 
methods like e.g. Cremona’s method, Ritter’s method or some of other methods appropriate 
for this purpose. Taking into consideration elementary conditions of equilibrium it is 
proposed to introduce the two-stage procedure of calculations, general scheme of which is 
shown in Fig. 2. The point of proposed method is to carry out static calculations in two 
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independent stages for statically determinate trusses, shapes of which are received by 
removing from space of the basic truss the number of members equal to its statically 
indeterminacy. The calculated statically determinate truss has in each stage the same 
geometric parameters like clear span L and construction depth H, but it is loaded by forces of 
half values applied to the same nodes like in area of the basic truss [4][5]. Values of the final 
forces computed in the basic truss will be resultants of forces obtained in each stage for 
members having the same position in area of considered truss. 
 

 
 

Fig. 2.  General schemes of two-stage method proposed for approximate calculation of 

statically indeterminate trusses 
 

In order to verify correctness of theoretic assumptions of the two-stage method there were 

carried out series of computations of simple form of the plane statically indeterminate truss 

having form of basic truss shown in Fig. 2, built of steel members, having clear span equals 

5.00 meters and of construction depth equal to 1.00 meter. In the basic case the truss is 

symmetrically loaded in all nodes of the upper chord by concentrated forces, each of value 

1.00 kN. In the first stage four members of the upper chord are removed and concentrated 

forces of value equal to 0.50 kN are applied to all nodes of the upper chord. The own weight 

of truss is not taken into consideration. After this operation the investigated truss become the 

statically determinate system what empowers to apply, for instance, the Cremona’s method 

for computation values of forces acting in component members of the truss. Keeping rules of 

the proposed method the final values of forces acting in particular members are determined as 

resultants of forces calculated in two independent stages in the counterpart members of trusses 

considered in each stage, see Fig. 3a. The same form of the basic indeterminate truss was 

calculated under the same conditions by application of Autodesk Robot Structural Analysis 

Professional 2016, which software takes into consideration all requested mathematic tools 

necessary for precise computation of the force values in members of the statically 

indeterminate systems, see Fig. 3b. 

 

Fig. 3.  Values of forces calculated in the same members of basic structure by 
application of, a) proposed two-stage method, b) suitable computer software 
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2. Proposals of shaping of various types of spatial structural systems 

 

Shapes of the next presented structural systems can testify usefulness of the symmetry rules 

applied in processes of their invention. Tension-strut space structure called VA(TH)No2, see 

Fig. 3a and Fig. 3b, is created by two groups of tetrahedron modules arranged above and 

below the triangular-hexagonal grid located in the middle layer of the structure. Half the 

number of these modules are directed up and spread on each second triangle over the central 

network surface, while the second half of these modules is directed down, and they are also 

spread on each second triangular field but of the other group of triangles [6]. The space 

structure VA(TH)No2 can also be applied for constructions of vertical system having e.g. the 

hyperbolical form, see Fig. 3c. 
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Fig. 3. a) Scheme of the vertical cross-section, b) the overall view of an example of 

geodesic form of the VA(TH)No2 tension-strut structure, c) hyperbolical form of the 

structure, d) scheme of structure of a tall building located onto the composite foundation 

system 

 
Safety is the most important feature of the bearing structural system of the building and 

especially of its foundation under acting of extremely big values of horizontally and vertically 

loads. The foundation should provide the stable position for the building even during the 

biggest earthquakes and after large casual translocations of the ground beneath the building 

foundation. The required foundation structure should make possible to locate the heavily 

loaded buildings on the grounds of extremely small load carrying ability without necessity of 

application of the deep foundation pile systems, which are expensive and which usually 

constitute a severe interference in the underground water system. The proposed composite 

foundation system, see Fig. 3d, makes possible the construction of the very heavily loaded 

objects on subsoil of extremely small load carrying capacity [7]. It is possible due the uniform 

way of distribution of reaction forces along the large foundation surface, which horizontal 

dimensions are theoretically unlimited. In these cases even a large displacement of ground 

beneath the foundation will have a scant influence on stability of the supported building.  

 

Application of this structural system does not need to prepare deep trenches, what implies that 

costs of this type of foundation can be relatively low. It means also that the underground 

water system can be untouched. Structural features cause  that the combined foundation has 

significant features of a specific type of the passive vibration damper. It is very important for 

objects situated in seismic areas. Features of effective absorbing the vibration energy will be 

significantly enhanced due to the appropriate arrangement of e.g. computer controlled 

a 

b 

c d 

ICCM2020, 9th -12th August 2020

309 



hydraulic jacks. With this equipment the composite foundation system can also be applied to 

straighten buildings being previously inclined. 

 

Basic rules of symmetry have been also taken into consideration in process of working out the 

structural concept of an airplane with rotated fuselage, see Fig. 4 [8]. The main goal of the 

proposed structural system is striving after to shape the airplane of a large range of the flight 

speed, in particular of high cruising speed by the airplane equipped with propulsion of 

relatively low power. 
 

 
 

 

Fig. 4. Visualizations of selected stages of the rotation sequences of the proposed 

structure of an aeroplane 

Conclusions 

The above presented examples may testify that the principle of superposition as well as the 

rules of symmetry or dissymmetry - applied for many centuries in science and technology - 

can be still very helpful in creation of new methods of calculations of the statically 

indeterminate systems and in the design of innovative and structurally efficient support or 

bearing systems of various types of objects.  
 

References 

 
[1] Nagy, D. (2019) Symmetry 30 and “symm-fest” looking back and forth asymmetrically, Symmetry: Art and 

Science, Special Issue, Nos 1-4, 234-237. 
[2] Timoshenko, S.P. (1966) History of strength of materials, Arkady, Warszawa, - in Polish. 
[3] Zienkiewicz, O.C. and Taylor R.L. (2000) The finite element method,  Oxford Press, UK. 
[4] Rębielak, J. (2018) Simple method of approximate calculation of statically indeterminate trusses, 

International Journal of Computational Methods, DOI: 10.1142/S0219876218400261. 
[5] Rębielak, J. (2020) Two-stage method applied for approximate calculations of selected types of statically 

indeterminate trusses, International Journal of Computational Methods, DOI: 
10.1142/S0219876220410042. 

[6] Rębielak, J. (2005) Shaping of space structures. Examples of applications of Formian in design of tension-
strut systems, Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw. 

[7] Rębielak, J. (2011) Systemowy fundament zespolony (Composite foundation system – in Polish), Patent No 
221971, Patent Office of the Republic of Poland, Patent Application No P.394745. 

[8] Rębielak, J. (2004) Koncepcja struktury i model numeryczny płatowca z obracanym kadłubem (Cocept of 
structure and numerical model of a plane with rotated fuselage – in Polish), VIII Szkoła Komputerowego 
Wspomagania Projektowania Wytwarzania i Eksploatacji, Wojskowa Akademia Techniczna, Wydział 
Mechatroniki, Warszawa, 173-180. 

 

ICCM2020, 9th -12th August 2020

310 



ICCM2020, 9th-12th August 2020 

311 
 

Dynamic response of the piezoelectric materials based on cell-based 
smoothed finite element method in hygrothermal environment 

 

†Liming Zhou1, Jinghao Tang1, †
*Ming Li1 

1School of Mechanical and Aerospace Engineering, Jilin University, China. 

*Presenting author: liming940411@gmail.com 
† Corresponding author: lmzhou@jlu.edu.cn (L. Zhou), liming940411@gmail.com (M. Li). 

Abstract 
In this paper, the dynamic response of piezoelectric structures under hygrothermal 
environment is studied by using cell-based smooth finite element method (CS-FEM). Ignoring 
the influence of temperature and moisture on the response of elastic matrix, we derive the 
basic equations of the piezoelectric materials under hygrothermal environment. Then the 
CS-FEM equations of piezoelectric problem are deduced based on the constitutive equation of 
the material. The improved Newmark scheme is used to solve the transient response of this 
problem. Several numerical examples are given to illustrate the advantage of CS-FEM in 
dealing with piezoelectric materials in hygrothermal environment. Results of this study 
provides some ideas for the design and manufacture of piezoelectric smart structures in 
hygrothermal environment. 

Keywords: Piezoelectric materials, Hygrothermal effect, Cell-based smoothed finite element 
method, Natural frequency, Transient response. 

1. Introduction 

Piezoelectric materials have outstanding performance in many smart structures like sensors, 
energy harvesters and others due to their excellent properties of energy conversion [1]-[5]. To 
cope with different working conditions, in recent years, researchers have begun to explore the 
mechanical properties of piezoelectric materials in the extreme thermal or moist environments. 
The combined effect of atmospheric temperature gradient and moisture concentration is called 
hygrothermal effect. A series of studies have shown that the exploration of the hygrothermal 
effect of piezoelectric structures is very helpful for the design and development of smart 
structures. 

Akbarzadeh and Chen [6] presented analytical solutions for the hygrothermal stress in 
one-dimensional functionally gradient piezoelectric media. Mahsa et al. [7][8] studied large 
amplitude vibration behaviors and the hygrothermal postbuckling behavior of multiscale 
double curved piezoelectric shells. Zahra et al. [9] studied the vibration of rotating composite 
blades with piezoelectric layers in hygrothermal environment and found that an increase in 
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temperature and humidity would lead to a decrease in the non-dimension natural frequency. 
The hygro-thermo-elastic responses of piezoelectric exponentially graded fiber-reinforced 
hollow circular cylinders were presented by Ashraf et al. [10]. For piezoelectric cylinders, 
Allam et al. [11] described the hygrothermal response under mechanical loads and electrical 
potentials, Hossein and Nan [12] solved the problem of wave propagation coupled between 
the cylindrical shell and the upper and lower surface piezoelectric layers. Yang and Chen [13] 
studied the nonlinear dynamic response of piezoelectric cylindrical shells under hygrothermal 
conditions. These theoretical studies will face difficulties when applied to practical projects, 
because the actual piezoelectric structures and boundary conditions are often more complex. 
In order to meet the practical application, the Finite Element Method (FEM) and other 
numerical calculation methods have been proposed. 

FEM is a mature numerical method, which can be well combined with commercial software. 
FEM has an advantage in analyzing practical problems in multiple physical fields. 
Shravankumar et al. [14] used FEM to analyze piezoelectric composites under a combination 
of mechanical, hygrothermal and electrical loads. Wang et al. [15] studied the failure modes 
of composite materials under the influence of hygrothermal environment and cyclic loading 
by FEM. Madhusmita et al. [16] studied the effects of temperature and moisture on the 
buckling of composite laminates and obtained FEM results. Mahapatra et al. [17][18] used 
FEM to study the nonlinear free vibration characteristics of composite laminates under high 
temperature and humidity. In addition, Nanda et al. [19][20] studied geometrically nonlinear 
free vibration and transient response of piezoelectric plates and shells in hygrothermal 
environment with FEM. Obviously, FEM has unique advantages in analyzing the 
hygrothermal effects of piezoelectric materials in practical problems, but the traditional FEM 
also has defects including ‘overly-stiff’ and volume locking. In addition, FEM is sensitive to 
mesh distortion which could reduce the accuracy of FEM. 

In order to optimize FEM, Liu et al. [21][22] presented the smoothed finite element method 
(S-FEM) by applying the strain smoothing to the existing FEM. According to the types of 
smoothing domain, S-FEM could be classified as cell-based S-FEM [23]-[26], node-based 
S-FEM [27]-[30], face-based S-FEM [31][32] and edge-based S-FEM [33]-[36]. The stiffness 
matrix in S-FEM does not involve the derivation of shape function, and the model established 
by using S-FEM is ‘softer’ than that established by FEM. At the same time, the S-FEM is 
stable, free from volumetric locking and robust on highly distorted meshes [37]. When 
solving large deformation problems, S-FEM can use low-quality meshes and provide accurate 
solutions. S-FEM can make up for the deficiency of FEM in some situations [38]. 

The smoothing operation of CS-FEM is carried out without crossing element manipulation; 
thus, this algorithm is easy to implement via user-defined elements in ABAQUS, which is an 
advantage of CS-FEM [39]. Now, CS-FEM has been integrated into ABAQUS to solve 
common mechanical problems [40], which proves that CS-FEM has a good application 
prospect. Moreover, CS-FEM has low requirements for the smoothness of the shape function, 
and the derivative of the shape function is note required in the calculation [41]. Therefore, we 
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chose CS-FEM for further research. 

In the present work, we investigate the responses of piezoelectric structures in hygrothermal 
environment by CS-FEM. The constitutive equations and discrete equations for solving 
multi-field coupling problems are derived. The Newmark method is employed to calculate the 
dynamic problems. Piezoelectric structures under different boundary conditions and variable 
hygrothermal loadings are studied by CS-FEM and the results of CS-FEM are compared with 
FEM. 

2. The basic formulations 

l

w

x

y

z

 

Figure 1. Piezoelectric composite structure. 

Fig. 1 shows a piezoelectric structure defined in Cartesian coordinates on the domain Ω. It is 
made by piezoelectric material with length l, width w, and thickness t. 

Ignoring the effect of temperature and moisture dependence of the elastic coefficient on the 
piezoelectric response, the linear constitutive equations of the piezoelectric structure in 
hygrothermal environment can be expressed as 

 mϑ∆ ∆σ CS eE Cα Cβ= - - -  (1) 

 T mϑ∆ ∆∆ e S εE= + + +m ν  (2) 

where σ and D are the stress vector and electric displacement vector, respectively. S, E, ϑ∆
and m∆  are strain vector, electric field vector, temperature change and moisture 
concentration change, respectively. C, e and ε  denote the elastic coefficient matrix, the 
piezoelectric coefficient matrix and dielectric constant matrix, respectively. α and β are the 
thermal expansion coefficient vector and moisture expansion coefficient vector while m and ν 
are the pyroelectric and hygroelectric coefficients, respectively. 
It's necessary to point out that 0= -ϑ ϑ ϑ∆  ( 0= -m m m∆ ) denotes the difference between the 
absolute temperature (moisture concentration) and the stress-free temperature (moisture 
concentration). 

The generalized geometric equations expressed in the form of tensor are as follows: 

 ( ), ,
1
2ij i j j iS u u= +  (3) 
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 ,i iE Φ= −  (4) 

where u and φ are the displacement and electric potential, respectively. 

Assuming the body force, free charge, heat source and moisture source or sink do not exist, 
the equilibrium equations of the system can be described as 

 , 0ij jσ =  (5) 

 , 0j jD =  (6) 

The natural and essential boundary conditions of the elastic and electric fields are as follows: 

 i iu u=  , on uΓ ; ij jn Tσ =  , on TΓ , u TΓ = Γ Γ  (7) 

 Φ Φ=  , on ΦΓ ; i iD n Q=  , on qΓ , Φ qΓ = Γ Γ  (8) 

where Γ is the global boundary, uΓ  and TΓ  are the boundary related to the displacement, ΦΓ  

and qΓ  are the boundary related to the electric potential. iu  and Φ  denote the specified 

displacement on uΓ , electric potential on ΦΓ , which satisfied the Dirichlet conditions. T  and 

Q  denote the specified traction vector on TΓ , electric displacement vector on qΓ , which 

satisfied the Neumann conditions. 

3. CS-FEM 

After using gradient smoothing technique, a so-called local smoothing zone is established in 
the element of CS-FEM firstly. Then, least-squares and reproducing kernel approximation are 
used to improve the accuracy of the direct node integration meshless method [42]. Like FEM, 
the domain of CS-FEM is discretized yet based on elements. 

Assuming a piezoelectric solid 3RΩ∈  is divided into np elements, the approximation 
displacements u  and the approximation electrical potential Φ  can be expressed as  

 
p

u

1

n

i i
i

N u
=

= ∑u  (9) 

 
p

Φ

1

n

i i
i

N Φ
=

= ∑Φ  (10) 

where u
iN  and Φ

iN  note the displacement shape function and electrical potential shape 
function of the CS-FE model, respectively; u and Φ  denote the vectors of displacement and 
electrical potential, respectively. 
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Figure 2. A schematic of the smoothing subcells and the values of shape functions at 
nodes. 

Fig. 2 shows the divisions in the element, each quadrilateral element is divided into four 
smoothing sub-domains in order to ensure the stability of the element in practice application. 
Field nodes, midside points, center smoothing nodes, edge Gaussian points and the shape 
function values are shown in Fig. 2. 

According to strain ( )S x  and electric field ( )E x  in the FEM, the corresponding smoothed 

form of strain S  and electric field E  at point xk in the smoothing domain k
iΩ  are given as: 

 ( ) ( ) ( )
k
i

k k dk
Ω

= − Ω∫S x S x x x  (11) 

 ( ) ( ) ( )
k
i

k k dk
Ω

= − Ω∫E x E x x x  (12) 

where ( )kk −x x  is the constant function 

 ( ) 1/
0

k

k k
i i

k
i

A
k

 ∈Ω− = 
∉Ω

x
x x

x
 (13) 

where 
k
i

k
iA d

Ω

= Ω∫  is the area of the smoothing cell k
iΩ . 

Substituting Eq. (13) into Eqs. (11) and (12) and applying Gauss divergence theorem, we obtain 
the smoothed strains and the smoothed electric fields as follows: 
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 ( )
c

u c
1

k
i

k k
k
i

d
A

Γ

= Γ∫S x n u  (14) 

 ( )
c

Φ c
1

k
i

k k
k
i

d
A

Γ

= Γ∫E x n Φ  (15) 

where u
kn  and Φ

kn  are the outward normal matrix on the smoothing domain boundary c
k
iΓ , 

whose expressions are: 

 u

0
0

k
x

k k
z

k k
z x

n
n

n n

 
 =  
  

n ,
k

k x
k
z

n
nΦ

 
=  
 

n  (16) 

Eqs. (14) and (15) can be written in matrix form 

 ( ) ( )
eu

u
1

n
k i k

i
i=

= ∑S x B x u  (17) 

 ( ) ( )
eu

Φ
1

n
k i k

i
i

Φ
=

= −∑E x B x  (18) 

where neu is the number of smoothing elements; ( )u
i kB x  and ( )Φ

i kB x  are assessed by: 

 ( )
c

c

c c

u
c

u
u c

u u
c c

1 0

10

1 1

k

k

k k

k
i xk

i

i k k
i zk

i

k k
i z i xk k

i i

N n d
A

N n d
A

N n d N n d
A A

Γ

Γ

Γ Γ

 
 Γ
 
 
 = Γ 
 
 

Γ Γ 
  

∫

∫

∫ ∫

B x  (19) 

 ( ) c

c

Φ
c

Φ
Φ

c

1

1

k

k

k
i xk

ii k

k
i zk

i

N n d
A

N n d
A

Γ

Γ

 Γ 
 =  

Γ 
  

∫

∫
B x  (20) 

At the Gaussian point G
bx , Eqs. (19) and (20) are 

 ( )

( )

( )

( ) ( )

b

b

b b

u G

1

G u G
u

1

u G u G

1 1

1 0

10

1 1

n
k k

i b x bk
bi

n
i k k

b i b z bk
bi

n n
k k k k

i b z b i b x bk k
b bi i

N n l
A

N n l
A

N n l N n l
A A

=

=

= =

 
 
 
 
 =
 
 
 
  

∑

∑

∑ ∑

x

B x x

x x

 (21) 
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 ( )

b

b

Φ G

1G
Φ

Φ G

1

1 ( )

1 ( )

n
k k

i b x bk
bii

b n
k k

i b z bk
bi

N n l
A

N n l
A

=

=

 
 
 =  
 
  

∑

∑

x
B x

x
 (22) 

where nb is the number of boundaries for each sub-domain, k
bl  is the length of the smoothing 

boundary. 

Consider the mechanical load and electric load nonexistent, the discretized equations are 
written as 

 { } { }uu u u uM[ ]{ }+[ ]{ }Φ Θ= +K u K Φ ΦΦ   (23) 

 { } { }T
u M[ ] { } [ ]{ }Φ ΦΦ ΦΘ Φ− = − −K u K ΦΦ Φ  (24) 

where { }uΘF , { }uMF , { }ΦΘΦ  and { }MΦΦ  are the vectors related to global thermal load, 

hygroscopic load, pyroelectric and hygroelectric load, respectively. The specific formulas are 
as follows: 

 
n

T
uu u u

1
[ ]

N
i i

i
i

A
=

= ∑K B CB  (25) 

 
n

T
u u

1
[ ]

N
i i

i
i

AΦ Φ
=

= ∑K B eB  (26) 

 
n

T

1
[ ]

N
i i

i
i

AΦΦ Φ Φ
=

= ∑K B Bε  (27) 

 
n

T
u u

1

N
i

i
i

A ϑΘ
=

= ∆∑F B Cα  (28) 

 
n

T
uM u

1
Δ

N
i

i
i

A m
=

= ∑F B Cβ  (29) 

 
n

T

1

N
i

i
i

A ϑΦΘ Φ
=

= ∆∑Φ B µ  (30) 

 
n

T
M

1

N
i

i
i

A mΦ Φ
=

= ∆∑Φ B n  (31) 

 
n

e
i

Λ

∑M M
i

= , { }1 1, ,e i i i i
i n ndiag m m m m=M   (32) 

The natural frequency fn of the system satisfies the relation 

 2
uu 0nfK M− =  (33) 
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Eqs. (23) and (24) can be rewritten as matrix form 

 uu u u uM
T
u M

Φ Θ

Φ ΦΦ ΦΘ Φ

K K ΦΦ u
K K ΦΦ Φ

+    
=    − − −    

 (34) 

According to the above equation, the displacement and electric potential can be obtained 

 
1

uu u u uM
T

Mu

Φ Θ

ΦΘ ΦΦ ΦΦ

K K ΦΦ u
ΦΦ K K

−
+    

=    Φ − −−    
 (35) 

4. The modified Newmark scheme 

The improved Newmark scheme is an implicit integration algorithm for dynamic problems [43]. The integral 

constant λ and δ determined the numerical integration scheme. This method is unconditionally stable when 
λ=0.25 and δ=0.5. The process is as follows 

a. Initial calculation: 

(1) Establish stiffness, mass and damping matrices [K], [M], [P]; 

(2) Assign initial values to { }0θ , { }0θ , { }0θ ; 

(3) Calculate the integral constant and select a suitable time step t∆ ; 

 2
0 1 /a tλ= ∆ , 1 / ( )a tδ λ= ∆ , 2 11 /a tλ= ∆ , 3 1 / 2 1a λ= − , 4 / 1a δ λ= − , (36) 

 ( )5 / 2 / 2a t δ λ= ∆ − , ( )6 1a t δ= ∆ − , 7a tδ= ∆  (37) 

(4) Establish an effective stiffness matrix   K ; 

 [ ] [ ] [ ]0 1a a  K K M P= + +  (38) 

b. For each time step: 

(1) Calculate the payload *
t t+∆  F  at time t+∆t; 

 [ ] { } { } { }( ) [ ] { } { } { }( )* *
0 2 3 1 4 5t t t t t t t t t ta a a a a a+∆ +∆   = + + + +   F F M θ + θ θ P θ + θ θ     (39) 

(2) Calculate the displacement { }t t+∆θ  at time t+∆t; 

 { } *
t t t t+∆ +∆   =   K θ F  (40) 
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(3) Calculate the velocity { }t t+∆θ  and acceleration { }t t+∆θ ; 

 { } { } { }( ) { } { }0 2 3t t t t t t ta a a+∆ +∆= − − −θ θ θ θ θ    (41) 

 { } { } { } { }6 7t t t t t ta a+∆ +∆= + +θ θ θ θ     (42) 

5. Numerical examples 

5.1 Transient response of cantilever beam 

30mm

2m
m

A

 
Figure 3. Geometry of a piezoelectric cantilever beam. 

Fig. 3 shows a piezoelectric cantilever beam made from the piezoelectric material (PZT4). 
Material properties of PZT4 are given in Table 1. The beam with 30mm in length and 2mm in 
width is in the hygrothermal field, free from other mechanical loads. 

Table 1. Material properties of PZT4 [6][44][45] 
Material PZT4 
c11 (GPa) 139.0 
c12 (GPa) 77.8 
c13 (GPa) 74.3 
c33 (GPa) 115.0 
c44 (GPa) 25.6 
e31 (C/m2) -5.2 
e33 (C/m2) 15.08 
e24 (C/m2) 12.72 
ε11 (10-9C2/Nm2) 13.05 
ε33 (10-9C2/Nm2) 11.505 
α1=α2=α3 (10-6/K) 2.0 
β1 (m3/kg) 
β2=β3 (10-4 m3/kg) 

0 
1.1 

m1=m2=m3 (10-4C/m2K) -2.5 
ν22 (cm/kg) 0 
ρ (kg/m3) 7600 
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The temperature change ϑ∆  is shown in Fig. 4 is a sinusoidal curve, 0 100Kϑ∆ = , frequency 
ω=2 Hz, and time step ∆t=0.01 s, while the moisture concentration change is 2m∆ = . The 
responses during 4 cycles of loading are obtained. The boundary condition of the beam is ux= 
uz= Φ= 0 at the left side. 

 
0= sin(2 )tϑ ϑ π ω∆ ∆ ´ ´ ´  (43) 

0.0 0.5 1.0 1.5 2.0

-100

-50

0

50
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∆ϑ
/ K

Time/s
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Figure 4. Temperature change. 

The model is divided into 30×2, 60×4 and 90×6 meshes. We adopted the CS-FEM to analyze 
the natural frequency of the beam and compared the results with FEM. Besides, the solution of 
FEM with 120×8 meshes was adopted as a reference solution. Moreover, the displacement and 
electric potential at point A were also calculated. 
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Figure 5. The natural frequency of the piezoelectric cantilever beam. 
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    (c) 

Figure 6. The displacement and electric potential at point A. (a) ux and (b) uz; (c) Φ. 

Fig. 5 shows the natural frequency and Fig.6 shows the displacement and electric potential at 
point A calculated by CS-FEM and FEM with different meshes. The results show that the 
generalized displacement of the model has obvious response with the change of the temperature, 
which demonstrates the excellent performance of PZT4. The results of CS-FEM approach the 
reference solution with the increase of number of meshes. In addition, the results of CS-FEM 
are very close to the reference solution, which proves the convergence and accuracy of 
CS-FEM in solving the hygrothermal problems. 

5.2 Transient response of clamped-clamped beam 

40mm

4m
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Figure 7. Geometry of a clamped- clamped beam. 
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Fig. 7 shows a clamped-clamped (C-C) piezoelectric beam made from PZT4. Material 
properties of PZT4 are given in Table 1. Length l=40mm and width h=4mm. The beam is in 
the hygrothermal field, free from other mechanical loads. 

The same temperature load as in Section 5.1 is applied to the clamped-clamped beam,the 
moisture concentration change is 2m∆ = . The responses during 4 cycles of loading are 
obtained. The boundary condition of the beam is ux= uz= Φ= 0 at both clamped sides. 
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(c) 

Figure 8. The displacement and electric potential at point A. (a) ux and (b) uz; (c) Φ. 

The displacement and electric potential at point A are shown in Fig.8, which shows how the 
model responds to temperature changes. Compared with the cantilever beam, the generalized 
displacement of C-C beam has less variation, but the influence of load is still obvious. Though 
fewer meshes (160) are used in CS-FEM, the results are in good agreement with FEM which 
uses more meshes (640), which further verifies the correctness and accuracy of CS-FEM. 
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5.3 Dynamic response of a piezoelectric sensor 
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Figure 9. Geometry of the piezoelectric sensor. 

The geometric dimensions of a piezoelectric sensor are shown in Fig. 9. The sensor is made of 
PZT4, whose material properties can be found in Table. 1. The left end of the sensor is fixed 
and the sensor is placed in a hygrothermal environment. 

The moisture concentration change m∆  shown in Fig. 10 is a sinusoidal curve, 0 2m∆ = , 
frequency ω=2 Hz, and time step ∆t=0.01 s, while the temperature change is =100Κϑ∆ . The 
responses during 4 cycles of loading are obtained. The boundary condition of the beam is ux= 
uz= Φ=0 at the left side. 

 
0= sin(2 )m m tπ ω∆ ∆ ´ ´ ´  (44) 
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Figure 10. Moisture concentration change. 

The model is divided into 230 meshes, and CS-FEM and FEM are used to calculate the 
displacement and potential at point A. 
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(c) 

Figure 11. The displacement and electric potential at point A. (a) ux and (b) uz; (c) Φ. 

As shown in Fig. 11, the generalized displacement of the model was also affected by the 
moisture concentration change. The change in electric potential was more pronounced. It 
means that the sensor is sensitive and performs well. The displacement uz in the z direction did 
not change much relative to itself, it means uz was less sensitive to changes in moisture 
concentration. The results of CS-FEM and FEM were approximate for the same hygrothermal 
condition, which prove the accuracy of CS-FEM in solving the hygrothermal problems. 

5.4 Dynamic response of a piezoelectric energy harvester 
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Figure 12. Geometry of the piezoelectric energy harvester. 
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The piezoelectric energy harvester made by PZT4 is discussed in this case. The geometric 
dimensions of the piezoelectric energy harvester are shown in Fig. 12. The length l=54mm 
and the whole width h=16mm. The material parameters of PZT4 can be found in Table. 1. 
The piezoelectric energy harvester is placed in the hygrothermal environment and free from 
mechanical loads. 

The boundary condition of the beam is ux= uz= Φ = 0 at both clamped sides. The following 
three hygrothermal conditions were designed to study the hygrothermal effects of the model. 

Condition 1 (C1), =100sin(4 )tϑ π∆ , =2sin(4 )m tπ∆ . 
Condition 2 (C2), =100ϑ∆ , =2sin(4 )m tπ∆ . 
Condition 3 (C3), =100sin(4 )tϑ π∆ , =2m∆ . 

The model is divided into 178 meshes, and CS-FEM and FEM are used to calculate the 
displacement and potential at point A. 
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(c) 

Figure 13. The displacement and electric potential at point A. (a) ux and (b) uz; (c) Φ. 

Some conclusions can be drawn from the displacement and potential changes shown in Fig. 
13. Changes in moisture concentration have a greater effect on electric potential than on 
displacement, this means that it is easier to detect changes in moisture concentration by 
observing changes in electric potential. Both temperature change and moisture concentration 
change affect the generalized displacement of piezoelectric materials, and the influence of 
temperature change on generalized displacement is greater than that of moisture concentration 
change. The energy harvester made from PZT4 performed well. Moreover, the results of 

http://www.ase.uc.edu/%7Eliugr/software.html
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CS-FEM and FEM were approximate for the same hygrothermal condition, which prove the 
accuracy of CS-FEM in solving the hygrothermal problems. 

6. Conclusions 

In this paper, the dynamic response of piezoelectric materials under the change of temperature 
and moisture concentration was studied. Several numerical examples about hygrothermal 
effects of piezoelectric materials are calculated by using CS-FEM, and the results were 
compared with FEM. The conclusions are as follows 

(1) CS-FEM is convergent and accurate in the analysis of piezoelectric structures in 
hygrothermal environment. 

(2) Electric potential is more sensitive to hygrothermal loads. 

(3) Both temperature change and moisture concentration change affect the generalized 
displacement of piezoelectric materials, and the influence of temperature change on 
generalized displacement is greater than that of moisture concentration change. 

(4) The study and results of CS-FEM on piezoelectric materials can provide reference for 
the design and manufacture of piezoelectric smart structures. 

Author Contributions 

The authors thank Professor Guirong Liu (University of Cincinnati, Cincinnati, USA) for the Smoothed Finite 
Element Method (SFEM) source code (http://www.ase.uc.edu/~liugr/software.html). Liming Zhou, Jinghao Tang 
and Ming Li performed the simulations, analysis and the wrote the manuscript. 

Conflicts of interest 

The authors declare that they have no conflicts of interest. 

Acknowledgment 

This work was supported by National Natural Science Foundation of China (grant no. 51975243) and Jilin 
Provincial Department of Education (grant no. JJKH20180084KJ). 

References 
[1] Ghosh, S., and Guo, S. (2019) Developing a virtual damage sensor using a coupled electro-mechanical FE 

model of a piezoelectric material, International Journal for Multiscale Computational Engineering 17, 
447-468. 

[2] Alnasser, E. (2020) A Novel Low Output Offset Voltage Charge Amplifier for Piezoelectric Sensors, Ieee 
Sensors Journal 20, 5360-5367. 

[3] Asthana, P., and Khanna, G. (2020) Modeling and optimization of a wide-band piezoelectric energy 
harvester for smart building structures, International Journal of Modeling Simulation and Scientific 



ICCM2020, 9th-12th August 2020 

327 
 

Computing 11, 2050009. 
[4] Chahar, R. S., and Kumar, B. R. (2019) Effectiveness of piezoelectric fiber reinforced composite laminate in 

active damping for smart structures, Steel and Composite Structures 31, 387-396. 
[5] Meyer, Y., Lachat, R., and Akhras, G. (2019) A review of manufacturing techniques of smart composite 

structures with embedded bulk piezoelectric transducers, Smart Materials and Structures 28, 053001. 
[6] Akbarzadeh, A. H., and Chen, Z. T. (2013) Hygrothermal stresses in one-dimensional functionally graded 

piezoelectric media in constant magnetic field, Composite Structures 97, 317-331. 
[7] Karimiasl, M., Ebrahimi, F., and Vinyas, M. (2019) Nonlinear vibration analysis of multiscale doubly 

curved piezoelectric composite shell in hygrothermal environment, Journal of Intelligent Material Systems 
and Structures 30, 1594-1609. 

[8] Karimiasl, M., Ebrahimi, F., and Mahesh, V. (2020) Hygrothermal postbuckling analysis of smart multiscale 
piezoelectric composite shells, European Physical Journal Plus 135, 242. 

[9] Arabjamaloei, Z., Mofidi, M., Hosseini, M., and Bahaadini, R. (2019) Vibration analysis of rotating 
composite blades with piezoelectric layers in hygrothermal environment, European Physical Journal Plus 
134, 556. 

[10] Zenkour, A. M. (2017) Bending analysis of piezoelectric exponentially graded fiber-reinforced composite 
cylinders in hygrothermal environments, International Journal of Mechanics and Materials in Design 13, 
515-529. 

[11] Allam, M. N. M., Zenkour, A. M., and Tantawy, R. (2014) Analysis of Functionally Graded Piezoelectric 
Cylinders in a Hygrothermal Environment, Advances in Applied Mathematics and Mechanics 6, 233-246. 

[12] Bisheh, H., and Wu, N. (2019) Wave propagation in smart laminated composite cylindrical shells reinforced 
with carbon nanotubes in hygrothermal environments, Composites Part B-Engineering 162, 219-241. 

[13] Yang, J. H., and Chen, D. L. (2012) Nonlinear Dynamic Response of Piezoelectric Cylindrical Shell with 
Delamination under Hygrothermal Conditions, Prgo Org Coat 204-208, 4698-4701.  

[14] Kerur, S. B., and Ghosh, A. (2013) Geometrically non-linear bending analysis of piezoelectric 
fiber-reinforced composite (MFC/AFC) cross-Ply plate under Hygrothermal Environment, Journal of 
Thermal Stresses 36, 1255-1282. 

[15] Wang, Y. L., Guo, X. Y., Huang, P. Y., Huang, K. N., Yang, Y., and Chen, Z. B. (2020) Finite element 
investigation of fatigue performance of CFRP-strengthened beams in hygrothermal environments, 
Composite Structures 234, 111676. 

[16] Biswal, M., Sahu, S. K., Asha, A. V., and Nanda, N. (2016) Hygrothermal effects on buckling of composite 
shell-experimental and FEM results, Steel and Composite Structures 22, 1445-1463. 

[17] Panda, S. K., and Mahapatra, T. R. (2014) Nonlinear finite element analysis of laminated composite 
spherical shell vibration under uniform thermal loading, Meccanica 49, 191-213. 

[18] Mahapatra, T. R., and Panda, S. K. (2016) Nonlinear free vibration analysis of laminated composite 
spherical shell panel under elevated hygrothermal environment: A micromechanical approach, Aerospace 
Science and Technology 49, 276-288. 

[19] Nanda, N., and Pradyumna, S. (2011) Nonlinear dynamic response of laminated shells with imperfections in 
hygrothermal environments, Journal of Composite Materials 45, 2103-2112. 

[20] Nanda, N., and Sahu, S. K. (2013) Nonlinear Free and Forced Vibrations of Delaminated Composite Plates 
in Hygrothermal Environments, Advances in Vibration Engineering 12, 349-355. 

[21] Liu, G. R., Nguyen-Xuan, H., and Nguyen-Thoi, T. (2010) A theoretical study on the smoothed FEM 
(S-FEM) models: Properties, accuracy and convergence rates, International Journal for Numerical Methods 



ICCM2020, 9th-12th August 2020 

328 
 

in Engineering 84, 1222-1256. 
[22] Liu, G. R., Dai, K. Y., and Nguyen, T. T. (2007) A smoothed finite element method for mechanics problems, 

Computational Mechanics 39, 859-877. 
[23] Yue, J. H., Liu, G. R., Li, M., and Niu, R. P. (2018) A cell-based smoothed finite element method for 

multi-body contact analysis using linear complementarity formulation, International Journal of Solids and 
Structures 141, 110-126. 

[24] Luong-Van, H., Nguyen-Thoi, T., Liu, G. R., and Phung-Van, P. (2014) A cell-based smoothed finite 
element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic 
response of laminated composite plates on viscoelastic foundation, Engineering Analysis with Boundary 
Elements 42, 8-19. 

[25] Zhou, L. M., Li, M., Meng, G. W., and Zhao, H. W. (2018) An effective cell-based smoothed finite element 
model for the transient responses of magneto-electro-elastic structures, Journal of Intelligent Material 
Systems and Structures 29, 3006-3022. 

[26] Zhou, L. M., Ren, S. H., Liu, C. Y. and Ma, Z. C. (2019) A valid inhomogeneous cell-based smoothed finite 
element model for the transient characteristics of functionally graded magneto-electro-elastic structures, 
Composite Structures 208, 298-313. 

[27] Li, Y., Liu, G. R., and Yue, J. H. (2018) A novel node-based smoothed radial point interpolation method for 
2D and 3D solid mechanics problems, Computers & Structures 196, 157-172. 

[28] Li, Y., and Liu, G. R. (2019) A novel node-based smoothed finite element method with linear strain fields 
for static, free and forced vibration analyses of solids, Applied Mathematics and Computation 352, 30-58. 

[29] Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H., and Lam, K. Y. (2009) A node-based smoothed finite 
element method (NS-FEM) for upper bound solutions to solid mechanics problems, Computers & 
Structures 87, 14-26. 

[30] Zhou, L. M., Ren, S. H., Meng, G. W., Li, X. L. and Cheng, F. (2019) A multi-physics node-based smoothed 
radial point interpolation method for transient responses of magneto-electro-elastic structures, Engineering 
Analysis with Boundary Elements 101, 371-384. 

[31] Nguyen-Thoi, T., Liu, G. R., Vu-Do, H. C., and Nguyen-Xuan, H. (2009) A face-based smoothed finite 
element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh, Computer 
Methods in Applied Mechanics and Engineering 198, 3479-3498. 

[32] Nguyen-Thoi, T., Liu, G. R., Lam, K. Y., and Zhang, G. Y. (2009) A face-based smoothed finite element 
method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node 
tetrahedral elements, International Journal for Numerical Methods in Engineering 78, 324-353. 

[33] Chen, L., Zhang, J., Zang, K. Y., and Jiao, P. G. (2011) An edge-based smoothed finite element method for 
adaptive analysis, Structural Engineering and Mechanics 39, 767-793. 

[34] Cui, X. Y., and Chang, S. (2015) Edge-Based Smoothed Finite Element Method Using Two-Step Taylor 
Galerkin Algorithm for Lagrangian Dynamic Problems, International Journal of Computational Methods 12, 
1550028. 

[35] Phan-Dao, H. H., Nguyen-Xuan, H., Thai-Hoang, C., Nguyen-Thoi, T., and Rabczuk, T. (2013) An 
edge-based smoothed finite element method for analysis of laminated composite plates, International 
Journal of Computational Methods 10, 1340005. 

[36] Nguyen-Xuan H., Liu G. R., Thai-Hoang C. and Nguyen-Thoi T. (2009) An edge-based smoothed finite 
element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin 
plates, Computer Methods in Applied Mechanics and Engineering 199, 471-489. 



ICCM2020, 9th-12th August 2020 

329 
 

[37] Lee, C. K., Mihai, L. A., Hale, J. S., Kerfriden, P., and Bordas, S. P. A. (2017) Strain smoothing for 
compressible and nearly-incompressible finite elasticity, Computers & Structures 182, 540-555. 

[38] Nguyen-Xuan H., Bordas S., Nguyen-Dang H.. (2008) Addressing volumetric locking and instabilities by 
selectiveintegration in smoothed finite elements, Communications in Numerical Methods and Engineering 
25, 19-34. 

[39] Zeng, W. and Liu, G.R. (2018) Smoothed Finite Element Methods (S-FEM): An Overview and Recent 
Developments, Archives of Computational Methods in Engineering 25, 397-435. 

[40] Cui, X., Han, X., Duan, S.Y. and Liu, G.R. (2020) An ABAQUS Implementation of the Cell-Based 
Smoothed Finite Element Method (CS-FEM), International Journal of Computational Methods 17, 
1850127. 

[41] Nguyen-Xuan H, Nguyen H. V., Bordas S., Rabczuk T. and Duflot M. (2012) A cell-based smoothed finite 
element method for threedimensional solid structures, Ksce Journal of Civil Engineering 16, 1230-1242. 

[42] Chen, J. S., Wu, C. T., Yoon, S., and You, Y. (2001) A stabilized conforming nodal integration for Galerkin 
mesh-free methods, International Journal for Numerical Methods in Engineering 50, 435-466. 

[43] Soares, D. and Mansur, W. J. (2005) A time domain FEM approach based on implicit Green’s functions for 
non-linear dynamic analysis, International Journal for Numerical Methods in Engineering 62, 664-681. 

[44] Dini, A., and Abolbashari, M. H. (2016) Hygro-thermo-electro-elastic response of a functionally gtaded 
piezoelectric cylinder resting on an elastic foundation subjected to non-axisymmetric loads, International 
Journal of Pressure Vessels and Piping 147, 21-40. 

[45] Alashti, R. A. and Khorsand, M. (2011) Three-dimensional thermo-elastic analysis of a functionally graded 
cylindrical shell with piezoelectric layers by differential quadrature method, International Journal of 
Pressure Vessels and Piping 88, 167-180. 

 



ICCM2020, 9th-12th August 2020 

330 
 

Author Index 

Asao, Shinichi…………………………..6, 52, 61, 71 
Bui, Tien Thanh…………………………………..137 
Cai, Zhiqin………………………………………...218 
Canh, Le Van……………………………………….91 
Chen, Huijian……………………………………..287 
Chen, Qianwei……………………………………287 
Chiu, Pao-Hsiung………………………………..199 
Du, Chaofan………………………………………175 
Feng, Zhiqiang……………………………………287 
Gao, Xiang………………………………………..175 
Han, Jun…………………………………………….17 
Han, Junwen………………………………………175 
Han, Xu…………………………………………….280 
Hoang, Vu  Le…………………………………….109 
Huang, Zhida……………………………………..228 
Ijima, Katsushi……………………………………..83 
Ionescu, Daniela………………………………….164 
Ishikawa, Koichiro……………………………….209 
Jiang, Da…………………………………………..218 
Khoshghalb, Arman……………………………...149 
Lam, Thanh Quang Khai………………………..137 
Le, Quang Tuyen…………………………………199 
Li, Bo………………………………………………228 
Li, Ming……………………………………………311 
Li, Yan……………………………………….256, 287 
Li, Zeqi………………………………………………..1 
Liu, Chong………………………………………...228 
Liu, Qiming………………………………………..280 
Lu, Jian…………………………………………….228 
Lu, Tien-Fu…………………………………………..1 
Mimura, Koji……………………………………….40 
Ngo, Van Thuc……………………………………137 
Nguyen, Duyen Phong…………………………..137 
Nguyen, Thi Cam Nhung………………………..137 
Nguyen, Thi Thu Nga…………………………….137 
Nishida, Hidetoshi…………………………...32, 128 
Obiya, Hiroyuki……………………………………83 
Ogura, Kiyota………………………………………71 
Ohashi,  Kunihide………………………………….46 
Okahashi, Yuki……………………………………..32 
Ooi, Chinchun…………………………………….199 

 

Pakhaliuk, Vladimir……………………………...245 
Peng, Haijun………………………………………218 
Petrolito, Joe……………………………………..164 
Phuc, Ho Le Huy…………………………………..91 
Phuong, Nguyen Hoang…………………………..91 
Poliakov, Akeksandr……………………………..245 
Qiu, Xiaolu………………………………………..218 
Rebielak, Janusz………………………………….307 
Riku, Isamu…………………………………………40 
Saitoh, Takahiro………………………………….121 
Sawada, Tomoki……………………………………40 
Sawanoi, Kento…………………………………….61 
Shafee, Ashkan……………………………………149 
Soe, Cho Kyi………………………………………..83 
Tajiri, Kyohei……………………………...6, 32, 128 
Takeda, Haruhiko………………………………...121 
Tanaka, Mitsuru…………………………..6, 32, 128 
Tang, Jinghao…………………………………….311 
Tangaramvong, Sawekchai…………………………...109 
Tanio, Daichi………………………………………...6 
Tian, Zhao……………………………………………1 
Tong, Nichen……………………………………...280 
Ueda, Kohei………………………………………..52 
Urano, Akihiro……………………………………128 
Wang, Houzhi………………………………………..1 
Wei, Qi……………………………………………..275 
Wu, Zhigang………………………………………218 
Xiang, Jiawei……………………………………..275 
Yaegashi, Yuta…………………………………….192 
Yamakawa, Masashi………...6, 32, 52, 61, 71, 128 
Yamashita, Shuhei…………………………………83 
Yoshioka, Hidekazu………………………………192 
Yoshioka, Yumi……………………………………192 
Yuan, Hong…………………………………………17 
Yue, Junhong……………………………………..256 
Zeng, Lan……………………………………………17 
Zhang, Dingguo…………………………………..175 
Zhang, Huanliang………………………………….17 
Zhou, Liming……………………………………...311 
Zhou, Xiaoting……………………………………175 

 

 


	Zeqi Li¹, *†Zhao Tian1, Tien-fu Lu1and Houzhi Wang2
	Abstract
	Introduction
	Methodology
	Plume-tracing Algorithm
	Simulation Setup
	3D Simulation Framework Consisting of Matlab and CFD

	Results and Discussion
	Conclusions
	References
	†*Shinichi ASAO¹, Masashi YAMAKAWA2, and Kento SAWANOI2
	Abstract
	Introduction
	Numerical Approach
	Governing Equations
	Unstructured Moving-grid Finite-volume Method
	Numerical Procedure
	Procedure on Coupled Computation for Compressible flow and Incompressible flow

	Numerical Results
	Calculation Model
	Calculation Conditions
	Simulation of Flow in Pressure Tank

	Concluding Remarks
	Vu Le Hoang1, *†Sawekchai Tangaramvong2
	Abstract
	ES-FE Based Iterative Plastic Analysis
	ES-FE Model and Governing Formulations
	Modified Elastic Compensation Algorithm 
	Modulus Smoothing Process

	Automatic Adaptive ES-FE Module
	Modulus Compensation Error Indicator
	Adaptive Mesh Algorithm

	An Illustrative Example
	Conclusions
	Acknowledgements
	References
	*Ngo Van Thuc1, †Bui Tien Thanh2, Nguyen Thi Cam Nhung2, Nguyen Thi Thu Nga3, Nguyen Duyen Phong4 and Lam Thanh Quang Khai1
	1Mien Tay Construction University, Vietnam.
	2Department of Bridge and Tunnel Engineering, University of Transport and Communications, Vietnam.
	3Facility of Technical Fundamental, University of Transport Technology, Vietnam
	4Department of Underground and Mining Construction, University of Mining and Geology, Vietnam.
	†Corresponding author: btthanh@utc.edu.vn

	Abstract:
	The author acknowledges the support by The Laboratory of Department of Underground and Mining Construction, University of Mining and Geology, Vietnam.
	K. Ishikawa
	Abstract
	Keywords: Double layer truss domes, Response spectrum method, Time history analysis, Vertical and horizontal earthquake motions, Equivalent static load, Dominant natural mode.

	Introduction
	Configurations of Double Layer Truss Domes
	Analysis Domes and Member Characteristics

	Static Equivalent Seismic Loads
	Seismic design coefficients
	Distributions of Static Equivalent Seismic Loads

	Response Spectrum Method by means of the Static Equivalent Static Seismic Load applied at the Dome
	Vibration Characteristics such as Natural Period and Dominant Mode of the Domes
	Dynamic Responses of the Time History Analysis
	Input Vertical and Horizontal Artificial Earthquake Motions on Surface Ground

	Comparison between the Time History Analysis and the Response Spectrum Analysis
	Conclusions
	Acknowledgment
	References
	Jiang Da¹, *Zhiqin Cai¹, Xiaolu Qiu¹, Haijun Peng¹ and Zhigang Wu2
	Abstract
	The Dynamic Equation of the Continuum manipulator
	The Robust Controller
	A.  Sliding mode controller
	B. Reinforcement learning optimized sliding mode controller

	Simulation Result
	Conclusions
	Acknowledgments
	References
	1 Introduction
	2 Methodology
	2.1 Governing equations
	2.2 Numerical Solutions
	2.3 Initial and boundary conditions for the order parameters
	2.4 Spatial discretization

	3 Simulation Example
	4 Conclusion and Discussion
	Acknowledgement
	References
	*†Yan Li¹, Junhong Yue2
	Abstract
	1 Introduction
	Figure 1: The configuration of
	where  i
	Generally, the contact traction 
	Figure 2: The configuration of
	and
	where  a
	in which 
	3 Node-based smoothed finite element method
	3.1 Smoothed Galerkin weak form

	For a solid occupying domain 
	where  i
	The smoothed strain 
	where  i
	There are several types of smoothing domains: edge
	Figure 3: The node-based smoot
	3.2 Smoothed strain functions
	3.2.1 Constant strain function
	The weight function should satisfy the locally sup
	where
	In this work we construct linear strain fields by 
	where , 
	Substituting Eq. (14) into Eq.
	To determine the three unknown coefficients, three
	where  i
	Then we have a system of linear equations which ca
	The above moments can be obtained by formulas prov
	Besides, by using the Green’s divergence theorem f
	Assume
	Eq. (23) can be written as:
	Finally the linear strain function can be expresse
	Figure 4: Contact point pairs 
	4.1 Discrete formulation for contact interfaces
	The contact gap between the contact point pair is:
	in which 
	where , 
	where . 
	where , 
	When using the modified coulomb contact model, the
	5 Numerical results
	References
	Abstract
	References
	Proceedings_Compiled.pdf
	ORGANIZATION COMMITTEES
	Table of Contents
	Welcome Message&Contents-2020.pdf
	ORGANIZATION COMMITTEES
	Table of Contents


	4512_2020Aug21_adding header.pdf
	Abstract
	1. Introduction
	2. The basic formulations
	3. CS-FEM
	4. The modified Newmark scheme
	5. Numerical examples
	5.1 Transient response of cantilever beam
	5.2 Transient response of clamped-clamped beam
	5.3 Dynamic response of a piezoelectric sensor
	5.4 Dynamic response of a piezoelectric energy harvester

	6. Conclusions
	Author Contributions
	Conflicts of interest
	Acknowledgment
	References

	page 329.pdf
	Abstract
	1. Introduction
	2. The basic formulations
	3. CS-FEM
	4. The modified Newmark scheme
	5. Numerical examples
	5.1 Transient response of cantilever beam
	5.2 Transient response of clamped-clamped beam
	5.3 Dynamic response of a piezoelectric sensor
	5.4 Dynamic response of a piezoelectric energy harvester

	6. Conclusions
	Author Contributions
	Conflicts of interest
	Acknowledgment
	References




