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Abstract 

We explore applicability of entropy-regularized Wasserstein (pseudo-)distances as new tools 

for analyzing environmental and ecological data. In this paper, the two specific examples are 

considered and are numerically analyzed using the Sinkhorn algorithm. The first example is 

the inflow and outflow discharges of a dam-reservoir system. The inflow and outflow 

discharges are described as discrete-time Markov chains, and their transition rates among the 

discharge regimes and the corresponding stationary probability distributions are identified. 

The optimal transport plan leading to the regularized Wasserstein distance between the two 

Markov chains is considered as the system optimization policy decided by the operator. The 

second example is the body weight distributions of a fish serving as a major inland fishery 

resource in Japan. We quantify differences of the collected body weight distributions among 

the different years focusing on the summer growing season. The obtained analysis results 

imply usefulness of the regularized Wasserstein distances for assessing probability 

distributions arising in environmental and ecological problems. 
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Wasserstein distance, Sinkhorn algorithm 

 

Introduction 

Environmental and ecological dynamics in our world are inherently uncertain. The probability 

density functions or equivalently probability distributions can effectively quantify 

uncertainties involved in the target phenomena. Quantifying and comparing the probability 

distributions play an essential part in understanding and managing environmental and 

ecological dynamics [1]. 

 

The Wasserstein distances [2] are the metrics to rigorously measure difference between 

probability distributions. They originate from an optimization problem of transportation plans 

of materials from a set of starting points to a set of terminal points. They have been applied to 

a wide variety of research areas in both science and engineering, such as image processing, 

machine learning, and mathematical analysis and discretization of partial differential 

equations [2]-[3]. However, their applications to problems of environment and ecology have 

been far less explored to the best of the authors’ knowledge. This is the motivation of our 

research. 

 

In this paper, we apply the robust entropy-regularized Wasserstein (pseudo-)distances to 

unique environmental and ecological data collected in a river environment. The first 

application is to the discrete-time Markov chains representing inflow and outflow discharge 



processes of an existing dam-reservoir system. The optimal plan as a minimizer in a 

Wasserstein distance is computed as the system optimization policy of the operator. The 

second application is to the body weight distributions of a fish in different years. We quantify 

difference among the distributions. The entropic regularization allows us to efficient as well 

as robust numerical computation of the Wasserstein distances. Our results would advance 

understanding and assessment of environmental and ecological data from a new viewpoint 

based on the Wasserstein distances. 

Wasserstein distances 

Standard Wasserstein distances 

Wasserstein distances are the distances that can measure the differences between probability 

distributions [3]. For finite discrete probability distributions, namely for the two normalized 
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Here, 
ijC  is the transportation cost quantifying the difference between the classes ,i j  and the 

matrix  
1 ,ij i j n

P P
 

=  is referred to as a plan. A minimizing plan of (1) is called an optimal 

plan. This is a linear programming problem subject to constraints, but the resulting optimal 

plans are possibly not robust against the uncertainties in a  and b  because they are often non-

unique and are of the non-interior type [2]. 

 

Regularized Wasserstein distances 

The above-explained formulation would not be appropriate for problems under uncertain 

environment, where the histograms are not always accurate. This is often the case in handling 

histograms of environmental and ecological data. In such a case, it is more reasonable to 

consider the penalized problem subject to the same constraint (2): 
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with a penalty parameter 0  . This , pW  is not a distance due to not satisfying the triangle 

inequality, but we call it a “distance” for the sake of brevity. The added term is understood as 

the penalization against model uncertainty to improve the robustness, which formally 

vanishes as 0 → +  [4]. The problems (1) and (3) coincide under this limit. Furthermore, the 

minimizer P P=  of (3) converges to an optimal plan of the problem as 0 → +  [3]. 

 

Using the penalized formulation has the following two computational advantages. Firstly, the 

optimal plan P P=  is unique in (3) because the regularized problem is  -convex. Secondly, 



there exists a simple, fast, and stable algorithm for numerically finding P : the Sinkhorn 

algorithm [3]: 
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with positive initial guesses ( ) ( )0 0
,i iu v  (1 i n  ), from which P  is obtained as 
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Here, we have set ( )exp /ij ijK C = − . Computational efficiency of the algorithm has been 

demonstrated in Cuturi [5]. Our implementation of the algorithm is based on the logarithmic 

rewriting [3] to avoid computational instability with small  . Notice that 
,

p

pW  is increasing 

with respect to  . We terminate the algorithm if the differences ( ) ( )1
ln ln

m m
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+
−  and 

( ) ( )1
ln ln
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i iv v
+
−  become smaller than a sufficiently small error threshold ( 710−  in this paper). 

Wasserstein distances 

Regularized Wasserstein distances 

The first application is the inflow and outflow discharges of a dam-reservoir system in H 

River in Japan. The system has been operated from 2011 for multiple purposes including 

water resources supply and flood mitigation. Hourly inflow and outflow discharges data of the 

dam-reservoir system are available from April 1 in 2016. 

 

We identify hourly discrete-time and discrete-state Markov chains of the inflow and outflow 

discharges using the collected data from April 1, 2016 to September 31, 2019. Seasonality of 

the data is not considered in this paper for the sake of simplicity, but will be addressed 

elsewhere. The discharge regimes are classified as follows:  )1,i i iS s s +=  ( 1 i n  ) with 

1is i= −  (m3/s) (1 11i  ) and ( )10 8 11is i= + −  (m3/s) (12 i n  ), 41n = , and 42S = + . 

This non-uniform partition has been employed because the average discharges are around 5.5 

(m3/s) for both the inflow and outflow records. We remark that, in this case, the system 

operation policy depending on the cost 
ijC  and the penalty parameter   can be identified as 

the probability matrix  1

, 1 ,i ij i j n
a P
−

 
 if 0ia   for all i . 

 

Fig. 1 shows the estimated transition matrices  ijq q=  of the Markov chains of the inflow 

and outflow discharges. The estimated results show that the Markov chain for the outflow is 

closer to diagonally-dominant, meaning that the regime transitions occurred less frequently 

than in the inflow. The stationary probability distributions of the inflow (  
1i i n

a a
 

= ) and 

outflow discharges (  
1i i n

b b
 

= ) are used to numerically compute the regularized 

Wasserstein distances. Although not presented, it has been found that they are indeed 

increasing with respect to   as theoretically expected. 

 



Figs. 2 and 3 show the optimal plans P  for 1,2p =  with 0.01 =  and 10 = . The optimal 

plan is sparser for smaller  , implying its less robustness against perturbation of the input 

data. The computational results clearly indicate that the optimal plans are such that the 

discharges are significantly decreased through the dam-reservoir system for the lower regimes 

1 11i   where the discharges are smaller than 10 (m3/s). Considering the Markov chains 

estimated in Fig. 1 and the optimal plans in Figs. 2 and 3, this dam-reservoir system is serving 

as a filter to lower the lower flow and to a less transient flow. It is important to see that this 

characteristic of the system is visible both for the cases 1p =  and 2p = , although they are 

somewhat different for relatively high flow regimes , 12i j  . 

 

 

Figure 1. Transition probabilities of the Markov chains for the inflow discharge (Left) 

and outflow discharge (Right) 

 

 
Figure 2. Optimal plans with 1p =  for 0.01 =  (Left) and 10 =  (Right) 



 

Figure 3. Optimal plans with 2p =  for 0.01 =  (Left) and 10 =  (Right) 

 

Body weights of a fish species 

The second application focuses on the collected body weight distributions of the fish 

Plecoglossus altivelis altivelis as a major inland fishery resource in Japan [6]. The fish is one 

of the most important incomes for inland fishery cooperatives in the country. In addition, the 

fish is a key species in the aquatic ecosystems in and around river environment. Therefore, 

their growth dynamics are of critical importance. The life history of the fish is not explained 

here, but is found in Yoshioka et al. [7]. An important fact is that they have a one-year life 

history and grow significantly in summer, during which harvesting the fish is carried out. 

 

We collected the body weight distributions of the fish at the beginning of August in 2017, 

2018, 2019 in H River, and obtained the statistical estimates as demonstrated in Table 1. The 

data for 2017 and 2018 is found also in Yoshioka et al. [6, 8]. Fig. 4 plots their distributions. 

The average values are around 56 to 57 (g) and the standard deviations around 18 to 19 (g). 

All the distributions have positive skewness values around 1. The collected data implies that 

the distributions are qualitatively the same. 

 

An interest from a fisheries viewpoint is whether there exist significant quantitative 

differences among the three distributions. Figs. 5 and 6 plot the computed regularized 

Wasserstein distances , pW  for 1,2p =  with respect to the different values of  . There are at 

least two important findings from the figures. Firstly, the distance between 2017 and 2018 are 

the largest for both 1,2p = . On the other hand, the relationship of the distances between 2018 

and 2019 and that between 2017 and 2019 are opposite between 1,2p = , especially when   

is small. In fact, 0.01,1W  are 0.159 and 0.193 between 2018 and 2019 and that between 2017 

and 2019, respectively. On the other hand, 0.01,2W  are 0.222 and 0.201 between 2018 and 2019 

and that between 2017 and 2019, respectively. This finding suggests that exploring a more 

biologically reasonable 
ijC  would be required. Nevertheless, the results suggest a significant 

difference between the data of 2017 and 2018. 



Table 1. The collected data of the body weights of the fish 

 

 2019 2018 2017 

Total number of caught fishes 227 189 234 
Average (g) 56.4 57.3 55.6 

Standard deviation (g) 18.2 18.5 19.1 
Skewness 0.95 1.16 0.78 

 

 

Figure 4. The body weight distributions in 2017 (Red), 2018 (Green), and 2019 (Blue) 

 

Figure 5. , pW W=  for 1p =  with respect to  : The distance between 2017 and 2018 

(Red), 2018 and 2019 (Green), and 2019 and 2017 (Blue) 

 

Figure 6. , pW W=  for 2p =  with respect to   (the same legend with Fig. 5) 



Conclusions 

The entropy-regularized (pseudo-)Wasserstein distances were applied to analyzing the unique 

environmental and ecological data. The application to the dam-reservoir system identified the 

optimal plan representing the system operation policy. Another application on the fish growth 

distributions quantified the differences among the collected distributions of the fish in 

different years.  

 

Our results suggest that the regularized Wasserstein distances can serve as new tools for 

analyzing environmental and ecological data. A future reach topic would be computing the 

optimal plans of different dam-reservoir systems across the country, or across the globe, with 

which actual operational characteristics among them can be clarified. Analyzing applicability 

of the Wasserstein distances to other species, such as recently-found unique land-locked P. 

altivelis in Japan, is also an interesting topic. 
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