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Abstract

The paper proposes the novel numerical approach, called phasor particle swarm optimization
(PPSO), for the optimal design of structures under natural frequency constraints. The
proposed scheme develops the phasor theory in mathematics directly within the PSO
algorithm. In essence, a phase angle incorporating the periodic sine and cosine functions is
applied during the optimization process to model particle control parameters. This technique
enables the fast-learning strategy of the particle velocity and is thus able to capture the
optimal sizing distributions of structural members under some specified conditions at modest
computing efforts. The application of the proposed method is illustrated for the optimal
design of dome structures subjected to the responded natural frequency limits. To demonstrate
the effectiveness and robustness of the proposed PPSO algorithm, a simple 3-D dome
structure is successfully tested, and then the obtained results are compared with those of the
other meta-heuristic algorithms in the literature.
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Introduction

The natural frequency is one of the major parameters that indicates the dynamic performance
of the structural system. Imposing some appropriate constraints on the frequency avoids
undesirable vibrations and resonance under external excitations [1, 2]. The natural frequency
constraints generate complexity in the optimal design of structures. The sizing optimization of
the dome structure under natural frequency constraints for instance is regarded as the highly
implicit nonlinear and/or non-convex problem [1, 3]. To address this problem, the efficient
and robust optimization techniques are developed to provide both the most minimum of
design structural weight and reasonable computing efforts.
Many metaheuristic algorithms have been employed to systematically capture the weight
minima of practical structures without the need of mathematical programming
implementations. A wide class of these methods has been studied in the structural
optimization with natural frequency conditions. Some of which are genetic algorithm (GA)
[4], particle swarm optimization (PSO) [5], democratic PSO (DPSO) [6], colliding-bodies
optimization (CBO) [7], harmony search-based mechanism into PSO with aging leader and
challengers (HALC-PSO) [8], modified sub-population TLBO (MS-TLBO) [9], colliding-
bodies optimization (CBO) [7], vibrating particles system (VPS) [10], improved symbiotic
organism search (ISOS) [11], improved differential evolution (IDE) [12] and adaptive hybrid
evolutionary firefly (AHEFA) [13].



This paper proposes the sizing optimization method, based on a so-called phasor PSO (PPSO)
[14], of dome-like truss structures under the constraints on the associated natural frequency.
The implementation of PPSO is simple and adaptive, as it entails only the phase angle
incorporating the periodic sine and cosine functions to model particle control parameters. The
technique enables the fast-learning strategy of the particle velocity, and quickly captures the
structural members under some specified natural frequency conditions.

Sizing optimization problem and formulations

The optimization problem minimizes the total weight (W) of the dome structure, where the
design variables read member cross-sectional areas, namely Ad for each d-th member. The
constraints consider the intrinsic structural responses and the required natural frequency. This
can be mathematically described as follows:
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where nd is the total number of (pin-jointed) truss members, ρd the material density, Ld the
length of a generic d-th member, j and k the response natural frequencies (i.e., the j-th and

k-th modes, respectively), *
i and *

j the natural frequency limits, Amin and Amax the lower and
upper limits on the available sectional areas, respectively.
The problem in Eq. (1) is further reformulated by applying the penalty function f to the
objective function (total design weight) W:
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C is the penalty factor associated with the violation of natural frequency constraints, jc and
kc the parameters indicating the satisfaction or violation of the natural frequency conditions.

The parameters ε1 and ε2 are set to 1 and 1.5 (subsequently increase to 2), respectively.

Phasor Particle Swarm Optimization Algorithm

The PPSO method, also known as the nonparametric variant PSO algorithm, is based on the
phasor theory in mathematics. The algorithmic procedures are summarized in Fig. 1. The
algorithm searches for the global best position of each particle within the design domains. All
particles cross over the neighbor particles within d dimensional search spaces using some
social cooperation and swarm around the position to optimize (minimize) the objective
function. In essence, each generic i-th particle in the swarm randomly generates the
information, including the current positions ,1 ,[ , , ]d
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ngbest gbest gbest and Xi. These parameters are

iteratively updated to keep the particle converging toward the optimal solutions [14].
In the PPSO algorithm, the phase angle θ lying within a range between 0 and 2π radians is
introduced as the particle control parameter that incorporates the periodic sine (i.e., in an
interval of [−1, 1]) and cosine (in [0, 1]) functions. The variations of these periodic functions

with phase angles are depicted in Fig. 2. Both functions
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the adaptive searching characters through the phase angels of individual particles. The
velocities Vi and positions Xi associated with the i-th particle are updated at the (t + 1)-th
iteration as follows:
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periodic functions. All particles learn from their pbesti and gbest underpinning the swarm to
update the corresponding velocities and positions:
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The phase angle i and maximum velocity V(max)i of the i-th particle are updated in the (t + 1)-
th iteration by [15].
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This technique enables the particles to overcome the searches in the local optimal region as
well as premature solution convergence.



Fig. 1. PPSO procedures.



Fig. 2. Variation of periodic functions for different phase angles.

Illustrative Example

The 120-member dome-like truss structure in Fig. 3 was designed for the cost minimization of
all member sizes under the limited natural frequency conditions. The lumped mass of m1 was
assigned at node 1, m2 at nodes 2 to 13, and m3 for the remaining nodes. All design member
areas were categorized into 7 design groups. The material properties and frequency
constraints employed are listed in Table 1.
The optimal sizing design of the dome was successfully performed by the proposed PPSO
method with the total of 20 independent runs and the population of 30 particles. The optimal
solutions, see Fig. 4, converged at the early number of analysis iterations for all the repeating
PPSO solves.
The resulting member sizes of all 7 design groups and the total weight of W = 8736.24 kg are
reported in Table 2, where the solutions from various analysis methods are also compared.
More explicitly, the designed weight values referred are 8896.74 kg by vibrating particles
system (VPS) [10], 8890.48 kg by democratic particle swarm optimization (DPSO) [6],
8889.13 kg by colliding-bodies optimization (CBO) [7], 8889.96 kg by harmony search-based
mechanism into the particle swarm optimization with an Aging Leader and Challengers
(HALC-PSO) [8], 8710.06 kg by improved symbiotic organisms search (ISOS) [11],
8708.73 kg by modified sub-population teaching-learning-based optimization (MS-TLBO) [9],
8707.29 kg by improved differential evolution (IDE) [12], and 8707.26 kg by adaptive hybrid
evolutionary firefly (AHEFA) [13]. The optimal design result computed by the present
method agrees very well with all benchmarks with the comparable numerical efforts, where
the response natural frequencies comply with the imposed limits.



Table 1. Material properties and design parameters.

Parameters Value

Modulus of elasticity E (N/m2) 2.1 × 1011

Material density ρ (kg/m3) 7971.81

Additional mass (kg) m1 = 3000; m2 = 500; m3 = 100

Allowable range of cross-section (cm2) 1 ≤ A ≤ 129.3

Constraints on the first two frequencies (Hz) ω1 ≥ 9; ω2 ≥ 11

Fig. 3. 120-bar dome truss geometry.



Table 2. Optimal design solutions by variations analysis methods.

Design
Variables
(Areas)

cm2

Kaveh
and

Ghazaan

Kaveh,
A. and A.
Zolghadr

Kaveh,
A. and V.
Mahdavi
Dahoei

A.
Kaveh,
M. Ilchi
Ghazaan

Tejani et
al.

Tejani et
al.

Ho-Huu et
al.

Lieu et al. Present

[10] [6] [7] [8] [11] [9] [12] [13]
VPS DPSO CBO HALC-

PSO
ISOS MS-TLBO IDE AHEFA PPSO

A1 19.6836 19.607 19.6917 19.8905 19.6662 19.4886 19.4670 19.5094 19.4084

A2 40.9581 41.290 41.1421 40.4045 39.8539 40.3949 40.5004 40.3867 40.1976

A3 11.3325 11.136 11.1550 11.2057 10.6127 10.6921 10.6136 10.6033 10.7976

A4 21.5387 21.025 21.3207 21.3768 21.2901 21.3139 21.1073 21.1168 21.0787

A5 9.8867 10.060 9.8330 9.8669 9.7911 9.8943 9.8417 9.8221 9.8050

A6 12.7116 12.758 12.8520 12.7200 11.7899 11.7810 11.7735 11.7735 12.1316

A7 14.9330 15.414 15.1602 15.2236 14.7437 14.5979 14.8269 14.8405 14.9168

Best Weight
(kg)

8888.74 8890.48 8889.130
3

8889.96 8710.062 8708.729 8707.2898 8707.2559 8736.242

Number of
analyses

30000 6000 6000 17000 4000 4000 4060 3560 30000

Mean
Weight(kg)

8896.04 8895.99 8891.254 8900.39 8728.5951 8734.7450 8707.8147 8707.5580 8737.6056

f1 (Hz) 9.000 9.0001 9.000 9.000 9.001 9.0002 9.000 9.000 9.000

f2 (Hz) 11.000 11.0007 11.0000 11.0000 10.998 11.0000 11.0000 11.0000 11.0000

Fig. 4. Solution convergence by PPSO method.

Concluding remarks

The paper presents the novel PPSO method for the sizing optimization of dome-like truss
structure subjected to the constraints on its natural frequencies. The approach mathematically
adopts the phasor theory (namely the periodic sine and cosine functions) directly to the PSO
that enhances its fast solution searching schemes and more importantly overcomes the
likelihood of local optimal (premature) convergence as would be expected in standard PSO
techniques. Its applications have been illustrated through the optimal sizing design of the
modest-size dome truss structure, where its accuracy and robustness are evidenced by the



good comparisons with various available benchmarks. An ongoing extension of the present
work is the development of an effective PPSO algorithm with the capability to incorporate the
time-dependent dynamic (seismic) constraints.
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