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Abstract
Reliability-based design optimization (RBDO) addresses the cost-effective integrity design of
structures in the presence of inherent uncertain parameters. Processing this class of problem is
challenging from the computational burden to determine the failure probability of structures
violating the limit-state function. This paper proposes an efficient decoupling RBDO method
that advantageously couples a comprehensive learning particle swarm optimization (CLPSO)
algorithm with a Gaussian process regression (GPR) model, termed as GPR-CLPSO approach.
In essence, the proposed method iteratively performs the CLPSO with deterministic
parameters based on the most probable point underpinning the limit-state function iterative
updated by the reliability evaluation process. The GPR model approximates from the design
data given by CLPSO the spectrum of the limit-state function under uncertain parameters, and
hence enables a significant reduction of Monte-Carlo simulations for estimation of failure
probability. What is more, is that a so-called expected feasibility function is maximized to
systematically refine the GPR model by locating new sampling points in the region with high-
reliability sensitivity leading to the more accurate prediction of failure probability. The RBDO
terminates when the resulting failure probability reaches the allowable threshold. The CLPSO
is primarily adopted in the optimization process for the GPR hyperparameters and the
expected feasibility function. A numerical example is provided to illustrate the applications
and robustness of the proposed schemes in solving the RBDO problems.
Keywords: Gaussian process regression; Comprehensive learning; Particle swarm
optimization; Expected feasibility function; Reliability-based design optimization.

Introduction
Deterministic optimization has been extensively applied in engineering structures to improve
the design performance with minimum resources. The design solution computed by the
deterministic optimization becomes unreliable in some cases, especially when the influences
of uncertainties inheriting structural dimensions, material properties, loading and operating
conditions are significant and cannot be eliminated. By addressing the performance and
reliability of the structure together, the structural reliability-based design optimization (RBDO)
has been considered as the alternative approach in recent years. More explicitly, the RBDO
problem minimizes the cost function, denoted as C, and satisfies the certain deterministic and
probabilistic constraints, as state by the following generic mathematical formulations [1]:



 
 L U

min 
s.t. a

C
G z P   



( )
( , )

s s , s

s
s x 0 0P , (1)

where s and x are the vectors of deterministic design variables and random parameters,
respectively. The vector x is characterized by the joint probability density function (PDF) f(x)
in the space Ω. The two sL and sU denote the lower and upper bound on the variables s,
respectively. The functions G(s, x) and G z( , )s x are respectively the performance and
limit-state design expressions considered, where z is a constant threshold of G( , )s x . The
failure domain specified for the design variables s (i.e.,  G z  | ( ,x )s x 0F ) reads

the probability of failure, namely Pf = [G(s, x) z ≤ 0] = … f  ( )x
F

dx, where aP is the

allowable threshold of Pf.
Various optimization approaches have been developed to solve the problem stated in Eq. (1),
mainly categorized by the double-loop, single-loop and decoupling approaches [2, 3]. Despite
of some gain in efficiency, solving the RBDO problem in large-scale applications is very
challenging. For example, some of the widely-employed conventional methods, such as
Monte-Carlo simulation (MCS) [4] and first-order reliability method (FORM) [5], are
endowed by the drawbacks related to the expensive computational cost and/or the result error.
The quest for the efficient optimization method is essential and ongoing in the research field.
Recently, the surrogate models [6-8], such as artificial neural networks, radial basic function,
support vector machine and Gaussian process regression (GPR), have been adopted to
alleviate the computational burden and the solution inaccuracy that would be possibly
experienced by standard techniques.

From the above comments, this paper proposes the novel combined GPR-CLPSO
approach that efficiently process the accurate solution of the decoupling form of the
problem in Eq. (1), where CLPSO is an acronym for comprehensive learning particle
swarm optimization [9]. At the beginning, the CLPSO solves the counterpart to Eq. (1)
formulated using the initial vector of random parameters, called the most probable point
(MPP). From the optimal result determined by the CLPSO, the GPR is constructed as a
surrogate model to approximate the spectrum of the limit state functions under
uncertainty parameters, thereby enabling the low-cost MCSs to estimate the failure
probability associated with the optimal design. To enhance the accuracy of the failure
probability estimate, the GPR model is strategically refined by adding new sampling
points to the region with high-reliability sensitivity, which is further transferred to
maximize a so-called expected feasibility function (EFF). The CLPSO is then adopted to
optimize both the GPR hyperparameters and the learning function EFF. For each
decoupling iteration, the MPP is redefined in the CLPSO algorithm to search for the new
optimal design solution. The optimization terminates as when the failure probability
associated with the design by the deterministic procedures reaches the allowable
thresholds. Finally, the robustness and accuracy of the proposed method is illustrated
through the benchmark on the problem of a ten-bar truss.



CLPSO Algorithm

Whilst the general PSO algorithm provides the good convergence rate to the optimal solutions,
the method is often trapped into the local optima. To enable the diversity of design particles
and overcome the premature convergence, Liang and Huang [9] developed the CLPSO
algorithm using the comprehensive learning (CL) strategy. The velocity and position
functions of CLPSO in the next time step t + 1 are written as follows:
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where fi(D) = [fi(1), fi(2),…, fi(Nd)] indicates if the i-th particle follows its own or some other
best (called pbesti) position for each dimension {1, , }dD N  ; Nd defines the total number of
searching dimensions; 1( ) [ ( ), , ( )]D

i i it X t X tX  and 1( ) [ ( ), , ( )]D
i i it V t V tV  denote the

position and velocity of the i-th particle for {1, , }pi N  (Np is the total number of particle
populations) at the t-th time, respectively; w is an inertial weight; c1 and c2 are the two
accelerating coefficients; r1 and r2 are the two independent random numbers lying uniformly
within the [0,1] interval; ( )

D
fi Dpbest is the exemplar of the i-th particle on the D-th dimension,

as well as those with reference to the best position found by its own pbest; and gbest is the
best position of the whole swarm
The CL strategy can be briefly described in the following three-step implementations [10].

Step i. For a generic i-th particle, the position ( )i tX is tested for its solution convergence
and optimality. If the deterministic objective functions C(s = Xi(t)) over m consecutive time
steps (m is defined as a refreshing gap) all are larger than the recorded best result
C(s = pbesti), perform the CL searching on the i-th particle for the best new best position
pbesti in Step ii.
Step ii. For each of the D-th dimensions of the i-th best particle pbesti, update based on the

learning probability Pci in Eq. (4) an exemplar ( )
D
fi Dpbest from the two random particles

( )fi Dpbest within the whole pbest populations that yields the lower objective
function ( )( )fi DC s pbest .
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Step iii. Repeat Step ii for all dimensions {1, , }dD N  to generate the new best position

( )i fi Dpbest pbest of the i-th particle. In the case when some exemplar ( )
D
fi Dpbest returns the

current D
ipbest , it randomly learns from another i-th best particle of the same D-th dimension.

GPR Model

Consider the training set  = (X, y) = {(xi, yi) | i = 1,…, N} of N observations, where xi ∈ ℝD

are the input variables and yi ∈ ℝ is the corresponding output variable (e.g., structural
response in this case). The goal is to construct an input-output mapping y = f (x) + ϵ: ℝD→ ℝ,
where f (x) is the unknown regression function and the noise ϵ ~ N (0, σ2N).



The GPR is defined as the distribution over the set of functions f (x) [11, 12]. The distribution
is characterized by the mean value function m(x) to represent a prior knowledge about the
regression function and the kernel function κ(x, x') to control the smoothness of the function,
such that

f(x) ~ GP (m(x), κ(x, x')) (x, x') ∈ ℝ D. (5)

Commonly, a zero-mean function (i.e., m(x) = 0) and the following squared exponential
kernel are used in Eq. (5) [11, 12].
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where the hyperparameters  ,f dl  consist of signal variance αf and length-scale ld.

Suppose one already defines and aims to predict the responses y* ∈ ℝ N*×1 for the new set of
input variables X* ∈ ℝ N*×D. As the GPR nature, the jointed PDF , ; ,p * *( )y y X X of y and y*

placing the condition on X* and X is described by the Gaussian [13]
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where , N N
i j i i N    { (( ) , ) | , ( , , )}x xK X X 1R is the covariance matrix of all input

variables (viz., similarly for , N N
**( )K X X R and , N N

* ** *( )K X X R ), and N NI R is an
identity matrix.
By applying the conditional distribution to the PDF in Eq. (7), the predictive posterior PDF of
the GPR model can be established. Both the posterior mean vector *μ and covariance matrix

*Σ are analytically expressed as
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Determining the hyperparameters θ that best fits the data set  is essential for the construction
of the GPR model. Based on the statistical regression, the optimal parameter ̂ reads the
maximizer of the marginal likelihood p  (y;X, )L , and hence the minimize of the (negative)
log-marginal likelihood L of the training set . As is clear,
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In this study, the problem in Eq. (9) is processed by the CLPSO schemes.



Failure Probability Estimation Using MCS and Learning Function EFF

Let  ,
G G

G  ˆ ˆ
ˆ ( ) ( ) ( )x x x2N denote the GPR model of the performance function ,G(s x)

evaluated at the particular design variables s (or G ( )x for simplification), where G
 ˆ ( )x

and G
 ˆ ( )x2 are provided in Eq. (8). The MCSs can be performed to approximate the mean

function  ˆ x
G

 and thus the failure probability in Eq. (1) by

Pf = f

 (x) [ G
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where NMCS is the number of random samples generated within the space  , and [.] denotes
the indicator function, namely

[ kG
z ˆ (x ) ] =
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The prediction of Pf in Eq. (11) considers the uncertainty, but Ĝ(x) may not be able to capture
the failure domain of the performance function, especially at the border between safe and
unsafe ones. For this reason, the present approach adopts the learning function EFF [14] for
the generation of the new training point added to the training set  giving the systematic
refinement of the GPR model Ĝ(x) . In essence, the learning function EFF describes the
expectation of the true value of responses that can satisfy the equality constraint G z (x) 0

based on G
 ˆ (x) and G

 ˆ (x) in the current GPR model Ĝ(x) . This expectation enables the
searches over the vicinity of the response threshold, where the estimation of Pf is the most
sensitive. The analytical expressions of EFF can be found in [14]. Its determination processes
the CLPSO schemes.

Combined GPR-CLPSO Algorithm

This section summarizes the proposed GPR-CLPSO algorithm as the following step-by-step
procedures:

Step 1: Initialize the random variables in the original RBDO Eq. (1).
Step 2: Perform the deterministic optimization using the CLPSO algorithm to obtain the
optimal design solutions.
Step 3: Employ the Latin hypercube sampling (LHS) method to generate random samples
for the design obtained in Step 2. Calculate the actual responses associated with the
samples using the limit state functions to create the training set.
Step 4: Construct the GPR model for the limit state functions based on the training set
obtained in Step 3. The optimal hyperparameters for the GPR model are determined by the
CLPSO algorithm.
Step 5: Compute the maximizer of the learning function EFF, and evaluate the associated
actual response functions using the CLPSO schemes.
Step 6: Add the point obtained in Step 5 and the associated response to the training data
set. Reconstruct the GPR model, and re-iterate Step 5 until the number of added points
reaches the specified value n. The recommended number of added points is n ∈ [5, 10].



Step 7: Based on the GPR model in Step 6, perform the MCSs with NMCS random samples
to estimate the failure probability Pf. Then, update the new MPP for the next deterministic
optimization.
Step 8: Check the convergent criteria on the failure probability. If the estimated failure
probability Pf converges, terminate. Otherwise, repeat Steps 2 to 8.

Illustrative Example

Figure 2. Ten-bar truss.

A 10-bar truss in Fig. 2 was considered, and its RBDO problem was formulated in Eq. 1 [15].
The cross-sectional areas were employed the design variables, namely s = [s1, …, s10]T, where
each variable is independently bounded within the intervals, i.e., si  [1, 20] × 104 m2. The
intrinsic (indeterministic) uncertainties inherited the external loads (P1, P2 and P3), Young’s
modulus (E) and dimension length (L), simultaneously. The random variables were x = [P1, P2,
P3, E, L]T with the probabilistic properties listed in Table 1.
The vertical displacement at node 3, denoted as Δ3, was considered as the response
performance of interest (y = Δ3), whose probability of exceeding the allowable value of

34 10z   m was less than or equal to Pa = 6.21×10−3. Thus, the specific RBDO Eq. (1) was
written as follows:
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In the first instance, the initial random variables were assigned to take the mean values given
in Table 1. The deterministic counterpart of the problem in Eq. (13) was solved using the
CLPSO algorithm. The parameters adopted were: the total number of particle populations of
Np = 20; c1 = c2 = 2; the inertial weight of w linearly declining from 0.9 to 0.2; and the
maximum number of iterations of 500 as per each particle set.

The optimal deterministic results s computed were adopted as the initial inputs for the
construction of the GPR model that approximated the limit state functions in Eq. (13), where
the LHS employed 75 training points and each decoupling iteration adopted n = 5 added
points. The failure probability of the design problem was estimated using the CLPSO



algorithm, and the MPP was updated. The MCSs were performed over the constructed GPR
model without the need of any further finite element analysis (FEA) solves giving the
computational advantages in approximating the failure probability Pf in Eq. (11). The
coupling CLPSO and GPR procedures were iterated until the estimated probability of failure
(viz., Pf = 5.43×10−3) was converged and well complied with the limit of Pa = 6.21×10−3. The
proposed GPR-CLPSO method was encoded in Python, and run using the computer hardware
with Intel Core i5-9400 CPU @ 2.9 GHz and 16 GB RAM.

The optimal solutions successfully designed by the present GPR-CLPSO method are reported
in Table 2 that also provides the direct comparisons to some other benchmarks [1, 15, 16]. It
presents the good agreement between the proposed approach and various design techniques in
determining the optimal solutions to the RBDO problem in Eq. (13). More explicitly, the
proposed GPR-CLPSO computed the optimal design of C(s) = 61.293 × 104 m2 that is not
only close but also lies (most minimum) lower than all reported values, namely
62.367 × 10  4 m2 in FEA-FORM [15], 63.649 × 10  4 m2 in RSM2-FORM-MCS [15],
62.347 × 104 m2 in PSA-ISAP [16] and 61.482 × 104 m2 in MGP-SA [1].

The computional efforts (i.e., taking 2,213 s in CPU times) were modest, and the scheme only
required 225 FEA iterates with 15 addded points in the learning function EFF. The
corresponding failure probability of Pf = 5.43 × 10−3 complied with the limit of
Pa = 6.21 × 10−3, and was close to the reference value of Pf = 5.21 × 10−3 given by standard
MCSs exhaustively generating 5 × 105 random samples on the designed structure. Finally, the
plot of the resulting optimal design layout is depicted in Fig. 3, where the sizes of the lines
indicate the relative normalized member areas.

Table 1. Probabilistic properties of random parameters.

Variable Distribution Mean value COV

P1 [kN] Normal 60 0.20
P2 [kN] Normal 40 0.20
P3 [kN] Normal 10 0.20
E [GPa] Normal 200 0.10
L [m] Normal 1 0.05

Table 2. Comparisons of optimization results for various analysis approaches.

Design variables FEA -
FORM [15]

RSM2-
FORM- MCS
[15]

PSA-ISAP
[16]

MGP-SA
[1]

GRP-CLPSO

(This Study)

s1 10.493 10.705 10.482 10.333 10.635
s2 5.772 5.914 4.421 5.371 5.589
s3 14.098 14.424 15.685 13.579 13.481
s4 1.000 1.000 1.089 1.000 1.000
s5 1.000 1.000 1.000 1.000 1.000
s6 1.000 1.000 1.000 1.000 1.000
s7 5.460 5.531 7.851 6.418 5.883
s8 11.586 11.853 10.048 11.273 11.149
s9 1.000 1.000 1.121 1.000 1.000
s10 10.958 11.223 9.650 10.508 10.555

C(s) [ × 104 m2] 62.367 63.649 62.347 61.482 61.293

No. of FEA iterates 2,240 1,904 524 20,000 225 + 15

Computational time [s] - - - 3,208 2,213



[G(s, x) ≤ 0] 8.51 × 103 6.19 × 103 6.19 × 103 4.34 × 103 5.43 × 103

Pf (MCS)
(with 5 × 105 samples)

4.22 × 103 2.95 × 103 6.15 × 103 5.64 × 103 5.21 × 103

Note that: +15 is the total number of added points from the learning function EFF.

Figure 3. Normalized cross-sectional areas of optimally designed members, where blue and
red colors indicate compression and tension, respectively.

Concluding remarks

The paper has presented the computationally efficient GPR-CLPSO method that couples the
CLPSO algorithm with the GPR model in processing the decoupling RBDO problem. The
CLPSO schemes in particular initialize the nominal design points (assuming the deterministic
optimization), which are subsequently adopted to estimate the failure probability and the
updated MPP underpinning the limit state functions. The GPR model is constructed such that
the reliability responses of limit state functions can be mapped out using only few training
points (enhanced by the use of a so-called learning function EFF). What is interesting is that
the method advantageously by-passes the finite element analysis (time consuming)
computations as when the GPR model has been estimated. The MCSs can be fully enumerated
on the GPR model at modest computing efforts even for a large number of samples.
A number of RBRO problems and benchmarks (one of which has been provided herein) have
been successfully performed by the GPR-CLPSO approach. These illustrate the accuracy and
robustness of the proposed method.
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