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Abstract
The local buckling phenomenon presents one of the main premature failures often prohibiting
the steel hollow-section columns to attend the ultimate strength capacity. A strengthening
method is then required to extend the service life of the member. This paper presents the
optimal retrofitting design of standard steel hollow-section columns using external steel plates,
such that the ultimate strength of the post-retrofitted column sufficiently resists the design
load imposed by an industrial crane. The optimal design adopts a so-called bi-directional
evolutionary structural optimization (BESO) algorithm that determines the cost-effective
distribution of steel plate topology welded to the column. The proposed method realistically
considers the influences of inelastic material properties and geometric nonlinearity,
simultaneously. The BESO algorithm is encoded within the MATLAB modeling framework
providing a direct application interface to ANSYS (a commercial-purposed finite element
analysis software), which models the retrofitting joint between steel column and corbel using
the comprehensive 3D finite elements. The robustness of the proposed scheme is illustrated
through standard steel warehouse applications. The accuracy and integrity of the resulting
design are validated by the full elastoplastic responses of the post-retrofitted column under
applied forces.
Keywords: Local Buckling Failure; Topology Optimization; Evolutionary Structural
Optimization; Column Retrofitting Design; Nonlinear Finite Element Analysis.

1. Introduction
Steel structural design is a combination process between architecture, safety and integrity.
Good design complies with various performance criteria posed by all stakeholders at optimal
resources. The design of hollow steel section (HSS) members has gained the popularity from
designers. In views of strength consideration, the HSS provides the higher load capacity than
the open sections [1]. Such physical property has made the HSS suitable for various structures
and infrastructures, especially those with the special requirement on a long-span capability.
One of the main drawbacks that unfortunately limits the general usage of steel hollow sections
is the physically instabilizing local buckling failures under concentrated forces. A specific
example is a steel HSS column with corbel heavily supporting industry crane loads of
warehouses [2]-[4]. The HSS members has made itself prone to the premature failure caused
by the eccentrically applied loads.
The intrinsic behaviors of HSS undergoing local buckling phenomena are rather sporadic.
These have yet been precisely described by standard mathematical formulations [5]. The
design guidelines were developed in the form of empirical formulations to predict the local
buckling responses of steel open sections under compression and/or flexural forces, and the
strengthening procedures were made available for the enhancement of the overall member



capacity. However, little is known about the behaviors and strengthening methods of the HSS
applications.
The investigation of I-beam to box-column connection (IBBC) with external stiffener was
reported in Ting [6] and Shanmugam [7]. The study of external T-stiffeners connected to
IBBC was provided in [8]. In 2000, Hiroshi and Tanaka [9] conducted the experimental study
of IBBC with external stiffener by wide spread flange. Furthermore, the numerical study of an
external stiffener with IBBC was present in [10]. The work in [11] and [12] conducted
experimental and numerical analyses of external diaphragm with IBBC in the concrete filled
column applications. The aforementioned work adopted the strengthening techniques using
external stiffening systems to facilitate the load transfer from beam to column members. The
internal retrofits of HSS columns are generally inaccessible for practical constructions.

Figure 1. Illustration of typical structural topology optimization [13].

Topology Optimization (TO) determines the optimal shape as depicted in Fig. 1. The prior
investigation of TO can be traced back to over a hundred years ago by Michell [14], who
derived the optimality criteria of the least-weight truss layout. Mitchell’s theory was extended
70 years later by Rozvany and his group [15]-[17] for the exact analytical optimal solutions of
grid-type structures. In continuum mechanics, topology optimization can be formulated as a
discrete problem or a binary design setting that the structure consists solely of either solids or
voids [18]. However, the binary design for the structural compliance is ill-posed, where there
exists non-convergent sequence of admissible designs with continuously refined geometrical
details [19]-[22]. Bendsøe and Kikuchi [23] proposed the homogenization theory to relax the
problem by assuming designable porous microstructures at a separated lower scale to claim
this difficulty.
There has been the continuous development giving the emergence of various TO methods.
One of the well-established techniques proposed by Xie and Steven [24]-[25] is called as an
evolutionary structural optimization (ESO). Recently, the bi-evolutionary structural
optimization (BESO) [27]-[29] has been developed. The method allows the recovery of the
deleted elements close to the highly stressed areas. The convergent and mesh-independent
BESO method [30] incorporates the sensitivity filter and stabilization schemes using some
history information.
The present work proposes the optimal retrofit design of steel HSS columns in the IBBC
region supporting heavily forces. The optimal topology of externally strengthening steel
plates is appropriately designed using the BESO algorithm. The IBBC responses with and
without optimal strengthening plates are mapped out by the nonlinear (incorporating inelastic
materials and large deformations, simultaneously) finite element analysis method (FEM),
modelled within the robust commercial-purposed (called ANSYS) analysis software. The
applications of the proposed retrofit method are illustrated through the strengthening design of
the HSS column connected to a corbel supporting industry crane loads.



2. Design guideline for column stiffening methods

2.1 Crane Loads

The crane load is determined according to [3] and [4]. The HSS columns are be designed to
safely resist the applied loads and to prevent the local or global buckling failures. The detail
of the top running cranes is depicted in Fig. 2.

Figure 2. Top Running Bridge Crane with Suspended Trolley [3].

The model is constructed to predict the responses of the connection between HSS column and
I-section corbel under the vertically applied forces. The vertical forces consider the wheel
loads. The maximum magnitude occurs as when the crane is lifting its rated capacity load, and
can be approximated as
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where WL is the maximum wheel load, RC is the rated crane capacity, HT is the weight of
hoist with trolley, CW is the weight of the crane excluding the hoist with trolley. and bNW is
the number of end truck wheels at one end of the bridge.

2.2 External stiffener plates

The retrofit of the beam-to-column connection focuses on the local failure behaviors (viz.,
chord deformations [31]) of the HSS columns. The external stiffening plates are designed for
this purpose. The study of the connection between I-beam and Circular Hollow Section (CHS)
column with external stiffeners is reported in [32] and [33]. The geometry of the HSS
columns at IBBC zone with the proposed external ring plates are illustrated in Fig. 2,

Figure 2. Geometry of IBBC with external ring plates.



where cb is the column width, fb and wd are the flange width and web depth of an I-beam,
respectively, ct is the column thickness, ft and wt are the thickness of flange and web,
respectively, st is the thickness of external stiffener plates, fl is the beam length, and cl is the
volume length.

2.3 Topology optimization formulations

The topology design of stiffener plates considers the minimization of the compliance function,

namely 1
2

T
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can be formulated by
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where K and u are the global stiffness matrix and displacement vector at degrees of freedom,
respectively, ev is the element volume,  V x and *V are the total and controlled material
volumes (called volume fraction, i.e., ), respectively, eN and ex are the total number of finite
elements and the material design variable, respectively.
The conventional ESO method known as a “hard-kill” method performs the complete
elimination of some inefficient members within the design domain that can result in
theoretical difficulties in some cases [34].
An alternative approach adopts the modulus reductions of the required elements to the very
small values. This concept was applied to ESO by Hinton [35] and Rozvany [36]. Huang and
Xie [37] replaced the virtual void elements with the soft members with very low Young’s
modulus values, and termed the method as a “soft-kill” BESO. This technique is an artificial
material interpolation scheme with penalization that is similar to the treatment in the solid
isotropic material with penalization (SIMP) model in steering the solution to the nearly solid-
void design [38]-[40]. The elastic modulus of each intermediate material is interpolated as a
function of the element density as

  0 p
e eE x E x , where min  or 1ex x (3)

0E denotes the elastic modulus of a solid material, and p is the penalty exponent. The binary
variable ex indicates the absence ( minex x )or presence ( 1ex  ) of the element, where minx is
an artificially defined small parameter (e.g., 0.001). It is assumed that the Poisson’s ratio is
independent from the design variables, and the stiffness matrix K assemblies the products of
elemental stiffness matrices 0K e and design variables p

ex by
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At each design stage, the target volume in the current l-th design iteration  lV is preset a
priori. The required material volume can be greater or smaller than the volume of the initial
guess design. Likewise, the target volume in each iteration may decrease or increase



progressively until the constraint volume is achieved. The evolution of the volume is
expressed by

     1 1l l
erV V c  , (5)

where the evolutionary ratio erc determines the percentage of material to be added or
removed with reference to the design in the previous iteration. After the targeted material
volume reqV has been attained, the optimization alters only the topology whilst keeping the
volume constant (up to a certain tolerance). The sensitivity of the structural compliance with
regards to the change in the e-th element is evaluated by the adjoint function [41] as
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where ue denote elemental displacement vectors. The structure is optimized using the
discrete ex design variables, and only two bound materials are allowed in the design [18].
Therefore, the sensitivity number used in the BESO method is defined by the relative ranking
of the sensitivity associated with the individual element as
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In order to avoid checkerboard patterns and mesh-dependency, the sensitivity numbers are
firstly smoothed by means of the filter scheme as
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where ejw is a linear weight factor computed by the prescribed filter radius minr and the
elemental center-to-center distance ej between elements e and j as

 minmax 0,ej ejw r  . (9)

The filtered sensitivity numbers are averaged with the sensitivity numbers of the previous
topology iteration to improve the convergence by

      1 / 2l l l
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The BESO algorithm optimizes the structure by removing and adding the elements assigned
in the ground domain. Two discrete values, namely minx for void elements and 1 for solid
elements, are applied [42]. The sensitivity numbers for the solid and void elements are
expressed by
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The sensitivity numbers of solid elements are independent to the penalty exponent p , whilst
those numbers of the soft elements depend on the p value.

The recent BESO approach has been developed to the optimal topology for a wide range of
structural design applications, involving multiple materials [37], multiple constraints [43],
stiffness and frequency optimization [44] and nonlinear material and large deformation [45]-
[48]. The present plate strengthening approach proposed adopts the BESO algorithm, and the
procedures as how the optimal retrofit design is performed are described in Section 3.

3. Analysis and design of column stiffening

3.1 Traditional Retrofit design

The responses of steel HSS columns (over an IBBC area) under crane loads were mapped out
using the nonlinear 3D finite element (FE) analyses. The SHS - 300 × 10 ( cb × ct ) columns
were considered as for illustrative purposes. The standard steel corbels H -
300 × 300 × 10 × 10 ( fb × wd × ft × wt ) were employed, where the length of column cl and
corbel fl equal to 1 m and 300 mm respectively. The analyses considered the responses of
stiffened HSS columns for various plate thicknesses st , ranging from 3 to 10, 15 and 30 mm.
The external ring stiffeners having a typical width of 100sb  mm.

The commercial purposed ANSYS Parametric Design Language (APDL) software modeled
the structure as a number of (uniform 10 mm in size) eight-node solid (SOLID185) FEs (see
Fig. 3). The HSS column was restrained in all directions at both ends, except that the
deformation along a z-axis direction was released at the top end to permit its vertical
translation under applied forces. The material properties employed were: the elastic modulus
of 200,000 MPa, Poisson’s ratio of 0.3 and yield stress of 235 MPa (for both column and
beam) and 250 MPa (for the stiffening plate).

(a) (b)

Figure 3. Structural discretization (a) FE model and (b) boundary conditions.
The FE analyses incorporated the influences of inelastic (elastic-perfectly plastic) materials
and large (nonlinear geometry) deformations to realistically map out the full responses of the
HSS column at an IBBC zone. The crane load was applied over a 20 cm width contact surface
on an I-section corbel (see Fig. 3b).



3.2 BESO algorithm procedure

The topology of the two HSS column stiffening plates located at the top and bottom flanges of
an I-beam were designed using the BESO algorithm [27]-[29]. The design procedures can be
briefly summarized as follows:
Step 1: Discretize the design domain as in Fig. 3a with the sufficient number of eight-node
solid (SOLID185) FEs. The domain initially sets the thickness of stiffener plates to
st = 30 mm.

Step 2: Initialize the BESO parameters, including objective volume *V , evolutionary ratio
erc , radius of filter minr and penalty exponent p .

Step 3: Perform the nonlinear FE analyses. Only the two stiffening plates are designed by the
BESO schemes.
Step 4: Determine the targeted volume in Eq. (5) for the next iteration, if the current volume

 lV is larger than the objective volume *V .

Step 6: Calculate the sensitivity functions in Eq. (8).
Step 7: Perform the elimination and addition process. The elemental density is switched from
1 to minx (i.e., a member addition) if e th  . In contrast, the elemental density for void
element is switched from minx to 1 (member elimination) if e th  . The threshold th
defines the threshold on the sensitivity number that is determined by the target material
volume  1lV  and the relative ranking of the sensitivity numbers, see [30].

Step 8: Repeat Steps 3 to 7. The algorithm terminates when the optimal topology of steel
stiffening plates is converged.
It is noted that this work investigated the variation of the optimal plate topologies for different
values of *V , namely ranging from 0.5 down to 0.05 (e.g., indicating only 5 percent of initial
design elements were remained in the final solutions). The responses of a HSS column with
the resulting stiffening plates at an IBBC area were traced by the elastoplastic analyses in an
ANSYS software to ensure the safety and integrity of the solutions.

4. Results and Discussions

The BESO method were successfully performed to achieve the optimal solution. The resulting
optimal topologies of stiffening plates for difference volume fraction V* are depicted in Fig. 5.
The full responses of the HSS columns with designed retrofitting steel plates at an IBBC zone
were traced by performing the nonlinear material and geometry FE analyses. The
corresponding maximum load capacities for all the designed cases are reported in Table 1.
Clearly, the higher volume fractions *V yielded the stronger HSS columns retrofitted and
hence the IBBC behaviours giving the capability to support the heavier crane loads applied on
the I-section corbel.
The simple design was also performed for the ring plates in Fig. 2 with both top and bottom
ring plates having the uniform thickness varying from ts = 3 mm to 30 mm (without the BESO
implementation). The maximum load capacities of the corresponding HSS columns at the
IBBC zone captured by the comprehensive FE analyses are reported in Table 2 and are
directly compared in Fig. 6 with those obtained after the retrofitting designs using the BESO
method. The results obviously shown the volume fractions *V 0.1, 0.2, 0.3 and 0.5 have more



maximum load capacities than st 3, 6, 9 and 15 mm around 33.8, 25.59, 18.55 and 5.92 %. It
is evidenced that at the same volume of designed external plates the strength gained by the
BESO process is more than that by the uniform plate thickness retrofits. The BESO provided
significantly the effective plate strengthening designs of the HSS columns at the IBBC area
with the high value of strength enhancement per unit volume of the plates employed.

(a) *V = 0.5 (b) *V = 0.4 (c) *V = 0.3

(d) *V = 0.2 (e) *V = 0.1

Figure 5. Optimal solution with different objective volume.

Table 1. Maximum load capacities for various design volumes by BESO.

*V Volume
(cm3)

NLP
(Tons)

0.05 390 82.450
0.10 780 91.305
0.15 1,170 95.858
0.20 1,560 98.126
0.25 1,950 99.872
0.30 2,340 105.220
0.35 2,730 105.420
0.40 3,120 107.290
0.45 3,510 110.760
0.50 3,900 113.600

Table 2. Maximum load capacities for various design volumes by uniform-thickness plate
design.

st (mm) Volume
(cm3)

NLP
(Tons)

unstiffened – 58.487
3 780 68.146
4 1,040 71.508
5 1,300 74.907



6 1,560 78.319
7 1,820 81.749
8 2,080 85.220
9 2,340 88.753
10 2,600 91.888
15 3,900 107.890
30 7,800 126.690

Figure 6. Maximum load capacities with different techniques.

5. Concluding remarks

This paper presents the steel plate topology optimization for the strengthening design of HSS
columns at an IBBC zone subjected to the industry crane loads. The initial design domains are
the thick ring-shape steel plates enveloping the HSS column at the contacts on top and bottom
flanges of the I-section corbel. The BESO method has been developed for the determination
of optimal material distributions through the process of a soft-kill optimization, permitting not
only elimination but also addition of steel masses for various targeted volume fractions. The
influences of inelastic material as well as local steel buckling failures are incorporated using
the comprehensive nonlinear material and geometry FE analyses.
The optimal topology of the retrofitting plates computed provides the maximum strength
enhancement to the HSS columns at the IBBC area, whilst the associated design volumes are
maintained the indicated fractions. The efficiency of the BESO method has been evidenced,
where the maximum load capacities of the HSS columns retrofitted by the steel plates with the
optimal layouts in the IBBC can be achieved at the far lower plate volumes, as compared to
those with the simple uniform-thickness plate designs. Extensions to the present work focus
on the applications of steel open-section columns having different slenderness practically
employed in engineering structures.
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