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WELCOMEMESSAGE

Dear Colleagues and Friends,

It is with great pleasure that we welcome you to the 13th International Conference on Computational
Methods (ICCM2022) which will be held online via Zoom from July 25 to July 28, 2022, by Ho Chi
Minh University of Technology (HUTECH), Vietnam.

The ICCM is an international conference which has been serving as an important forum for
exchanging ideas on recent advances in areas related to the computational methods and the numerical
modeling of both man-made and natural systems. The conference offers presentations for a wide
range of topics to facilitate the exchange of ideas from multiple disciplines and foster academic
collaborations. Publications, which have been peer-reviewed and accepted, will be showcased
through oral presentations at the conference. All presentations, including abstracts and papers, will be
published on our conference website. The online presentation schedule will be posted on the website
one week before the conference.

The ICCM conference series were originated in Singapore in 2004, followed by ICCM2007 in
Hiroshima, Japan; ICCM2010 in Zhangiajie, China; ICCM2012 in Gold Coast, Australia; ICCM2014
in Cambridge, England; ICCM2015 in Auckland, New Zealand; ICCM2016 in Berkeley, CA, USA;
ICCM2017 in Guilin, China; ICCM2018 in Rome, Italy; ICCM2019 in Singapore; ICCM2020,
ICCM2021 and ICCM2022 on the cloud.

We would like to express our appreciation to all members of the Organizing Committee, the
International Scientific Committee, and all supporters who have been working tirelessly to make this
conference possible. Also, we would like to thank the international reviewers for their meticulous
work on reviewing the submitted abstracts and papers. Finally, we would like to thank you for your
contribution to the ICCM conferences.

We look forward to welcoming you to the ICCM2022 and we hope to have your continued
engagement for future ICCM conferences.

Professor Nguyen-Xuan Hung
Conference Chairman
CIRTECH Institute, HUTECH University of Technology
President of Vietnam Association of Computational Mechanics
Vietnam

Professor Gui-Rong Liu

Honorary Conference Chairman
University of Cincinnati

USA
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Alternative formulations for finite elements for thick plate analysis
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Abstract

This paper discusses the use of the free formulation and the deviatoric strain formulation for

developing orthotropic thick plate finite elements. The interpolations for the transverse dis-

placement and rotations are such that the governing equations of Mindlin’s theory are exactly

satisfied. Hence, the resulting element approximations are consistent for both thick and thin

plates, and no locking occurs in the thin plate limit. The two formulations are used to derive

rectangular and triangular elements. Examples are given in the paper to demonstrate the accu-

racy that is achieved with the proposed elements.

Keywords: Plate analysis; thick plates; shear deformation; finite elements.

Introduction

Plate structures are in common use in many areas of structural engineering, such as buildings,

bridges and foundations. Engineers need reliable and efficient methods for plate analysis, and

there is a vast literature in this area. While analytical solutions are available [1], they only

apply to a restricted range of problems. Hence, practical plate problems are normally solved

by numerical methods. Currently, the finite element method is normally used for solving plate

problems, due to its generality and ability to deal with complex geometries [2].

The plate bending problem has been modelled by many different theories. In the classical the-

ory [1], the plate thickness is assumed to be small in comparison with a typical plan dimension

of the plate, and shear deformation is neglected. In this case, the problem leads to the bihar-

monic equation in terms of the transverse displacement as the primary unknown. A conforming

finite element for this theory requires C1 continuity, and this proved to be a stumbling block

in the early development of plate finite elements. Methods of circumventing the C1 continuity

requirement have been the subject of much research over many years [2].

An approach that can be used to avoid the difficulties with the classical theory is to use a higher-

order theory, such as Mindlin’s shear deformation theory [1]. This theory is applicable to both

thick and thin plates, and it incorporates independent assumptions for the transverse displace-

ment and normal rotations. This allows C0 approximations to be used for these variables, and

hence the C1 continuity problem is avoided. However, this approach can also suffer from some

problems. The two major problems for thick plate elements are the possibility of spurious

mechanisms that lead to unstable meshes, and locking of the solution in the case of thin plates.

Numerous approaches, such as reduced integration methods, special shear interpolation meth-

ods and stabilization matrices methods have been used to alleviate these problems [2].
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The current paper discusses the use of interpolations for the transverse displacement and rota-

tions that are solutions of the governing equations of Mindlin’s theory. The resulting element

approximations are consistent for both thick and thin plates. Hence, no locking occurs in the

thin plate limit. A number of alternative formulations are possible based on such interpolations.

In this paper, we consider the use of the free formulation [3, 4] and the deviatoric strain formu-

lation [5] for deriving thick plate elements. The details of the two formulations are presented

and compared, and they are used to derive rectangular and triangular elements. Examples are

given to demonstrate the accuracy that is achieved with the proposed elements.

Governing Equations

Mindlin’s theory uses independent assumptions for the transverse displacement, w, and normal

rotations, θx and θy, (see Fig. 1).

x, θy

z, w, p
y, −θx

Mxy

Qx
Mx

My

Qy Myx

Figure 1. Sign convention.

Both bending and transverse shear strains are possible in this theory, and these are given by

ǫb =







∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x







{

θx

θy

}

= D1θ (1a)

ǫs =

{

∂/∂x

∂/∂y

}

w − θ = D2w − θ (1b)

where ǫb is the bending strain vector, ǫs is the shear strain vector, which is zero in the thin plate

limit, and D1 and D2 are matrices of differential operators.

For an orthotropic material, bending moments and shear forces are given in terms of the strains

by

M =











Mx

My

Mxy











=







Dx D1 0

D1 Dy 0

0 0 Dxy






ǫb = Ebǫb (2a)

Q =

{

Qx

Qy

}

= kt

[

Gxz 0

0 Gyz

]

ǫs = Esǫs (2b)
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with Myx = Mxy. In Eq. (2), Dx, Dy, D1 and Dxy are bending rigidities, Gxz and Gyz are

transverse shear moduli, t is the plate thickness and k is the shear correction factor, which is

usually taken as 5/6 or π2/12.

The terms in Eb are given in terms of the fundamental material properties by

Dx =
Ext

3

12(1 − νxyνyx)
, Dy =

Eyt
3

12(1 − νxyνyx)
, D1 =

νxyEyt
3

12(1 − νxyνyx)
, Dxy =

Gxyt
3

12
(3)

where Ex and Ey are Young’s moduli, νxy and νyx = νxyEy/Ex are Poisson’s ratios, and Gxy

is the in-plane shear modulus. For an isotropic material, Dx = Dy = D = Et3/[12(1 − ν2)],

D1 = νD, Dxy = D(1 − ν)/2 and Gxy = Gxz = Gyz = E/[2(1 + ν)].

The static equilibrium equations are

D3σ + p = 0 (4)

where

σ =

{

M

Q

}

, p =

{

0

p

}

, D3 =

[

DT
1 I

0 DT
2

]

(5)

In Eq. (5), p is the applied transverse load, and 0 and I represent a zero matrix and an identity

matrix of appropriate sizes, respectively.

Equations (1) to (5) are the governing equations for Mindlin’s theory, and they are a system

of coupled differential equations of order six. Hence, three boundary conditions need to be

specified at any point on the boundary of the region being analysed.

In the thin plate limit, the only independent variable is w, and the governing differential equation

in this case is

Dx

∂4w

∂x4
+ 2H

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
= p (6)

where H = D1 + 2Dxy is the effective torsional rigidity. For an isotropic material, Eq. (6)

reduces to the biharmonic equation

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
=

p

D
(7)

Element Approximations

The key feature of the elements developed in this paper is that the element approximations

satisfy the governing differential equations for Mindlin’s theory. The approximations for w, θx
and θy are taken as

u =

{

θ

w

}

= u0 + up (8)

where the subscript 0 denotes the homogenous solutions of Eq. (4) with p = 0, and the sub-

script p denotes a particular solution of Eq. (4) for the specified load p. The use of the particular

solution is optional, and its inclusion can improve the accuracy of the approximation in some
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cases [6]. However, we ignore up in this paper for simplicity and take the element approxima-

tions as u = u0.

Using approximations based on Eq. (8) ensures that the approximations are consistent for all

values of the plate thickness, including the thin plate limit when t = 0. Hence, locking is

impossible for the elements discussed in this paper, and no special remedies, such as reduced

integration or selective shear interpolations [2], are required with these elements. This repre-

sents a significant advantage of the elements.

The approximations for u = u0 are generated as follows [6, 7]. Firstly, the terms for w are taken

as solutions of Eq. (6) with p = 0. Secondly, using these solutions for w, the terms for θ are

taken as

θx =
∂w

∂x
+

1

ktGxz

(

Dx

∂3w

∂x3
+H

∂3w

∂x∂y2

)

(9a)

θy =
∂w

∂y
+

1

ktGyz

(

Dy

∂3w

∂y3
+H

∂3w

∂x2∂y

)

(9b)

or θ = D4w (9c)

As the plate thickness goes to zero while keeping the bending rigidities finite, the rotation

approximations reduce to the thin plate approximations

θx =
∂w

∂x
, θy =

∂w

∂y
(10)

Eqs. (9) and (10) confirm that the approximations are consistent for both thick and thin plates,

and locking cannot occur in the thin plate limit. In addition, since Eq. (6) has an infinite number

of solutions, finite elements of any approximation order can be derived from these approxima-

tions [6, 7].

Finite Element Formulations

A conforming finite element solution for Mindlin’s theory requires that the element variables,

u, are C0 continuous between elements. In general, elements that use approximations based

on Eq. (8) will not be C0 continuous, as the continuity of u across element boundaries will

not be possible to achieve. Hence, a standard stiffness formulation [2] will generally lead to

unacceptable elements, and alternative formulations must be used. One option is to use the

hybrid-Trefftz formulation, and this leads to acceptable and robust elements [6, 7]. However, we

will explore two other formulations in this paper, namely the free formulation and the deviatoric

strain formulation [3–5].

A key feature of these formulations is that the element stiffness matrix, K, is taken as

K = Kbasic + SKhigh (11)

where S is a positive scale factor. Under certain conditions to be discussed below, an element

derived from Eq. (11) converges even if the approximations are non-conforming. The scale

factor can be adjusted to improve the performance of the element, and it is also possible to use

multiple scale factors [4].

ICCM2022, 25th-28th July 2022

4



The basic stiffness matrix is the same for both formulations, while Khigh is different for the two

formulations. The basic stiffness matrix is given by

Kbasic =
1

A
LEbL

T (12)

where L is the linear force lumping matrix and A is the area of the element. L is based on the

boundary interpolations for u, and it depends on the external nodal configuration of the element

and the material bending properties Eb. Expressions for L for various elements are given in [4].

Free formulation

In the free formulation [3], the element approximation is taken as

u = Prcqrc + Phqh = Pq (13a)

ǫ = Du = DPq = Bqq (13b)

where

ǫ =

{

ǫb

ǫs

}

, D =

[

D1 0

−I D2

]

(14)

In Eq. (13a), the terms in P are approximation functions and q are approximation coefficients.

The approximations in P have been split into six rigid body and constant strain modes (denoted

by rc) and a specified number of higher-order modes (denoted by h). This split is essential for

the free formulation.

For the current problem, the terms in Prc are given by

Prc =

[

Pθrc

Pwrc

]

(15)

where

Pwrc =
[

1, x, y, x2, xy, y2
]

(16)

and

Pθrc = D4Pwrc (17)

follows from Eq. (9c).

The terms in Eq. (16) incorporate constant bending strains and zero shear strains, and they

satisfy the governing differential equations of Mindlin’s theory (eqs. (1) to (5)) with p = 0. The

terms in Ph are typically chosen as higher-order polynomials, although other forms can also be

used [3]. It is important to note that there is no requirement in the free formulation for the terms

in Ph to satisfy the governing equations of the problem, and generally they do not. In contrast,

all the approximations used in this paper satisfy the governing equations.

The element nodal degrees of freedom, v, are related to q by substituting the appropriate nodal

coordinates of the element into Eq. (13a). This gives

v =

[

Grc Gh

]

{

qrc

qh

}

= Gq (18)
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Inverting Eq. (18) gives

q =

[

Hrc

Hh

]

v = Hv (19)

Hence, the element approximations can be written in terms of the nodal parameters as

u = Pq = PHv = Nv (20a)

ǫ = Du = DNv = Bvv (20b)

For a displacement-based finite element formulation [2], the element stiffness matrix in terms

of the approximation variables, q, follows from Eq. (13b) and is given by

kq =

∫

A

BT
q EBq dA =

[

kqrc kqrch

kT
qrch kqh

]

(21)

where

E =

[

Eb 0

0 Es

]

(22)

Combining Eqs. (19) and (21) gives the element stiffness matrix in terms of the nodal variables

v, as

K = HTkqH (23)

As noted previously, a thick plate element based on Eqs. (21) and (23) is generally only con-

vergent if the element approximations are C0 continuous.

The key feature of the free formulation is to modify the element stiffness matrix so that non-

conforming approximations can be used, while ensuring a convergent solution. Hence, the

element stiffness matrix for the free formulation is taken as Eq. (11), with Khigh given by [3]

Khigh = HT
h kqhHh (24)

Several elements for the analysis of isotropic thin plates were derived in [3] using this formu-

lation. An approximate extension to isotropic thick plates was made in [8]. This was done by

taking the isotropic plate equivalents of Eqs. (9a) and (9b) as constraints and thereby eliminat-

ing the rotations as fundamental variables. It was shown in [9] that these constraints lead to an

alternative eighth-order isotropic thick plate theory in terms of the transverse displacement as

the only independent variable. A conforming finite element formulation of this theory requires

higher-order continuity [10]. In contrast, in this paper we use Eq. (9) for deriving element ap-

proximations and do not eliminate the rotations as fundamental variables. This approach avoids

the requirement of higher-order continuity.

Deviatoric strain formulation

The use of substitute strain fields in the finite element method has a long history, and several

versions of the method have been used [2]. It has been shown that some of these methods

are equivalent to mixed or reduced integration methods [11]. One particular version of these
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methods is the deviatoric strain formulation, which was used in [5] to derive some successful

isotropic thin plate elements. This particular formulation uses independent strains that are de-

fined in terms of the natural coordinates of the element in combination with the fundamental

stiffness matrix split from Eq. (11). It should be noted that the strains in this formulation are

not necessarily derived from a displacement field. The authors of [5] called the formulation the

assumed natural deviatoric strain formulation or ANDES formulation.

In this paper, we use a modified version of the ANDES formulation that starts with a displace-

ment field

u = Pq (25)

Unlike the free formulation, it is not necessary to split the displacement field into rigid body

and constant strain modes, and higher-order modes. In contrast to [5], the strains are not inde-

pendently interpolated but are instead derived from Eqs. (1) and (25), giving

ǫ = Du = DPq = Bqq (26)

Hence, the strains in this formulation are the derivatives of the displacement field as is the case

for the free formulation (see Eq. (13b)). The strain matrix, Bq, in Eq. (26) is split into bending

(denoted by qb) and shear (denoted by qs) components, that is,

Bq =

[

Bqb

Bqs

]

(27)

The mean bending strain matrix is calculated as

Bqbmean =
1

A

∫

A

Bqb dA (28)

The deviatoric bending strain matrix is defined as

Bqbdev = Bqb − Bqbmean (29)

and the total deviatoric strain matrix is defined as

Bqdev =

[

Bqbdev

Bqs

]

(30)

It should be noted that the shear strain matrix, Bqs, is not modified in this formulation.

With these definitions, the higher-order stiffness matrix in terms of the approximation variables,

q, is given by

kqdev =

∫

A

BT
qdevEBqdev dA (31)

Transforming to the nodal variables, v, by using Eq. (19) gives the higher-order stiffness matrix

as

Khigh = HTkqdevH (32)

The total stiffness matrix is again given by Eq. (11), where the scale factor, S, is not necessarily

the same as for the free formulation.
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Rectangular and Triangular Finite Elements

In this section, we use the two formulations to derive several finite elements that are suitable

for the analysis of thick orthotropic plates. Both formulations are applicable to elements of

arbitrary geometry and approximation orders. However, we only consider low-order rectangular

and triangular elements in this paper for simplicity.

Rectangular elements

Fig. 2 shows the geometry and degrees of freedom for the rectangular elements. The elements

have three degrees of freedom at each node, making a total of twelve degrees of freedom.

1 2

34

O

w1, θx1, θy1 w2, θx2, θy2

w3, θx3, θy3w4, θx4, θy4

a

b x

y

Figure 2. Rectangular element (origin is at centre of element).

The terms in Ph are taken as

Ph =

[

Pθh

Pwh

]

(33)

where

Pwh =
[

x3, x2y, xy2, y3, x3y, xy3
]

, Pθh = D4Pwh (34)

Using Eqs. (13) and (33), the complete polynomial approximations for the displacement and

rotations are

Pw = [Pwrc, Pwh] , Pθ = D4Pw (35)

The terms in Pw are the displacement approximations for the well-known ACM thin plate ele-

ment [2].

Two rectangular elements can now be derived using these approximations and either the free

formulation or the deviatoric strain formulation. The resulting elements are denoted by the

nomenclature RF12 (free formulation) and RD12 (deviatoric strain formulation), respectively.

For isotropic thin plates, element RF12 reduces to element R3P from [12].

Triangular elements

Fig. 3 shows the geometry and degrees of freedom for the triangular elements. The elements

again have three degrees of freedom at each node, making a total of nine degrees of freedom.
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1

2

3

O

x1, y1, w1, θx1, θy1

x2, y2, w2, θx2, θy2

x3, y3, w3, θx3, θy3

x

y

Figure 3. Triangular element (origin is at centre of element).

It is natural and convenient to use area coordinates [2] when working with triangular elements.

Hence, for the triangular elements we use

Pwrc = [ξ1, ξ2, ξ3, ξ1ξ2, ξ2ξ3, ξ3ξ1] , Pθrc = D4Pwrc (36)

where ξ1, ξ2 and ξ3 are the area coordinates.

Several options are possible for the higher-order modes, and we use

Pwh =
[

ξ1ξ
2
2, ξ2ξ

2
3, ξ3ξ

2
1

]

, Pθh = D4Pwh (37)

Other area functions, such as those used in [3] for isotropic thin plate elements, can also be

used with the two formulations. The resulting elements have similar behaviour to those that

use Eqs. (36) and (37). Following the previous nomenclature, the resulting triangular elements

are denoted by TF9 and TD9.

Examples

We consider two examples to illustrate the behaviour of the proposed elements. The material

properties were taken as Ex = 10Ey, νxy = 0.25, Gxy = 0.5Ey, Gxz = 0.5Ey, Gyz = 0.2Ey

and k = 5/6 [1], and the scale factor was taken as S = 1 for all elements. The distributed

load on the plate was modelled using a consistent load vector [2]. The boundary conditions are

described as follows:

1. Simple support (S): w = θt = Mnn = 0

2. Clamped support (C): w = θt = θn = 0

where n and t are the normal and tangential directions, respectively, at the boundary.

Fig. 4 shows a square plate size a × a and thickness t that is subjected to a uniform load p.

All sides of the plate are either simply supported or clamped. Taking symmetry into account,

a quarter of the plate was analysed using a uniform mesh of N × N rectangular elements or

2N × 2N triangular elements.

As a first example, we consider the simply supported case. Results for the central displacement

and bending moment for a thick plate (a/t = 10) and a thin plate (a/t = 100) are compared
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Figure 4. Square plate of size a × a with typical rectangular and triangular meshes for quarter

section (N = 2).

with the exact solutions in Tables 1 and 2. The displacement and bending moment converge

rapidly for both thick and thin plates, with N ≥ 8 being an acceptable mesh for the problem.

Table 1. Central displacement, w, for simply supported plate subjected to uniform load

(multiplier = 10−2pa4/Eyh
3).

a/t = 10 a/t = 100

N RF12 RD12 TF9 TD9 RF12 RD12 TF9 TD9

2 1.832 1.842 1.402 1.631 1.560 1.561 1.239 1.385

4 1.712 1.718 1.586 1.667 1.451 1.451 1.376 1.408

8 1.684 1.688 1.649 1.675 1.424 1.424 1.405 1.413

16 1.677 1.681 1.668 1.677 1.417 1.417 1.412 1.414

32 1.675 1.679 1.674 1.677 1.415 1.415 1.413 1.414

Exact 1.679 1.679 1.679 1.679 1.415 1.415 1.415 1.415

Table 2. Central bending moment, Mx, for simply supported plate subjected to uniform load

(multiplier = 10−1pa2).

a/t = 10 a/t = 100

N RF12 RD12 TF9 TD9 RF12 RD12 TF9 TD9

2 1.289 1.298 1.044 1.217 1.344 1.344 1.023 1.194

4 1.170 1.173 1.130 1.161 1.199 1.199 1.122 1.163

8 1.142 1.144 1.144 1.145 1.166 1.166 1.149 1.157

16 1.136 1.137 1.142 1.139 1.158 1.158 1.155 1.156

32 1.134 1.136 1.140 1.138 1.156 1.156 1.155 1.155

Exact 1.135 1.135 1.135 1.135 1.155 1.155 1.155 1.155

ICCM2022, 25th-28th July 2022

10



The results for element RD12 are converging to the results from Mindlin’s theory. In the case

of a thick plate with a/t = 10, the results for the free formulation elements and element TD9

are converging to values that are slightly below the exact values. This implies that there is a

small approximation to the shear deformation as a/t decreases and shear deformation increases.

This observation is consistent with the results in [9, 10], where the results were also converging

to values slightly different to the values from Mindlin’s theory. However, it should be noted

that Mindlin’s theory is itself only an approximation to the true three-dimensional stress state

in a plate, and other thick plate theories give slightly different results for the same problem [1].

For a/t = 10, the maximum difference is less than 0.3% for the quoted results. Hence, the

differences can be ignored in a practical problem. In contrast, element RD12 is converging to

the results from Mindlin’s theory.

As the second example, we consider the clamped plate case. Results for the central displacement

and bending moment for a thick plate (a/t = 10) and a thin plate (a/t = 100) are compared

with the results obtained using the triangular thick plate element from [7] in Tables 3 and 4.

Table 3. Central displacement, w, for clamped plate subjected to uniform load (multiplier =

10−3pa4/Eyh
3).

a/t = 10 a/t = 100

N RF12 RD12 TF9 TD9 RF12 RD12 TF9 TD9

2 6.494 6.594 5.238 6.348 3.590 3.591 2.977 3.755

4 6.098 6.153 5.751 6.082 3.295 3.295 3.190 3.330

8 5.997 6.043 5.884 6.003 3.220 3.220 3.194 3.222

16 5.971 6.016 5.919 5.979 3.201 3.201 3.194 3.200

32 5.965 6.009 5.928 5.972 3.197 3.197 3.194 3.196

Ref. [7] 6.007 6.007 6.007 6.007 3.195 3.195 3.195 3.195

Table 4. Central bending moment, Mx, for clamped plate subjected to uniform load (multiplier

= 10−2pa2).

a/t = 10 a/t = 100

N RF12 RD12 TF9 TD9 RF12 RD12 TF9 TD9

2 4.941 5.039 4.765 5.570 5.483 5.489 4.087 5.610

4 4.285 4.314 4.363 4.405 4.561 4.561 4.197 4.472

8 4.124 4.142 4.233 4.176 4.345 4.345 4.265 4.313

16 4.084 4.100 4.161 4.120 4.293 4.293 4.280 4.285

32 4.074 4.090 4.134 4.105 4.280 4.280 4.281 4.279

Ref. [7] 4.086 4.086 4.086 4.086 4.276 4.276 4.276 4.276

Once again, the displacement and bending moment converge rapidly for both thick and thin

plates, with N ≥ 8 being an acceptable mesh for the problem. Overall, the behaviour of the

elements for this problem is similar to the simply supported case.
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Conclusions

This paper has discussed the use of the free formulation and the deviatoric strain formulation for

the development of finite elements for orthotropic thick and thin plate structures. The element

interpolations are the solutions of the governing equations of Mindlin’s theory, and locking

cannot occur in the thin plate limit with these elements. Both formulations lead to reliable and

accurate elements. Two examples were considered in the paper to demonstrate the accuracy that

is achieved with the proposed elements.
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Abstract

In this paper, an improved form of explicit solution of pressure Poisson equation is introduced.
On the basis of the existing program, the numerical simulation of 2D dam-break problem is
carried out. The numerical results agree well with experiments and GMRES
method,computing efficiency is greatly improved; At the same time, the MPS method is
combined with the GPU parallel acceleration technique. Based on the CUDA programming
language, the GPU is parallelized to solve the pressure Poisson equation. Compared with the
CPU solver, the developed program greatly reduces the solution time of the pressure Poisson
equation and improves the calculation efficiency. The maximum acceleration ratios of 11.486
can be obtained by numerical simulation for 2-D dam-break problems with different particle
numbers. And the developed program has better reliability and good adaptability.

Keywords:Meshless particle method, MPS method, CUDA, parallel computing

1. Introduction

The meshless particle method has been developed rapidly in recent years. It has shown great
advantages in dealing with large deformation of free surface and phase interface or strong
nonlinear deformation and large motion of boundary. The basic idea of the method is to
disperse the computational domain into a series of fluid particles with flow field information,
and the transfer of flow field information is expressed by the interaction of particles.
Smoothed Particle Hydrodynamics (SPH) and Moving Particle Semi-implicit (MPS) are two
typical meshless particle class methods, of which the MPS method has attracted much
attention as a new computational method. In recent years, some scholars have used MPS
method to simulate problems such as dam break, slogging, fluid-structure coupling, and
floating body motion on waves, and obtained good results, indicating that MPS method has
great applicability.

However, there are still some problems in the MPS method, one of which is the computational
efficiency. Because the MPS method is based on the incompressible condition, the pressure is
obtained by solving the pressure Poisson equation, which needs to solve a sparse matrix. The
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dimension of the matrix is positively correlated with the particle numbers. Therefore, how to
improve computational efficiency has been a problem worthy of attention.

In recent years, the appearance of a parallel technology called GPU (Graphic Processing Unit)
has aroused many people's attention. With the rapid development of GPU hardware and the
development of related programming technology, GPU begins to play an important role in
some general computing fields because of its powerful floating point computing ability and
high efficiency. Because of the difference between GPU and CPU in design goal, there is a
great difference between them in logic structure of hardware. As shown in figure 1 [1], GPUs
are divided into more execution units (ALUs) and have more memory bandwidth than CPUs,
which have more control and cache units. This difference, fundamentally, determines that
CPU has more complex computing power, while GPU has more floating point computing
power and parallel computing power. This natural multi-core architecture mode makes GPU
suitable for large-scale parallel scientific computing.

Figure 1. Different hardware architectures for GPU and CPU

The numerical model of meshless particle method is relatively simple. Except for Poisson
equation, the calculation of each particle is relatively independent, and it is easy to combine
the whole method with GPU. The application of GPU parallel acceleration technology in SPH
method has been relatively mature. Harada et al. [2] and Zhang et al. [3] first applied GPU
technology to meshless particle method SPH. Then the application of GPU in SPH gradually
increased. Crespo et al. [4] reviewed the theory of SPH and the different processing methods
of some key problems, and compared the similarities and differences of SPH method on CPU
and GPU. Herault et al. [5] used CUDA library to accelerate the SPH method, and compared
the acceleration ratio ratios of neighbor particle search, integral calculation and particle
movement through the dam-break problem in detail, which showed that the GPU parallel
acceleration ratio technology has great potential in the SPH method. Wei et al. [6]used the
GPUSPH program to simulate the impact of a tsunami on a vertical column. The effects of
pier shape and upstream angle on free surface evolution and hydrodynamic load were studied.
The DualSP Hysics solver using ISPH method, such as Chow [7], has carried out the research
of 3D focusing wave slamming on vertical cylinder on a single GPU. However, compared
with the explicit calculation process of SPH, the MPS method adopts semi-implicit
calculation process, which brings difficulties to the combination of MPS method and GPU
acceleration technology, so the related research work much less than SPH method. Hori et
al.[8]developed the MPS program of GPU parallel acceleration by CUDA language. The
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pressure Poisson equation and pressure gradient are solved by GPU parallel acceleration
technique. Kakuda et al.[9]applied the MPS method based on GPU acceleration to the 3D
simulation problem, and the acceleration ratio obtained by the improved MPS method was
17.33 when the number of particles was 200,000. Gou et al.[10]implemented the parallel
optimization of MPS method on GPU, simulated the interaction of isothermal and multiphase
fuel coolant, and the numerical results were in agreement with the experimental results, and
achieved a higher acceleration ratio. Vieira-e-Silva et al.[11] used the improved MPS method
to simulate the dam-break flow on GPU, but the number of particles in the numerical model
was less. Taniguchi et al.[12] have developed a WCMPS algorithm program for multiple
GPUs, and tested the reliability of the program through a standard 3D dam-break example.
Kawamura et al.[13] and Hashimoto et al.[14] applied the GPU parallel technology to the
WCMPS method, developed the GPGPU program, and simulated the 3D sloshing of oil
storage tanks under earthquake excitation with 6 million particles.

In this paper, an improved explicit solution form of pressure Poisson equation is presented
and compared with the implicit solution form. Secondly, the computational efficiency of
pressure Poisson equation is discussed by developing GPU program and CPU solver. The
second part introduces the basic theory of MPS and the improved method of explicit solution
of Poisson equation, and compares it with the result of implicit solution of Poisson equation,
which verifies its feasibility. In the third part, based on the CUDA programming language and
the existing 2-D dam-break program, a meshless particle method program is developed to
solve the pressure Poisson equation on the GPU equipment,and the computational efficiency
of solving the pressure Poisson equation is compared. The reliability and adaptability of the
program are verified by numerical simulation of 2-D dam break problems with different
particle numbers, and the acceleration ratio under different particle numbers is discussed. The
fourth part is the conclusion.

2. Numerical method

2.1 Basics of MPS method

The MPS method is a meshless method based on the Lagrange method, and the computational
domain is represented by discrete particles. The particles are not connected by grids or nodes,
but each carries its own physical information, such as mass, velocity, and acceleration. The
numerical model of MPS method used in this paper is introduced below.

2.1.1 Governing equation

For incompressible fluids, the MPS method uses the Navier-Stokes equation and the
continuity equation as the governing equations. The forms are as follows:

0 u （1）

gP
Dt
D   u2u （2）
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D/Dt denotes the derivative of matter, t is time,  is fluid density, P is pressure,  is
dynamic viscosity, V is velocity vector, and g is gravitational acceleration vector.

2.1.2 Particle interaction model

In the MPS method, the computational domain is composed of a series of discrete particles
whose interactions are realized by kernel functions. The kernel functions used in this article
are as follows:

















eij
ij

e

eij

rr
r
r

rr

ijrw

0,1

,0

)( （3）

In the formula, || jiij rrr  is the distance between particles I and J, er is the radius of the

particle's support domain. laper _ and grader _ adopted in this paper are 4.0 0l and
2.1 0l respectively[15], where is the initial particle spacing of 0l .

2.1.3 Boundary conditions

In the MPS method, when solving the pressure Poisson equation, we usually assign the
pressure of the free surface particle and the second kind of boundary particle to 0 as the
boundary condition.

2.1.3.1 Pressure Neumann condition on solid boundaries

In this study, the innermost solid boundary is treated by Newman boundary condition, and the
pressure gradient between the current boundary particle and the closest fluid particle is
calculated to avoid the deficiency of the particle in the support region. The formula is as
follows:

)( )1(
0

)1(   k
b

kp ungnn  （4）

Where bu is the acceleration of the boundary and n is the normal vector of the boundary.

2.1.3.2 Laplacian operator compensation near solid boundary

For fluid particles close to the solid boundary, Laplace operator needs to be modified to meet
the Neumann condition on the solid boundary and make up for the shortcomings of the
adjacent particles.
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The formula is as follows:

0
)1(

0 )( rpp k
bsv

 ungn （5）

As shown in Figure 2[16], vp is the pressure of the virtual particle and sp is the pressure of
the corresponding solid particle.

Fig 2. virtual particle for compensating the Lasplace operator near solid boundary

Fig 3. Demonstration of free surface particle identification

2.1.3.3 Free surface particle identification

A simplified version of the method used by Koh et al. [17]. Each self-centered particle is
assigned a circle with a radius of 1.05r0, and the circle is discretized to 360 points and placed
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evenly along the circle. If these points are completely covered by the circle of its neighbor
particle, then it is considered an internal fluid particle, otherwise it is a free surface particle.

As shown in Figure 3, particle A is identified as a free-surface particle because it is not
covered by a neighbor particle; accordingly, particle B is identified as an internal fluid particle
because it is covered by a neighbor particle.

2.1.4 Basic flow of the MPS approach

In the MPS method, the control equation is solved by a predictor-corrector semi-implicit
method. The general flow of a single time step is as follows:

(1)After completing the initial arrangement and entering the time step cycle, the first step is to
correct the position and velocity of particles. The first correction is to calculate the
intermediate velocity without considering the pressure and then move the particle to the
intermediate position based on the increment of the velocity:

tgk  )((*) uu （6）
(*))((*) urr tk  （7）

(2)Calculate the particle numbers density n
Particle number density is the denseness of neighbouring particles around a particle,
specifically refers to the accumulation of the nuclear function of the particle i and its
neighbouring particles within the scope of the nuclear function. The formula is as follows:

|)(| ij
iji

rrWn 


（8）

In order to provide the newest particle number density field in the next solution of pressure
Poisson equation, we need to search the neighbor particle of each particle again, and calculate
the middle step density of each fluid particle.

(3)Solving pressure Poisson equation
In the MPS method, the particle pressure is obtained by solving the pressure Poisson equation.
The pressure Poisson equation used in this study is as follows[18][19][20]:
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k+1 is the time step, and  is chosen by the following formula:
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The Laplacian model is used to discretize the second derivative terms in the governing
equations. The Laplace operator is described as follows:

   



ij

ijiji
w

n
d rr



0

2 2 （11）

The  in the formula is obtained by using the following formula:
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(4)Pressure gradient
the following formulas are used to solve pressure gradients:
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d is the dimension of the problem, 0n is the initial particle number density, and )(~ irp is the

minimum pressure among all particles in the support domain.
Similarly, the divergence model is used to discretize the divergence of velocity in the
governing equation. The expression is:
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After the pressure gradient of each particle is calculated, the position and velocity of the
second particle can be corrected according to the following formula:

0

)1(
(*))1(




 


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k ptuu （15）
)1()()1(   kkk turr （16）

2.2 Explicit solution of pressure Poisson equation

Because the MPS method adopts the semi-implicit method to solve the Poisson equation, we
need to solve the linear equations in the process of solving, the calculation efficiency is not
very high, so this paper adopts the explicit solution method to solve the pressure Poisson
equation, that is, do not solve the equations, directly solve the pressure of particles through
the formula iteration; and the MPS method adopts the implicit method to solve the Poisson
equation brings difficulties for GPU parallelism, so we use the explicit solution form to speed
up the process of GPU parallelism.
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2.2.1 Relaxed Jacobi

As we all know, when we bring the Laplace model in this paper into the Poisson equation, it
will form a linear equation system about pressure, and can be discretized into the form of
linear equation system bAx  . The original CPU solver is solved implicitly through the
GMRES method. Here we use the Jacobian relaxation iteration method to solve the pressure
Poisson equation, which is described below:

According to the Relaxed Jacobi method, we can iteratively solve for the particle pressure
value:

ii

ij
l
jijil

i
l
i a

pab
pp

 


 )1(1 （17）

Where l is the number of iterations, ω is called the relaxation factor, ib is the right-hand
term of the pressure Poisson equation.

When the time step is over, we get the pressure of each particle 1lp . When the next time step
is done, we take the pressure of the last time step 1lp as the initial pressure 1lp of the
current time step.

Iterations and relaxation factor are selected using the following formula：

N

bAp
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ii




 1

)(

(18)

In the formula, A is the coefficient matrix of the pressure Poisson equation, p is the pressure

value solved by Jocabi method, N is the total number of particles involved in solving the
pressure Poisson equation, i is the particle sequence number, and R is called the residual
value. When R < 10, the selection of iteration times and relaxation coefficient is reasonable.
In this paper, the selection of relaxation factor and iterations follow this formula,no further
details are given below.

2.2.2 2-D dam-break simulation

In order to verify the feasibility of explicit solution of the pressure Poisson equation, in this
paper, a 2-D dam-break example is used.

As shown in Figure 4, the liquid portion is 0.6m in length and height, the boundary portion is
1.61m in length and 0.6m in height, and a layer of solid particles is arranged outside to
prevent particles from passing through. The particle spacing is 0.005m, the time step is
dynamically arranged and the maximum is 0.001s. The total number of particles is 15530,
among which liquid particles are 14400, internal solid particles are 563 and external solid
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particles are 567. The acceleration of gravity g=9.81m/s, and the density of water is
1000kg/m3.After testing, we chose 0.5 relaxation factor and 150 iterations to get the best
results.

Fig 4. Sketch of 2-D dam-break

Experiment GMRES Relax_Jacobi

T=0.3167s

T=0.4137s

T=0.4633s

Fig 5. Comparison of numerical simulation Results at T = 0.3167s, T= 0.4137s and T =
0.4633s

In order to verify the accuracy of the explicit solution, we selected three pressure
measurement points on the right side of the wall, and compared with the experimental results
of Lobovsky et al.[21], as well as the pressure time curve, pressure cloud diagram and free
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surface diagram of the implicit GMRES for solving the pressure Poisson equation, to prove
the feasibility of the explicit solution of the pressure Poisson equation. The calculation results
are as follows:

Fig 6. Comparison of pressure duration curves at P1, P2 and P3

As shown in Figure 5, according to Lobovsky et al. 's experiment, we selected three moments
for analysis, t = 0.3167s, t = 0.4137s and t = 0.4633s, with a time error of no more than 5ms.
According to the results, the explicit solution of pressure Poisson equation is consistent with
the implicit solution and experiment, and the smoothness of pressure field is better.

As shown in Figure 6, the experimental, GMRES method, Relaxed Jacobi method under the
P1, P2, P3 three measurement points under the pressure curve, horizontal and vertical
coordinates are through dimensionless, respectively, �√(�/ℎ) and P/�gh. After comparison,
Relaxed Jacobi method is in good agreement with experiment and GMRES method.
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In conclusion, the Relaxed Jacobi method is feasible to solve the pressure Poisson equation.
Then, the time of solving the pressure Poisson equation by GMRES method and Relaxed
Jacobi method is calculated. The results are shown in Figure 7:

Figure 7. Solution time of pressure Poisson equation

Compared with the GMRES method, the Relaxed Jacobi method reduces the time of solving
the pressure Poisson equation and improves the efficiency by 65.4%.

3. GPU parallelision for MPS

In 2.2, we verify the feasibility of explicitly solving Poisson's equations. In this section, we
parallelize the explicit solution of Poisson's equations into GPU parallelization.

3.1 GPU parallel computing

3.1.1 CUDA architecture

CUDA (Compute Unified Device Architecture) is a hardware and software architecture
released by NVIDIA to manipulate GPU computing. It is a general parallel computing
platform and programming model based on NVIDIA's GPUs. It provides a simple interface
for GPU programming. CUDA -based programming allows you to build GPU -based
applications and use the GPUs parallel computing engine to solve more complex computing
challenges more efficiently. It treats the GPU as a data-parallel computing device and does not
need to map these calculations to a graphics API. The operating system's multitasking
mechanism allows CUDA to access both the GPU and graphical runtime, and its
computational features enable CUDA to visually write GPU core programs.

CUDA consists of a CUDA library, an application programming interface (API) and its
runtime, and two high-level general-purpose mathematical libraries, CUFFT and CUBLAS.
CUDA improves the read-write flexibility of DRAM so that the GPU fits the mechanism of
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CPU. On the other hand, CUDA provides on-chip shared memory that allows threads to share
data. Applications can utilize shared memory to reduce DRAM data transfers and rely less on
DRAM memory bandwidth.

3.1.2 CUDA programming mode

The CUDA architecture introduces the concepts of host and device. CUDA programs contain
both host and device programs. At the same time, host and device can communicate so that
data can be copied between them. Among them, the memory of the CPU and the system
(memory bar) is called the host, and the display memory of the GPU and the GPU itself is
called the device.

A typical CUDA program executes as follows:
1. Allocating host memory and initializing data;
2.Allocating device memory and copying data from host to the device;
3.Call the kernel function of CUDA to complete the specified operation on the device;
4. Copy the operation result on the device to the host;
5. Free memory allocated on device and host.

3.2 GPU algorithm for solving pressure Poisson equation

3.2.1 Row compression method (CSR)

The pressure Poisson equation and the Laplace model are combined into a linear system. The
coefficient matrix A of the Poisson equation is a typical sparse matrix. We cannot store all the
elements in matrix A, otherwise the number of particles that can be simulated will be greatly
reduced, which is not ideal for GPUs with smaller memory sizes. Therefore, this article will
use the Compressed Sparse Row method to store sparse matrices. The matrix is represented
by three one-dimensional arrays, A _ temp, JA _ temp, and IA _ temp. On the one hand, it can
save storage space. On the other hand, three arrays are used for storage, which is easy to use.
The array A _ temp stores all nonzero elements of the coefficient matrix; the JA _ temp array
stores the column index of all nonzero elements of the coefficient matrix A; and the array IA _
temp stores the cumulative number of nonzero elements in row I, excluding row I. We found
the number of non-zero elements on line I by looking at IA _ temp [I-1] - IA _ temp [I].
Using row compression (CSR) format to store matrix - related information facilitates the
transfer of matrix information in the GPU parallel algorithm in this paper.

3.2.2 Introduction of GPU parallel algorithm for solving pressure Poisson equation

In Chapter 2, we introduce the explicit solution of the pressure Poisson equation by Relaxed
Jacobi. In this section, we parallelize the pressure Poisson equation with GPU. The process is
shown in Figure 8:
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Fig 8. GPU parallel process for pressure Poisson equation

In the previous introduction, in the process of solving the pressure Poisson equation, we can
get the linear equations about pressure by combining the Laplace model with the pressure
Poisson equation, and then disperse them into the system of linear equations. Matrix
information is already stored in A _ temp, JA _ temp, and IA _ temp through the CSR method,
so we need to open memory for arrays A _ temp, JA _ temp, IA _ temp, and BM on the GPU
and pass the Matrix information from the CPU to the GPU.

After the matrix information is transferred, we need to open up space in the GPU for the other
variables in the Relaxed Jacobi method on the CPU solver to convert the host variable into the
corresponding device variable.

To determine the accuracy of our calculations, we need to test the data transfer from the CPU
to the GPU, and after each GPU invocation, we need to test the results, not verbose here.
After solving the pressure Poisson equation, we need to get the pressure back to facilitate the
CPU solver to continue to calculate, and finally get the results.

3.3 2-D dam-break simulation

3.3.1 Computational verification

The numerical model still adopts the model in 2.2.2, The calculation configuration is as
follows：

CPU AMD Ryzen 9 3900X 12-Core Processor
3.97GHz
64GB

GPU NVIDIA GeForce RTX 2060
6GB

compiler CUDA 11.2 GCC 7.5.0

And other conditions remain unchanged, to verify the suitability of the GPU code, the CPU
and GPU computations are as follows:
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CPU CPU+GPU

Fig 9. Comparison chart of calculation results at t = 0.3167s, t = 0.4137s and t = 0.4633s

As shown in Figure 9 , the results under CPU are basically consistent with those under GPU+
CPU, the outlines of flow field are basically the same, and the smoothness of pressure field is
better.

In theory, the CPU and CPU+GPU calculations should be the same, but the data transmitted
by the CPU and GPU, there will be data loss of the last digit, although the gap is small, but
will still have an impact on the results of the calculation, so the pressure curve in Figure
140has a certain difference is normal, still can prove the adaptability of GPU code.
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Figure. 10 Comparison of pressure duration curves at P1, P2 and P3

Figure 11. Pressure Poisson Equation Solution Time

As shown in Figure 11,By statistics, compared with the previous CPU serial code, the
efficiency of GPU parallelization is improved by 91.3%.

3.3.2 The solution acceleration ratio of different particle numbers

After verifying the accuracy of the GPU parallel program, we discuss the influence of
different particle numbers on the acceleration ratio. Table 1 lists the basic information of
different 2-D dam-break examples.
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Table 1. Basic Parameters of the Calculation Example

dr Particle numbers iterations Relax factors
0.005 15k 150 0.5
0.0075 7.1k 80 0.5
0.01 4.1k 45 0.5

The number of iterations here refers to the number of iterations in Relaxed Jacobi. Calculation
and verification show that the number of iterations needs to be further increased with the
increase of the number of particles in the example. Too small number of iterations will lead to
the occurrence of calculation irregularities and particle erasure.

Through calculation, Fig. 12 shows the acceleration ratio of Poisson's equation under different
particle numbers(Here the acceleration ratio is the ratio of the solution time of the pressure
Poisson equation under CPU to the solution time of the pressure Poisson equation under GPU.
The greater the acceleration, the better). It can be seen that the acceleration ratio increases
with the increase of particle number,the maximum acceleration ratio can reach 11.486.

Figure 12. Acceleration ratio at different particle numbers

4. Conclusion

Based on the MPS — CPU solver, the Relaxed Jacobi method is used to solve the pressure
Poisson equation explicitly instead of the GMRES implicit method. The simulation results are
in good agreement with the GMRES implicit method, the efficiency of solving pressure
Poisson equation is greatly improved. Based on the above research, the GPU parallelization of
the Relaxed Jacobi method for the explicit solution of the pressure Poisson equation is
completed, and the simulation results agree well with each other. The efficiency of the
solution of the pressure Poisson equation is greatly improved. The maximum acceleration
ratios of 11.486 can be obtained by simulating 2-D dam-break with different particle numbers.
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On the whole, the overall computational efficiency has not been improved effectively due to
the time consuming of matrix data transmission. Parallelization of a portion of the GPU does
improve that portion of the computation. Therefore, on the basis of the current part of GPU,
all the computations are given to GPU processing, so the potential of GPU high-speed
computing can be more developed.
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Abstract 

Meshing plays an important role on the accuracy and convergence of CFD solvers. The 

accuracy includes quantitative measures such as discretization and truncation errors and 

qualitative measures such as drawing closed streamline, identifying singular points, 

asymptotic lines/planes, and (symmetry) axis. The current study builds on previous work by 

further demonstrating the accuracy of the three-dimensional adaptive mesh refinement 

method by comparing the accuracy measures between the ones derived from analytical 

velocity fields and those identified by the refined meshes. The adaptive mesh refinement 

method presented in this study is proposed based on the law of mass conservation for three-

dimensional incompressible or compressible steady fluid flows. The performance of the 

adaptive mesh refinement method is analysed using three-dimensional analytic velocity fields 

of four examples. The results provide evidence for the accuracy of the mesh refinement 

method in identifying the singular points, axes, and asymptote planes of the analytical 

velocity fields. 

Keywords: Adaptive mesh refinement, Computational fluid dynamics (CFD), 3D velocity 

fields 

 

Introduction 

Discrete computational meshes are commonly employed in numerical high-performance 

computing modelling of physical processes to describe a specific problem's geometry or the 

general domain. To provide the requisite computation accuracy, discrete meshes are subjected 

to stringent requirements regarding the level and quality of discretization. Moreover, the 

simulation of computational fluid dynamics (CFD) problems is often largely reliant on mesh 

size for convergence and accuracy [1]. In many circumstances, the mesh size required grows 

to such proportions that the task becomes intractable for the computer resources available. For 

example, predicting the vortex trajectory of a large-scale flow, such as a tropical cyclone, may 

necessitate resolving the flow within and around the storm [2]. Furthermore, resolving 

localized features like vortex centers demands high resolution in areas where the numerical 

solution varies rapidly [3]. Such challenges can be addressed by adaptively refining the mesh 

during time-stepping. 

 

There are three common adaptive techniques in CFD to reduce and control numerical error, 

such as local refinement and coarsening, known as h-refinement, adjusting the local order of 

discretisation of the numerical method, known as p-refinement, or optimising the distribution 

of the computational nodes via grid relocating or moving, known as r-refinement [4]. Other 

quantitative refinement approaches, such as numerical entropy generation schemes and weak 
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local residuals, include refinement and coarsening indicators [5][6]. To dynamically obtain 

high accuracy in a domain of interest based on some pre-defined criteria, the h-adaptivity 

technique is used in adaptive mesh refinement (AMR) [7]. Since the initial work by Berger 

and Oliger [8] on the application of block-structured AMR to two dimensional (2D) 

hyperbolic partial differential equations, the AMR approach has been widely extended to 

several multiscale domains of CFD [9]-[12]. AMR techniques have been effectively 

employed to minimize computational time and memory requirements for numerous 

applications in computational fluid dynamics (CFD), computational structural dynamics 

(CSD), and other fields of computational mechanics [4]. 

 

This study uses the AMR method proposed by Li [13][14] to refine a given mesh based on the 

three-dimensional (3D) velocity fields computed numerically. The AMR method in [13][14] 

is derived from a theorem in the qualitative theory of differential equations (Theorem 1.14, 

page 18, Ye [15]) for accurate numerical computation of 2D and 3D velocity fields. The 

refinement process can be repeated as many times as necessary until the desired level of 

accuracy or a certain threshold is reached. The mesh refinement technique [13][14] has 

previously been verified using the accurate locations of singular points, asymptotic lines, and 

closed streamlines [16]-[18]. Moreover, the accuracy of the 2D AMR method has also been 

verified against the commonly used CFD benchmark experiments such as the lid-driven 

cavity flow [19]-[22], the 2D unsteady flow past a square cylinder [23], and the backward-

facing step flow [24]. Additionally, the AMR proposed by Li [13][14] has been shown to 

capture the centre of vortices within the refined cells of once refined meshes and within the 

twice refined cells after applying the AMR algorithm twice [21][25].  

 

This paper builds on Li’s [13] work by further demonstrating the accuracy of the 3D AMR 

method. Since the error of CFD simulation comes from both the error of numerical methods 

and the error of meshing, we demonstrate the accuracy of the AMR method using the 

computational velocity fields without computational errors; that is, the computational velocity 

fields are calculated by substituting the coordinates of the nodes of a mesh into analytical 

velocity fields. We show the accuracy of the 3D AMR method by comparing the accuracy 

measures between the analytical velocity fields and the refined meshes. We provide four 

examples of 3D AMR using 3D analytic velocity fields from [26]. The four examples 

presented in this paper provide evidence for the accuracy of the mesh refinement method in 

identifying the singular points, axes, and asymptote planes of the analytical velocity fields. 

 

The Mass Conservation Conditions for Linear Interpolations of Vector Fields Over 

Tetrahedral Domains 

 

The 3D AMR method is an extension of the 2D AMR method [14] derived from a theorem in 

the qualitative theory of differential equations [15].  

 

The continuity equation for incompressible or steady-state fluid is 

∇. 𝑽 = 0 

which is the statement of the law of mass conservation.  

 

Let 𝑽𝑙 be the linear interpolation of the values at the four vertices of tetrahedra in the domain 

of the velocity field. It follows that for every tetrahedron, the velocity field can be computed 

as 

 𝑽𝑙 = 𝑨𝒀 + 𝑩′ 
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where 𝑨 = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

), 𝑩′ = (

𝑏1
′

𝑏2
′

𝑏3
′

), and 𝒀 = (

𝑦1

𝑦2

𝑦3

) is a matrix of constants, vector of 

constants, and the vector of spatial variables, respectively.  

 

𝑽𝑙 is unique if the volume of the tetrahedron is not zero [16]. Substitution of 𝑽𝑙 into 𝑽 of the 

continuity equation gets 

𝛻 ⋅ 𝑽𝑙 = trace(𝑨) = 0   (1) 

for incompressible or steady-state fluid. However, the interpolated numerical velocity vector 

field 𝑽𝑙 generally does not satisfy Eq. (1).  

 

Let 𝑓 be a scalar function of spatial variables 𝑦1, 𝑦2, and 𝑦3. We assume that 𝑓𝑽𝑙 satisfies the 

continuity equation 

𝛻 ⋅ (𝑓𝑽𝑙) = 0 

and then calculate the expressions of 𝑓. Solving the above equation for the eight different 

Jacobian forms of the constant matrix 𝑨 results in eight distinct expressions of the function 𝑓 

that are given in Table 1 [13]. In Table 1, (𝑦1, 𝑦2, 𝑦3)𝑇 = 𝑽−1𝑿 and (𝑏1, 𝑏2, 𝑏3)𝑇 = 𝑽−1𝑩 

where 𝑽 satisfies  𝑨ℑ = 𝑽ℑ, and ℑ is one of the Jacobian matrices in Table 1. The Jacobian 

forms of the constant matrix 𝑨 and corresponding expressions of 𝑓 for the eight cases in 

which the linear interpolations of the vector fields over tetrahedral domains do not hold the 

law of mass conservation is summarized in Table 1. 

 

For 𝑓 ≠ {0, ∞}, the vectors 𝑽𝑙 and 𝑓𝑽𝑙 produce same streamlines (for more details we refer 

the readers to Section 2.2 of [17].  

The conditions (SH) for subdividing a hexahedron are as follows: 

- for a hexahedron shown in Fig. 1, subdivide it into five tetrahedra as shown in Fig. 2. 

- calculate the Jacobian form of 𝑨 in 𝑽𝑙 = 𝑨𝒀 + 𝑩′ for each of the five tetrahedra, 

respectively.  

- if there exist at least one of the five expressions of 𝑓 corresponding to the particular 

Jacobian of 𝑨 in Table 1 equalling zero or infinity, at some points on the 

corresponding tetrahedra, subdivision is performed on the hexahedron. 

 

 

 

 

           Fig. 1. A hexahedral cell.          Fig. 2. Tetrahedral subdivision of a hexahedron. 
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Table 1. Jacobian forms of the constant matrix 𝑨 and expressions of 𝒇 for all possible 

cases of a non-mass conservative linear field. 

 

Case Jacobian (ℑ) 𝑓 

 

1 (
𝑟1 0 0
0 𝑟2 0
0 0 𝑟3

) 

(0 ≠ 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 0) 

 

(𝑦1 +
𝑏1

𝑟1
)

−1

(𝑦2 +
𝑏2

𝑟2
)

−1

(𝑦3 +
𝑏3

𝑟3
)

−1

 

 

2 (
𝜇 𝜆 0

−𝜆 𝜇 0
0 0 𝑟

) 

(𝑟 ≠ 0, 𝜆 ≠ 0) 

{(𝑦1 +
𝜇𝑏1 − 𝜆𝑏2

𝜇2 + 𝜆2
)

2

+ (𝑦2 +
𝜆𝑏1 + 𝜇𝑏2

𝜇2 + 𝜆2
)

2

}

−1

(𝑦3 +
𝑏3

𝑟
)

−1

 

 

3 (
𝑎 𝛿 0
0 𝑎 0
0 0 𝑟

) 

(𝑎 ≠ 0, 𝑟 ≠ 0) 
 (𝛿 = 0 or 1) 

 

(𝑦2 +
𝑏2

𝑎
)

−2

(𝑦3 +
𝑏3

𝑟
)

−1

 

 

 

4 

(
𝜇 𝜆 0

−𝜆 𝜇 0
0 0 0

) 

(𝜆 ≠ 0) 

{(𝑦1 +
𝜇𝑏1 − 𝜆𝑏2

𝜇2 + 𝜆2
)

2

+ (𝑦2 +
𝜆𝑏1 + 𝜇𝑏2

𝜇2 + 𝜆2
)

2

}

−1

 

 

 

5 

(
𝑟 𝛿 0
0 𝑟 0
0 0 0

) 

(𝑟 ≠ 0, 𝛿 = 0 or 1) 

 

(𝑦2 +
𝑏2

𝑟
)

−2

 

 

 

6 

 

 

(
𝑟 𝛿 0
0 𝑟 𝛿
0 0 𝑟

) 

(𝑟 ≠ 0, 𝛿 = 0 or 1) 

 

(𝑦3 +
𝑏3

𝑟
)

−3

 

 

 

7 

(
𝑟 0 0
0 0 𝛿
0 0 0

) 

(𝑟 ≠ 0, 𝛿 = 0 or 1) 

 

(𝑦1 +
𝑏1

𝑟
)

−1

 

 

 

8 

(
𝑟1 0 0
0 𝑟2 0
0 0 0

) 

(0 ≠ 𝑟1 ≠ 𝑟2 ≠ 0) 

 

(𝑦1 +
𝑏1

𝑟1
)

−1

(𝑦2 +
𝑏2

𝑟2
)

−1

 

 

The Adaptive Mesh Refinement Method 

 

In practice, an unstructured mesh is typically employed, with most of the elements being 

hexahedra. The adaptive refinement approach is applied to every element in a mesh. A 

hexahedron to which the conditions (SH) applies can be decomposed into five or six 
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tetrahedra [27][28]. We divide a hexahedron into five tetrahedra in this study. The following 

algorithm describes how to refine a hexahedral cell in a mesh using the conditions (SH). 

 

The refinement process of a hexahedral cell: 

1) Subdivide the hexahedron into five tetrahedra and check if 𝑽𝑙 satisfies the law of mass 

conservation on all five tetrahedra. If yes, no refinement for the hexahedron is 

required. If no, proceed to Step 2. 

2) Apply the conditions (SH) to all tetrahedra. If the conditions (SH) are not satisfied on 

all tetrahedra, no subdivision is required. Otherwise, the cell is subdivided into a 

number of small elements such that the lengths of all sides of the small elements are 

truly reduced (e.g. half). Fig. 3 is an example that subdivides a hexahedron into eight 

smaller hexahedra by connecting the mid points of opposite sides on each of the six 

faces and 𝑂1𝑂3, 𝑂2𝑂4, 𝑂5𝑂6. The new nodes are 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐴𝐷, 𝐴𝐸, 𝐵𝐹, 𝐶𝐺, 𝐷𝐻, 

𝐸𝐹, 𝐹𝐺, 𝐺𝐻, 𝐸𝐻 and 𝑂1, 𝑂2, 𝑂3, 𝑂4, 𝑂5 , 𝑂6, 𝑂 as shown in Fig. 3.  

 

The following is the algorithm of the adaptive mesh refinement method. 

Algorithm of adaptive mesh refinement: 

1. Let 𝑇 = 0. 

2. Calculate the values of a velocity field at nodes of an initial hexahedral mesh.  

3. Perform the refinement process one by one for all cells in initial mesh and let 𝑇 = 𝑇 +
1. 

4. Take the smaller hexahedra in the subdivided hexahedra in Fig. 3 as new cells of the 

initial mesh by replacing the cell in Fig. 1 if a cell is refined in Step 3. Otherwise, keep 

the cell in Fig. 1 in the initial mesh.  

5. Repeat steps 2-5 until a pre-specified threshold number 𝑇 is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Subdivision of a hexahedron into eight small hexahedra. 
 

In this study, we calculate the values of a velocity field in Step 2 of the algorithm at a point by 

substituting the coordinates of the nodes into the analytical velocity field. Since the number of 

refinements can be performed infinite times, we introduce a threshold number 𝑇 in the 

algorithm. The choice of 𝑇 depends on the required accuracy of the mesh, capacity of 

computers, or computational time. 
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Results 

 
Four examples of 3D analytical velocity fields are shown here to demonstrate the 

effectiveness of the adaptive mesh refinement method. In these examples, the 3D analytical 

velocity fields, adopted from [26], are used to show that the values at the nodes of the refined 

meshes can present the fields very well by comparing the features shown in the refined 

meshes with the exact results. As the refinement process can be repeated as many times as 

necessary to achieve the desired level of accuracy or a certain threshold, we choose 𝑇 as an 

integer. A higher threshold number, 𝑇, furnishes higher accuracy of numerical results based 

on the values at the nodes of the refined meshes.  

 

Li [13] considered a different toroidal flow from the one considered in this paper. In [13], 

streamlines were drawn using the computational velocity fields on a refined mesh obtained by 

substituting the coordinates of nodes of the refined meshes into the analytical velocity field. 

For an exact closed streamline of the toroidal flow, a seed point was selected on the exact 

streamline. Then a streamline was drawn using the computational velocity field on a refined 

mesh, and the difference between the seed point and the end point (the 𝑥 coordinate is the 

same as the 𝑥 coordinate of the seed point) was compared. The distances between the seed 

and end points are smaller when the threshold number 𝑇 is bigger.  

 

In this section, we use four examples to provide evidence for the accuracy of the adaptive 

mesh refinement method in identifying the other qualitative measures for the accuracy of 

computational velocity fields.  

 

Example 1: Helical flow 

 

Velocity field: 𝑽 = (−4𝑦, 𝑥, 0.5). 

 

Fig. 4 shows the initial mesh and three exact streamlines. These lines spiral around the 𝑧-axis. 

The variation of velocity fields at the points close to 𝑧-axis is smaller. Hence, more accurate 

computational velocity fields or a finer cell size are required for drawing accurate streamlines 

at the points close to the 𝑧-axis. 

 

 
Figure 4.  Initial mesh and the exact streamlines of helical flow. 
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Fig. 5 shows the refined mesh with the three streamlines. The cell sizes are smaller when cells 

are closer to 𝑧-axis. Fig. 6 shows the projection of refined mesh and the three streamlines on 

𝑥𝑦 and 𝑦𝑧-planes. The projection on the 𝑦𝑧-plane indicates clearly that the cell sizes are 

getting smaller when cells are closer to the 𝑧-axis. The projection on the 𝑥𝑧-plane is the same 

as that on the 𝑦𝑧-plane. The projections of the three streamlines on the 𝑥𝑦-plane are circles. 

The projection on the 𝑥𝑦-plane again demonstrates that the cell sizes are getting smaller when 

cells are closer to the 𝑧-axis. This example demonstrates that the adaptive mesh refinement 

method can identify an axis accurately.  

 

 
Figure 5.  Refined mesh for 𝑻 = 𝟕 and streamlines of helical flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Projections of the graph in Fig. 5 on 𝒚𝒛 (left) and 𝒙𝒚 (right) planes. 

 

Example 2: Saddle-spiral flow 

 

Velocity field: 𝑽 = (−0.25𝑥𝑧 − 5𝑦, −0.25𝑦𝑧 + 5𝑥, −0.25𝑧2) 

 

Fig. 7 shows the initial mesh and two exact streamlines of the velocity field. The streamline 

on the top of 𝑥𝑦-plane spirals down around the 𝑧-axis and gradually approximates the plane 

but never intersects with the plane. The streamline below 𝑥𝑦-plane spirals up around 𝑧-axis 

and approximates the plane closer and closer but never intersects with the plane. Therefore, 
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𝑥𝑦-plane is asymptotic plane. Since the variations of velocity fields at the points closer to 𝑧-

axis and 𝑥𝑦-plane are smaller, the cell sizes must be smaller for drawing more accurate 

streamlines. Fig. 8 demonstrate that the finer cell size is closer to the 𝑧-axis and 𝑥𝑦-plane. 

This example demonstrates that the adaptive mesh refinement method can identify axes and 

asymptotic planes. The singular point of this velocity field is the origin, and it is also 

identified in the refined mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  The initial mesh and the exact streamlines of Saddle-spiral flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  The refined mesh for 𝑻 = 𝟓 and the streamlines of Saddle-spiral flow. 

 

Example 3: Toroidal flow 

 

Velocity field: 

𝑽 = (
−𝑥(𝑧 − 4)

𝑟2
−

20𝑦(𝑟 − 2)

𝑟
,
−𝑦(𝑧 − 4)

𝑟2
+

20𝑥(𝑟 − 2)

𝑟
,
𝑟 − 2

𝑟
) 

where 𝑟 = √𝑥2 + 𝑦2.  

 

Fig. 9 shows an exact streamline. When points are close to the 𝑧-axis, the velocity field at 

some of these points varies considerably, and when 𝑟 is around 2, the variation of the 
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𝑧 component of velocity field is small. Therefore, we need a mesh with finer cells close to the 

𝑧-axis and around 𝑟 = 2. 

 

 
Figure 9.  An exact streamline for Toroidal flow. 

 

The refined mesh was generated for 𝑇 = 5. The projections of the refined mesh on the 𝑦𝑧- 

and 𝑥𝑦-planes are shown in Fig. 10. 

 

  
 

Figure 10.  The projection on 𝒚𝒛 of the refined mesh with the streamline (left) and the 

projection on 𝒙𝒚 plane (right). 

 

The projection of the refined mesh on the 𝑥𝑦-plane shown on the right in Fig. 10 demonstrates 

that the cells sizes are getting smaller and smaller when 𝑟 approaches 2 and cells are closer to 

the 𝑧-axis. The left figure in Fig. 10 shows that the refined cells are in the whole range of 𝑧 

coordinate in the domain. This example demonstrates that the adaptive mesh refinement can 

identify the areas where the velocity fields vary dramatically in value.  

 

Example 4: Unstable focus-stretching flow 

 

Velocity field: 𝑽 = (
−𝑥

2
− 40𝑦,

−𝑦

2
+ 40𝑥, −𝑧).  

 
Fig. 11 shows three exact streamlines. All streamlines spiral around the 𝑧-axis and towards 

the 𝑥𝑦-plane. Some streamlines are close to the 𝑧-axis, and some of them are far away from 

the 𝑧-axis in the beginning and then close to the 𝑧-axis when they move close to the 𝑥𝑦-plane 
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but never interact with the plane. Therefore, finer cells are required around the 𝑧-axis and 𝑥𝑦-

plane to compute a more accurate computational velocity field. The accuracy of 

computational velocity fields means the streamlines drawn using the computational velocity 

fields are accurate. 

 
Figure 11.  Three exact streamlines. 

 

 

 
Figure 12.  Refined mesh for 𝑻 = 𝟕 with streamlines (left) and the projection on 𝒚𝒛 

plane (right). 

 

The left figure in Fig. 12 shows the refined mesh for 𝑇 = 7. Even though the refined mesh is 

similar to that of Saddle-spiral flow in Example 2, the two velocity fields are different. The 

right figure in Fig. 12 clearly shows that the 𝑧-axis and 𝑥𝑦-plane are identified in the refined 

mesh. The singular point of this velocity is the origin, and it is identified in the refined mesh. 

Discussion 

The AMR method is implemented for three-dimensional unstructured meshes with hexahedra 

elements and extended to multi-level refinement. The results from the four examples are 

presented, which confirm the accuracy and efficiency of the 3D AMR method. Furthermore, 

we have assessed the performance of the adaptive mesh refinement method in identifying the 

accurate location of singular points, axes, asymptotic planes, and other features.  
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Abstract

Shear keys can enhance the slip resistance of cantilever retaining walls (CRWs), but their
mechanisms are still not clear. In this paper, a numerical model for a CRW built and
instrumented in Minnesota was carried out using a two-dimensional finite element program.
The validated numerical model and Strength Reduction Method (SRM) were employed to
investigate the effect of lengths and positions of the shear key on the stability of the CRW.
The analysis shows that the slip surface passes the bottom of the shear key and is deepened
and lengthened when a shear key is provided. The stability of the CRW with a shear key is
improved because of better anti-slip capacities. The factor of safety of the CRW gradually
increases from 1.038 to 1.268, approximately 22%, as the length of the shear key increases
from 0 m to 0.6 m. The factor of safety of the CRW increases and then decreases as the shear
key moves from the toe to the heel. The factor of safety is maximized when the shear key is
set near the middle of the heel. This is because the rotation of the CRW results in a reduction
in the effective length of the shear key at the end of the heel.
Keywords: Numerical method, Soil-structure interaction, Soil slope analysis

Introduction
Cantilever retaining walls (CRWs) are light in weight, low in cost, and simple in structure,
which have been widely used in filling with low-bearing capacity foundations and limited
construction space [1]-[3]. The anti-slip stability of the CRW is generally ensured by the
friction resistance between the bottom of the footing and the foundation soil, but this kind of
resistance is usually insufficient when the height of the wall stem is too large. Shear keys are
often provided at the bottom of the footing to enhance the anti-slip resistance of CRW. For
instance, the Minnesota Department of Transportation built a CRW with a shear key at the
bottom of the footing to widen the width of an existing roadbed [1]. The monitoring results
showed the CRW had been operating well.

At present, scholars have conducted some research on CRW mainly in terms of its earth
pressure distribution characteristics, wall back thrust calculation methods, and wall movement
characteristics. Kamiloğlu and Şadoğlu (2007) [4] proposed an earth pressure analytical
solution considering the friction between the back of the wall and the backfill, based on the
limit equilibrium method. Huang and Luo (2009, 2010) [5][6] experimentally investigated the
effect of foundation settlement on the performance of CRWs. Al and Sitar (2010) [7]
investigated the magnitude and distribution of lateral earth pressures acting on a CRW under
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dynamic action. Bentler and Labuz [1] monitored earth pressures, wall displacements, and
wall rotation angles of a CRW constructed in Minnesota.

To date, few studies have been carried out on the shear key of CRWs. Horvath (1991) [8]
discussed the effect of footing shape on the performance of a CRW. It was found that the
shape of the footing had a significant influence on the anti-slip resistance. The anti-slip
resistance was enhanced in turn by shear keys located at the end of the toe, the underside of
the wall stem, and the end of the heel, but there is no explanation for this phenomenon.
Moreover, the anti-slip capacity is also not clear for the shear keys located in the middle of the
heel. Although it is recognized that shear keys have a significant effect in improving slip
resistance, current theory on the subject only treats them as a useful structural measure. It is
still unclear where the shear keys should reasonably be located.

In this paper, a numerical model for a CRW built and instrumented in Minnesota was carried
out using a two-dimensional finite element program. The validated numerical model and
Strength Reduction Method (SRM) were employed to investigate the effect of lengths and
positions of the shear key on the stability of the CRW. The research results are of some
reference value for the reasonable consideration of the shear keys.

Project description
A 0.8 km long poured-in-place reinforced concrete CRW was constructed by the Minnesota
Department of Transportation (Mn/DOT) on the south side of I - 494 near the West Bush Lake
crossing in Bloomington, Minnesota (Latitude N 44°51′36″, Longitude W 93°22′36″) from
2002 to 2003. The location of the project is shown in Figure 1. The CRW consists of a wall
stem, a footing, and a shear key. Displacements (2 survey reflectors 16 E and 25 E) and earth
pressures (EPC_1, EPC_5, EPC_7, EPC_9) were monitored continuously for more than 12
months. The dimensions of the CRW, the location of the survey reflectors, and the location of
EPCs are shown in Figure 2.

Figure 1. Project location [2]

ICCM2022, 25th-28th July 2022

43



Figure 2. Schematic illustration of the CRW

Backfilling in layers after the wall construction. Drilling data shows that the foundation in the
area is poorly graded sand and gravelly sand with an average moisture content of 12 %. The
depth of bedrock is more than 7 m and the depth of groundwater burial is 1 - 1.5 m. The
backfill and front fill are medium and fine sand with poor grading, gravity γ= 18.9 kN /m3,
internal friction angle φ’ = 35° - 39°, cohesion c' = 0.

Numerical modeling
Overview
The finite element program was employed to develop a plane strain model, as shown in
Figure 3. The numerical model is 13.6 m in height and 30 m in width. It consists mainly of
concrete CRW, front fill, backfill, and foundation. An unstructured finite element mesh
consisting of triangular elements with 15 nodes was chosen. The wall and its surrounding soil
were encrypted with group encryption and envelope point encryption respectively. In addition,
the effect of groundwater was not considered in the model, so all materials were set to drain.

Figure 3. Numerical model dimensions

ICCM2022, 25th-28th July 2022

44



Material constitutive models and parameters
The Mohr-Coulomb (MC) constitutive model was selected to simulate the behavior of the
front fill, the backfill, and the foundation. The isotropic linear elastic solid element was
selected for the CRW. The material parameters for this model are summarized in Table 1. The
material parameters were referenced from Chugh and Labuz (2011) [2]. It should be noted
that some of the material parameters (e.g. the modulus of the soil) had been adjusted during
the progress of numerical simulations in this paper.

Table 1 Material properties

Material Constitutive
model

γunsat
(kN/m3)

v
( - )

Eref
(MPa)

c'
(kPa)

ϕ'
(°)

Ψ
(°)

Backfill MC 18.81 0.33 35.1 0.1 38 8
Front fill MC 17.64 0.33 30.2 0.1 36 6
Foundation MC 15.68 0.33 70.0 10 30 0
Concrete Elastic 23.52 0.16 32500 -- -- --

Notations: MC = Mohr-Coulomb model; γunsat = unit weight above the water table; v = Poisson's ratio; Eref =
Young's modulus; c' = effective cohesion; ϕ' = effective friction angle; ψ = dilation angle.

Interfaces and boundary conditions
Five types of interfaces were considered in the numerical model, as shown in Table 2. These
interfaces were modeled as MC failure criteria. The interfaces were implemented by the
interface strength reduction factor Rinter in the software PLAXIS 2D 8.5. It should be noted
that the relationships between the actual parameters and the input parameters of the interfaces
are as follows:

int soili erc R c （1）

i int er soiltan = tanR  （2）

where ci、φi is the actual parameters of the interfaces；csoil、φsoil is the input parameters of the
interfaces

Table 2 Interface properties

Interface Constitutive
model

γunsat
(kN/m3)

v
( - )

Eref
(MPa)

c'
(kPa)

ϕ'
( °)

Ψ
( °)

Rinter
( - )

BW MC 18.81 0.33 35.1 0.1 38 8 0.67
FFW MC 17.64 0.33 30.2 0.1 36 6 0.67
FW MC 15.68 0.33 70.0 10 30 0 0.67
FFF MC 15.68 0.33 70.0 10 30 0 0.67
BF MC 15.68 0.33 70.0 10 30 0 0.60

Notations: BW = backfill–wall interface; FFW = front fill–wall interface; FW = foundation–wall interface; FFF
= front fill–foundation interface; BF = backfill–foundation interface.; Rinter = reduction factor of property of
interfaces.
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In addition, the boundary conditions of the model were set as follows: The top surface was
free displacement constraint; The left and right sides were horizontal displacement constraint
(ux = 0); The bottom surface was fully constrained for horizontal and normal displacements
(ux = uy = 0).

Construction process
The construction process was simulated in the following order:
(i) Gravity loading to generate the initial stress field in the foundation;
(ii) Freezing of the foundation at the shear key;
(iii) Activation of the footing and wall stem;
(iv) Activation of the front fill;
(v) Activation of backfill on the side of the footing;
(vi) Activation of the rest of the backfill in layers.

Model validation
Comparisons of the results in this paper, the measured data in the field, and the results from
Chugh and Labuz (2011) [2] are shown in Figure 4. The horizontal displacement, earth
pressure of EPC_9, and earth pressure of EPC_7 are in good agreement with the measured
data in the field. Although the earth pressures for EPC_1 and EPC_5 differ somewhat from
the measured data in the field, the trend is consistent. In conclusion, the results in this paper
are more satisfactory than those from Chugh and Labuz (2011) [2]. This numerical model is
therefore acceptable and suitable as a typical example to analyze the mechanical behavior of
CRWs

.

(a) (b)
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(c) (d)

(e)
Fig. 4 Comparison between the results in this paper, the field measured data and the
results from the literature [2]: (a) Horizontal displacement of the CRW; (b) Vertical
earth pressure of EPC_9; (c) Vertical earth pressure of EPC_7; (d) Horizontal earth

pressure of EPC_1; (e) Horizontal earth pressure of EPC_5.

Research programs
Ten types of shear keys were considered to investigate the effect of the length and position of
the shear key on the anti-slip capacity of the CRW, as shown in Figure 5. The SRM built in
the program was employed to analyze the stability of CRWs. Finally, the factor of safety was
obtained [9].
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Figure 5. Ten types of shear keys considered in this paper

Results and discussion
Effect of the length of shear keys
Figure 6 shows the variation curve of the factor of safety of the CRWs with different lengths
of shear keys. The lengths of the shear keys have a significant effect on the stability of CRWs.
The factor of safety gradually increases from 1.038 to 1.268, an improvement of
approximately 22%, as the lengths of the shear key increase from 0 m to 0.6 m.

Figure 6 Variation curve of the factor of safety of the CRWs with different shear key
lengths

The total displacement contours of CRWs based on SRM are plotted, as shown in Figure 7.
The slip surface is the shortest and shallowest for a shear key of 0.15 m. The slip surface is
the longest and deepest for a shear key of 0.6 m. The longer the shear key, the longer and
deeper the slip surface. Therefore, foundation soils can provide a greater passive earth
pressure and the stability of the retaining structure can be better. In practice, shear keys of a
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certain length can be added to improve the anti-slip stability of CRWs.

Figure 7 Total displacement contours for CRWs with different shear key lengths

Effect of the position of shear keys
Figure 8 shows the variation curve of the factor of safety of the CRWs with different shear
key positions. The positions of the shear keys have a significant effect on the factor of safety.
The factor of safety at X (1.215) and IX (1.228) is greater than that at VIII (1.212), VII
(1.153), and VI (1.066). The factor of safety of the CRW with a shear key at the heel is greater
than that with a shear key at the wall stem and the toe, which is consistent with the results of
Horvath (1991) [8]. However, the factor of safety increases continuously and then decreases
as the distance from the shear key to the end of the toe increases. An inflection point occurs at
IX. This indicates that the factor of safety is maximum when the shear key is set near the
middle of the heel. This did not describe in the analysis of Horvath (1991) [8].

Figure 8 Variation curve of the factor of safety of the CRWs with different shear key
positions
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To investigate the reasons for these results, the total displacement contours of CRWs based on
SRM are plotted, as shown in Figure 9. The depth and length of the slip surface first increase
and then decreases, as the shear key moves from toe to heel. The slip surface of CRW with a
shear key set near the middle of the heel is the deepest and longest. This is because CRWs not
only translate but also rotate when backfilling, which results in a reduction of the effective
length of the shear key set at the end of the heel, as shown in Figure 10. In practice, shear
keys are suggested to be set near the middle of the heel to achieve the strongest slip
resistance.

Figure 9 Total displacement contours for CRWs with different shear key positions

Figure 10 Grid deformation of the CRWwith a shear key at the end of the heel
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Conclusions
In this paper, a numerical model for a CRW built and instrumented in Minnesota was carried
out using a two-dimensional finite element program. The validated numerical model and
Strength Reduction Method (SRM) were employed to investigate the effect of lengths and
positions of the shear key on the stability of the CRW. The main conclusions were
summarized as follows:
(1) The analysis shows that the slip surface passes the bottom of the shear key and is
deepened and lengthened when a shear key is provided. The stability of the CRW with a shear
key is improved because of better anti-slip capacities.
(2) The factor of safety of the CRW gradually increases from 1.038 to 1.268, approximately
22%, as the length of the shear key increases from 0 m to 0.6 m. The factor of safety of the
CRW increases and then decreases as the shear key moves from the toe to the heel.
(3) The factor of safety is maximized when the shear key is set near the middle of the heel.
This is because the rotation of the CRW results in a reduction in the effective length of the
shear key at the end of the heel.
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Abstract 

Advection-dispersion-reaction equations are widely used to simulate heat and mass transport 

problems in science and engineering. Analytical and semi-analytical solutions to such 

problems are highly desirable but are currently limited to a single type of source. This 

limitation poses significant challenges to the interaction analysis between different types of 

sources and the accurate inversion of the actual source zone. In this paper, we developed a 

two-dimensional analytical model for solute transport in a finite domain subject to both 

internal point sources and boundary sources. The solution approach applies Laplace transform 

combined with finite Fourier transform and variable substitution to obtain the generalized 

semi-analytical solution. An instantaneous point source system, together with Dirichlet and 

Robin inlet boundary, is selected to investigate the solute transport behavior in a multi-source 

scenario. Results reveal that the solute transport system with point source and Dirichlet 

boundary source has the largest predicted concentration. The selection of inlet boundaries for 

the model with low-permeability media (small Péclet number) or highly reactive (large 

Damköhler number) is of great importance, especially when performing long-term predictions. 

Keywords: Solute transport, Advection-dispersion-reaction equation, Analytical solution, 

Point source, Boundary source 

 

Introduction 

Solute fate and transport in porous media are generally modeled using the advection-

dispersion-reaction (ADR) equations. Analytical solutions to ADR equations are of great 

value as they provide more fundamental insight into migration behavior and can serve as a 

benchmark for complex numerical models. Consequently, a number of analytical or semi-

analytical solutions to one- and multi-dimensional ADR equations have been developed to 

simulate various solute transport problems in porous media [1]. For example, Cleary and 

Adrian [2] and van Genuchten and Alves [3] presented several analytical solutions to the one-

dimensional (1D) ADR equation with various combinations of boundary conditions. Batu 

[4][5] derived two-dimensional (2D) analytical solutions for solute transport in a 

unidirectional flow field subject to Dirichlet and Roin influent boundary conditions. Leij et al. 

[6] and Guerrero et al. [7] formulated analytical solutions for three-dimensional (3D) ADR 

equations in the semi-infinite and finite spatial domains, respectively. The solute sources in 

these models mentioned above are imposed by boundary conditions, and such problems are 

generally referred to as boundary-value problems. 
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In contrast to the boundary-value problems, another class of transport problems uses the 

source term of the ADR equation to introduce internal point sources. Bear [8] originally 

developed an analytical solution for instantaneous injection of a point source. Basha and El-

Habel [9] proposed a 1D analytical solution for ADR equations with time-dependent source 

terms and dispersion coefficients in an infinite domain. Aral and Liao [10] generalized this 

solution to the two-dimensional infinite system and gave special solutions for instantaneous 

and constant-rate injection source scenarios. Employing the cosine Fourier series and Laplace 

transform, Fedi [11] derived an analytical solution for non-reactive solute transport in 2D 

semi-infinite domain with an instantaneous point injection source. Recently, Ding et al. [12] 

proposed a 2D analytical solution of ADR equations to investigate the reactive solute 

transport in a finite domain incorporating multiple arbitrary time-dependent point sources. 

However, the concentration gradient at the inlet boundary of the multi-point source model is 

set to zero, which cannot reflect the solute intrusion outside the transport system. 

 

This study extends the method proposed by Ding et al. [12] and develops 2D analytical 

solutions for reactive solute transport in a finite field involving advection-dispersion-reaction 

processes subject to internal point sources and boundary sources. The validity of the present 

solutions is achieved by comparing them against corresponding numerical results. Using these 

solutions, the influent boundary conditions and transport parameters on the solute migration 

behavior will be investigated. 

 

Transport model 

This study presents a two-dimensional model for solute transport in a finite spatial domain 

with internal point sources and boundary sources. The groundwater flow is steady and 

uniform along the horizontal direction. The solute is injected through internal point mass 

sources and concentration sources at the inlet boundary. The injected solute migrates in the 

horizontal direction by advection and horizontal dispersion and undergoes vertical dispersion. 

The transport model also couples linear sorption and first-order reactions of solute, so it is 

described by the two-dimensional advection-dispersion-reaction equation as follows: 

    

2 2

2 2

1

( , , ) ( , , ) ( , , ) ( , , )
( , , )

                        + ( ) ( ) ( )

x z

n

i i i

i
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R D D v C x z t

t x z x

q t x x z z
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 


   
   

   

 
  (1) 

where C is the solute concentration [ML-3] in the finite domain; R is the retardation factor 

[dimensionless]; Dx and Dz are the hydrodynamic dispersion coefficients [L2T-1], respectively; 

v is the pore-water seepage velocity [LT-1]; μ is the first-order reaction constant [T-1]. The 

time-dependent function qi(t) [ML-1T-1] and Dirac delta function δ(x-xi)δ(z-zi) represents the 

strength and location of the i-th point sources in the finite domain, respectively. 

 

Initially, the solute concentration in the finite field is assumed to be zero: 

    ( , , 0) 0C x z t     (2) 

The boundary conditions considered herein are: 

    
( , 0, )

0
C x z t

z

 

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  (3) 
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x
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


  (7) 

Two different inlet boundaries are adopted, namely the Dirichlet boundary (or concentration-

type) condition of Eq.(5) and the Robin boundary (flux-type) condition of Eq.(6). The 

concentration of these two types of boundary sources can be an arbitrary depth-dependent 

function. 

 

Solution method 

For mathematical convenience and solution generalization, the following dimensionless 

parameters are introduced. 

    
2

0 0

, , , , ,Pe ,Da , , iz
D D D D i

x x x x
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x z t C Q
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where C0 is the maximum concentration at the inlet boundary (x = 0), and thus the 

dimensionless concentration of boundary source cs,D = cs/C0; Pe is the Péclet number, and Da 

is the Damköhler number. Then, substituting these above dimensionless parameters into Eqs. 

(1)-(7), one derives the dimensionless form as follows: 
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Applying the Laplace transform and finite Fourier transform techniques to the time variable t 

and spatial variable z of the governing equation (Eq. (9)), combining the initial condition of 

Eq. (10) and boundary conditions of Eqs. (11)-(12), one can give a second-order ordinary 

differential equation in the transform domain: 
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  (16) 

where s and k are the Laplace transform and finite Fourier cosine transform parameters, 

respectively, and the specific expressions of the two transform techniques are: 
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where LT and Fc are the Laplace transform and Fourier cosine transform operators, 

respectively. 

 

After, the above governing equation (Eq. (16)) can be transformed into: 
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where  
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Using the substitution method [12], the following new variable is introduced: 
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Substituting the variable of Eq. (21) into Eq. (19) yields: 
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Solving the above two coupled first-order ordinary differential equations (Eqs. (21)-(22)) 

gives the general solution in the Laplace-Fourier transform domain: 
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where the coefficients Ak and Bk can be determined by inlet and outlet boundary conditions, 

and they are provided as follows. 
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Dirichlet inlet boundary scenario： 

Applying the Laplace and finite Fourier cosine transforms (Eqs. (17)-(18)) to the inlet and 

outlet boundary conditions (Eqs. (13) and (15)) yields: 
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Substituting the boundary conditions of Eq. (24) in the transform domain into the general 

solution of Eq. (23), the coefficients Ak and Bk are solved as follows: 
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Robin inlet boundary scenario： 

Following a similar procedure as above, the Robin inlet and Neumann outlet boundary 

conditions (Eqs. (14) and (15)) can be rewritten in the Laplace-Finite cosine transform 

domain as follows: 
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and the corresponding coefficients Ak and Bk are： 
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Finally, employing the inverse Fourier cosine transform to Eq. (23) yields a closed-form 

solution for the solute concentration in the Laplace domain, as follows: 
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and the Laplace inversion is then implemented using the Stehfest inversion algorithm to give 

the transient concentration solution. 

 

Result and discussion 

In this section, an instantaneous-release source scenario is used as an example to investigate 

the correctness of the developed solution as well as its practical applications. The 

mathematical description of the instantaneous source strength is： 

    ( ) ( )i i iq t M t t    (30) 

where Mi is the released mass of the i-th point source; and δ(t-ti) is a Dirac delta function 

where ti is the release moment. 

 

Two instantaneous point sources are located at the (x = 5m, z = 7.5m) and (x = 5m, z = 12.5m) 

in a finite domain, and each source has a total release mass of M1 = M2 = 100 g/m at t1 = t2 = 0 

day. Other material and transport parameters for the finite domain model are given in Table 1. 

 

Table 1. Input Parameters [12]. 

Parameter description Symbol Value 

Length of the finite spatial domain L 30 m 

Height of the finite spatial domain H 20 m 

The average seepage velocity v 0.1 m/day 

Horizontal hydrodynamic dispersion coefficients Dx 0.1 m2/day 

Vertical hydrodynamic dispersion coefficients Dz 0.03 m2/day 

Sorption retardation factor Rd 5.3 

First-order decay rate coefficient μ 0.002 day-1 

 

Comparison with analytical solutions and numerical results 

As mentioned in the introduction, the Neumann inlet boundary is generally used in previous 

point source models, which does not reflect the influence of external sources on the transport 

system. Therefore, this study compared three types of inlet boundary sources on the solute 

concentration distribution in the transport system (Fig. 1). The predictive model with a 

constant concentration boundary source (i.e., Dirichlet inlet boundary) presented the 

maximum solute concentration. The difference in concentration prediction for different inlet 

boundary cases decreased with an increase in transport distance but gradually increased with 

time. This implied that solute transport models subject to both the boundary sources and the 

internal point sources should pay attention to the selection of the inlet boundary conditions, 

especially when performing long-term predictions. Fig. 1 also shows that the present 

analytical solutions for Dirichlet-boundary (displayed as solid curves) and Robin-boundary 

cases (dash-dot curves) agree well with the numerical results (open dots), providing some 

confidence in the reliability of the developed analytical solution. 
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Figure 1. Effect of the inlet boundary condition on the concentration distributions 

 

Effect of Péclet number (Pe) and Damköhler number (Da) 

The Péclet number (Pe) is a dimensionless number that measures the relative importance of 

advection and diffusion, where a large number indicates an advection-dominated transport 

system and a small number indicates a diffuse flow. Fig. 2 investigated the effect of Pe 

numbers as well as inlet boundary types on the breakthrough curves at different observation 

locations. One observation is located upstream of the point source (x = 4 m), and the other is 

located downstream of x = 10 m. The solute concentration at x = 4 m increased significantly 

with increasing Péclet number Pe, especially in the case of the Robin inlet boundary condition 

(Fig. 2a). For transport systems with smaller Pe, the difference in predictions between the 

Dirichlet and Robin boundary source models was greater. For example, at t = 2000 days the 

relative difference between the predicted concentrations of the two cases for Pe = 20 was 

4.4%, while for Pe = 5, this relative difference in prediction could be up to 58.3%. This 

suggested that the selection of inlet boundary conditions was of particular importance when 

performing contamination prediction for low permeability sites. For the downstream 

observation point (x = 10 m), the effect of the inlet boundary condition on the breakthrough 

curve could be seen after about 300 days (Fig. 2b). Although the observation locations were 

far from the entrance boundary (x = 10 m), the effect of the Péclet number on the 

breakthrough curve is still evident. However, the difference in concentrations at x = 10 m 

predicted by the Dirichlet and Robin boundary source models was relatively smaller 

compared to the case of a closer observation point (x = 4 m). An important reason is that the 

concentration at the downstream observation point of x = 10 m is affected by the coupling of 

point and boundary sources. 

 

A dimensionless number, Damköhler number (Da), is generally used to indicate the rate of the 

first-order degradation reaction. The increase in Da caused a significant decrease in solute 

concentration, which is due to the accelerated consumption by biochemical reaction (Fig. 3). 

Moreover, for a larger Da, the difference in predictions between the Dirichlet and Robin 

boundary source models was greater. This illustrated that the prediction model for a strongly 

degradable system also requires careful selection of entrance boundary conditions. 
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Figure 2. Effect of the Péclet number on the breakthrough curve: (a) the upstream 

observation point, x = 4 m; (b) the downstream observation point, x = 10 m. 

 

  

Figure 3. Effect of the Damköhler number on the breakthrough curve: (a) the upstream 

observation point, x = 4 m; (b) the downstream observation point, x = 10 m. 

 

Conclusion 

This study developed a generalized semi-analytical solution for advection-dispersion-reaction 

equations subject to point-source and boundary-source. Our solution strategy combined 

Laplace transform, finite Fourier transform, and variable substitution to solve multi-source 

coupled problems. The derived solutions were tested against numerical results for 

instantaneous point source scenarios with Dirichlet and Robin inlet boundary and were shown 

to be accurate and robust. The role of two essential dimensionless parameters was 

investigated using the proposed solutions. The following main conclusions are obtained: 

 

(1) Point source systems with the Dirichlet boundary condition have a maximum predicted 

concentration. Predictive models of solute transport subject to both internal point sources 

and boundary sources should pay attention to the choice of inlet boundary conditions, 

especially when performing long-term predictions. 
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(2) For a low permeability system (small Péclet number) or strongly degraded system (large 

Damköhler number), the boundary source has a significant influence on the solute 

concentration distribution. 

 

(3) The solutions developed in this paper were programmed into a MATLAB program to 

facilitate fast calculations. These solutions are mainly used to investigate the forward 

prediction problem, and they can also be used as a basis for the inverse problem of source 

zone identification, an essential topic in subsurface transport. 
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Abstract 

Numerical model of the smoothed particle hydrodynamics method (SPH, a meshfree numerical 

method), has been approved its great advantages in fluid–particle-solid coupling problems with 

free surfaces, such as abrasive water-jet (AWJ) impacting process. However, the fully resolved 

SPH method needs a large amount of computation because of the requirement for fine resolution, 

which limits its application in practical problems. Coupling of the discrete element method 

(DEM) and SPH may be a more effective way to achieve the goal. In this study, a coupled SPH-

DEM unresolved model is proposed for simulation of AWJ impact. The water-jet and the solid 

are discretized with a series of SPH particles, and each abrasive is modeled by a DEM particle. 

Different smoothing lengths are used for SPH-SPH particles and SPH-DEM particles, resulting 

in a multiple linked-list search method for neighborhood searching. The SPH and DEM 

particles are coupled through the so-called local averaging technique, in which the interaction 

forces between the two phases are related to the local porosity. Compared with the fully resolved 

SPH model, the new coupled model is more efficient, and is suitable for fluid-particle-solid 

simulation. The process of the single abrasive water-jet impact on the solid is simulated to verify 

the applicability of the model. The cases of single particle settlement is also involved. Results 

show that the proposed model can accurately capture the motion of particles in complex fluid 

flows, and has less computation time cost, which could be useful in the applications of AWJ 

machining and complex fluid-particle flow with free surfaces. 

Keywords: Smoothed particle hydrodynamics; Discrete element method; Abrasive water-jet; 

Fluid–particle-solid interaction; Free surface flow 

 

1 Introduction 

The issue of the fluid–particle flows impacting solid surface is a common concern in several 

engineering fields, such as coastal, fluvial, and transportation engineering [1]. Abrasive water-

jet (AWJ) is a typical fluid–particle flow, which has been widely used in various industries, 

such as cutting, mining and drilling [2,3]. It involves the interactions between fluid, abrasives, 

and the solid in free surface flows. Adjustment of various parameters makes the experimental 

study of AWJ time-consuming and expensive [4]. So the numerical simulation of AWJ impact 

process can be a valuable complement to the experiments to reveal the fundamental behaviors 

and predict the solid erosion performance [5]. 

ICCM2022, 25th-28th July 2022

62



 

 

As both Lagrangian methods, the smoothed particle hydrodynamics method (SPH) has more 

advantages than the finite element method (FEM) in dealing with large displacement and large 

deformation problems. In our previous research [6, 7, 8], a fully resolved SPH model for AWJ 

simulation was proposed and improved. Both fluid, abrasives and solid material were modeled 

by SPH particles. The water-jet was modeled as a continuous fluid flow, the solid was modeled 

as elastic–plastic material, and the abrasives were treated as rigid bodies. The model had the 

advantages of simple concept and strong robustness. The erosion process of the metallic surface 

by AWJ impact was reproduced. However, the large amount of computation is one of the 

disadvantages of the previous SPH model. In this study, we propose a coupled SPH-DEM model 

for AWJ simulation to improve the computational efficiency. Each abrasive is simplified to a 

single DEM particle, instead of a series of SPH particles. The locally averaged density 

algorithm based on the local porosity is adopted to simulate the movement of abrasives in water-

jet flow. The new proposed model not only realize the detailed interaction among the water-jet, 

abrasives and solid, but also reduces the number of neighborhood SPH particle pairs, which 

reduces the computation cost. 

The remainder of this study is organized as follows. In Sec.2 and Sec.3, the basic theory of 

coupled SPH-DEM algorithm is presented, and the modeling process is described. In Sec.4, 

two cases of single particle settlement and single abrasive water-jet impact are presented to 

prove the validity of the coupled model. In Sec.5, the conclusions of the study are summarized. 

2 Formulations for SPH model (Fluid and solid phase) 

This section summarizes some fundamental parts of SPH model based on the local averaging 

technique. 

2.1 Basic theory of SPH 

In SPH model, materials in the computational domain are discretized by a set of particles, which 

carry field variables and material properties, such as velocity, density, stress, etc [9]. When a 

SPH particle is within another SPH particle’s support domain Ω, those two particles interact 

with each other and move according to the governing equations, as shown in Fig.1. Each particle 

moves according to its own acceleration. Therefore, this method is not limited by the mesh 

factors and is suitable for large deformation simulation [10].  

 

Figure 1. Kernel approximation in SPH method 

There are two main steps for the SPH model establishment. The first step is the integral 

representation of field functions (kernel approximation). The value of the field function f (x) 

can be approximated as the integral representation of x’ in the support domain Ω of x [11]. The 
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second step is the particle approximation, which discretize the continuous integral function into 

the sum of the finite particles located in the support domain Ω of x. As show in follows: 

1

( ) ( ) ( , )
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j

i j i j

j j

m
f f W h



  x x x x , (1) 

1
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j

j j i

m Wf
f




 

 


x
x

x x
, (2) 

where xi and xj in Eq. (1) and Eq. (2) are the position vectors of particle i and j, respectively. 

Particle j represents the SPH particle which is located in the support domain Ω of the particle i. 

mj and ρj are the mass and the density of the particle j, respectively. N is the total number of the 

particles within the support domain Ω of particle i. The kernel gradient 
∂Wij

∂xi
 can be expressed 

as 
∂Wij

∂xi
=

xi−xi

rij

∂Wij

∂rij
=

xij

rij

∂Wij

∂rij
, where rij is the distance between particle i and j. 

There are many available smoothing functions for SPH model. The cubic spline function, which 

was proposed by Monaghan and Lattanzio [12], is used in this study: 
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(3) 

where q is the relative distance between the particle i and j (q=rij/h), ad is the normalization 

constant which is expressed as ad =15/(7πh2) for the two-dimensional simulation.  

2.2 Local averaging technique for SPH model (Fluid phase) 

In this paper, the fluid and the solid phase are treated as continuous media. To calculate the 

coupling force between SPH and DEM particles, a local averaging technique is introduced. The 

concept was established by Anderson and Jackson [13] to deal with the momentum exchange 

and balance between different phases. For ease of reading, the SPH particles are labeled as 

particle a and b while the DEM particles are labeled as particle i and j. For the fluid SPH particle 

a, the locally averaged fluid density 𝜌̅𝑎 is shown as: 

a a f   , (4) 

where εa is the local porosity of the fluid particle a, and 𝜌𝑓 is the actual fluid density. The 

local porosity εa depends on the volume fraction of nearby DEM particles smoothed by the 

kernel function, as shown in follows [14]: 

 1a aj c j

j

W h V   , 
(5) 

where Waj(hc) is the SPH kernel function and hc is the coupling smoothing length between SPH 

and DEM particles. hc should be larger than the diameter of DEM particle but small enough to 

capture local feature of the porosity field. Vj is the volume of DEM particle. 

For fluid SPH particles, the conservation equations of mass and momentum based on local 

averaging technique are expressed as: 
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(7) 

where α and β are the Cartesian coordinates x and y, and t represents the time.    is the 

Kronecker tensor (if α = β,  = 1, otherwise,  = 0). 
a


f  is the external force of the particle 

a, such as gravity or coupling forces. The first term in Eq.(7) is the pressure term. The second 

term ( visc

ab ) is the dissipative force, which is treated as the viscosity force in Newtonian fluids 

[15]. The third term ( πart

ab
)is the artificial viscosity term, which is proposed by Monaghan to 

reduce unphysical spurious oscillations and improve the numerical stability. 

For fluid SPH particles, the pressure P is a function of the actual density ρ, which is computed 

by the eqution of state (EOS). A Mie-Grüneisen form of the EOS for fluid particles is shown as 

[16]: 
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, (8) 

where η=ρ/ρ0, ρ0 is the reference density and ρ is the actual density. e is the internal energy per 

unit of mass. Table 1 lists the EOS parameters of fluid phase. 

Table 1. EOS parameters for fluid phase[16] 

Parameters  Value 

Reference density  ρ0=1000kg/m3 

Velocity of sound  c0=1480m/s 

Grüneisen gamma  Γ0=0.5 

Volume correction coefficient  a=0 

Coefficient  S1=2.56 

Coefficient  S2=1.98 

Coefficient  S3=1.23 

2.3 Formulations for SPH model (Solid phase) 

In this study, the solid phase is modeled as a elastic–plastic material to investigate the erosion 

process by AWJ impact. Similar to Section 2.2, the conservation equations for solid SPH 

particles are written as: 
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      (10) 

where the second term in Eq.(10) is the shear force term. a

  is the deviatoric stress of the 

particle a. a


f  is the external force, such as gravity or contact force with DEM particles. 
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In the elastic-plasticity mechanics, the deviatoric stress rate
a

 is a function of the strain rate 

tensor
a

 and the rotation rate tensor
aR

 . The incremental formulation with the Jaumann rate 

correction is shown as follows [11]: 

d 1
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where G is the shear modulus. 
a

  is the strain rate tensor and 
aR  is the rotation rate tensor, 

respectively. 

The Johnson–Cook constitutive model (J-C) is selected to descripe the plastic deformation of 

OFHC copper [17], which is numerically robust and easily implemented in the SPH 

formulations. The yield stress σy in J-C model is written as: 
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, (12) 

where εeff

p
 is the equivalent plastic strain, ε̇eff

p
 is the equivalent plastic strain rate, and ε0̇ is 

the reference strain rate. A, B, C and N are material dependent constants.  

The oxygen-free high-thermal-conductivity (OFHC) copper is selected as the solid phase 

material. The Mie-Grüneisen EOS equation for OFHC copper is employed as [18]: 
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, (13) 

where Sa is a linear Hugoniot slope coefficient, the EOS parameters for OFHC copper are shown 

in Table 2. 

Table 2. EOS parameters for OFHC copper[18] 

Parameters Value 

Reference density ρ0=8960kg/m3 

Velocity of sound c0=3940m/s 

Grüneisen gamma Γ0=1.99 

Linear Hugoniot slope coefficient Sa=1.5 

3 Formulations for DEM model (Abrasive phase) and phase coupling 

DEM is a Lagrangian method proposed by Cundall [19] to study discontinuous mechanical 

efforts of rock by assemblies of discs (2D) or spheres (3D). Each abrasive is simplified to a 

single DEM particle. Contact forces occur when the particles overlap. The abrasive and fluid 

phase are coupled by local averaging algorithm based on porosity, which can be used to simulate 

the motion of abrasives in free surface flow. 

3.1 DEM governing equations 

The basic governing equations of DEM particles follow Newton’s second law. In this study, 

the forces acting on the DEM particle i are listed as: 

c ci

i ij fa sa i

j

d
m m

dt
   

v
F F F g , (14) 
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where mi and vi are the mass and velocity of DEM particle i, respectively. Fij
c  is the contact 

force for abrasive-abrasive interaction, and j represents other DEM particles contact with 

particle i. Ffa is the coupling force with fluid SPH particle, including drag force and buoyancy. 

Fsa
c  is the contact force with solid SPH particles. For rotational motion, the angular acceleration 

of the DEM particle i is expressed as: 

i

i ij

j

d
I

dt
T


, (15) 

where Ii, ωi, and Tij are the moment of inertia, angular velocity, and torque of contact forces. 

3.2 Contact force for abrasive-abrasive interaction 

The details of contact force of DEM have been described in many literatures. To simulate 

interaction and rotation behavior among abrasives in water-jet flow, the soft-sphere contact 

force model is adopted in this study. The normal and tangential contact forces for abrasive-

abrasive interaction are determined from the particle overlap by a spring-dashpot model [20]. 

The schematic illustration is shown in Fig.2.  

 
Figure 2. Schematic illustration of soft-sphere contact force model 

The abrasives are treated as rigid bodies and the surface deformation is ignored. The soft-sphere 

model is suitable for numerical simulation of engineering problems. The contact force for the 

DEM particle i is the sum of normal and tangential forces, as follows: 

c n t

ij ij ij F F F , (16) 

where the superscript n and t denote normal and tangential forces, respectively. The normal 

contact force is given by 

n n

ij n n ij n ijk d  F n v , (17) 

where kn and dn denote the normal stiffness and damping coefficient, respectively. δn is the 

normal overlap size between DEM particle i and j, as shown in Fig.2. nij is the unit normal 

vector, from i to j. vij
n  is the normal relative velocity, which is determined by the relative 

velocity vij, as shown in follows: 

( )ij i j i i j j ijR R    v v v n  , (18) 

( )n

ij ij ij ij v v n n , (19) 

where R and ω are the radius and angular velocity of DEM particle, respectively. 

Similar to normal force, the tangential contact force is written as: 
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t t

ij t t ij t ijk d  F t v , (20) 

where kt and dt denote the tangential stiffness and damping coefficient, respectively. δt is the 

normal overlap size between DEM particle i and j. tij is the unit tangential vector, 
t

ij

ij t

ij


v

t
v

. vij
t  

is the tangential relative velocity, t n

ij ij ij v v v . 

In addition, the maximum tangential force is limited by the slip condition: 

 max

t n

ij ij ijF F t , (21) 

where μ is the friction coefficient at the contact. 

The contact torque Tij shown in Eq.(15) is determined by the tangential contact force Fij
t : 

( )t

ij ij i p  T F x x , (22) 

where xi is the center of gravity of the DEM particle i. xp is the position of the contact point, 

which is on the line between particle i and j, and the distance from i is R. 

3.3 Contact force for solid-abrasive interaction 

The contact force Fsa
 c  for the solid-abrasive interaction is based on the penalty algorithm [21], 

as shown in Fig.3. The solid material is modeled as a elastic–plastic material (as shown in 

Sec.2.3), and the abrasives are modeled as rigid particles. When the distance between the solid 

SPH particle and the abrasive DEM particle is within the threshold (in this study, the threshold 

is set to R+dini, where R is the DEM particle’s radius and dini is the initial spacing of two adjacent 

SPH particles), the contact force Fsa
 c  is generated. Fsa

 c  can be decomposed into the normal 

force Fsa
 n  and tangential force Fsa

 t .  

Fsa
 n  and Fsa

 t  are expressed as: 
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, (23) 

where χ is the index of the penetration, if χ = 0 means no penetration is allowed. ma is the mass 

of particle a, and Δt is the time step. vpi=vp−vi, where vp is the velocity vector at point p. 

 
Figure 3. Illustration of solid-abrasive interaction 
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3.4 Coupling force for fluid-abrasive interaction 

For the abrasive DEM particle i, coupling force Ffa due to fluid flow is modelled, which can be 

split into a hydrodynamic force and a drag force [22]: 

( ) ( , )fa i i d i iV P     F f u , (24) 

where Vi is the volume of DEM particle i. For the hydrodynamic force, ∇P is the pressure 

gradient, and ∇ ∙ τ is the viscosity force. Drag force fd depends on the local porosity εi and 

relative velocity ui between fluid and abrasive. 

The hydrodynamic force is evaluated at particle i using a Shepard corrected SPH interpolation, 

given as: 
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where the subscript a is the fluid SPH particle nearby the DEM particle i. The subscript b is the 

fluid SPH particle nearby the particle a. h is the smoothing length among SPH particles, and hc 

is the coupling smoothing length between SPH and DEM particles. 

The drag force fd is a function of local porosity εi and relative velocity ui. The local porosity εi 

at the position of DEM particle i is estimated by smoothing the nearby values of SPH particles: 

The expression for the drag force fd is shown below: 
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where βi is the interphase momentum transfer coefficient, which is given by: 
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where μf, ρf are the viscosity, reference density of the fluid, respectively. Cd, di are the drag 

coefficient, diameter for DEM particle i, respectively. 

The coupling force on fluid SPH particle a is calculated by a weighted average fluid-abrasive 

coupling force Ffa acting on the DEM particles nearby within the coupling length hc.  The 

contribution of each DEM particle to this average is scaled by the value of the SPH kernel 

function: 

1
( )a

a fa ai c

i ia

m
W h

S
  f F , (29) 

where Ffa is the coupling force acting on DEM particles in Eq.(24). The scaling factor Si is 

calculated to ensure that the force acting on the fluid particles is balanced with the force on the 

DEM particle, which is given by: 
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where the subscript b is the fluid SPH particle nearby the DEM particle i within the coupling 

length hc. 

4 Validations of the coupled SPH-DEM model 

According to the formulations presented above, the SPH-DEM 2D numerical model is 

implemented by a Fortran code in this study. In this section, two numerical cases are proposed 

to verify the coupled model correctly handle the interactions among different phases. 

Meanwhile, compared with the fully resolved SPH model [6~8], this model has the advantage 

of less computation and higher computational efficiency. 

4.1 Case 1: single particle sedimentation 

The first case simulates the process of a single particle sedimentation in a fluid domain by 

gravity. The results are compared with the data in Reference [23] to verify the coupled model 

can simulate the coupling force between DEM and SPH phases. 

Computational domain of the single particle sedimentation is shown in Fig.4. The water area is 

0.04×0.06m, and the initial height for the single DEM particle is 0.04m. The gravity acts in the 

negative Y direction. Other detailed parameters are listed in Table 3. 

 
Figure 4. SPH-DEM Coupled model for single particle sedimentation 

Table 3. Parameters for single particle sedimentation 

Parameters Value 

Initial density for SPH particle, ρ0 1.0 × 103kg/m3 

Viscocity for SPH particle, μf 1.0 × 10-2Pa·s 

Initial spacing for SPH particle, dini 1.0 × 10-3m 

Smoothing length for SPH-SPH, h 1.25 × dini 

Density for DEM particle, ρdem 1.25 × 103kg/m3 

Diameter for DEM particle, d 2.5 × 10-3m 

Coupling smoothing length for SPH-DEM, hc 2.5 × d 

Time step, Δt 2.5 × 10-7s 

Boundary treatments for SPH and DEM are separately. For SPH particles, three layers of 

particles are fixed on the boundary to prevent fluid particles from penetrating. The velocity and 
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acceleration of the boundary particles are fixed at zero, while other parameters (initial density, 

pressure, etc.) evolve through the kernel function as fluid particles do. A line boundary for 

DEM is placed at the boundary of water area, as shown in Fig.4. When the DEM particle’s 

centroid is within the radius (radius of DEM particle) from the boundary. The particle is 

subjected to spring and damping forces from normal and tangential directions, as mentioned in 

Sec.3.2. 

The DEM particle is released at t = 0s, moves along the negative Y direction under the action 

of gravity and coupling force, and finally stops at the bottom boundary. Fig.5 shows the time 

history of the DEM particle’s velocity in Y direction. The simulation results are compared with 

the data in Reference [23]. The two processes of sedimentation are largely the same.  

There are 3 different places. The first place is found at 0＜t＜0.20s when the particle accelerates 

down, which is caused by the drag force term fd (Eq.(27)). Drag force increases with the relative 

speed between fluid and particle, so the acceleration is not a linear process. The second place 

occurs at 0.60＜t＜0.74s. When the DEM particle approaching the bottom boundary, the local 

fluid pressure at the bottom increases, resulting in the hydrodynamic force increase (Eq.(25)), 

which causes the particle to decelerate. The third place is at t = 0.74s when the particle contacts 

the bottom boundary. The particle rebounds by the contact force of spring-dashpot model, and 

finally stops at the bottom boundary. The results show that the coupled model can simulate the 

free movement of DEM particles in fluid phase. 

 
Figure 5. Time history of the velocity in Y direction 

4.3 Case 2: high speed water-jet flow containing a single circular abrasive 

The second case investigates the erosion process of solid phase by high speed water-jet impact. 

The computational domain is shown in Fig.6. The 2D numerical model is simplified, and the 

water-jet contains only one circular abrasive. The OFHC copper is set as the solid phase 

material with a size of 2.40×8.04mm. The water-jet diameter (djet) is 1.02mm, impacts the solid 

vertically at a speed of 200m/s. Water-jet SPH particles enter computational domain 

periodically from the inlet, and disappear at the outlet on both sides. These measures keep the 

particle number within a certain range and improve the computational efficiency.  

Two types of rigid abrasive model are compared in this section. For Type 1 model, the circular 

abrasive is modeled by a single DEM particle. In Type 2 model, the abrasive is discretized with 

a series of SPH particles, as shown in Fig.6. The density and pressure evolution between 

abrasive SPH particles and water-jet particles are carried out by the kernel function with the 

smooth length h, and the contact force model for solid-abrasive interaction is the same as 

Eq.(23). Other details of Type 2 model are discussed in our earlier research [8]. The parameters 

for the single water-jet impact are listed in Table 5. 

Time (s)

Y
 v

el
o

ci
ty

 (
c
m

/s
)

Simulation result

Reference [23]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-6

-5

-4

-3

-2

-1

0

1

2

 

 

 

 

 

 

ICCM2022, 25th-28th July 2022

71



 

 

        

Figure 6. Single abrasive water-jet impact using 2 types of abrasive model 

Table 5. Parameters for single abrasive water-jet impact 

Parameters Value 

Initial density for water-jet SPH particle, ρ0 1.0 × 103kg/m3 

Viscocity for water-jet SPH particle, μf 1.0 × 10-3Pa·s 

Initial spacing for SPH particle, dini 0.06mm 

Smoothing length for SPH-SPH, h 1.25 × dini 

Density for circular abrasive, ρab 7.8 × 103kg/m3 

Diameter for circular abrasive, dab 0.24mm 

Coupling smoothing length for SPH-DEM, hc 2.0 × d 

Time step, Δt 2.0 × 10-9s 

The simulation is conducted on a 16-core PC (E5-2667,3.20GHz), running about 6,0000 time 

steps with a corresponding physical time of 120μs. Fig.7 shows the evolution of the single 

abrasive water-jet impact. Type 1 single DEM particle model is shown in Fig.7(a~d), and Type 

2 SPH particle model is shown in Fig.7(e~h). In these two models, the initial velocity of the 

abrasive is 200m/s. Under the action of fluid-abrasive interaction force, the abrasive impacts 

the solid SPH particles at a velocity of 170m/s at t = 30μs, finally flows to the side at t = 120μs. 
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Figure 7. Evolution of single abrasive water-jet impact using 2 types of abrasive model 

Surface morphology of OFHC copper by water-jet impact at t = 120μs is shown in Fig.8. The 

single abrasive impact solid at the center, causing plastic deformation on the surface, and 

leaving a small crater. The plastic strain distribution in both two types is basically the same, 

and maximum plastic strain is about 0.13. It can be concluded from Fig.7 and Fig.8 that the 

simulation results of the newly proposed coupled SPH-DEM model (Type 1) for single abrasive 

water-jet impact are consistent with the fully resolved SPH model (Type 2) in our previous 

study [8]. The main difference is the computation time. For the coupled SPH-DEM model, it 

takes about 840s to run 6,0000 time steps. While for the fully SPH model, the computation time 

cost is 894s. The proposed model saves 6% of computation time for the simulation of single 

abrasive water-jet impact. 

 

Figure 8. Surface morphology of OFHC copper at t = 120μs 

For the meshfree particle method, the field variables of the particles (such as density, 

acceleration, stress, etc.) are calculated in pairs and accumulated. The most time-consuming 

part of the calculation is the neighborhood particle pair search. The link-list search method is 

adopted in this study. The information of two particles that are within 2 times the smoothing 

length is stored in memory in pairs for subsequent calculations. Obviously, the greater the 

number of particle pairs, the greater the amount of computation during the particle search, and 

the more time-consuming the computation will be. The number of particle pairs in two types 

(Niac1 for Type 1, and Niac2 for Type 2) are counted. Subtract these two numbers, as shown in 

Fig.9. Most of the time steps during the simulation, the Niac2－Niac1 value is greater than 0, 

which indicates that the coupled SPH-DEM model (Type 1) has fewer number of particle pairs. 

This may be the main reason for the less computation time cost of Type 1 model.  
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Figure 9. Difference of particle pair number in two types 

It should be emphasized that the abrasive water-jet impact simulation in this study contains only 

one abrasive. If the water-jet contains multiple abrasives, the value of Niac2－Niac1 will be 

further increased, and the advantage of the coupled SPH-DEM model in less computation time 

cost will be more obvious, which will be involved in our further study. 

5 Conclusions 

In this study, a coupled SPH-DEM numerical model for AWJ impact simulation is proposed. 

The fluid and solid phases are discretized with a series of SPH particles, and the abrasive is 

modeled by a single DEM particle. Two numerical cases are carried out with the new model. 

The simulation results of single particle sedimentation are basically consistent with the 

reference. Compared with the fully resolved SPH model in our earlier research, the coupled 

model has less computation and higher numerical efficiency in single abrasive water-jet impact 

simulation. We believe that it has better effect in dealing with multiple abrasive water-jet impact. 

The present SPH-DEM model can reasonably describe the features of fluid–particle-solid 

coupling under free surface flow conditions. 
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Abstract 

The current three-dimensional averaging mathematical model of flow, also known as the 

Reynolds equations, was developed based on the idea of Reynolds in 1895. This model is 

given by the classical averaging of velocity and pressure parameters from the three-

dimensional Navier-Stokes equations system. However, by doing this, these averaging 

parameters obtained by this classical approach are not generalized in comparison to ones 

estimated by the dual approach. This paper proposes a dual approach to establishing the three-

dimensional flow equation. The model setup is more complicated than the classical model in 

terms of integration because the procedure can be repeated several times. In this paper, the 

authors perform twice: (i) first, integration of the velocity and pressure parameters from time t  

to Tm, with time Tm < t+T, where T is the repeated period of parameters; (ii) second, 

integration from time t to  t+T. Fluctuating quantities such as velocity and pressure in 

turbulent flow, over time, are simulated using trigonometric Fourier series. The three-

dimensional flow model obtained from this dual approach could provide more accurate results 

than those given by the Reynolds equations. 

Keywords: Classical averaged method, dual approach, three-dimensional Navier-Stokes 

equations 

Introduction 

Flow in nature is usually turbulent and three-dimensional (3D) and it is often described by the 

Reynolds equations system [1, 2], classically averaged from the 3D Navier-Stokes equations 

system [1, 2]. 

With the classical averaging, quantities such as velocity and pressure are simply 

arithmetically averaged. In this research, these quantities will be averaged based on the dual 

approach, meaning that physical quantities such as velocity, pressure are integrated many 

times, have both local and global integration [3, 4]. In this paper, they are integrated only 

twice. 

With this dual approach, it will be more complicated than the classical approach, but in return, 

we will receive better physical flow quantities than the classical approach [3, 4, 5, 6, 7, 8]. 

Averaging Navier-Stokes equations by a dual approach 

The 3D Navier-Stokes equations [2] describes liquid motion written as follows:  
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With turbulent flow, when the velocity and pressure quantities are averaged by the classical 

method, we get the Reynolds equations system as follows [1, 2]:  
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Where: 
'u u u= + , 'v v v= + , 'w w w= + , 'p p p= +  

, , w,u v p are the instantaneous velocity (in the x, y and z direction respectively) and p is the 

pressure; 

, , w,u v p  are the averaged quantities of velocity (in the x, y and z direction respectively) and 

p is pressure; 
' ' ' ', , w ,u v p are the fluctuating quantities of velocity (in the x, y, and z - direction 

respectively)  and pressure; 
' '.i jy y  is the mean product of fluctuating quantities of ,i jy y ; is the friction components 

generated by the turbulent flow; ,i jy y represent velocity , , wu v or pressure p which can be 

approximated in a variety of ways [2]; 

 ,i j  is the shear stress, where the subscript ,i j  represent the x, y or z directions; if i j we 

have the normal stress; if i j  we have the shear stress. 

In this paper, the average pressure and velocity quantities are obtained by dual approach by 

twice integration [3, 4] as follows: 

                                                                 
0 0

1 1
( ) ( ). .

T r

y t y t dt dr
T r

=                                              (3)  

First integral: these quantities are averaged by integration from time t (for simplicity we 

choose t = 0) to time (t + r), where r < T, and T is the fluctuating period of the quantities to be 

integrated: 

                                                                        
0

1
( ).

r

ry y t dt
r

=                                                   (4) 

Second integral: integrations of these quantities are performed from time t to t+T: 

                                                              
0

1
( ) .

T

r
y t y dr

T
=                                                          (5) 

The fluctuating pressure or velocity quantities are approximated as a trigonometric Fourier 

series [9, 10, 11]; so the instantaneous velocity or pressure  y(t)  is approximate as: 
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Substituting the quantity ( )y t into (4), we have the average quantity ( )
r

y t  as follows: 
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and then, substituting ( )
r

y t  into (5), we receive the average value ( )jj
y y t= by dual 

approach as follows: 
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In this paper, the instantaneous velocity or pressure quantities at time t = tn , denoted by y(tn) 

are discrete and finite measurement data; so we have the corresponding variables: 

                                                                    ntt n

T T N
                                                           (7) 

Therefore, they are approximated by a discrete, finite trigonometric Fourier series as follows 

[10, 11]: 
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where:   

A0, Ap, Bp are the coefficients;  
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N sum of instantaneous velocity or pressure data values (u, v, w, p) mesures in time T; 

p indicates the pth (for p > N/2 these trigonometric harmonics will repeat); 

tn  time to calculate, tn = n.∆t;  

n time increment step.  

The average velocity or pressure value obtained by the dual approach ( )jj
y y t=  will be as 

follows: 

                                                0( ) / 2jj
y y t A DA = +                                                         (10) 

Where: 

0 / 2A is the average quantity of jy , calculated by the original ideal of Reynolds (1895), 

also called classical RANS equations; 
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DA  is the difference of velocity or pressure quantities, when averaging these quantities with 

respect to the dual approach, compared with the classical RANS equations. 

Algorithm used to solve the 3D Navier-Stokes equations system which is averaged by the 

dual approach 

There are two methods to solve the 3D Naviers-Stokes equations system which is averaged by 

the dual approach. 

 

Figure 1. Flow chart of solving the 3D averaging Naviers-Stokes equations by             

dual approach 

(i) Method 1: By relying on the numerical solution results of the 3D RANS equations by open 

source code, inserting command line segments to add differential increments DA (11) to the 
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velocity and pressure solutions calculated at each time step to obtain the numerical solution of 

the 3D Naviers-Stokes equations system averaging by the dual approach, formula (10) (see 

Step 3, Fig. 1). 

(ii) Method 2: Completely build a new algorithm to solve the 3D Naviers-Stokes equations 

system which is averaged by the dual approach as follows: 

At each time step, constructing an algorithm to solve the 3D classical RANS equations, after 

that, inserting command line segments to add differential increments DA (11) to the velocity 

and pressure solutions calculated at each time step to obtain the numerical solution of the 3D 

Naviers-Stokes equations averaging by the dual approach, formula (10)  (see Step 3, Fig. 1). 

Case study 

In this case study, we approximate the instantaneous pressure quantity by a finite 

trigonometric Fourier series (8): 

                               
/2

0

1

( ) / 2 [A .cos(2 pn/N) .sin(2 pn/N); 1,2,...,
N

n p p

p

y t A B n N 
=

= + + =               (8) 

The instantaneous pressure at a fixed point  (MC7-2) measured over time is given in Table 1 

and is shown in Fig. 2. 

Table 1: Pressure measurement data over time at a fixed point (MC7-2) in the first 

twenty (N = 20) measurement steps [12] 

Time (sec) 1/5 2/5 3/5 4/5 5/5 

Pressure (mm) 354.5706523   356.9267077    359.4528209   357.827718   354.8137758 

Time (sec) 6/5 7/5 8/5 9/5 10/5 

Pressure (mm) 354.4195018   357.937984    359.5774499    360.402683    360.8192235 

Time (sec) 11/5 12/5 13/5 14/5 15/5 

Pressure (mm) 359.196406    358.0766566   358.3154676    356.2717004   356.2604194 

Time (sec) 16/5 17/5 18/5 19/5 20/5 

Pressure (mm) 359.5143341   361.8665435   360.5558524   359.1800103   357.4757616 

 

With the pressure measurement interval over time ∆T=1/5 sec, the arithmetic mean pressure 

value  (classical RANS) is: 

0

1

1
/ 2 358.1730834

i

N

CA i

p

p A p mm
N =

= = = ; 

Average value of pressure according to dual approach is: 

                               
/2 /2

02 2
1 1

1 1
( ) / 2

2 2

N N
p p

j CA CAj

p p

B B
y y t p DA p A

N p N p= =

   
 = + = − = −   

    
            (10) 

358.1730834 0.4384605 357.7346229
j

y mm= − =  

Comment 

(i) From the solution obtained by the dual approach (10), when we arithmetically average 

the fluctuating velocity and pressure quantities as Reynolds proposed in 1895 (i.e. for 

0DA = ), we get the classical RANS equations [1, 2].  

(ii) In order to calculate the increment  DA  , we need to known the values of the fluctuating 

velocity and pressure quantities in the cycle T. 
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(iii) The results here are for the case of a normal measuring point in the flow; in fact there 

are cases where the flow has a very large fluctuating values; and so the increments DA  will 

also be considerably large. 

 

 

Figure 2. Pressure fluctuation at measuring point MC7-2 over time [12] 

Conclusion 

In this paper, the velocity and pressure fluctuations are approximated by a trigonometric 

Fourier series; the velocity or pressure quantities received by the dual approach (10) are more 

general than those obtained using the classical RANS method. 
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Abstract

The recent developed method, radial basis function based finite element method (RBF-FEM)
could solve the partial differential equation engineering problems [12, 31, 7]. The RBF-FEM
method utilizes the radial basis functions to generate the shape functions from the node in the
element (the nonoverlapping region). When the problems in terms of localized deformation, or
steep gradients, or even discontinuity regions are posed, a fine mesh is created to produce more
accurate results. Therefore a mesh refinement technique is employed in order to reduce the com-
putational time cost. This study introduces an extension of the RBF-FEM on quadtree mesh.
The proposed approach combines RBF-FEM and the polygonal finite element method, which
is the so-called RBF-PolyFEM, to construct conforming approximations on quadtree mesh re-
finement. Numerical examples are presented to demonstrate the accuracy and performance of
the proposed h-adaptive RBF-FEM approach in comparison to other numerical methods.

Keywords: Radial basis function, finite element method, polygonal finite element method,
quadtree mesh, adaptive mesh refinement.

1 Introduction
1.1 Background

The recent developed method, radial basis function based finite element method (RBF-FEM)
could solve the partial differential equation engineering problems ([12, 31, 7]). The RBF-FEM
method utilizes the radial basis functions to generate the shape functions from the node in the
element (the nonoverlapping region). The connection of the elements creates topologically the
mesh. When the problems in terms of localized deformation, or steep gradients, or even dis-
continuity regions are posed, a fine mesh is created to produce more accurate results. Therefore
a technique on the mesh is utilized in order to reduce the computational time cost. A mesh
refinement strategy is preferred over the usage of uniform mesh.

Today the preferred and advanced mesh refinement technique relies on natural refinement. One
of them is the quadtree mesh technique which uses the recursive decomposition principle [21]
to create an efficient way for mesh refinement. In application to numerical methods relying
on this quadtree mesh (for example, the finite element method), a special shape function must
be constructed that adapts with hanging nodes. The hanging nodes appear during the mesh
refinement. Several authors built their techniques based on finite element methods that can
solve the partial differential equations problems with quadtree mesh refinement [18, 19, 6].

However, when applying the RBF-FEM in order to solve the partial differential equations with
the quadtree mesh, the results are not as accurate as expected. The reason is because of the
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element in which the hanging node laying on the edge. As shown in the paper [59], the number
of nodes in the element that should be recommended to utilize are three, four, or eight and they
should be well-positioned on the edge of the element. The other element types, five- and six-
node elements, could be used with acceptable results in computation (Figs. 1a and 1b). Based
on this RBF-FEM approach, a slight change in the position of nodes in the element (Figs. 1c and
1d) are applied to test the partial differential equation cases with quadtree meshes. However,
in this practice, they do not show good results. Two examples are carried out to illustrate that.
Laplace and Poisson II equations with Dirichlet boundary condition (Eq. (27) and Eq. (31),
respectively) are tested. With Laplace equation, six quadtree meshes are utilized (Figs. 10a-
10f). With Poisson II equation, six meshes are applied (Figs. 16a-16f). The mesh starts at the
initial simple uniform mesh, and then refines and focuses on the critical area. The results are
subsequently shown in comparison to the proposed method, adaptive RBF-PolyFEM or in short
ARBF-PolyFEM (which will be mentioned in the following sections of the current paper) in
Table 1. By RBF-FEM method, the L2-error norm increases in Laplace equation with the d
mesh and in Poisson II with f mesh (Table 1).

(a) (b)

(c) (d)

Figure 1: RBF-FEM element: (a) 5-node element, (b) 6-node element, (c) Quadtree 5-node
element, (d) Quadtree 6-node element

This is, therefore, a requirement for the extension of the RBF-FEM method for solving the
system of partial differential equations, with efficient way on the regions of steep gradients,
singularities or even discontinuities.
1.2 Appoarch

Several efficient approaches can treat the hanging node in a quadtree mesh. A simple and
efficient approach is that it can be added rectangular or triangular elements inside the hanging
node elements to get the compatible meshes [18, 19]. Then the traditional finite element method
can possibly be applied to solve the problems with this mixed mesh. Another novel classical
approach introduced by Gupta, 1978 [6] which is deriving the conforming shape function of the
transition hanging node quadrilateral elements. Another advanced approach is using polygonal
interpolation in the quadtree element nodes to construct the shape function [24, 25]. The method
applies the natural neighbor Laplace interpolation to approximate the node values along the
edge with conforming C0 approximation [3, 22, 8]. Then solving the equation by polygonal
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Table 1: Rrelative error in the L2 norm for the patch test.

Problem Mesh No. nodes Relative L2 error norm
RBF-FEM ARBF-PolyFEM

Laplace a 16 2.20× 10−2 2.20× 10−2

b 49 5.55× 10−3 5.55× 10−3

c 138 2.01× 10−3 1.40× 10−3

d 292 2.91× 10−3 4.75× 10−4

e 343 1.81× 10−3 4.23× 10−4

f 485 1.63× 10−3 2.75× 10−4

Poisson II a 9 2.33× 10−1 2.33× 10−1

b 25 7.27× 10−2 7.27× 10−2

c 81 1.93× 10−2 1.92× 10−2

d 253 6.92× 10−3 5.02× 10−3

e 697 6.90× 10−3 1.50× 10−3

f 1265 7.19× 10−3 9.13× 10−4

finite element methods can obtain the solution. Recently, polygonal finite element method and
its polygonal adaptive mesh refinement techniques are utilized to solve the partial differential
equations problems [2, 15, 17, 16].

The proposed method is the combination of radial basis function-based finite element method
(RBF-FEM) and polygonal finite element method in solving partial differential equations (Laplace
and Poisson equations) with mesh refinement. The sub-domain element in which the node num-
ber equals four will be applied by RBF-FEM and the other (five- and/or six-node elements) will
be utilized by the polygonal finite element method. The Wachspress method is used to con-
struct the shape function in the polygonal finite element method [26, 23]. In this study, we
would like to investigate how the combination could solve the Poisson/Laplace equations with
quadtree mesh refinement. Several numerical studies are then carried out in comparison to other
numerical methods.
2 Adaptive RBF-polyFEM approach

The whole domain is divided into 2 domains, ΩR and ΩP where RBF-FEM and Polygonal
FEM can be applied, respectively. The idea of the adaptive RBF-polyFEM approach which
combines the RBF-FEM and the polygonal finite element method to construct the conforing
approximations on quadtress mesh refinement is presented in the following.
2.1 RBF-FEM shape function

The formulation of the radial basis function interpolation for the physical degree of freedom
is presented. The idea is illustrated by a simple two-dimension example. Suppose that we
construct a convex four-edge polygonal element with np nodes (Fig. 2). The value s(x) at each
node in the element (np degree of freedom) is interpolated as (based on radial basis function)

s(x) =
np∑
i=1

ai φ(||x− xi||) (1)

where x = [x, y], and the vertex at the ith node xi = [xi, yi] (Fig. 2), and ai is the unknown
weight coefficient. The radial basis function φ(||x − xi||) of which the commonly-used types
list in Table 2. In the table, the distance r = ||x− xi||, and the shape parameter, ε, can be used
to scale the input of the radial kernel and can influence the fitting accuracy. By evaluating the
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Figure 2: An element with nodes in global coordinate system.

Table 2: Types of radial basis functions.

RBF type Abbreviation Definition
Gaussians GA φ(r, ε) = e−(ε/r)2

Multiquadrics MQ φ(r, ε) =
√

1 + (εr)2

Inverse Multiquadrics IMQ φ(r, ε) = 1√
1+(εr)2

Inverse Quadratics IQ φ(r, ε) = 1
1+(εr)2

model at each node we can find the generalized coordinates as

s1(x) =
np∑
i=1

ai φ(||x1 − xi||)

s2(x) =
np∑
i=1

ai φ(||x2 − xi||)

. . .

snp−1(x) =
np∑
i=1

ai φ(||xnp−1 − xi||)

snp(x) =
np∑
i=1

ai φ(||xnp − xi||)

(2)

or in tensor notation it could be written as

s = Φ a (3)

where
s = [s1(x) s2(x) . . . snp−1(x) snp(x)]T , a = [a1 a2 . . . anp−1 anp ]T (4)
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and

Φ =



φ(||x1 − x1||) . . . φ(||x1 − xnp||)
. .
. .
. .

φ(||xi − x1||) . . . φ(||xi − xnp||)
. .
. .
. .

φ(||xnp − x1||) . . . φ(||xnp − xnp||)


(5)

The generalize coordinates could be expressed as the solution of Eq. (3) for a

a =
(
Φ
)−1

s (6)

Expressing the term in Eq. (1) as the row vector multiplied by the column vector, the interpola-
tion s(x) could be expressed as

s(x) = φ(x) a (7)

where
φ(x) =

[
φ(||x− x1||) . . . φ(||x− xi||) . . . φ(||x− xnp||)

]
(8)

Therefore, from Eq. (6) and Eq. (7) we have

s(x) = φ(x)
(
Φ
)−1

s (9)

The RBF-FEM shape function is then obtained as

NR = φ(x)
(
Φ
)−1

(10)

and its gradients are written as

∇NR = ∇φ(x)
(
Φ
)−1

(11)

where ∇φ(x) =
[
∇φ(||x− x1||) . . .∇φ(||x− xi||) . . .∇φ(||x− xnp||)

]
.

Therefore the displacement field approximation based on the RBF-FEM shape function on each
element could be given as

u = u(x) ≈ ue(x) = Ne
R(x)de, x ∈ Ωe (12)

Then the governing equation on each RBF-FEM element can simply be expressed as

keue(x) = fe in ΩR
e (13)

Plots of the shape function NR and the derivatives of shape function ∂NR/∂ξ for 1D element
and 2D element are depicted in Figs. 3 and 4, respectively. It shows the basis function is
non-linear and C0 continuous.
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(a) NR (b) ∂NR/∂ξ

Figure 3: MQ RBF-FEM shape functions and its derivatives of 1D four-node element.

(a) Contour of the shape func-
tion

(b) 3D surface plot of the shape
function

(c) The derivaties of shape
function dNRi/dξ

(d) The derivaties of shape
function dNRi/dη

Figure 4: Plot of the shape function of a connecting node and the shape function derivatives of
the MQ RBF-FEM 2D four-node element.

2.2 Polygonal Wachspress shape function

Consider the polygonal domain ΩP splits into another type of subdomain on polygonal higher
number node ΩP

e . Each subdomain is discretized by nP nodes.

Let us define a polygon (vertices, x1, x2, ..., xnP
, where nP is the number of nodes in the poly-
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gon). Then the Wachspress shape function, for any v ∈ ΩP , could be written as [26, 27, 13]

NPi = wi∑nP
j=1wj

, with wi = A(xi−1, xi, xi+1)
A(v, xi−1, xi)A(v, xi, xi+1) (14)

where A(xi−1, xi, xi+1) represents the area of the triangle inside the polygon (Fig. 5a). To get
the Wachspress coordinates, the approach regarding the perpendicular distance to the edge of
the polygon is utilized [4]. Fig. 5b shows the perpendicular distance hi(x) of v to the edge. Let
us define pi(x) = ni/hi(x). In this definition, the unit normal vector that outwards the edge
is denoted by ni. The Wachspress shape function and its gradients are therefore respectively
written as

NPi = w̄i∑nP
j=1 w̄j

, with w̄i = det(pi−1,pi) (15a)

∇NPi = NPi

(
ϑi −

nP∑
j=1

NPjϑi

)
, where ϑi = pi−1 + pi (15b)

Fig. 5c shows 3D surface plot of Wachspress shape function.

(a) Triangles. (b) Perpendicular diameters. (c) 3D surface plot.

Figure 5: Polygonal Wachspress approximation.

Figure 6: Mapping from a reference pentagonal element (natural coordinates) to a five-node
quadtree mesh element (physical coordinates) with a hanging node.

The Wachspress shape function constructs the conforming approximation over the polygonal
reference element. The pentagon is considered the reference element and is shown in Fig. 6. All
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the vertice nodes of the reference pentagonal element lay on the circumcircle. The interpolation
to the physical element is obtained via isoparametric mapping Jξ = ∂x/∂ξ. Fig. 6 depicts an
example of mapping from a reference pentagonal element (natural coordinates) to a five-node
quadtree mesh element (physical coordinates) with a hanging node. The interpolation remains
linear on the physical element edges when it has the affine mapping.
2.3 RBF-PolyFEM: discretization

Laplace and Poisson equations are utilized to evaluate the approach. The discretization process
is described shortly and it is similar to the traditional finite element method.

The whole domain Ω is divided into two main domains. The first domain (RBF-FEM domain,
ΩR) splits into finer subdomains (ΩR

e ) in which the node number equals to four will be applied
by RBF-FEM method (white elements in Fig. 7), and the second (polygonal domain, ΩP )
divided into subdomains (five- and/or six-node elements of ΩP

e ) will be utilized by the polygonal
finite element method (light blue elements in Fig. 7).

Figure 7: Adaptive RBF-PolyFEM mesh.

Laplace/Poisson equations problem (applications to engineering problems such as heat con-
duction, electromagnetics, and so on.) is considered. The boundary value problem of elliptic
equations in two-dimension is given as follows.

∆2u(x) = f(x), in Ω (16a)
∂u

∂n
= g, on ΓN (16b)

u = 0, on ΓD (16c)

where Ω = ΩR ∩ ΩP , denotes the problem domain, and the Dirichlet and Neumann boundaries
are, respectively, denoted by ΓD and ΓN , with ΓD ∪ ΓN = ∂Ω. Therefore, the variational weak
form of the equations Eq. (16) could be obtained as

B(u, δu) = L(δu), ∀δu ∈ H1
0 (Ω) (17a)

B(u, δu) =
∫

Ω
∇u · ∇δudΩ (17b)

L(δu) =
∫

Ω
fδudΩ +

∫
ΛN

gδuds (17c)

where δu the test function in the Sobolev space H1
0 (Ω).

The unknown variable u is approximated over the arbitrary element in the domain using either
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the RBF-FEM shape function Eq. (10) or polygonal Wachspress shape function Eq. (15)). The
nodal variable ui could then be obtained as

u ∼= uh =
np∑
i

Niui (18)

where np represents the node number in the element, Ni denotes the shape function of either
RBF-FEM or polygonal Wachspress finite element method depending on the element approxi-
mation. If the approximated field variable uh is substituted from Eq. (18) into Eq. (17), applying
Galerkin method, considering Neumann boundary condition, assembling the global coefficient
matrix and load vector, then the PDE discretized form can be obtained as [20]

Ku = F (19)

where u represents the global nodal vector, K the global coefficient matrix, F the loading vector.
In index notation, the components of K matrix and F vector are written as

Ke
ij =

∫
Ωe

(
∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y

)
dΩe (20)

F e
i =

∫
Ωe

(
fi∂Ni

)
dΩ +

∫
Γe

N

(
gNi

)
dΓ (21)

The shape function of hanging node is shown in Figure. 8

Figure 8: Contour (LSH) and 3D surface plot (RHS) of the shape function of a hanging node.

2.4 Adaptive strategy

To measure the error, the L2-norm and energy-norm errors are commonly used. The L2-norm
error is introduced and it is defined as

||e||L2(Ω) =
(∫

Ω
(u− uh)T (u− uh) dΩ

)1/2

(22)

where u denotes exact displacement solution and uh the numerical displacement approximation
solution. In the strategy of adaptive mesh refinement, the energy-norm error is utilized and it is
written as

||e|| =
(∫

Ω
∇(u− uh)T∇(u− uh) dΩ

)1/2

(23)
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The relative energy-norm error is given as

η = ||e||
(||uh||2 + ||e||2)1/2 (24)

In this study, we apply the technique of Zienkiewicz-Zhu error estimation [29, 30] as the criteria
of mesh refinement to solve the problems of the adaptive scheme. The element permissible error
is defined as

||e||all = ηall

(
||uh||2 + ||e||2

nE

)1/2

(25)

Where nE denotes the number of elements in the mesh, ηall represents the allowable relative
error norm ([28, 10]).

The index ξi (in different definition from the previous sections and chapters about the natural
coordinate system) is defined to mark the element in the adaptive refinement technique.

ξi = ||e||i
||e||all

(26)

where ||e||i, the energy-norm error of the ith element, is calculated by Eq. (23). The element
will be refined if ξi > 1. Otherwise, the element will be merged.

The adaptive mesh refinement stratergy is shown in Algorithm 1.

Algorithm 1 The adaptive strategy.
Input: Initial meshMI , maximum number of mesh elements nmax

Ouput: Numerical approximation uhJ , the finesh meshMJ

Algorithm:
K = 0;
while n < nmax do

K = K+1;
SOLVE Eq. (19) onMK to get the numerical approximation solution uhK ;
ESTIMATE the energy-norm error of the ith element on its domain Ωi (Eq. (23)),

and calculate the error in the L2-norm ||e||L2(Ω) (Eq. (22)) ;
MARK a set SK ∈MK with minumum number such that ξk > 1 (Eq. (26))
REFINE mesh elements τ ∈ SK to generate a new meshMK+1

(based on the quadtree mesh refinement algorithm from Funken
and Schmidt, 2020 [5])

end while
uhJ = uhK ,MJ =MK

end Algorithm.

3 Numerical studies

Several numerical test cases on Laplace/Poisson equations are carried out to investigate the
adaptive scheme performance. The patch test is first studied, then three Poisson and Laplace
equations involving steep gradients are solved. The direct solver is applied to solve the linear
algebraic equations. The Matlab codes are built to analyze these test case performance. The
maximum energy-norm permissible error is configured to six percent (ηmax = 0.06). The MQ
radial basis function with shape parameter, ε = 400, is employed to run the cases.
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3.1 Patch test

Let us consider a patch test for the Laplace equation, ∆u = 0 in the square domain Ω = (0, 1)2,
imposing the essential boundary conditions on the square boundaries with u = g(x) = x + y
[25]. Regularized (2:1 rule) meshes and non-regularize meshes are used for patch test as shown
in Fig. 9. The results listed in Table. 3 shows that they pass the patch test over quadtree meshes.
The L2-norm error are O(10−9) for the case with 2:1 rule quadtree mesh, and O(10−6) with no
2:1 rule.

(a) Regularized meshes: 45 nodes (b) Regularized meshes: 203 nodes

(c) Non regularized meshes: 177
nodes

(d) Non regularized meshes: 793
nodes

Figure 9: Patch test on regularized and non-regularized meshes.

Table 3: The relative L2-norm error for the patch test.

Ratio Mesh No. nodes Relative L2-norm error
2:1 a 45 5.1× 10−9

b 203 7.3× 10−9

No 2:1 c 177 8.6× 10−6

d 793 1.2× 10−6

3.2 Laplace problem

Another test is solving the equation of Laplacian with Dirichlet boundary condition as follows

∇2u = 0, in Ω = (0, 1)2, (27a)
u(0, y) = 0, for 0 ≤ y ≤ 1 (27b)
u(x, 0) = 0, for 0 ≤ x ≤ 1 (27c)
u(1, y) = 0, for 0 ≤ y ≤ 1 (27d)
u(x, 1) = w0 sin(πx), for 0 ≤ y ≤ 1 (27e)
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The exact solution is given as

u(x) = w0

sinh(π)sin(πx) sinh(πy) (28)

In this study, we set w0 = 1. The successive adaptive refinement meshes are shown in Fig.
10. And Fig. 11 shows the adaptive numerical solution of the problem after 5th iteration with
485-node quadtree mesh.

(a) Initial mesh: 16 nodes (b) Iteration 01: 49 nodes (c) Iteration 02: 138 nodes

(d) Iteration 03: 292 nodes (e) Iteration 04: 343 nodes (f) Iteration 05: 485 nodes

Figure 10: Adaptive refinement meshes by RBF-PolyFEM for Laplace problem.

Figure 11: The approximation solution uh after 5th iteration for Laplace problem. (LHS: con-
tour plot, RHS: 3D plot).

The error in L2-norm of the adaptive RBF-PolyFEM will then be compared with that from
uniform finite element method and polygonal finite element method. The errors are shown in
Fig. 12. It shows that the error from the proposed method is lower than the two others. When
the node is increasing, the errors are more different. The reason is that the quadtree mesh is
refined and focused on the critical region.
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Figure 12: Convergence of the relative error for different approaches for Laplacian problem.
(log scale on the y-axis).

3.3 Poisson problem I

A numerical test on the Poisson equation with the Dirichlet boundary condition is then carried
out. The equation problem is given as

∇2u = f, in Ω = (0, 1)2, (29a)
u = 0, on ∂Ω (29b)

where the source term f is chosen such that the problem exact solution is obtained as [9]

u(x) = x10y10(1− x)(1− y) (30)

The regularized meshes (2:1 rule) are depicted in Fig. 13. The critical region is focused on
mesh refinement. Fig. 14 shows the adaptive numerical solution of the problem with 825
nodes. In comparison, Fig. 15 illustrates the convergence of the relative error for three different
approaches. It again shows that the result of the RBF-PolyFEM regarding the quadtree mesh
refinement is by far better than that of the traditional FEM and polygonal finite element method.

3.4 Poisson problem II

The following example is solving the Poission equation with Dirichlet boundary condition under
a different source term. The equation is given as follows

∇2u = f, in Ω = (0, 1)2, (31a)
u = 0, on ∂Ω (31b)

where the source term f = 2π2sin(πx)sin(πy). Then the problem exact solution is given as

u(x) = −sin(πx)sin(πy), (32)

The regularized meshes (2:1 rule) are shown in Fig. 16. Fig. 17 shows the adaptive numerical
solution of the problem with 1265 nodes. Fig. 18 shows the convergence of the relative L2-
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(a) Initial mesh: 16 nodes (b) Iteration 01: 46 nodes (c) Iteration 02: 90 nodes

(d) Iteration 03: 177 nodes (e) Iteration 04: 375 nodes (f) Iteration 05: 825 nodes

Figure 13: Adaptive refinement meshes by RBF-polyFEM for Poisson problem I.

Figure 14: The approximation solution uh after 5th iteration for Poisson problem I. (LHS:
contour plot, RHS: 3D plot).

norm error for three different approaches. The results agree with that in the previous numerical
examples.
3.5 L-Shape domain

The last example is solving the Laplace equation in L-shape domain. The exact solution is
obtained as [1]

u(r, θ) = r2/3sin
(

2θ
3

)
(33)

where r and θ are the polar coordinates. The essential boundary conditions on the boundary with
the exact solution is imposed. Fig. 19 shows the refined meshes after computation and Fig. 20
depicts the contour plot of the solution. As expected, the quadtree mesh refines surrounding the
sharp corner.
4 Conclusions

The recently developed method, the radial basis function-based finite element method (RBF-
FEM) [12], could not well solve the steep gradient and singularity problems of partial differ-
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Figure 15: Convergene of the relative error for different approaches for Poisson I problem. (log
scale on the y-axis).

(a) Initial mesh: 9 nodes (b) Iteration 01: 25 nodes (c) Iteration 02: 81 nodes

(d) Iteration 03: 253 nodes (e) Iteration 04: 697 nodes (f) Iteration 05: 1265 nodes

Figure 16: Adaptive refinement meshes by RBF-polyFEM for Poisson problem II.

ential equations by mesh refinement. The method even shows good results in regular uniform
mesh, however, with a fine mesh, the time load will be increased. It is therefore inefficient and
loading.

In this paper, we have presented a method that is a combination of the radial basis function-
based finite element method (RBF-FEM) and the polygonal finite element method (as is the
so-called RBF-polyFEM) to solve the steep gradient and singularity problem of the partial dif-
ferential equation by quadtree mesh refinement. The sub-domain elements in which the node
number equals four were applied by RBF-FEM and the other elements (five- and/or six-node el-
ements) were utilized by the polygonal finite element method. Several test cases for the Laplace
and Poisson equations were presented. The results were then compared with the finite element
method with uniform meshes and with the polygonal finite element method. It is shown that the
combination did not conflict in solving the numerical problems. The L2 error norm results were
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Figure 17: The approximation solution uh after 5th iteration for Poisson problem II. (LHS:
contour plot, RHS: 3D plot).

Figure 18: Convergene of the relative error for different approaches for Poisson II problem.
(log scale on the y-axis).

sufficiently accurate, and the proposed approach could capture the sharp gradients and singu-
larity in the problems. The implementation of this method for solving elasticity problems that
involve crack discontinuities and singularities will be investigated. Applications of the method
to more advanced physical engineering problems are also interested [11, 14].
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Abstract 

The mechanical behavior and debonding process of pipe joints’ interface are the key points for 

pipe system. In order to better understand and describe the debonding failure of pipe joints 

subjected to torsional loads for safety design, the theoretical and numerical studies have been 

conducted. Firstly, based on the exponential softening bond-slip law, the analytical expressions 

of the interfacial shear stress and the load-displacement relationship at loaded end were 

obtained. Thus the shear stress propagation and the debonding progress of the whole interface 

for different bond lengths could be predicted. Secondly, a simplified interface bond-slip law 

was used by changing the exponential softening law into a bilinear model. The analytical 

solutions for the simplified model were also obtained. Based on the analytical solutions, the 

influence of bond length and stiffness on load-displacement curve and ultimate load were 

discussed. The stress transfer mechanism, the interface crack propagation and the ductility 

behavior of the joints were further explained. 

Keywords: interface; torsion; load-displacement curve; bond-slip law; pipe joints 

Introduction 

Pipe structures are a very important structural form for energy industry and construction 

industry. The limitations of the overall system performance usually come from the capacity of 

pipe joints [1]. Therefore, the pipe joints play the most important role in the overall integrity of 

most piping systems [2-4]. 

Based on the mechanics of composite materials and the maximum strain failure criterion, an 

analytical and experimental study was conducted to investigate the elastic and failure behavior 

of composite laminated pipe under torsion [5]. Based on the general composite shell theory, 

Zou et al. [6] studied the stress concentrations at and near the end of the joints as functions of 

various parameters, such as the overlap length, and thickness of the adhesive layer. Pugno et al. 

[7] confirmed that the maximum stresses were attained at the ends of the adhesive and that the 

peak of maximum stress was reached at the end of the stiffer tube and does not tend to zero as 

the adhesive length approaches infinity. Cheng [8] developed an adhesively bonded smart 

composite pipe joint system by integrating electromechanical coupling piezoelectric layers with 

the connection coupler. He et al. [9] studied the failure analysis for thermoplastic composite 

pipes under combined pure torsion and thermomechanical loading from operational thermal 

gradients. 

A finite element analysis was used to calculate the residual thermal stresses generated by 

cooling down from the adhesive cure temperature and a nonlinear analysis incorporating the 
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nonlinear adhesive behavior was performed [10]. Based on a parametric study conducted by 

2D and 3D finite element analysis, Hosseinzadeh et al. [11-14] developed a simple method for 

assessing the behavior of adhesively bonded tubular joints under torsion. A finite difference 

method was utilized to solve the system of equilibrium equations and it was modeled as a 

separate 3D elastic body without the uniform stress assumption [15]. Considering individual 

and combined effect of internal pressure and torsional loadings, Baishya et al. [16] analyzed the 

failure process of the laminated composite tubes by finite element analysis. 

Studies of interfacial mechanical properties are mainly for simple shear model. Yuan et al. [17-

19] gave analytical solutions in closed-form of interfacial behavior of adhesive joints. Other 

researchers made some improvements by considering interfacial normal stress [20-23].  

The latest experimental study proposes that exponential softening may appear for interface of 

some bonded joints [24, 25]. Based on the exponential softening bond-slip law, this paper 

studies the interface behavior of pipe joints under torsion loads. Closed-form solutions are given. 

Interface model of pipe joint 

2.1. Interface model 

The inner and outer pipe is bonded together by a thin and soft adhesive layer shown in Fig. 1. 

Here the inner and outer pipe are defined as pipe 1 and 2 respectively. Due to symmetry, only 

the right half of the pipe joint is considered. We assume that the distance between the left end 

of pipe 1 and the right end of the pipe 2 is L. For the sake of clarification, the bond length in 

this paper is denoted by L for only the right half of the pipe joint is considered. 

 

(a) A cross-sectional view 

 

(b) A side view 

Fig. 1. Adhesively bonded pipe joint. 

Before starting the derivations, the following assumptions can be made for the simplicity of 

problems: 

(1) The adherents are homogeneous and linear elastic; 

(2) The adhesive is only exposed to shear forces; 

(3) The torsion load carried by the thin and soft adhesive layer is ignored and the external 

torsion load is assumed to be resisted by the main pipe and coupler pipe; 
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(4) Local bending effects in the pipe joint under torsion load are neglected. 

According to the classical torsion theory, the internal torsion T1 and T2 of the pipe and the 

coupler can be expressed respectively as follows: 

 
1 1 1 1T G J=     (1) 

 
2 2 2 2T G J=    (2) 

Where G1 and G2, 1  and 2  are the shear modulus and the rotation angle of pipe 1 and pipe 

2 respectively; J1 and J2 are the polar moment of inertia of the thin-walled pipe 1 and pipe 2 

respectively written as follows: 

 3

1 1 12J R t=    (3) 

 3

2 2 22J R t=    (4) 

In which, t1 and t2 are the thickness of the thin-walled pipe 1 and pipe 2 respectively; R1 and R2 

are the average radius of pipe 1 and pipe 2 respectively (Figs. 1a). 

According to the assumption above, the torsion load carried by the soft and thin adhesive layer 

is ignored. Thus, the equilibrium between external and internal torsion load in the pipe joint 

requires: 

 
1 2 0T T+ =    (5) 

2.2. Governing equations 

If at the given cross-section, the rotations of pipe 1 and pipe 2 are different from each other, a 

relative rotation occurs accompanied by a circumferential relative displacement at the bond 

layer. Let’s introduce the relative interfacial rotation φ, which equals to the difference of the 

individual rotation angle of pipe 1 and pipe 2 at the cross-section x as illustrated in Fig. 2. 

Consider the torsional equilibrium in pipe 1 of an infinitely small section dx as illustrated in 

Fig. 2: 

 12 R Rdx dT  =    (6) 

 

Fig. 2. Equilibrium of the local interfacial shear stresses. 

Where τ is the interfacial shear stress along the circumferential direction and R is the distance 

between the center of the pipe and mid-height of the adhesive layer which can be calculated by: 

 1 2
1 2

1

2 2 2

t t
R R R

    
= + + −    

    
   (7) 

Denote this relative slip at the bond layer interface along circumferential direction as δ. This 

interfacial slip δ can thus be expressed as a function of the relative interfacial rotation φ as 

follow: 
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 1 2R R R   = = −    (8) 

By introducing two parameters of local bond strength τf and interfacial fracture energy Gf, we 

have: 

 
2

2

2 2

2
( ) 0

f

f

Gd
f

dx


 


− =    (9) 

 

2 2

1 2

1 1

2

2

f

f

R d

G G J dx

  



 =     (10) 

where 

 

2

2 3 1 1 2 2

1 1 2 2

2
2

f

f

G J G J
R

G J G J G


 

+
=     (11) 

Substituting Eq. (10) into (1), the relationship of T1 and derivative of δ can be obtained: 

 

2

2

1 2
2

2

f

f

d
T R

G dx

 



=     (12) 

Eq. (9) is the governing differential equation of the adhesive bonded joint in Fig. 2. When the 

local bond-slip model is found, this equation can be solved. 

2.3. Bond-slip model 

The exponential bond-slip law can be described as the dashed line in Fig. 3. The interfacial 

shear stress increases linearly to τf at which the value of the slip is denoted by δ1. It is called an 

elastic stage. Then interface softening appears and the interfacial shear stress decays 

exponentially with the interfacial slip. It is called a softening stage. The mathematical 

expressions of the interfacial bond-slip law in Fig. 3 are: 

 
2

1

1

1

2 1

1

(0 )
( )

( )

f

f

f

e







  

 

  

 
− − 

 


 

= = 




    (13) 

 

Fig. 3. Bond-slip models. 

The bilinear model shown as blue real line in Fig. 3 which features a linear ascending branch 

followed by a linear descending branch provides a close approximation. It is a simplified model 

of exponential softening model by letting Gf be equal. According to this model, the bond shear 

stress increases linearly with the interfacial slip which is the same as exponential model. 
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Interfacial softening (or micro-cracking) then starts with the shear stress reducing linearly with 

the interfacial slip. The shear stress reduces to zero when the slip exceeds δf, signifying the 

shear fracture (debonding or macro-cracking) of a local bond element. This bond-slip model 

shown in Fig. 3 is mathematically described by the following: 

 

1

1

1

1

(0 )

( ) ( ) ( )

0 ( )

f

f

f f

f

f

f


  




      
 

 


 




= = −  
−






    (14) 

The expression α2 which is a positive coefficient characterizing the exponential decay could be 

obtained by letting the interfacial fracture energy Gf in Fig. 3 be equal: 

 2 1

1f




 
=

−
    (15) 

3. Analysis of the debonding process for the exponential model  

3.1. Elastic stage 

As small loads, there is no interfacial softening or debonding along the interface, so the entire 

length of the interface is in an elastic stress state. Substituting the relationship of Eq. (13) for 

the case of 0≤δ≤δ1 into (9), the following differential equation is obtained: 

 2

1 1( ) ( ) 0 (0 )x x     − =       (16) 

where 

 2 3 1 1 2 2
1

1 1 2 2 1

2
fG J G J

R
G J G J


 



+
=     (17) 

And the boundary conditions are: 

 1(0) 0 =     (18) 

 1

1 1

( )
T

L
G J

 =     (19) 

The solution of Eq. (16) for the relative shear displacement as well as the shear stress of the 

adhesive layer can be written in the form: 

 1 1 1

2

1

cosh( )
( )

2 sinh( )f

T x
x

R L

  


  
=     (20) 

 1 1

2

1

cosh( )
( )

2 sinh( )

T x
x

R L

 


 
=     (21) 

The slip at the loaded end (i.e. the value of δ at x=L) is defined as the displacement of the 

bonded joint and is denoted by Δ. According to this definition, the relationship of the load-

displacement can be obtained from Eq. (20): 
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2

1

1 1

2
tanh( )

fR
T L

 


 
=      (22) 

3.2. Elastic-softening stage 

As the load increases, the interfacial slip reaches δ1 at the loaded end and softening appears at 

x=L, thus the whole interface is in an elastic-softening stage. The load T increases as the length 

of the softening region a increases. Substituting the relationship given in Eq. (13) into (9) gives 

differential equation (16) for the elastic region and the following equation (23) for the softening 

region. 

 

2

1

( )
2

2

2 1( ) 0 ( )

x

x e




   
−

 − =      (23) 

where 

 
22 3 21 1 2 2

2

1 1 2 2

2 f

G J G J
R e

G J G J

  
+

=     (24) 

With the boundary conditions of Eqs. (18), (19) and continuous conditions: 

 1( )L a − =     (25) 

 ( )x  is continues at x L a= −     (26) 

The solution for the elastic region of the interface (0≤δ≤δ1, i.e. 0≤x≤L-a) is given by: 

 
 

1 1

1

cosh( )
( )

cosh ( )

x
x

L a

 



=

−
    (27) 

 
 

1

1

cosh( )
( )

cosh ( )

f x
x

L a

 



=

−
     (28) 

and the solution for the softening region of the interface (δ>δ1, i.e. L-a≤x≤L) is shown as follows: 

 1 2

1

1 2 2
( ) ln ln cosh ( )

2

m n
x c x c

n nc n


    
= + −       

    (29) 

 

2

1

( )
2 1

( )

x

fx e





 

 
− − 

 =     (30) 

where 

 2

2m =     (31) 

 
2

1

2
n




=     (32) 

Based on the conditions Eqs. (25) and (26), the constants c1 and c2 can be obtained: 

    1
2

1 1 1 1

2
tanh ( ) nm

c L a e
n

   −= − +     (33) 
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arccosh

2

nnc
c L a e

mn c


 

= − −  
 

    (34) 

The expression of slip at loaded end can be obtained from Eq. (29) when x=L: 

 1 2

1

1 2 2
( ) ln ln cosh ( )

2

m n
L c L c

n nc n


    
 = = + −       

    (35) 

Substituting Eqs. (19) and (29) into (10) yields: 

 

2

12

2 2f n

f

R m
T e c

n

 

 

− = − +     (36) 

For exponential model, the expression of T above can be rewritten as: 

 ( )
2

1 1 22

2
tanh

2

f

f

R n
T c c L c

 

 

 
= −  

    (37) 

T reaches its maximum when L is large enough so Eqs. (37) and (33) converge to: 

 

2

12

2 f

u

f

R
T c

 

 
=     (38) 

where 

 ( ) 1
2

1 1 1

2 nm
c e

n

  −= +     (39) 

The length of the interface that is mobilized to resist the applied load is generally referred to as 

the effective bond length. This effective bond length is defined here as the bond length over 

which the shear stresses offer a total resistance which is at least 97% of the applied load for a 

joint with an infinite bond length. The effective bond length when Tu is reached can be obtained 

from Eqs. (34) and (37)-(39) to give: 

 
1

2
e el a


= +     (40) 

where 

 11

11

2
arccosh

2

4 n

ea
n

nc
e

mn cc


 
 = −
 

    (41) 

3.3. Softening stage 

As the load increases, the peaks of shear stress move to the unloaded end (x=0). When the 

interfacial slip at x=0 reaches δ1, the whole interface enters into softening zone. This stage is 

governed by Eq. (23) with boundary conditions (18) and (19). 

Based on the boundary conditions, the solution for the interfacial slip and the shear stress of the 

adhesive layer can be written in the form: 
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 3 4

3

1 2 2
( ) ln ln cosh ( )

2

m n
x c x c

n nc n


    
= + −       

    (42) 

 

2

1

( )
2 1

( )

x

fx e





 

 
− − 

 =     (43) 

where the constants c3 and c4 are shown as follows: 

 

2
2

32

3 4 2
tanh ( )

2 2

f

f

Tn c
c L c

R

 

 

   
− =       

    (44) 

 4 0c =     (45) 

Substituting Eqs. (19) and (42) into (10) yields: 

 

2

32

2 2f n

f

R m
T e c

n

 

 

− = − +     (46) 

The expression of slip at loaded end can be obtained from Eq. (42) when x=L: 

 3 4

3

1 2 2
ln ln cosh ( )

2

m n
c L c

n nc n

    
 = + −       

    (47) 

4. Analysis of the debonding process for the bilinear model 

4.1. Elastic stage 

The elastic stage is the same as the elastic stage in 3.1, thus the expressions of the interfacial 

slip, shear stress and the relationship of the load-displacement are the same. 

4.2. Elastic-softening stage 

As the load increases, softening commences at the loaded end once the shear stress reaches τf 

at x=L. The load T increases as the softening length a increases. Substituting the relationship 

given in Eq. (14) into (9) gives Eqs. (16) for the elastic region and (48) for the softening region. 

 
2

3 1( ) ( ) 0 ( )f fx x       − − =         (48) 

where 

 
2 3 1 1 2 2
3

1 1 2 2 1

2
f

f

G J G J
R

G J G J


 

 

+
=

−
    (49) 

With the same boundary conditions (18), (19) and continuous conditions (25), (26) used in 3.2. 

The solution for the elastic region of the interface (0≤δ≤δ1, i.e. 0≤x≤L-a) is the same as in 3.2. 

And the solution for the softening region of the interface (δ1<δ≤δf, i.e. L-a≤x≤L) is given by:  

     3
1 1 3 3

1 1

( ) ( ) tanh ( ) sin ( ) cos ( )
f

f

f

x L a x L a x L a


     
  

  
= − − − + − − + + 

−  

  (50) 

      3
1 3 3

1

( ) tanh ( ) sin ( ) cos ( )fx L a x L a x L a


    


 
= − − − + − − + 

 
        (51) 
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Substituting Eqs. (19) and (50) into (10) yields: 

  
2

3
1 3 3

3 1

2
tanh ( ) cos( ) sin( )

fR
T L a a a

  
  

 

 
= − + 

 
    (52) 

The expression of the slip at the loaded end could be got from Eq. (50) when x=L: 

  3
1 1 3 3

1 1

( ) tanh ( ) sin( ) cos( )
f

f

f

L a a a


    
  

  
 = − − − + 

−  

    (53) 

During this stage, the load-displacement curve could be drawn from Eqs. (52) and (53). When 

the interfacial slip increases to δf at x=L and the slip at x=0 less than δ1, we can get L>
π

2λ3
 and 

the interface enters into elastic-softening-debonding stage. When the slip at x=0 reaches δ1 and 

the slip at loaded end less than δf, we can get L<
π

2λ3
 and the interface enters into softening stage. 

Therefore, there exists a critical bond length to distinguish the coming failure process: 

 
32

crL



=     (54) 

For bilinear model, T reaches its maximum when the derivative of Eq. (52) with respect to a 

equal zero. Therefore, a at the ultimate load can be found from the following relationship: 

 ( ) ( )3
1 3

1

tanh tanL a a


 


 −  =      (55) 

Substituting Eq. (55) into (52) yields: 

 ( )
2

3

3 1

2
sin

f f

f

R
T a

  


  
=

−
    (56) 

It can be shown from Eq. (55) that for large values of L Eq. (56) converges to: 

 

22 f

u

R
T

 


=     (57) 

Based on same definition of effective bond length in 3.2 and considering that tanh(2)≈0.97, the 

effective bond length when Tu is reached can be obtained from Eqs. (55)-(57) to give: 

 
( )

( )
1 3 3

1 1 3 3

tan1
ln

2 tan

e

e e

e

a
l a

a

  

   

+ 
= +  

− 
    (58) 

where 

 
1

3

1
arcsin 0.97

f

e

f

a
 

 

 −
=  

  

    (59) 

4.3. L>Lcr 

4.3.1. Elastic-softening-debonding stage 

If L>Lcr, as the load increases the interfacial slip at loaded end reaches δf and debonding (or 
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macro-cracking or fracture) commences and propagates along the interface. At the initiation of 

debonding Δ=δf and by making use of this condition, the corresponding value of a, denoted by 

ad, can be obtained from Eq. (53) as: 

  3
1 3 3

1

tanh ( ) sin( ) cos( ) 0d d dL a a a


  


− − =     (60) 

As debonding propagates, the peak shear stress moves towards the unloaded end. Assuming 

that the debonded length of the interface starting at the loaded end is d, Eqs. (27), (28), (50) and 

(51) are still valid if replacing L by L-d. Therefore, the load-displacement relationship can be 

written as: 

  
2

3
1 3 3

3 1

2
tanh ( ) cos( ) sin( )

fR
T L d a a a

  
  

 

 
= − − + 

 
    (61) 

 

2

22

f

f

f

T
d

R

 


 
 = +     (62) 

As the interfacial shear stress at x=L-d is zero, the following relationship can be obtained: 

  3
1 3 3

1

tanh ( ) sin( ) cos( ) 0L d a a a


  


− − − =     (63) 

Substituting Eq. (63) into (61) yields the following simplified form: 

 

2

3 3

2 1

sin( )

fR
T

a

 

 
=     (64) 

At the end of this stage, the softening-debonding stage starts when L-d=au. Substituting the 

relation into Eq. (63) yields: 

 
32

ua



=     (65) 

Moreover, Eq. (64) can be written as: 

 

2

3

2 fR
T

 


=     (66) 

4.3.2. Softening-debonding stage 

This stage is governed by Eq. (48) with boundary conditions of Eq. (18) and:  

 1

1 1

( )
T

a
G J

 =     (67) 

 ( ) fa =     (68) 

The following solution can thus be found: 

 
32

ua a



= =     (69) 
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32

3

( ) cos( ) (0 )
2

f

f u

f

T
x x x a

R

 
  

  
= −       (70) 

 3

2

3

( ) (0 )
2 cos( )

u

T
x x a

R x




 
=       (71) 

It can be concluded from Eq. (69) that the length of softening zone remains constant during this 

stage. The load-displacement relationship can be simply obtained by displacement 

superposition along the bonded joint: 

 

2

2
( )

2

f

f u

f

T
L a

R

 


 
 = + −     (72) 

4.4. L<Lcr 

4.4.1. Softening stage 

As the load increases, the peaks of shear stress move to the unloaded end. When the interfacial 

slip at x=0 reaches δ1, the whole interface enters into softening zone. This stage is governed by 

Eq. (48) with boundary conditions of Eqs. (18) and (19). The following solution can be obtained: 

 

2

3

2

3 3

cos( )
( )

2 sin( )

f

f

f

T x
x

R L

  
 

   
= −     (73) 

 3 3

2

3

cos( )
( )

2 sin( )

T x
x

R L

 


 
=     (74) 

The expression of the slip at the loaded end could be obtained from Eq. (73) when x=L: 

 

2

32

3

cot( )
2

f

f

f

T
L

R

 
 

  
 = −     (75) 

5. Numerical simulations 

The typical inner diameter and thickness are assumed to be 290 and 10 mm for the main pipe, 

respectively. And the inner diameter and thickness of the coupler are assumed to be 311 and 15 

mm, respectively. The shear moduli G1 and G2 are assumed to be 28 GPa for both main pipe 

and coupler. The parameters for interfacial bond-slip laws are identified as: τf=7.2 MPa, 

δ1=0.034 mm, δf=0.16 mm. 

According to the material properties and geometry parameters given above, the critical bond 

length for bilinear model can be calculated as Lcr=85 mm. Therefore, bond length of 50 and 100 

mm are chosen. 

5.1. Load-displacement curves 

5.1.1. Load-displacement curves for exponential model 

The load-displacement curve for exponential model is shown in Fig. 4. OA, AB and BC are 

elastic, elastic-softening and softening stages, respectively. 
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(a) L=50 mm                       (b) L=100 mm 

Fig. 4. Load-displacement curves for exponential model. 

5.1.2. Load-displacement curves for bilinear model 

When the bond length is shorter than Lcr, take L=50 mm and the load-displacement curve is 

shown in Fig. 5(a). OA, AB and BC are elastic, elastic-softening and softening stages, 

respectively. When the bond length is longer than Lcr, take L=100 mm and the load-

displacement curve is shown in Fig. 5(b). OA, AB, BC and CD are elastic, elastic-softening, 

elastic-softening-debonding and softening-debonding stages, respectively. The FEA results by 

using commercial software ABAQUS are also given for comparison in Fig. 4 and Fig. 5. In 

ABAQUS modelling, C3D8R, which is an 8-node linear brick element with reduced integration 

scheme, is used for both main pipe and coupler. And for adhesive layer, COH3D8, which is an 

8-node three-dimensional cohesive element, is used. 

 

(a) L=50 mm                       (b) L=100 mm 

Fig. 5. Load-displacement curves for bilinear model. 

5.2. Shear stress distribution 

The shear stress distribution for exponential model is shown in Fig. 6. When the load is small, 

the interfacial shear stress at loaded end is less than peak stress and the interface is in an elastic 

stage. When the interfacial shear stress reaches peak stress at loaded end, the interface enters 

into elastic-softening stage. As load increases, the peak stress moves from loaded end to 

unloaded end and the length of softening zone increases. When the interfacial shear stress at 

unloaded end reaches peak stress, the interface enters into softening stage. 
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(a) L=50 mm 

 

 

(b) L=100 mm 

Fig. 6. Shear stress distribution for exponential model. 

The shear stress distribution of L=50 mm and L=100 mm for bilinear model are shown in Fig. 

7(a) and (b) respectively. When the load is small, the interfacial shear stress at loaded end is 

less than peak stress and the interface is an in elastic stage. When the interfacial shear stress 

reaches peak stress at loaded end, the interface enters into elastic-softening stage. As load 

increases, the peak stress moves from loaded end to unloaded end and the length of softening 

zone increases. When the interfacial shear stress at unloaded end reaches peak stress while Δ<δf, 

the interface enters into softening stage shown as in Fig. 7(a). When Δ=δf and the interfacial 

shear stress at unloaded end is less than peak stress, then the interface enters into elastic-

softening-debonding stage shown as in Fig. 7(b). The length of debonding zone increases as the 

peak stress moves to unloaded end. When the interfacial shear stress at unloaded end reaches 

peak stress, the interface enters into softening-debonding stage. 

 

 

(a) L=50 mm 
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(b) L=100 mm 

Fig. 7. Shear stress distribution for bilinear model. 

5.3. Parametric study 

Fig. 8(a) shows the influence of bond lengths on the load-displacement curves for bilinear 

model. From the figure, the significant influence for bond length on the curves could be 

observed. In the range of the effective bond length, as the bond length increases, not only the 

interface failure processes change but also the ultimate load and interfacial slip. Specifically, 

the increase of the bond length can increase damage ductility. However, when the bond length 

reaches a certain length (effective bond length), the ultimate load will hardly change. Fig. 8(b) 

shows the influence of bond lengths on the load-displacement curves for exponential model. 

From the figure we know that the ultimate load increases as the bond length increases. But the 

failure processes are all the same. The increase of the bond length can also increase damage 

ductility. 

 

(a) bilinear model                        (b) exponential model 

Fig. 8. Load-displacement curves for different bond lengths. 

Fig. 9 shows the comparison of the load-displacement curves between the two models for 

different bond lengths. The load-displacement curves are different when a softening area exists. 

In addition, since there is no debonding initiation in the exponential model, the displacement 

can increase unlimitedly, with this being different from bilinear model in which the slip would 

approach δf. From the figures, the load increases faster in the bilinear model as the bond lengths 

increases. However, when the bond length is long, the ultimate loads between the two models 

seem no more difference. 
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(a) L=25 mm                       (b) L=75 mm 

 

(c) L=125 mm                       (d) L=175 mm 

Fig. 9. Comparison of the load-displacement curves of the two models for different bond 

lengths. 

Fig. 10 shows the load-displacement curves for different ratios of torsion stiffness (β=

2 2 1 1G J G J ). From the figures we can see that as the ratio increases, the ultimate load increases 

but the slip decreases, namely the ductility reduces. 

 

(a) bilinear model                   (b) exponential model 

Fig. 10. Load-displacement curves for different ratios of torsion stiffness. 

Fig. 11 shows the relationship between effective bond length and ratio of torsion stiffness. From 

the figure we can see that a stiffer coupler leads to a longer effective bond length. But as the 

ratio getting larger, the effective bond length increases not obviously. As the ratio increases, the 

effective bond length of two models have the similar trend, but the effective bond length of 

exponential model is longer than that of bilinear model. 
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Fig. 11. Effect of ratio of torsion stiffness on the effective bond length. 

Through the numerical computation, the ultimate load of exponential and bilinear models for 

different bond lengths could be obtained. Fig. 12 shows the ultimate load for different bond 

lengths. From the figure we can see that for bilinear model, when the bond length is short, the 

ultimate load increases significantly with the bond length. When the bond length is long, the 

ultimate load stays essentially unchanged. For the exponential model, when the bond length is 

short, the trend is similar to the bilinear model, but the ultimate load is relatively smaller. Both 

models have the same ultimate load when the bond length is relatively long. 

 

Fig. 12. The ultimate load of two models for different bond lengths. 

Conclusions 

On the basis of fully understanding the mechanical behavior of the pipe joints’ interface, this 

paper gives a further understanding of the key factors of interfacial debonding. By modifying 

the torsion stiffness, the present models may be further extended to orthotropic materials, such 

as fiber-reinforced composite pipe joints. Based on the derivations in the current study, some 

important conclusions are summarized as follows: 

  (1) Through the nonlinear fracture mechanics, the analytical expressions of the interfacial 

shear stress and the load-displacement relationship at loaded end of pipe joints under torsion 

loads could be got. Thus the shear stress propagation and the debonding progress of the whole 

interface for different bond lengths could be predicted.  

  (2) The influences of different bond length on the load-displacement curve and the ultimate 

load are studied through the analytical solutions. The stress transfer mechanism, the interface 

crack propagation and the ductility behavior of the joints could be explained. 
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Abstract

It is well known that the mechanical resistance of soft materials such as rubber and elastomer
can be improved by cross-linkages or fillers, which will lead to a construction of entangled
structure of polymer chains. However, the correlation between the amount of cross-linkages or
fillers with the toughness strength of the resultant material has not been clarified. Therefore, in
this study, we at first construct a computational model for the resultant material with molecu-
lar dynamics method. Then, a series of simulations are performed for the resultant materials
with different amount of cross-linkages or fillers under a cyclic loading condition. Finally, the
development of entangled structure of polymer chains is investigated and the effect of such
development on the toughness strength of soft materials is evaluated.

Keywords: Molecular dynamics method, Polymer chain, Entangled structure, Toughness strength.

Introduction

Soft materials such as rubber and elastomer are mostly used in the cross-linked state of polymer
chains, i.e. lots of cross-linkages or fillers have been introduced and the entangled structures
of polymer chains have been constructed completely. On the other hand, there are two types of
entangled points in the entangled structure of polymer chains: one is the chemical type which is
due to the existance of cross-linkages or fillers and obeys the affine deformation; the other one
is the physical type which is due to the existance of dangling chains and obeys the nonaffine
deformation.

To clarify the effect of cross-linkages or fillers on the mechanical behavior of soft materials,
the investigation of the development of the entanlged structure of polymer chains during the
deformation is indispensable. Therefore, in this study, we at first constitute a coarse-grained
molecular dynamics model for the soft material with different amout of cross-linkages or fillers.
Then, a series of simulations are performed for the resultant materials under a cyclic loading
condition. Finally, the development of the entangled structure of polymer chains is investigated
and the effect of such development on the toughness strength of soft material is evaluated.
Molecular Dynamics Model

When one is studying the mechanical properties of a polymeric material, the behavior is mainly
governed by the topological features of the entangled structure of polymer chains and using a
coarse graining procedure [1] can therefore be a successful approach.
Polymer Chain

In this study, the configuration of polymer chains is represented by a set of the Cartesian coor-
dinates of grains and each grain represents a group of atoms. Two types of grains, i.e. A and
B, are consisted in each polymer chain and the chemical formula of each monomer is specified
as ( ABBBB ) . The bonding potential, Ubond, which represents the energy associated with the
chemically connected grains separated by a distance r is given by[1]
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Ubond(r) = UFENE(r) + ULJ(r) (1)

UFENE(r) =

−1
2kR2

0ln
[
1 −

(
r

R0

)2
]

r ≤ R0

∞ r > R0

(2)

ULJ(r) = 4ϵ

[(
σ

r

)12
−

(
σ

r

)6
+ 1

4

]
(3)

where k is spring constant, R0 is finite extended length, σ is Lennard-Jones diameter, ϵ is
Lennard-Jones energy. On the other hand, the non-bonding potential, Unonbond, which repre-
sents the interaction between the grains not chemically connected, or the grains separated far
along the polymer backbone is given by

Unonbond(r) =

4ϵ
[(

σ
r

)12
−

(
σ
r

)6
]

r ≤ rc

0 r > rc

(4)

where rc is the cutoff distance.
Cross-linkage Point

In this study, the cross-linkage points are represented by the third type of grains, C, which react
and make the chemical connections with the grains of type A when the distance between them
is less than 1.3σ[1]. By the way, the bonding and non-bonding potential between the grains of
type C with the other grains are the same as shown in Eq.(1)-(4).
Molecular Dynamics Algorithm

The molecular dynamics simulations consider a canonical ensemble (N, V, T ), in which N is
the total number of grains in the unit cell, V is the volume of the unit cell, T is the tempera-
ture. The (N, V, T ) ensemble necessitates a modification of the equations of motion with an
additional degree of freedom representing a kinetic mass[2][3]

mi
d2ri

dt2 = −∂U

∂ri

− miΓ
dri

dt
+ Wi(t) (5)

where mi is the mass of the grain i, Γ is the friction constant, Wi(t) is a Gaussian white noise
which is generated according to [1]

⟨Wi(t) · Wj(t′)⟩ = δijδ(t − t′)6kBTΓ (6)

where kB is Boltzmann’s constant.
Parameters

The molecular dynamics simulations are carried out in the reduced units, in which σ, ϵ and
m are taken as the unit of lenght, energy and mass, respectively. The unit of time is given by
τ = σ(m/ϵ)1/2. The unit of temperature is given by T = ϵ/kB. In Table 1, the value of the
parameters employed in the simulation is given with the corresponding reduced unit.
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Table 1: Value of parameters

σ ϵ k R0 rc Γ m T
(σ) (ϵ) (ϵ/σ2) (σ) (σ) (τ−1) (m) (T )

1 1 30 1.5 21/6 0.5 1 1

Boundary Conditions

Fig. 1 shows the unit cell and the coordinate system. The density of the grains consisted in
the unit cell is specified as ρ = 0.85(m/σ3), from which the volume of the unit cell can be
calculated based on the relation of V = Nm/ρ. In this study, the number of monomers in each
polymer chain is Nmonomer = 200, the number of polymer chains is N chain = 5, the number of
cross-linkage points is Npoint = 0, 20, 50. Because the number of grains in each monomer is 5,
the total number of grains in the unit cell is N = Nmonomer × 5 × N chain + Npoint.

In order to perform the simulation under a cyclic loading condition, the unit cell is elongated
and then compressed in the z direction with a constant stretch rate dλ/dt = 10−4τ−1. When the
unit cell is elongated or compressed in the z direction, the lengths of the unit cell in the x and y
directions are changed simultaneously to keep the density of the grains constant. The time step
is specified as dt = 0.01τ . Periodic boundary condition is applied to the unit cell throughout
the simulation.

y

z

x

Figure 1: Configuration of polymer chains in the unit cell

Results

Fig. 2 shows the mechanical responses of polymer chains under the cyclic loading condition.
When the number of the cross-linkage points increases, the deformation resistance increases.
Moreover, the hysteresis loops can be observed and the dissipated energy during each cyclic
loading process, W dis, can be calculated from the area of each loop. Fig. 3 shows the effect
of the amount of the cross-linkage points on the dissipated energy ratio which is defined by
W dis/W load, where W load means the work done during the loading process. When the number
of the cross-linkage points increases, the dissipated energy ratio decreases. As the dissipated
energy correlates closely with the toughness strength of soft material, a relatively loose connec-
tions between polymer chains maybe helpful for the improvement of the toughness strength of
soft material.

To study the configurational change of polymer chains, the average radius of gyration over all
polymer chains, Rg, is calculated and its development during loading process is shown in Fig.4,
in which the value of Rg is normalized by its initial value Rg0. It can be found that the value of
Rg increases together with the stretch. When the number of the cross-linkage points increases,
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such increase of the value of Rg is suppressed.
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Figure 2: Nominal stress-stretch relations of polymer chains with different amount of
cross-linkage points under the cyclic loading condition
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Figure 3: Relation between dissipated energy ratio and amount of cross-linkage points

Conclusions

In this study, the effect of the amount of cross-linkages on the mechanical behavior of soft
materials under cyclic loading condition is investigated with molecular dynamics method. The
results show that even though the increase of the amount of cross-linkages leads to the increase
of the mechanical resistance, the development of the average radius of gyration of polymer
chains is suppressed. As a result, the relative movement of polymer chains is limited in the soft
material with large amount of cross-linkages and the toughness strength decreases eventually.
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Abstract 

To analyze the time history response of flexible structures, it’s required an algorithm with high 

accuracy to reproduce the geometrical nonlinear behavior. In order to check the accuracy of 

dynamic analyses, the conservation of energy or momentum under undamped conditions may 

be an important indicator. On the other hand, for ultra-large deformation analysis, the tangent 

stiffness method (TSM) has already enough achievement with strict evaluation of the rigid body 

displacement. As a time-integration algorithm applied to dynamic analysis is used Newmark β, 

which is unconditionally stable over time in the case of linear analysis under the condition of 

β=1/4. In this study, the combination of TSM and Newmark β is examined, and the conservation 

of energy through some numerical examples is verified. This study reveals that applying β>1/4 

in the case of ultra-large deformations, longer duration of energy conservation is obtained. Also, 

when β=1/2 is applied, rough time increment leads to lower level of numerical damping 

compared to fine time increment, which is convenient for computational efficiency.  

Introduction 

Flexible structures such as cables, membranes or some thin structures are subject to ultra-large 

deformation with strong nonlinearity. In order to explore the time history response of these 

flexible structures, an algorithm with sufficient accuracy in terms of reproducibility of 

geometrically non-linear behavior is required [1]. It is common to check the continuity of 

energy or momentum conservation laws under undamped conditions as an indicator to ensure 

the accuracy of time history response analysis with ultra-large deformations [2]. 

 

As corresponding time integration methods, the energy-momentum method [3][4] and the 

symplectic integration method [5] have been proposed. The energy-momentum method is a 

time integration method, which uses the energy and momentum principles as an indicator of 

time integration stability, ensuring numerical stability by modifying the equations of motion to 

satisfy both principles and integrating over time. However, because the technique is based on 

the premise that non-linearity of finite strain is treated in the finite element method for each 

time history, there is no guarantee that a balanced solution with complete convergence of 

unbalanced forces at all nodes is attained. Even though the symplectic integration method is a 

semi-positive solution approach based on Hamilton’s canonical equation, it is thought that a 

satisfactory response can only be reached if the time increments are split to an unrealistic degree.  

 

Considering the above, the combination of the Newmark β method [7] and the Tangent stiffness 

method [8] can be a better way to obtain rational solutions for dynamic analysis with ultra-large 

displacement. The Newmark β method (β=1/4) is widely used in linear analysis due to its 

unconditional stability over time. Also, the tangent stiffness method is a geometric non-linear 
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theory that can strictly evaluate the rigid body displacement of an element and has made many 

significant achievements in static analysis. 

 

However, in the case of geometrical non-linear analysis of flexible structures with ultra-large 

deformation, convergent solutions cannot be achieved at each time unless the time increment is 

set finely, and chaotic responses with loss of continuity appear over time, regardless of the 

presence of damping or external forces. For geometrical nonlinear analysis even in static 

analysis case, we have many problems, while in the dynamic analysis we need to add the time 

integration factor. Time integration in itself contains numerical problems which increase the 

difficulties of the analyses.   

 

In this study, numerical experiments of free vibration without damping are carried out on the 

conservation of total dynamic energy in the dynamic large-deformation analysis of a plane 

frame structure using the Newmark β method and the tangential stiffness method to investigate 

the effect of time increments and value of β on the energy. Unlike in the case of small 

deformations where the Newmark β method (β=1/4) is better for getting more accurate results, 

in the case of ultra-large deformations, if β>1/4 is applied was found to bring better results. 

Therefore, in this study, we adopted t=0.01s as a time increment which is corresponding to 

the earthquake acceleration data issued by Japan Meteorological Agency [8], and examined the 

β values whose range of 0.2 to 0.5. As a result, we could detect the tendency that larger β realize 

longer period to keep the energy conservation.  

 

Tangent Stiffness Method  
 

The geometric nonlinearity of structures in the finite element method can be separated into the 

first nonlinear component caused by the rigid-body displacement of each element divided into 

finite elements and the second nonlinear component caused by the elements’ own deformation 

described in the element local coordinate. In conducting a geometric nonlinear analysis, these 

two nonlinear components must be precisely evaluated. Element deformation can be reduced 

by making the element partitioning of the finite element structure denser, whereas rigid body 

displacement, which increases due to incremental nodal displacement, cannot be reduced. In 

other words, it is necessary to strictly evaluate the first nonlinear component by rigid-body 

displacement in ultra-large deformation regions where nodal displacement increases. 

 

In the tangent stiffness method, each element is subjected to stable and static equilibrium 

conditions that constrain only rigid body displacements. Eq.(1) is the element force equation 

that shows the stiffness relation between the element force vector S and element deformation 

vector s, both defined in the element coordinate with stable support conditions. 

 

𝐒 = 𝐤𝐬                                                                (1) 

   

The tangent stiffness equation can be easily formulated by the first-order derivative of the 

equilibrium equation between the nodal vector in the global coordinate system representation 

and the element end force vector in the element coordinate system representation, provided that 

the element force equation of Eq. (1) is complete. Let D be the nodal displacement vector from 

the previous equilibrium displayed in the global coordinate system, and the equilibrium 

condition that shows the relationship between the two vectors of D and S can be expressed as 

follows: 

 

𝐃 = 𝐉𝐒                                                                         (2)  
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Here, J is the equilibrium condition. And by differentiating this equilibrium equation, we get: 

 

𝛿𝐃 = 𝛿𝐉 ∙ 𝐒 + 𝐉 ∙ 𝛿𝐒                                   (3)   

 

Furthermore, since the first and second terms on the right-hand side can be expressed exactly 

as linear functions of the reference coordinate system-displayed incremental displacements δd, 

the tangent stiffness equation can be expressed as follows: 

 

𝛿𝐃 = (𝐊𝐆 + 𝐊𝟎)𝛿𝐝 = 𝐊𝛿𝐝                               (4)   

 

Here, 𝐊𝐆 is called the geometric stiffness matrix and is caused by the first nonlinear component 

caused by the rigid-body displacement. Further, 𝐊𝟎  is called the element stiffness matrix and 

is the second nonlinear component caused by elements’ own deformation described in the 

element local coordinate. 

 

In this rigorous evaluation of geometric nonlinearity, tangential element stiffness due to 

element-specific stiffness can be expressed and evaluated in a separate form from tangential 

geometric stiffness due to rigid body displacement, which is the main factor. 

 

In the case of plane frame structures, the compatibility equation Eq. (2) becomes as follows: 

 

 

 

 

                                                                                                          (5) 

 

 

 

 

where, as shown in Figure 1 and Figure 2, L is the initial element length,  ∆𝐿 is elongation, 𝜃𝑖 

and 𝜃𝑗  are deflection angles at each end respectively, ri and r𝑗  are the total rotation at each end 

respectively. While, α and β are the components of cosine vector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Displacement and 

element deformation 
Figure 2.  Rigid body rotation 
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As for Eq.(4) geometrical stiffness matrix 𝐊𝐆, in the case of plane frame structures is given as 

follows: 

 

𝐊𝐆 = [
𝛍 −𝛍

−𝛍 𝛍 ]                                                         (6) 

Where: 

𝛍 = [
𝜇𝛽2 + 2𝛾𝛼𝛽 −𝜇𝛼𝛽 − 𝛾(𝛼2 − 𝛽) 0

−𝜇𝛼𝛽 − 𝛾(𝛼2 − 𝛽) 𝜇𝛽2 + 2𝛾𝛼𝛽 0
0 0 0

]                          (7) 

 

μ =
N

L
 ,                  γ =

Q

L
= −

Mi+Mj

L2
                                (8), (9) 

 

Numerical example 

  

As a model with ultra-large deformation, is proposed a cantilever with a moment acting on the 

free edge and is deformed to a circular shape to create initial equilibrium state as shown in Fig.3. 

The circular shape is achieved after solving and renewing with the static analysis by the tangent 

stiffness equation iteratively until the unbalanced force converges.  

As shown in Fig.4, the convergence is achieved after 15 iterations, and it has undoubtedly 

converged while going through the state of a hundred million times the first time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  A model for numerical example 

Basic conditions 

L = 1.0 (m) 

Cross-section A = 1.33 × 10−5m2 

Moment of Inertia I = 5.43× 10−13m4 

Young's modulus E =  200 GPa 

Density ρ = 7850 
Kg

m3 

Moment M = 2EIπ 

After loading Initial state 
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Figure 4.  Convergence process of unbalanced force  
Figure 5.  Shapes of unbalanced 

state toward converging  
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The shape of the structure during these iterations is shown in Fig.5 where the purple line 

represents the initial state, and the yellow lines represent the state during each iteration 

respectively. 

 

After the external force is removed, the undamped free vibration dynamic analysis is performed, 

and the energy conservation is investigated.  

 

Here, Newmark beta process is adopted. The iteration for geometrical nonlinear analysis to find 

the displacement to the time step of i+1 from i can be expressed as follows.  

If the constant external force can be expressed as: 

 

𝐅 = 𝐏(𝑡) + 𝐌 {(
1

2𝛽
− 1) 𝐮̈𝐢 +

4

𝛽∆𝑡
𝐮̇𝐢} + 𝐂 {(

1

4𝛽
− 1) 𝐮̈𝐢∆𝑡 + (

1

4𝛽
− 1) 𝐮̇𝐢}              (10) 

 

Here, P(t) is external force depending on time, and M and C are mass matrix and damping 

matrix respectively. In this paper, we didn’t apply damping so C=0. Further, the unbalanced 

force of jth iteration can be: 

 

∆𝐔𝒋 = 𝐅 − (
𝐌

𝛽∆𝑡2 +
𝐂

2𝛽∆𝑡
) ∆𝐮𝒊+𝟏,𝒋 − 𝐉(∆𝐮𝒊+𝟏,𝒋)𝐒(∆𝐮𝒊+𝟏,𝒋)                             (11) 

 

therefore, we can use the tangent stiffness equation for each iteration step will be: 

 

∆𝐮𝒊+𝟏,𝒋+𝟏 = 𝐊𝒊+𝟏,𝒋
−𝟏 ∆𝐔𝒋 ,    𝐊 = 𝐊𝐆 + 𝐊𝟎                                (12), (13) 

 

 

Japan Meteorological Agency publishes earthquake acceleration data in 1/100 second 

increment. Therefore, assuming that the response to the external force of an earthquake is 

examined, analysis by time increments of 1/10000 second level shown in some literatures [3][4] 

so far is not realistic.  

 

In this study, 1/100 second of time increments is adopted, and the influence of Newmark β 

value on the length of time keeping the energy conservation is examined. As for the value of β, 

25 data were verified every 0.0125 from 0.2 to 0.5. Also here, if the energy at a certain time 

step is double as the initial energy, the energy conservation is considered to be lost. 

 

Time(s) 

Figure 6.  Energy history t=0.01, β=0.25 Figure 7.  Energy history t=0.01, β=0.275 

Energy(J) Energy(J) 

Time(s) 
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First of all, two significant cases are shown in Fig.6 and 7 that are for β=0.25 and β=0.275, 

respectively. In case of β=0.25 the energy conservation is lost and diverged after only 

0.16seconds. When using a β value slightly larger for example β=0.275, a longer time for energy 

conservation is noticed. 

 

On the other hand, if β=0.4375 is applied, the energy conservation is lost at t=98.69s and quite  

long-time energy conservation has been observed in this case (Fig.8).  

 

As we can see, using a higher value of β usually a longer energy conservation time is observed. 

But, after investigating many cases of different β values was found that this phenomenon is not 

consistently true. In some cases, even if a higher value of β is taken there is a chance that the 

energy conversation will be lost earlier compared to the smaller β value as shown in Figure  

9, where for β=0.475 the energy conservation is lost at t=24.03s. 

 

After examining different cases for β values between β=1/5 and β=1/2, it is found that despite 

the non-continuity of having better results at each time higher β is used there is a tendency that 

with a higher value of β longer time of energy conservation will be obtained, as shown in Fig. 

10. 

Figure 8.  Energy history t=0.01, β=0.4375 

Time(s) 

Energy(J) 

 

Figure 9.  Energy history t=0.01, β=0.475 

Time(s) 

Energy(J) 
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Furthermore, for the case of β=1/2 with time increment t=0.01s (Fig.11) it is found to be 

tolerable stable energy.  

  

On the other hand, for the same β=1/2 with finer time increment, in this case t=0.00025s 

(Fig.12), despite what is expected, it is noticed a high level of numerical damping, which causes 

the energy to fluctuate irregularly.  

 

 Figure 11.  Energy history t=0.01, β=0.5 

Figure 12.  Energy history t=0.00025, β=0.5 

t=0.00025;  β=1/2 

t=0.01;  β=1/2 

T
im

e(
s)

 

β 

Figure 10.  Relation between conservation time 

length and β 
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Moreover, by comparison of vertical displacement at the edge of the cantilever, in the case of 

t=0.00025s, the influence of numerical damping appears significantly(Fig.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

 

In this study, the influence of Newmark β and time increment on energy conservation duration 

was analyzed. It is found that by using a higher value for β the energy conservation duration is 

significantly extended. In the case when β=1/2 was applied, it is noticed that with a rougher 

time increment t=0.01s stable energy in respect of time was acquired, while when fine time 

increment t=0.00025s is used notable numerical damping is detected. In the latter case, the 

numerical damping is also detectable when vertical displacement is compared to the former 

case. The fact that rough time increment brings a more stable energy response is convenient in 

the computational aspect. 
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Abstract 

This study commences with the application of an efficient artificial neural network (ANN)-

balancing composite motion optimization (BCMO) approach for finding the optimal material 

distribution of bi-directional functional graded nanocomposite (FGN) thin plates considering 

geometrically nonlinear behavior. The method integrates ANN into the framework of BCMO 

to improve the computational efficiency of the iteration-based optimization process. In this 

strategy, the ANN-based surrogate model is used to predict the high-fidelity structural 

responses obtained by a geometrically nonlinear NURBS-based isogeometric analysis based on 

the Kirchhoff-Love plate model and the Von Kármán nonlinearity. Whilst BCMO is employed 

as an optimizer for solving optimization problems without complex sensitivity analyses. To 

enhance the possibility to explore the complex distribution of optimal material profiles, the 

optimal in-plane volume fraction function of FGN plates is modeled by a two-dimensional non-

uniform rational B-spline (NURBS) basis function which is separate from the NURBS analysis 

meshes. Accordingly, its unknown control point values are selected as the continuous design 

variables. The effectiveness and accuracy of the proposed algorithm are illustrated via selected 

numerical examples. Results show a significant reduction in the computational effort over the 

conventional approach which is based on BCMO and IGA direct analysis. 

Keywords: Material distribution optimization, Artificial neural network, Balancing composite 

motion optimization, Bi-directional functionally graded plates, Geometrical nonlinearity. 

1. Introduction 

Structural optimization has gained popularity in various engineering scenarios. In general, it 

can be divided into several categories such as shape, topology, sizing, and material distribution 

optimizations. In contrast to the first three types of optimizations which have a long history of 

development, the material distribution optimization has just recently received great attention 

from many researchers due to the emergence of functionally graded materials (FGMs) [1][2] in 

which the spatial variation of mechanical properties in certain directions can be optimally 

designed to achieve desirable structural performances. Recently, carbon nanotubes (CNTs) 

were introduced with remarkable mechanical properties such as very high strength and low 

density. With their attractive properties, CNTs have been used broadly as reinforcing 

constituents in other materials, especially FGMs [3], as a better choice for structural engineering 

and designs.  

During past decades, the optimal design of structures made of FGMs has been extensively 

studied using both gradient-based and gradient-free algorithms. For instance, Moita et al. [4] 

used the feasible arc interior point algorithm to find the best material profile of functionally 

graded (FG) plate and shell structures for free vibration and linear buckling analyses. Qin and 

Dong [5] used the sequential quadratic method for shape and material distribution optimization 
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of the curvilinearly stiffened plates. Goupee and Vel [6] employed a real coded genetic 

algorithm for optimizing the material distribution of FG beams in the steady-state free and 

forced vibration problems. Roque and Martins [7] and Roque et al. [8] employed the differential 

evolution to obtain the optimal material distribution for improving the dynamic performance of 

FG macro-scale and micro-scale beams, respectively. In addition, several other metaheuristic 

algorithms have also been employed to solve various optimization problems for FG plate- and 

shell-type structures such as golden-section search [9], particle swarm optimizations [10][11], 

and genetic algorithm [12][13]. Results from those studies have indicated that metaheuristic-

based algorithms can overcome the main drawbacks of the gradient-based optimization 

algorithms (such as the need of explicit information on the gradients of the objective function 

and the constraint concerning the design variables, and the sensitivity to assumed initial 

solutions) in optimizing the material distribution for structures made of FGMs. However, there 

still exist two challenges that prevent the broad applications of such metaheuristic algorithms 

to handling the optimization problems. Firstly, most of the algorithms employed in the 

aforementioned studies rely on the algorithms that depend on the algorithmic control parameters 

which need to be selected a priori. Thus, it requires highly experienced users to perform the 

parameter tuning to improve the performance of the algorithm. Secondly, despite their 

simplicity, the requirement of a great number of populations and generations in optimization 

loops makes those algorithms cumbersome especially for large-scale and nonlinear 

optimization problems. 

Due to the growing application of FG plates, especially ones with nanocomposite reinforcement 

and in-plane material inhomogeneity, the development of efficient and effective tools for 

optimizing the material variation under various loading conditions and nonlinearities plays an 

important role in the analysis and design of such important structures. Hence, the present study 

attempts to devote the novel application of a surrogate-assisted optimization approach based on 

a recently developed parameter-free metaheuristic algorithm named balancing composite 

motion optimization (BCMO) [14] and artificial neural network (ANN) [15] to tackle the 

problem of finding optimal material distribution for geometrically nonlinear FG nanocomposite 

plates. This proposed framework will not only preserve the attractive features of BCMO in 

solving optimization problems, but also utilize the capacity of an ANN-based surrogate model 

to improve the efficiency of the BCMO framework for solving time-consuming optimization 

problems. Specifically, the BCMO algorithm does not require specifying algorithmic control 

parameters and, more importantly, it possesses a robust ability to balance the exploration and 

exploitation which is a key factor to ensure a global convergence. This algorithm has been 

applied to various engineering problems such as the ultimate load estimation of rectangular 

concrete-filled steel tubes [16] and the optimization of rectangular concrete-filled steel tube 

short columns [17], and demonstrated its high potential for the optimal design of engineering 

structures. Whilst the use of ANN to construct a surrogate model to replace the evaluation of 

optimization objectives and constraints using the expensive numerical analyses can result in a 

significant decrease in computation cost has been achieved, the quality of the solution has still 

been ensured at an appropriate accuracy level.  

The rest of this article is outlined as follows. Section 2 briefly presents the fundamental 

formulation of the geometrically nonlinear thin plate model and the numerical solution 

methodology based on isogeometric analysis. The proposed ANN-BCMO is provided in 

Section 3 whereas selected numerical examples and obtained results are presented and 

discussed in Section 4. Finally, Section 5 ends the paper with noteworthy conclusions. 
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2. Theoretical Formulation 

2.1. Modeling of in-plane bi-directional FG nanocomposite plates 

This study focuses on bi-directional FG nanocomposite (BFGN) thin plates consisting of the 

polymer as a matrix and multi-walled carbon nanotubes as the reinforcement, as shown in 

Figure 1. The material properties are varied in the in-plane directions (i.e., 𝑥 and 𝑦 directions) 

while being homogeneous across the thickness. Due to the material inhomogeneity, the analysis 

of BFGN plates depends on two main aspects: the volume fraction variation through the grading 

direction and the homogenization technique used to evaluate the effective properties. 

 

Figure  1. Schematic of BFGN thin plates 

The volume fraction functions of carbon nanotubes (CNTs) and polymer are denoted by 

𝑉𝐶𝑁𝑇(𝑥, 𝑦) and 𝑉𝑝(𝑥, 𝑦), respectively, and confined with the following rule:  

 𝑉𝐶𝑁𝑇(𝑥, 𝑦) + 𝑉𝑝(𝑥, 𝑦) = 1  𝑤𝑖𝑡ℎ  0 ≤ 𝑉𝐶𝑁𝑇 , 𝑉𝑝 ≤ 1  (1) 

These volume fraction functions are commonly defined using predefined mathematical 

functions in terms of the in-plane curvilinear coordinates (𝑥, 𝑦). However, using the defined 

mathematic functions cannot describe the complex material property variation [18]. Hence, in 

the present study, the NURBS surface functions are utilized to represent the volume fraction of 

the CNT as 

   𝑉𝐶𝑁𝑇(𝜉, 𝜂) = [∑ 𝑅𝑖(𝜉, 𝜂)𝑉𝐶𝑁𝑇
𝑖𝑛

𝑗=1 ]𝑉𝐶𝑁𝑇
∗   (2) 

where 𝜉 and 𝜂 are the parametric coordinates;  𝑛 is the number of control points; 𝑉𝐶𝑁𝑇
𝑖 ∈ [0,1]  

denotes the 𝑖𝑡ℎ control value; and 𝑅𝑖(𝜉, 𝜂) are the NURBS basis functions whose detailed 

description can be referred to Cottrell et al. [19]. In addition, 𝑉𝐶𝑁𝑇
∗  is the upper bound of the 

CNT volume fraction and can be defined, based on the desired mass fraction of the CNT in the 

composite plate, as [20] 

    𝑉𝐶𝑁𝑇
∗ =

𝜌𝑝𝑊𝐶𝑁𝑇

𝜌𝑝𝑊𝐶𝑁𝑇+𝜌𝐶𝑁𝑇(1−𝑊𝐶𝑁𝑇)
  (3) 

where 𝜌𝐶𝑁𝑇 and 𝜌𝑝 are the density of CNTs and polymer matrix, respectively, and 𝑊𝐶𝑁𝑇 is the 

desired mass fraction of CNT which can be chosen upon the design requirement.  

Once 𝑉𝐶𝑁𝑇 is known, the volume fraction of the polymer 𝑉𝑝 is determined by 
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    𝑉𝑝(𝜉, 𝜂) = 1 − 𝑉𝐶𝑁𝑇(𝜉, 𝜂) (4) 

Accordingly, the effective Young’s modulus 𝐸𝑒𝑓𝑓 and Poisson’s ratio 𝜈𝑒𝑓𝑓 are obtained via a 

homogenization scheme based on the modified rule of mixture [20]  

   𝐸𝑒𝑓𝑓 = (𝑘𝑙𝑘0𝑘𝑤𝐸𝐶𝑁𝑇 − 𝐸𝑝)𝑉𝐶𝑁𝑇𝑒𝜁𝑉𝐶𝑁𝑇 + 𝐸𝑝  (5) 

    𝜈𝑒𝑓𝑓 = 𝜈𝐶𝑁𝑇𝑉𝐶𝑁𝑇 + 𝜈𝑝𝑉𝑝  (6) 

where 𝐸𝐶𝑁𝑇  and 𝐸𝑝 are Young’s modulus of CNTs and polymer matrix, respectively; and  𝜈𝐶𝑁𝑇 

and 𝜈𝑝 denote the Poisson’s ratio of CNTs and polymer matrix, respectively. In addition, the 

calculation of the parameters {𝑘𝑙 , 𝑘0, 𝑘𝑤} and 𝜁 are referred to El-Ashmawy et al. [20]. 

2.2. Kirchhoff-Love plate formulation 

The kinematic formulation of the thin plate considered in this study is based on Kirchhoff-Love 

plate theory, in which segments normal to the plate midsurface are assumed to remain straight 

and perpendicular to the midsurface during the deformation. This results in the following 

displacement field: 

[

𝑢(𝑥, 𝑦, 𝑧)

𝑣(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)
] =

[
 
 
 
 1 0 −𝑧

𝜕(∙)

𝜕𝑥

0 1 −𝑧
𝜕(∙)

𝜕𝑦
0 0 1 ]

 
 
 
 

[

𝑢0(𝑥, 𝑦)

𝑣0(𝑥, 𝑦)

𝑤0(𝑥, 𝑦)
] (7) 

where 𝑢0(𝑥, 𝑦), 𝑣0(𝑥, 𝑦), and 𝑤0(𝑥, 𝑦) are the midsurface displacements in the 𝑥-, 𝑦- and 𝑧-

directions. 

By adopting Von Kármán theory, the nonlinear strain-displacement relations are given by [21] 

 𝛆 = [

𝜀𝑥𝑥

𝜀𝑥𝑥

2𝜀𝑥𝑦

] =

[
 
 
 
 
 

𝜕𝑢

𝜕𝑥
+

1

2
(
𝜕𝑤

𝜕𝑥
)
2

𝜕𝑣

𝜕𝑦
+

1

2
(
𝜕𝑤

𝜕𝑦
)
2

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦]
 
 
 
 
 

       (8) 

Substituting the displacement components in Eq. (7) into Eq. (8) yields 

 𝛆 = 𝛆𝑚
𝑙 + 𝑧𝛆𝑏

𝑙 + 𝛆𝑚
𝑛𝑙       (9) 

where {𝛆𝑚
𝑙 , 𝛆𝑏

𝑙 } denote the linear membrane and bending strains, respectively, whereas 𝛆𝑚
𝑛𝑙 is 

the nonlinear strain. These strains are given by 

 𝛆𝑚
𝑙 =

[
 
 
 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥 ]
 
 
 
 

  , 𝛆𝑏
𝑙 =

[
 
 
 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦]
 
 
 
 

 ,    𝛆𝑚
𝑛𝑙 =

1

2

[
 
 
 
 
𝜕𝑤0

𝜕𝑥
0

0
𝜕𝑤0

𝜕𝑦

𝜕𝑤0

𝜕𝑦

𝜕𝑤0

𝜕𝑥 ]
 
 
 
 

[

𝜕𝑤0

𝜕𝑥
𝜕𝑤0

𝜕𝑦

] =
𝐀

2
[

𝜕𝑤0

𝜕𝑥
𝜕𝑤0

𝜕𝑦

]        (10) 

The constitutive relation is expressed as 

 𝛔 = 𝐃𝛆 (11) 

where 𝛔 is the generalized stress vector and D is the moduli matrix defined by 
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 𝛔 = [𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑥𝑦]𝑇 ,     𝐃 =
𝐸(𝑥,𝑦)

1−𝑣2(𝑥,𝑦)
[

1 𝑣(𝑥, 𝑦) 0

𝑣(𝑥, 𝑦) 1 0

0 0
1−𝑣(𝑥,𝑦)

2

]       (12) 

with 𝐸(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) denoting Young’s modulus and Poison’s ratio of bi-directional FG 

nanocomposite materials, respectively. The principle of virtual work can be written as 

 ∫ 𝛔𝛿𝛆𝑑Ω
𝑉

= ∫ 𝑞(𝑥, 𝑦)𝛿𝑤0𝑑Ω
Ω

+ 𝑃𝜍(𝐗 − 𝐗̅)𝛿𝑤0 (13) 

where 𝑞(𝑥, 𝑦) and 𝑃 are the distributed and concentrated transverse loads, respectively. In 

addition, 𝜍(⋅) denotes the Dirac-delta function whereas 𝐗 and 𝐗̅ are the position vector and the 

loading location, respectively.  

2.3. IGA for geometrically nonlinear analysis 

Within the framework of IGA [19], the plate geometry is described by bivariate NURBS 

functions as 

𝐗 = ∑ 𝑅𝐼
𝑎(𝜉, 𝜂)𝐗𝐼𝑁

𝐽=1   (14) 

where 𝑅𝐼
𝑎(𝜉, 𝜂) are NURBS basis functions used in the analysis and 𝑁 is the number of control 

points. Hence, the displacements can be approximated by 

𝐮0 = ∑ 𝑅𝐼
𝑎(𝜉, 𝜂)𝐮0

𝐼𝑁
𝐽=1   (15) 

where 𝐮0
𝐼 = [u0

𝐼 𝑣0
𝐼 𝑤0

𝐼]𝑇 . Substituting Eq. (15) into Eq. (10) leads to 

𝛆 = 𝐁𝐮0 
(16) 

where 𝐮0 = [(𝐮0
1)𝑇 (𝐮0

2)𝑇 … (𝐮0
𝑁)𝑇]𝑇 and the matrix B can be calculated from 

 𝐁 = 𝐁𝑚
𝑙 + 𝑧𝐁𝑏

𝑙 +
1

2
𝐀𝐁𝑚

𝑛𝑙       (17) 

with  

 𝐁𝑚
𝑙 = [𝐁𝑚1

𝑙 𝐁𝑚2
𝑙 … 𝐁𝑚𝑁

𝑙 ],        𝐁𝑚𝐼
𝑙 =

[
 
 
 
 
𝜕𝑅𝐼

𝜕𝑥
0 0

0
𝜕𝑅𝐼

𝜕𝑦
0

𝜕𝑅𝐼

𝜕𝑦

𝜕𝑅𝐼

𝜕𝑥
0]
 
 
 
 

       (18) 

 𝐁𝑏
𝑙 = [𝐁𝑏1

𝑙 𝐁𝑏2
𝑙 … 𝐁𝑏𝑁

𝑙 ],           𝐁𝑏𝐼
𝑙 =

[
 
 
 
 0 0 −

𝜕2𝑅𝐼

𝜕𝑥2

0 0 −
𝜕2𝑅𝐼

𝜕𝑥2

0 0 −
𝜕2𝑅𝐼

𝜕𝑥2 ]
 
 
 
 

        (19) 

 𝐁𝑚
𝑛𝑙 = [𝐁𝑚1

𝑛𝑙 𝐁𝑚2
𝑛𝑙 … 𝐁𝑚𝑁

𝑛𝑙 ],           𝐁𝑚𝐼
𝑛𝑙 = [

0 0
𝜕𝑅𝐼

𝜕𝑥

0 0
𝜕𝑅𝐼

𝜕𝑦

]        (20) 

According to the principle of virtual work (i.e., Eq. (13)), a system of nonlinear algebraic 

equations is obtained as follows: 
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 𝐋(𝐮) = 𝐊(𝐮)𝐮 − 𝐅 = 𝟎        (21) 

where L is termed the residual vector; F is the force vector; and 𝐊 is the stiffness matrix defined 

by 

 𝐊 = ∑ ∑ (∫ 𝐁̅𝐼
𝑇𝐃𝐁𝐽𝑑V

𝑉
)𝑁

𝐽=1
𝑁
𝐼=1    (22) 

with 𝐁̅𝐼 = 𝐁𝑚𝐼
𝑙 + 𝑧𝐁𝑏𝐼

𝑙 + 𝐀𝐁𝑚𝐼
𝑛𝑙 . The nonlinear system Eq. (21) can be solved efficiently by 

Newton-Raphson iterative method. Specifically, the displacement at the (𝑛 + 1)𝑡ℎ iteration, 

denoted by 𝐮𝑛+1, is updated via the following rule:  

 𝐮𝑛+1 = 𝐮𝑛 + Δ𝐮𝑛      (23) 

 Δ𝐮𝑛 = −𝐊𝑡
−1𝐋𝑛      (24) 

where 𝐮𝑛 denotes the displacement at the 𝑛𝑡ℎ iteration; 𝐋𝑛 = 𝐋(𝐮𝑛); and 𝐊𝑡 is the tangent 

stiffness matrix obtained from the differentiation of the internal force vector as [21] 

 𝐊𝑡 = ∑ ∑ ∫ [𝐁̅𝐼
𝑇𝐃𝐁̅𝐽 + (𝐁𝑚𝐼

𝑛𝑙 )
𝑇
𝛔𝐁𝑚𝐽

𝑛𝑙 ] 𝑑V
𝑉

𝑁
𝐽=1

𝑁
𝐼=1       (25) 

with 𝛔 = [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦𝑦
] denoting the stress matrix. The iterative process is terminated if the 

following criterion is satisfied: 

 √
|𝐮𝑛+1−𝐮𝑛|2

|𝐮𝑛+1|2
 ≤ 𝜖     (26) 

where 𝜖 is a specified tolerance. In the present study, 𝜖 = 10−6 is employed. 

3. Optimization problem 

3.1. Problem Statement 

The problem statement is to optimize the distribution of material properties or, equivalently, to 

find the optimal volume fraction distribution of the CNT, i.e., 𝑉𝐶𝑁𝑇(𝜉, 𝜂), of the BFGN plate 

under a static load so that its weight becomes minimum. The optimization problem under the 

displacement constraint is described as follows: 

 Minimize    𝑊(𝑽𝐶𝑁𝑇) = ∫ (𝜌𝐶𝑁𝑇𝑽𝐶𝑁𝑇 + 𝜌𝑝𝑽𝑝)𝑑𝑉
𝑉

 

                                         = ∫ [(𝜌𝐶𝑁𝑇 − 𝜌𝑝)𝑽𝐶𝑁𝑇 + 𝜌𝑝]𝑑𝑉
𝑉

 

Subjected to  𝐊(𝐮)𝐮 = 𝐅 

                      𝑢𝑚𝑎𝑥 ≤ 𝑢0 

              0 ≤ 𝑉𝐶𝑁𝑇
𝑖 ≤ 1,     𝑖 = 1,… , 𝑛 

(27) 

where 𝑽𝐶𝑁𝑇 = (𝑉𝐶𝑁𝑇
1 , 𝑉𝐶𝑁𝑇

2 , … , 𝑉𝐶𝑁𝑇
𝑛 ) is the vector of design variables defined based on the 

approximation Eq. (2); 𝑊(𝑽𝐶𝑁𝑇) is the total weight of the BFGN plate; and 𝑢𝑚𝑎𝑥  and  𝑢0 are 

the maximum displacement and the allowable displacement, respectively.   

Eq. (27) is a constraint optimization problem. To apply metaheuristic algorithms, a penalty 

method is adopted to transform Eq. (27) into a corresponding unconstrained problem. 

Consequently, the above objective function is modified to handle the constraint violation as 

[14] 

 𝑊𝑝(𝑽𝐶𝑁𝑇) = (1 + 𝜀1𝜗)𝜀2𝑊(𝑽𝐶𝑁𝑇) (28) 
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where  𝑊𝑝(𝑽𝐶𝑁𝑇) is the penalized objective function; 𝜀1 and 𝜀2 are the coefficients of the 

penalty function; and 𝜗 = 𝑚𝑎𝑥 [0, (
𝑢𝑚𝑎𝑥

𝑢0
− 1)]. The choices of 𝜀1 and 𝜀2 can be referred to the 

work of Le-Duc et al. [14] and [22]. 

3.2. Balancing Composite Motion Optimization 

In this section, the key features of the BCMO algorithm are recalled. At the beginning of the 

optimization process, the BCMO creates randomly an initial population including 𝑁𝑃 candidate 

solutions in a given search domain. First, a population of design variables 𝑥𝑖 is initialized by 

the uniform distribution within the solution space as 

   𝑥𝑖 = 𝑥𝑖
𝐿𝐵 + (𝑥𝑖

𝑈𝐵 − 𝑥𝑖
𝐿𝐵)𝑟𝑎𝑛𝑑[0,1],     𝑖 = 1,… , 𝑑 (29) 

where 𝑥𝑖
𝐿𝐵 and 𝑥𝑖

𝑈𝐵 are the lower and upper boundaries of the 𝑖𝑡ℎ individual and 𝑑 is the number 

of design variables. Accordingly, all the individuals are sorted based on their value of the 

objective function as 𝒙 = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝑓(𝒙)) where 𝑓(𝒙) is the objective function of the 

population.  

Throughout the optimization iterations, the position of each individual can be updated via the 

following mechanism:  

    𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖 (30) 

where 𝑥𝑖
𝑡+1 and 𝑥𝑖

𝑡 are the positions of the 𝑖𝑡ℎ individual in the current 𝑡𝑡ℎ and next  (𝑡 + 1)𝑡ℎ 

generations, respectively, whereas  𝑣𝑖 is its composite motion in the solution space. Generally, 

𝑣𝑖 can be defined by a composite of two motion components including the relative movement 

of the current 𝑖𝑡ℎ individual with respect to the better 𝑗𝑡ℎ individual (𝑗 >  𝑖  or 𝑗 =  𝑖 =  1), 

denoted by 𝑣𝑖/𝑗, and the relative motion between the 𝑗𝑡ℎ individual to the global instant optimal 

point 𝑥𝑂𝑖𝑛, denoted by 𝑣𝑗. The general form of 𝑣𝑖, 𝑣𝑖/𝑗 and 𝑣𝑗 are defined as 

    𝑣𝑖 = 𝑣𝑖/𝑗 + 𝑣𝑗 (31) 

    𝑣𝑗 = 𝐿𝐺𝑆 × 𝑑𝑣𝑗 × (𝑥𝑂𝑖𝑛 − 𝑥𝑗) (32) 

    𝑣𝑖/𝑗 = 𝑑𝑣𝑖/𝑗 × (𝑥𝑗 − 𝑥𝑖) (33) 

where 𝐿𝐺𝑆 and the two parameters 𝑑𝑣𝑖/𝑗 and 𝑑𝑣𝑗 are chosen via the following selection rule 

corresponding to a random number 𝑇𝑉 as 

   𝐿𝐺𝑆 = {
𝑒

−1

𝑑
 

𝑗

𝑁𝑃
 (𝑥𝑗−𝑥𝑂𝑖𝑛)

2

         ;          𝑇𝑉 > 0.5  

𝑒
−1

𝑑
 (1−

𝑗

𝑁𝑃
) (𝑥𝑗−𝑥𝑂𝑖𝑛)

2

    ;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
 (34) 

    {𝑑𝑣𝑖/𝑗 , 𝑑𝑣𝑗} = {
 𝑟𝑎𝑛𝑑(1, 𝑑)      ;      𝑇𝑉 > 0.5 

−𝑟𝑎𝑛𝑑(1, 𝑑)     ;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (35) 

In the above mechanism, 𝑥𝑂𝑖𝑛 is assigned via the selection between the previous best (i.e., 𝑥1
𝑡−1) 

and a trial individual 𝑢1
𝑡  based on their values of the objective function as follows: 

   𝑥𝑂𝑖𝑛

𝑡 = {
𝑢1

𝑡       ;   𝑓(𝑢1
𝑡) < 𝑓(𝑥1

𝑡−1)

𝑥1
𝑡−1  ;        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

 (36) 

where the trial individual 𝑢1
𝑡  is determined by using the information from the previous 

generation as 

ICCM2022, 25th-28th July 2022

137



 

 

   𝑢1
𝑡 =

𝐿𝐵+𝑈𝐵

2
+ 𝑣𝑘1/𝑘2

𝑡 + 𝑣𝑘2/1
𝑡  (37) 

with [𝐿𝐵, 𝑈𝐵] being the lower and upper bounds of the design space whereas 𝑣𝑘1/𝑘2
𝑡  and  𝑣𝑘2/1

𝑡  

denoting the pseudo relative movements of the 𝑘1
𝑡ℎ individual with respect to the 𝑘2

𝑡ℎ individual 

and the 𝑘2
𝑡ℎ individual with respect to the previous best one computed from Eq. (33), 

respectively. In general, 𝑘1 is randomly chosen in a range of [2, NP] and 𝑘2 < 𝑘1. More details 

about the BCMO can be found in the original work of Le-Duc et al. [14]. 

3.3. Artificial Neural Network 

The most widely used artificial neural network type for problem approximations, which is 

adopted herein, is the multi-layer perceptron network (MLP) [15]. The MLP network is built 

with one input layer, one output layer, and an arbitrary number of hidden layers. In the input 

and output layers, one neuron is assigned to each input parameter or output parameter whereas 

the number of neurons in hidden layers can be arbitrary. The neurons of one layer relate to each 

neuron of the previous layer, but information only flows in the forward direction which is from 

the input towards the output layers. Each connection has its connection weight and bias as 

adjusting parameters. Finally, the output values of the neurons in the current layer can be 

obtained with the activation function of a sum of output values of the neurons in the previous 

layer multiplied by corresponding connection weights between layers and the biases of the 

current layers as 

   𝑎𝑖
[𝑙]

= 𝑔 (∑ 𝑊𝑖𝑗
[𝑙−1]𝑛𝑙−1

𝑗=1 𝑎𝑗
[𝑙−1]

+ 𝑏𝑖
[𝑙−1]

) (38) 

where 𝑊𝑖𝑗
[𝑙−1]

 denotes the connection weight between the 𝑖𝑡ℎ neuron in the 𝑙𝑡ℎ layer and the 𝑗𝑡ℎ 

neuron in the (𝑙 − 1)𝑡ℎ layer whereas  𝑏𝑖
[𝑙−1]

 is the bias between the 𝑖𝑡ℎ neuron in the 𝑙𝑡ℎ layer 

and any neuron in the (𝑙 − 1)𝑡ℎ layer. In addition, 𝑎𝑖
[𝑙]

 is the output value of the 𝑖𝑡ℎ neuron in 

the 𝑙𝑡ℎ layer and 𝑔 is the selected activation function. More details on ANN can be found to in 

the works of Haykin and Lippmann [23] and Truong et al. [15]. 

To assess the accuracy of output results from the ANN architecture, the mean square error 

(MSE)-based loss function is used in this work and it can be expressed explicitly as 

   ℒ𝑀𝑆𝐸 =
1

𝑚
∑ (𝑎𝑖

[𝐿]
− 𝑎𝑖

𝑒𝑥𝑎𝑐𝑡)
2

𝑚
𝑖=1  (39) 

where 𝑚 is the number of data used for training the ANN model;  𝑎𝑖
[𝐿]

 is the predicted output 

value obtained from the ANN model; and 𝑎𝑖
𝑒𝑥𝑎𝑐𝑡 is the exact output value obtained from the 

data.   

3.4. Artificial Neural Network - Balancing Composite Motion Optimization Approach 

In the optimization problem under consideration, if values of the objective function and 

corresponding constraints required in the BCMO iterations are evaluated directly by IGA, the 

high computational cost induced by the geometrically nonlinear analyses will render the 

optimization procedure cumbersome. Thus, an approach based on the combination of ANN and 

BCMO is alternatively employed to solve the optimization problem. In the proposed method, 

the ANN-based surrogate model of both the objective function and constraint is properly 

constructed first and then integrated directly into the BCMO framework. Consequently, this 

strategy not only dramatically saves the computational cost during the optimization process but 

also ensures the possibility of global convergence of the optimal solution. The effectiveness 
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and efficiency of the proposed optimization framework are examined via the selected numerical 

examples presented in the following section.  

4. Numerical Examples 

In this section, two numerical examples for the material distribution optimization of BFGN 

square and circular plates considering geometrical nonlinearity are presented. The efficiency of 

the ANN-BCMO approach is demonstrated by comparing the results directly with those 

obtained from the BCMO together with the direct isogeometric analysis (IGA-BCMO). For the 

optimization process, the number of individuals is chosen as 𝑁𝑃 =  30 and the iterative process 

is terminated when either the following stopping criterion |𝑓𝑚𝑒𝑎𝑛/𝑓𝑏𝑒𝑠𝑡 − 1| ≤ 10−6 [24] is 

met or the number of iterations reaches 50,000. In the numerical study, the following material 

properties are used: 𝐸𝐶𝑁𝑇  =  900 𝐺𝑃𝑎, 𝐸𝑝 =  1.9 𝐺𝑃𝑎, 𝜈𝐶𝑁𝑇 =  0.28, 𝜈𝑝  =  0.34 , 𝜌𝐶𝑁𝑇 =

 2100 𝑘𝑔/𝑚3, 𝜌𝑝  = 1050 𝑘𝑔/𝑚3, 𝑘0  =  0.2,  𝑘𝑤  =  0.1, 𝑘𝑙  =  0.5163, 𝜁 =  3.7029,  𝑊𝐶𝑁𝑇 =

100%. All the analyses are implemented in MATLAB on a laptop computer Core i7-1165G7 

CPU @ 2.8 GHz with 16 GB RAM of memory. 

4.1. Square Plate 

This example concerns the minimization of the weight of a simply supported square BFGN 

plate with 𝐿 =  1.2 𝑚 and ℎ =  0.02𝐿. The plate is subjected to a uniformly distributed load 

𝑞 = 106 𝑁/𝑚 and the allowable displacement at the plate center is given by 𝑢0 = 0.1 𝑚. In 

this example, a mesh using quartic NURBS basis functions with 6 × 6 control points is 

employed in the response analysis and a mesh with only 3 × 3 control points is utilized to 

represent the optimal material distribution.  

The effect of various factors such as the size of dataset, optimizers, activation functions, and 

neural network architecture on the accuracy of the surrogate model is first investigated. In Table 

1, the RMSE errors and computational time associated with different sizes of the dataset and a 

fixed ANN architecture 9-50-50-50-2 are presented and compared. It is apparent that when the 

number of samples is larger than 1200, the error decreases insignificantly, but the construction 

time increases dramatically. Thus, the dataset of 1200 samples is employed in the subsequent 

analyses. Tables 2 and 3 present the MSE and RMSE, respectively, for the training and testing 

processes with different optimizers and activation functions. Among all options considered, the 

combination of Adam and ReLU yields the minimum MSE and RMSE and is, therefore, utilized 

for further calculations. Next, an investigation to find the optimal ANN architecture is 

conducted by using the grid search method with different numbers of hidden layers and the 

number of neurons per layer. As can be seen from the results presented in Table 4, the best 

optimal model architecture is the one with 3 hidden layers with 50 neurons in each hidden layer. 

All obtained information is then employed to construct the ANN surrogate model in the 

optimization scheme.  

Table 1: RMSE errors and constructing time for the test set of each dataset 

Number of samples Architecture RMSE (%) Constructing time (sec) 

400 9-50-50-50-2 0.85 3,914.42 

1,200 9-50-50-50-2 0.62 11,611.41 

2,400 9-50-50-50-2 0.61 23,414.86 

4,000 9-50-50-50-2 0.59 39,910.05 
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Table 2: Comparisons of MSE of the surrogate model trained by different optimizers 

and activation functions 

Optimizer 

Activation 

ReLU Sigmoid Tanh 

Training Test Training Test Training Test 

SGDM 6.64 7.31 91.33 109.66 1.62 1.86 

RMSprop 0.11 0.29 3.57 5.63 0.61 0.92 

Adam 0.09 0.19 1.28 2.19 0.55 0.88 

Table 3: Comparisons of RMSE of the surrogate model trained by different optimizers 

and activation functions 

Optimizer 

Activation 

ReLU Sigmoid Tanh 

Training Test Training Test Training Test 

SGDM 3.65 3.82 13.52 14.81 1.80 1.93 

RMSprop 0.48 0.76 2.67 3.36 1.10 1.36 

Adam 0.42 0.62 1.60 2.09 1.05 1.33 

Table 4: Comparisons of MSE, RMSE, and training time with different neural network 

architecture. 

Hidden 

Layers 
Neurons 

MSE (× 10−4) RMSE (%) Training 

time (sec) Training Validation Training Validation 

3 

50 0.09 0.19 0.42 0.62 269.14 

100 0.12 0.20 0.49 0.63 386.84 

150 0.18 0.20 0.60 0.64 531.00 

200 0.20 0.20 0.63 0.63 702.31 

250 0.13 0.20 0.52 0.64 888.64 

300 0.11 0.25 0.47 0.71 1,165.13 

4 

50 0.13 0.23 0.50 0.68 313.03 

100 0.18 0.24 0.60 0.70 515.66 

150 0.24 0.23 0.69 0.68 665.70 

200 0.17 0.21 0.58 0.65 988.23 

250 0.18 0.24 0.60 0.70 1,316.91 

300 0.22 0.26 0.67 0.72 1,685.72 

5 

50 0.23 0.24 0.67 0.70 371.89 

100 0.15 0.26 0.54 0.72 584.17 

150 0.21 0.27 0.64 0.73 918.16 

200 0.14 0.24 0.52 0.70 1,283.08 

250 0.26 0.26 0.73 0.72 1,419.55 

300 0.18 0.28 0.60 0.75 2,056.61 

Total time 16,061.77 

Once the surrogate model is obtained, it is then used in the optimization process for calculating 

the objective function and constraint. Due to the stochastic nature of the metaheuristic 

algorithm, 20 runs of ANN-BCMO are performed, but only one run of IGA-BCMO is tested 

due to its  extremely high computation cost required. The comparison between the best result 
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of the ANN-BCMO runs and the one by IGA-BCMO is presented in Table 5 whereas the 

convergence of the penalized objective and the optimal volume fraction of CNT are reported in 

Figures 2 and 3, respectively. It is noted that the computational time of ANN-BCMO includes 

the time for generating data, the training time by using grid search, and the optimization time 

by using BCMO. As can be seen from those results, the ANN-BCMO outperforms the 

conventional strategy (i.e., IGA-BCMO) for the optimization problem considered.  

Table 5: Comparison of the objective function and computational time obtained by 

ANN-BCMO and IGA-BCMO for the BFGN square plate 

 ANN-BCMO IGA-BCMO Difference (%) 

Weight 7,877.873 7,868.858 0.11 

Computational time (sec) 27,455.59 240,263.06  

 
Figure 2. Convergence history of IGA-BCMO and ANN-BCMO for the BFGN square 

plate. 

       
 (a) (b) 

Figure 3. Optimal distribution of CNT for the BGFN square plate using (a) IGA-

BCMO, and (b) ANN-BCMO. 
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4.2. Circular Plate 

Finally, the problem of finding optimal CNT volume fraction distribution of a clamped circular 

plate with the radius 𝑅 =  100 𝑚  and the thickness 𝑡 =  2 𝑚 is considered. The plate is loaded 

by a concentrated point load 𝑃 =  1 × 106 𝑁 at its center. For this particular case, it is aimed 

to minimize the total weight of the structure while limiting the center displacement to 𝑢0 =
0.1 𝑚. In addition, the response analysis is performed with a mesh using quartic NURBS basis 

functions with 8 × 8 control points whereas the optimal CNT volume fraction is approximated 

by a mesh with only 3 × 3 control points.   

The investigation to find the best ANN architecture for this particular problem is carried out 

first and results are reported in Table 6. Based on such information, the ANN architecture with 

3 hidden layers with 100 neurons in each hidden layer is employed for solving the optimization 

problem. Again, 20 runs of ANN-BCMO and one run of IGA-BCMO are performed. The 

comparisons between the optimal results for the BFGN circular plate obtained by the best ANN-

BCMO run and IGA-BCMO are shown in Table 7 whereas the convergence of the objective 

function and the schematic of optimal distribution of CNT are illustrated in Figures 4 and 5, 

respectively. Again, although the minimum weights obtained by both methods are similar, the 

computational cost required by the proposed ANN-BCMO approach is much less than that 

required by the IGA-BCMO method.   

Table 6: The corresponding MSE, RMSE, and training time of the trained model with 

respect to different neural network architectures. 

Hidden 

Layers 
Neurons 

MSE (x 10-6) RMSE (%) Training 

time (sec) Training Validation Training Validation 

3 

50 4.69 6.54 0.31 0.36 274.33 

100 4.45 6.33 0.30 0.36 366.59 

150 4.64 6.65 0.30 0.36 495.48 

200 9.01 6.41 0.42 0.36 676.22 

250 9.59 7.69 0.44 0.39 885.52 

300 4.45 6.49 0.30 0.36 1,062.55 

4 

50 9.49 7.21 0.44 0.38 307.02 

100 8.50 7.44 0.41 0.39 494.59 

150 21.59 6.99 0.66 0.37 682.41 

200 7.43 8.87 0.39 0.42 1,006.72 

250 6.34 10.12 0.36 0.45 1,127.20 

300 7.27 8.37 0.38 0.41 1,485.39 

5 

50 6.16 8.08 0.35 0.40 386.05 

100 12.05 10.45 0.49 0.46 612.56 

150 8.18 9.89 0.40 0.44 870.34 

200 9.61 7.25 0.44 0.38 1,181.27 

250 14.60 8.02 0.54 0.40 1,459.20 

300 10.62 6.89 0.46 0.37 1,950.38 

Total time 15,323.81 
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Table 7: Comparison of the objective function and computational time obtained by 

ANN-BCMO and IGA-BCMO for the BFGN circular plate 

 ANN-BCMO IGA-BCMO Difference (%) 

Weight 68,113,432 68,011,980 0.15 

Computational time (sec) 28,118.86 220,341.80  

 

Figure 4. Convergence history of IGA-BCMO and ANN-BCMO for the BFGN circular 

plate. 

  

 (a) (b) 

Figure 5. Optimal distribution of CNT for the BGFN circular plate using (a) IGA-

BCMO, and (b) ANN-BCMO. 
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5. Conclusion 

This study has employed, for the first time, an integrated approach based on the ANN and 

BCMO to tackle the material distribution optimization problem of in-plane BFGN plates. The 

core of the proposed framework is based on the replacement of the high-cost geometrically 

nonlinear isogeometric analysis with Kirchhoff-Love plate model and Von Kármán 

nonlinearity by an effective ANN-based surrogate model in the framework of BCMO 

optimization loops. The optimization of interests is to minimize the weight of the structure 

under the displacement-based constraints. To enhance the possibility of exploring optimal 

solutions, the NURBS-based representation of the material volume fraction distribution has 

been introduced in which the control values of the volume fraction of CNT are chosen as the 

primary design variables. Selected numerical examples of BFGN square and circular plates 

have been considered to demonstrate the performance of the ANN-BCMO scheme. By 

comparing results obtained from the ANN-BCMO and a conventional strategy based on IGA-

BCMO, the superior effectiveness and efficiency of the proposed scheme are revealed.    
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Abstract 
The modular housing has increasingly gained the popularity among communities in views of 
its fast construction and minimum site preparation. The prefabrication technology makes it 
possible for the easy storage and mass logistics to construction sites. At variance with typical 
frames, the modular house composes a series of prefabricated lightweight steel panels that are 
assembled through the precisely designed connections (nuts and bolts and/or welding). The 
total cost and assembly time are proportional to the number of connections predefined. This 
paper, therefore, proposes a so-called Comprehensive Learning Particle Swarm Optimization 
(CLPSO) method to determine the minimum placement of connections necessarily required for 
the assembly of semi-detached modular houses under applied external forces. The limit state 
design criteria comply with AISC-LRFD (2016) specifications. The connections adopt the 
combination of five specially designed nuts-and-bolts patterns, where their possible locations 
are predefined. Their behaviors are described by the compatibility conditions of displacements 
at some specific degrees of freedom (in 3D space) associated with interface nodes of steel 
panels. The proposed CLPSO approach assigns the binary variables to all connection locations 
and efficiently determines their optimal placement leading to the minimum construction cost. 
The applications of the proposed CLPSO method are illustrated through the realistic design of 
public residential houses managed by National Housing Authority of Thailand. 
Keywords: Comprehensive learning particle swarm optimization; Minimum connection 
placement; Prefabrication; Steel lightweight structures; Modular housing. 

Introduction 

The key criteria underlying national housing development that well serve high population 
density consider rapid construction, cost optimization, energy efficiency, environmental 
friendliness and responsiveness to residents’ needs. The approach often applies the principle 
modular design system adopting standard sizes of material cross-sections and a principal 
member length to minimize material wastes. The prefabricating construction method [1-6] 
involves material production in the factory and member assembly on site. This advantageously 
enhances the high precision and minimizes constructional periods [2, 3, 7-9]. 

One of the challenges underlying the development of prefabrication technology is the design of 
joints that are typical but sufficiently strong to connect all required structural members. It 
generally requires the large number of joints but incurs expensive resources over the assembling 
procedures. The minimum placement of connections [2, 10-12] is essential for the cost-effective 
management and construction. This paper therefore proposes the comprehensive learning 
particle swarm optimization (CLPSO) method [13] to minimize the total number of connections 
employed in the prefabricated modular housing design. More explicitly, five main connection 
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types with five combinations from these principles are considered as the standard joints 
employed at the pre-defined possible locations in steel frame panels. The connections are 
modeled using the zero-length line finite elements, which can describe the compatibility of co-
nodal displacements at the specified degrees of freedom between steel panels. The CLPSO 
approach provides the optimal distribution of required connections, such that the assembled 
house complies with the limit state design AISC-LRFD (2016) specifications. 

Connection system and model 
The connections between structure members required for the housing fabrication consider three 
main categories, namely inter-module connection, intra-module connection and module to 
foundation connection. The five typical connection Types A to E in Fig. 1 employed as the 
principal joints and their functionality are summarized in Table 1. 

Table 1. Principle connections and functionality 

 

 
 

 
 

  Figure 1. Principle connections 
In addition, five combinations, depicted in Fig. 2, selected from these five principal connections 
are assigned to the predefined nodal locations of steel panels, see Fig. 3. Each of which 
determines different connectivity conditions describing the compatibility of degrees of freedom 
(DOFs) at the interfacing nodes.  
The connections are modeled using zero-length line elements in Fig. 4 that explicitly define the 
connectivity conditions associated with the five principle and five combined connection types 
described in Table2. The zero length members are first allocated to all possible connecting 
locations at nodes of individual steel panels, and later are minimized using the optimization 
process. 

 
Figure 2. Combination from five principal connection Types A to E 
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Table 2. Connectivity conditions at interface nodal DOFs 

 

 
Figure 3. Initial placement of connections in the prefabricated house 

 
 
 
 

 
 

 

Figure 4. Zero-length line element modelling nodal connectivity 

 

TYPE   DOF 
U1 U2 U3 R1 R2 R3 

A F F F T F F 
B F F F T F T 
C T T T F T T 
D F F F T F F 
E F F F F T T 

A+B F F F T F T 
A+C T T T T T T 
A+D F F F T F F 
A+E F F F T T T 
B+C T T T T T T 
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State problem 
The optimization problem minimizes the total number of bolts-and-nuts connection placements 
necessarily for the assembly of galvanized steel structural panels and hence prefabricated house 
depicted in Fig. 5. The individual steel panels with a typical dimension of 2.4 ´ 2.4 m2 are 
drawn in Fig. 6. Three following optimal connection placement cases are performed: 1) 
determination of the active connections at predefined nodal locations; 2) limiting the maximum 
number of connection locations and types; and 3) limiting only the maximum number of 
connection locations. The minimum connection placement design complies with ultimate 
strength and serviceability AISC-LRFD (2016) specifications. 
The design process is encoded within a PYTHON environment, and the resulting design is 
analyzed using the commercial finite element analysis and design package, called SAP 2000. 

 
Figure 5. Prefabricated steel house   Figure 6. Unassembled steel panels 
The prefabricated house in Fig. 5 consists of four main steel panels, depicted in Fig. 6. Due to 
its symmetry in both axis directions, only a quarter of the house can be modeled using the 
standard line finite element model in Fig. 7 

The foundation system adopts the precast reinforced concrete foundations and ground beams. 
These are not considered as the design variables in the problem. The steel panels are connected 
on the ground beams using Type C connections providing the restraints in both translations and 
moment resistances in a perpendicular direction to the wall plane. 

  
Figure 7. Finite element model of a quarter of prefabricated modular house 
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The structure system applies the load bearing wall panels [14], in which all steel members of 
the wall adopt the standard rectangular hollow section (RHS) strut members. The material 
properties are detailed in Table 3. 

Table 3. Material properties 

 
 
 
 
 
 
 
The applied loads and their combinations are given in Tables 4 and 5. 

Table 4. Applied loads 
 
 
 
 
 
 
The structure analysis and design are based on the standard of load combinations from AISC 
using LRFD method as shown in Table 5, where D is a dead load, L live load, Lr roof live load 
and W wind load. 

Table 5. Load combination 
 

 
 
 
 
 

Comprehensive learning particle swarm optimization 
Based on the study of various Particle Swarm Optimization (PSO) problems [15-17], there is 
the difficulty of premature convergence for multimodal problems. Limiting learning to only 
Gbest may be an irrational decision. Even the most recent values can cause the answer to 
diverge from the global optimum. In addition, particles may be attracted and answered at a local 
optimum. 

Comprehensive Learning Particle Swarm Optimization (CLPSO) algorithm, developed by 
Liang and Huang [13], particles learn only the Pbest value in each dimension. In all iterations 
of the particle group learning method, particles in all dimensions learn from different Pbest 
values of other dimensions for a couple of iterations. The Pbest value of particles can be used 
as a model to guide the way to optimum solution of other particles and each dimension of each 
particle can be learned from the Pbest value of the other particle's corresponding dimension. 

During the search process, it is unable to determine whether the Pbest value of a particle's 
dimension is excellent or poor. Therefore, each particle dimension has an equal chance of 

Properties Symbol Value UNIT 
Yield Strength of Cold-formed Steel  
(Grade SGC490) 

Fy 300 MPa 

Modulus of Elasticity E 210000 MPa 
Shear Modulus G 80000 MPa 
Density ρ 7850 kg/m3 
Poisson’s Ratio ν 0.3 - 

Type Loading Unit 
Dead Load Self-weight kN 
Live Load 0.5 kN/m2 

Roof Live Load 0.88 kN/m2 
Lateral Load 0.5 kN/m2 

Case Combination 
1 1.4D 
2 1.2D + 1.6L + 0.5Lr 
3 1.2D + 1.6Lr + 0.5W 
4 1.2D + 1.0L + 0.5Lr + 1.0W 
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picking up new information from other particles. Each particle is updated in Eq. (1) with 
different velocity in Eq. (2): 

𝑥!"
($%&) = 𝑥!"

($) + 𝑣!"
($%&)      (1) 

𝑣!"
($%&) = 𝑤 × 𝑣!"

($) + 𝑟𝑎𝑛𝑑 × (𝑃𝑏𝑒𝑠𝑡((!)" − 𝑥!"
($))     (2) 

     𝑃)! = 0.05 +
*.,-./01.!"($%!)'(%!

2	2

/01(&*)4&
      (3) 

     𝑤$ = 𝑤567 − 𝑘 ×
8)*+48)$,
!9:;)*+

      (4) 

𝑥!"
($) and 𝑣!"

($) denote the position and velocity of the i-th particle at k-th time, respectively. 
𝑃𝑏𝑒𝑠𝑡((!)" is the best position value of the i-th particle for each dimension, d. It can be the value 
of the particle itself, or another particle. For each particle of some dimensions, the Pbest value 
of the other particle is randomly, rand within the [ 0,1] interval chosen based on learning 
probability, Pci value in Eq. (3) by defined as the social learning probability to learn from while 
other dimensions, where 𝑁< is the total number of particle populations. Weight function, 𝑤$ is 
defined by a collection of steps that result in a uniform search in the initial stage and a local 
search. 𝑤$  in Eq. (4) is the weighting function for k iterations during the velocity solution 
process of each particle, where 𝑤567 and 𝑤5!= are equal to 0.9 and 0.4, respectively. 

For iterations 𝑘 times during the answer process, the velocity of each particle corresponds to 
Eq. (5): 

𝑣!"
($) = min(𝑣"567 , max(−𝑣"567 , 𝑣!"))       (5) 

where,     𝑣567 = 0.2(𝑥567 − 𝑥5!=) 
To find a suitable solution to optimize number of connections of this modular structure problem, 
the default variable is the activeness of restraint at each DOF in each node. The position 
variables xmin and xmax have value of 'zero' and 'one' for inactive (False) and active (True) for 
the DOF restraints, respectively. 

Optimization formulation 
Design Variables 
The design of the rigid frame structure defines a galvanized steel material RHS cross-section 
of typically 38-76mm. depth and in steel thickness of 2.3mm., which is the standard cross-
sectional size according to the building materials market. In terms of proper connection 
placement, there is a discontinuity. The proper design of the positioning of the connection is 
discrete structural optimization, which is considered a Non-Smooth Problem. The combinations 
of forces are defined in the design and analysis of the prefabricated modular housing structure. 
Objective Function 
To analyze the location of the appropriate connection and analyze the appropriate connection 
type. It is necessary to consider the sum of the numbers for which the connection is active, and 
then used the result to analyze the design of various types of connections. Therefore, the 
objective function is minimum number of active restraints at each DOFs of connection as 
follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐶(𝑥) = 	∑ 𝑥!=>
!?& 			 ∶ 		 𝑥! =	 G

1	 ∶ 		𝑤ℎ𝑒𝑛	𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡	𝑖𝑠	𝑎𝑐𝑡𝑖𝑣𝑒								
0	 ∶ 		𝑤ℎ𝑒𝑛	𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡	𝑖𝑠	𝑛𝑜𝑡	𝑎𝑐𝑡𝑖𝑣𝑒   (6) 
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where C(x) is the total active restraints of all considering DOF of connections; nv is the number 
of variables that define different connection conditions in each case. 
Constraint 

In order to properly design the connection of structures, the material strength constraints for the 
stability of the structure and the serviceability constraints of the structure must be determined. 

1. Strength Constraints  
Since the structure used in the connection placement optimization is light steel framing 
consists of galvanized steel RHS-sections of typically 38-76mm depth and in steel 
thickness of 2.3mm. For each member subjects to axial force, shear force and bending 
moment, strength constraints of members are subject to AISI S100-2016 & ANSI/AISC 
360-16 specifications shown in the following. 

𝜆!@ =
|@$|
@$
* − 1 ≤ 0       (7) 

where 𝜎! are stresses of i-th element. 
2. Serviceability Constraints 

In defining serviceability constraints are presented as displacement constraints 
considering the critical part of the structure. The constraints set out include the frame 
drift ratio 𝛥/𝐻 and the inter-story drift ratio 𝑑/𝐻 under the service loads using the load 
combination [18]. 

Q
𝜆!" =

|B∗|
B.
− 1 ≤ 0		

𝜆C" =
|"∗|
".
− 1 ≤ 0	

        (8) 

The frame drift ratio 𝛥∗ must comply with the allowable horizontal displacement ΔE 
defined by the code, which is equal to H/120. The maximum inter-story displacement 
𝑑∗  must meet the allowable inter-storey displacement 𝑑E  established by the code, 
adopted equal to H/360, where H is height of frame. 

Optimal results of minimum connection placement 

The optimization analyzed the model results with SAP2000 and encoded within the Spyder 
having a direct interface, through Application Programming Interface (API) and use the data to 
analyze with the Comprehensive Learning Particle Swarm Optimization (CLPSO) using the 
features of the connection and loading under the load of the AISC-LRFD 2016 Specifications 
design standard. The CLPSO algorithm takes the random value of the variables and compares 
the results of the structural analysis of such situations and develops the solution to convergence 
to the appropriate answer. The answer can be compared with the connection type defined at 
each connection location. 

Conditions for various case studies and algorithms are defined by coding in Python. The result 
of structure analysis is render in the SAP2000 software. The results of each appropriate analysis 
may give different types of connections or locations of connections due to proper design can 
provide several options that pass the constraints imposed by the standard requirements. 
However, analysis of the results showed that the number of connections was lower in all cases, 
as shown in Table 6. 

All results were re-analyzed to recheck the displacement and stresses of each member, in which 
the results match the specified conditions. The results of the structural analysis for the 
optimization solution sample are shown in Table 7. Therefore, it can be seen that the number 
of connections of the structure can be reduced. This connection placement optimization design 
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can be taken into account in conjunction with other factors that affect construction costs, such 
as the shape or thickness of the steel plate used in the connection design as well as the number 
of bolts and nuts. Consideration with other factors will help to come up with the most suitable 
model for the project. 

Table 6. Optimal design solutions 

 
 

 
 

 
Table 7. Structural responses of designed solutions 

Concluding remarks 
This paper presents a method for determining the optimal connection placement with the 
CLPSO algorithm by locating the connectable nodes and assigning different connectivity 
conditions as the compatibility of degrees of freedom at the nodes. An example of the structure 
being analyzed is the load bearing wall panels system with the five principle and five combined 
connection types, where all steel members of wall panels have the standard rectangular hollow 
cross-section (RHS). The algorithm randomly searched for suitable solutions for arranging 
different types of connections at various locations of the structure. As a result of the 
optimization, the number of connections was reduced in all cases. There are different proper 
answers according to the design of the connection conditions. Verify the results by re-analyzing 
the structure with each connection pattern, found that the structure analysis results meet the 
specification for strength constraints and serviceability constraints.  
To reduce the number of connections in the structure, different conditions can be set according 
to the design requirements. The CLPSO algorithm is the method that can provide an optimal 
minimum connection placement for assembling modular houses within the design criteria of 
AISC-LRFD (2016) requirements.  
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Abstract 

This paper illustrates the utility of the methodology of Groebner bases computations combined 

with the energy method in the analysis of geometric non-linear beam-reinforced thin rectangular 

isotropic plates (BRP) for modeling rectangular duct systems under internal pressure. The 

governing integro-partial differential equation is derived based on Kirchhoff/von Karman plate 

theory. With Rayleigh/Ritz methodology, a system of coupled polynomial algebraic equations is 

generated by using the exact solution of the BRP plate from linear analysis as a shape function. 

Then Groebner basis methodology is employed to decouple these equations. Under certain 

conditions, an analytical expression for the lateral displacements of the BRP plate under pressure 

can be obtained in a fully symbolic form, in terms of such parameters as geometric and material 

properties of the beams and panels. The analytical solutions have been compared with the results 

using the finite element software, ANSYS. The comparative study indicates that for commonly 

used duct panels with the aspect ratio (L:W) less than 1:4, the analytical solutions for displacements 

are in very close agreement. Finally, the study is found to be a unique alternative, worthy of further 

investigation, and potentially effective in the analysis of similar problems occurring in a variety of 

engineering applications. 

 

Keywords: Groebner bases, geometrically non-linear analysis, beam-reinforce plates, rectangular 

duct system, computational algebraic geometry 

 

Introduction  

Groebner bases were introduced in 1965 by Bruno Buchberger, an Austrian mathematician [1], 

who included an algorithm to determine them. A more detailed mathematical background 

underlying the methodology can be found in books such as Cox et al. [2]. With the increasing 

capability of symbolic computation in recent decades, considerable progress has been made in the 

area of advanced computational algebraic geometry. Buchberger’s algorithm for the determination 

of Groebner bases has been implemented in many mathematical symbolic computational systems 

such as the most popular commercial systems, e.g., Mathematica and Maple. Because of its 

availability, the use of the Groebner basis methodology has now become a feasible option for many 

scientific and engineering applications. Groebner basis methodology has been used to determine 

analytical solutions for non-linear problems in structural engineering [3]-[10], such as for a thin 

elastic composite plate with large deflection on the Pasternak foundation, calculation of the natural 

frequency of geometrically non-linear composite plates, evaluation of large deflections of a plate 
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with functional graded materials, and assessment of equilibrium equations for snapping through 

buckling of shallow arches with geometrical imperfection, etc.  

 

This paper describes the utility of the methodology of Groebner bases in the analysis of geometric 

non-linear beam-reinforced thin plates (BRP) for modeling rectangular duct systems under internal 

pressure. The focus of this study is to illustrate how the method can be developed to solve non-

linear engineering problems which are usually solved using numerical approaches. In the proposed 

procedure for the non-linear analysis, the governing integro-partial differential equation is derived 

based on Kirchhoff/von Karman plate theory, which is a functional of the total potential energy in 

terms of displacement functions for the system. Appling the variational principle to the functional 

of the total potential energy combined with the Ritz method, and using the exact solution of the 

BRP plate from linear analysis as a shape function, the governing equation can be transformed into 

a set of coupled non-linear algebraic equations. With the use of the Groebner basis package in 

Maple [11], analytical expressions for the lateral displacements of the BRP plate under internal 

pressure can be obtained in a fully symbolic form. These solutions can be expressed in terms of 

such parameters as geometric and material properties of the beams and plate. Thus, the 

displacement expression in terms of pressure, beam stiffness, and panel dimensions can be used as 

a convenient tool for preliminary design predictions for engineering practice. The analytical 

solutions have been compared with the results obtained from the finite element software ANSYS 

[12]. The comparison study indicates that for commonly used duct panels with the aspect ratio 

(L:W) less than 1:4, the analytical solutions for displacements are in very close agreement for three 

commonly used duct wall or panel thicknesses. Finally, the study is found to be a unique alternative, 

worthy of further investigation, and potentially effective in the analysis of similar problems 

occurring in a variety of engineering applications. 

 

Motivation 

Recently completed investigations [13][14] of the effectiveness of the SMACNA Industrial Duct 

Construction Standard (1st and 2nd Editions) [15][16] governing rectangular ductwork design 

indicates that: i) the concept of using an individual plate to predict the performance of the whole 

rectangular duct system can be traced back to 1970s, which has proven to be acceptable and cost-

effective, and ii) one of the assumptions of the theoretical formulations for its plate models is to 

assume the stiffness of reinforcements to be infinite, which obviously is not consistent with the 

real duct behavior. In [17][18], a new beam-reinforced plate (BRP) finite element model including 

finite stiffness for the reinforcements and membrane effects was introduced and compared to duct 

models and plate models from existing industrial standards and literature [19]. Figure 1. (a) depicts 

deformation predicted by ANSYS for a 24-panel duct system under a uniform internal pressure. It 

demonstrates that as the number of the panels increased, the maximum deflection value for each 

top/bottom panel of the system approached a constant value throughout the entire duct system, 

which confirms that the concept of using an individual panel to predict the behavior of the duct 

system is a valid approximation. Moreover, the simulation also captured the deformation of the 

reinforcements (beams) in Figure 1.(b). Table 5.2 in [17] provides comparisons of plate models in 

their configurations, boundary conditions, and analysis types. The improvements and limitations 

of the introduced plate model were defined and discussed in [17] as well. These studies have 

motivated the current study of finding analytical solutions to the BRP plate model as a convenient 
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tool for preliminary design in engineering practice. The BRP plates will be defined in detail in next 

section.  

 

   
(a)            (b) 

    

Figure 1. In finite model (a) deflection of 24-panel air duct, 100:1 scale, with p = 14 in. w.g.  

(b) beam deformation, 75:1 scale [17] 
 

Problem Formulation  

The primary objective of this section is to develop a general methodology for obtaining an 

analytical solution of non-linear deflection for beam-reinforced thin rectangular isotropic plates 

(BRP). The procedure of the methodology is as follows: i) generating the total strain energy of a 

BRP plate based on Kirchhoff/von Karman plate theory [20], ii) solving the exact linear solution 

of deflection for the BRP plate by Lévy’s assumption [21], iii) forming the governing integro-

partial differential equation which is a functional of the total potential energy in terms of 

displacement functions for the system, iv) applying the principle of minimum total potential energy 

with Rayleigh/Ritz method by using the exact linear solution of deflection as one of assumed shape 

functions for deflection to produce a system of coupled algebraic equations, and v) employing the 

methodology of Groebner bases to decouple the algebraic equations to obtain the analytical non-

linear deflection solution of the BRP plate.  

 

Strain Energy of BRP Plates 

 

Figure 2.(a) defines a beam-reinforced thin rectangular plate (BRP) with two opposite edges simply 

supported (SS) and the other two edges supported by beams elastically; in Figure 2.(b), the plate 

coordinate system and dimension a and b are defined. It is assumed that the plate is composed of a 

homogeneous, isotropic material with a uniform thickness 𝑡, while the elastic beams on each side 

can have different material and geometrical properties. It is further supposed that the plate is 

subjected to a distributed pressure 𝑞(𝑥, 𝑦) . According to the geometrically non-linear 

Kirchhoff/von Kármán plate theory, the total strain energy 𝑈  can be expressed in terms of 

displacement functions 𝑢, 𝑣, and 𝑤 as a sum of the plate and beam bending strain energy 𝑈𝑏 and 

the membrane strain energy 𝑈𝑚 as follows: 
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+ (
𝜕𝑤

𝜕𝑦
)

2

]

2

𝐴

+ 2𝑣 [
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
+

1

2

𝜕𝑣

𝜕𝑦
(

𝜕𝑤

𝜕𝑥
)

2

+
1

2

𝜕𝑢

𝜕𝑥
(

𝜕𝑤

𝜕𝑦
)

2

]

+
1 − 𝑣

2
[(

𝜕𝑢

𝜕𝑦
)

2

+ 2
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
+ (

𝜕𝑣

𝜕𝑥
)

2

+ 2
𝜕𝑢

𝜕𝑦

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
+ 2

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
]} 𝑑𝐴 

 

            (2) 

where A is the area of the plate, L denotes the length of the elastic beams. Furthermore, (𝐸1𝐼1)𝑏 

and (𝐸2𝐼2)𝑏 are the bending rigidities of the elastic beams, 𝐸 indicates the modulus of elasticity 

and, 𝜈 represents the Poisson’s ratio of the plate. In addition, 𝑢 and 𝑣 are the in-plane displacement 

functions, and 𝑤 is the lateral displacement function of the plate.  

    

(a)         (b) 

Figure 2. (a) A BRP plate configuration; (b) plate in Cartesian coordinates  

 

Lévy’s Solution of BRP Plates 

 

For a rectangular plate with two opposite edges simply supported as shown in Figure 2. (a), the 

linear solution for deflection of the plate proposed by M. Lévy [22] is a semi-inverse solution in 

the form of a series:  

 

𝑤(𝑥, 𝑦) = ∑ 𝑦𝑚(y)sin (
𝑚𝜋𝑥

𝑎
)

∞

𝑚=1

 (3) 

 

(E1I1)b 

(E2I2)b 
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where 𝑦𝑚 are arbitrary functions of 𝑦, and 𝑚 are integers. It is obvious that the solution in equation 

(3) satisfies the plate governing differential equation (4) and the boundary conditions 𝑤|𝑥=0,𝑥=𝑎 =

0 and 
𝜕2𝑤

𝜕𝑥2 |𝑥=0,𝑥=𝑎 = 0 at the simply supported (SS) edges. The functions 𝑦𝑚 can be determined by 

satisfying equation (4) and the boundary conditions on the edges 𝑦 =
−𝑏

2
 and 𝑦 =

𝑏

2
:  

 

 

𝐷 (
𝜕4𝑤(𝑥, 𝑦)

𝜕𝑥4
+ 2

𝜕4𝑤(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦2
 +

𝜕4𝑤(𝑥, 𝑦)

𝜕𝑦4 ) = 𝑞(𝑥, 𝑦) (4)  

where 𝐷 =
𝐸𝑡3

12(1−𝜐2)
 is called the flexural rigidity of the plate with a dimension of [force][length]. 

By substituting Equation (3) into Equation (4) and expanding the loading function 𝑞(𝑥, 𝑦) as a 

Fourier series, an ordinary differential equation can be found in the form of equation (5) for any 

value of 𝑚. 

 

 
𝑑4𝑦𝑚

𝑑𝑦4
− 2 (

𝑚𝜋

𝑎
)

2 𝑑2𝑦𝑚

𝑑𝑦2
+ (

𝑚𝜋

𝑎
)

4

𝑦𝑚 =
2

𝑎𝐷
∫ 𝑞(𝑥, 𝑦) sin (

𝑚𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

   (5)  

 

The solution to the differential equation in equation (5) is shown as  

 

 
𝑦𝑚 = 𝐴𝑚 cosh (

𝑚𝜋𝑦

𝑎
) + 𝐵𝑚 (

𝑚𝜋𝑦

𝑎
) sinh (

𝑚𝜋𝑦

𝑎
) + 𝐶𝑚 sinh (

𝑚𝜋𝑦

𝑎
)

+ 𝐷𝑚 (
𝑚𝜋𝑦

𝑎
) cosh (

𝑚𝜋𝑦

𝑎
) + 𝑓𝑚(𝑦) 

(6) 

 

where 𝑓𝑚(𝑦)  is the particular solution and 𝐴𝑚 , 𝐵𝑚 , 𝐶𝑚 , and 𝐷𝑚  are arbitrary constants. 

Substituting Equation (6) into Equation (3) yields the complete solution of deflection as:  

 

 
𝑤(𝑥, 𝑦) = ∑ [𝐴𝑚 cosh (

𝑚𝜋𝑦

𝑎
) + 𝐵𝑚 (

𝑚𝜋𝑦

𝑎
) sinh (

𝑚𝜋𝑦

𝑎
) + 𝐶𝑚 sinh (

𝑚𝜋𝑦

𝑎
)

∞

𝑚=1

+ 𝐷𝑚 (
𝑚𝜋𝑦

𝑎
) cosh (

𝑚𝜋𝑦

𝑎
) + 𝑓𝑚(𝑦)] sin (

𝑚𝜋𝑥

𝑎
) 

 

(7) 

The boundary conditions listed in equation (8) are the displacement boundary conditions based on 

the proposed BRP plate model specifically. The model assumes that the elastic beams attached to 

the plate along the edges 𝑦 =
−𝑏

2
 and 𝑦 =

𝑏

2
 are constrained from twisting and in-plane 

displacement. Equation (8) defines mathematically: i) the twisting constraint on the beams by 

setting the slope in the 𝑦-direction to zero; ii) the bending deflection of the elastic beams caused 

by the distributed force acting on the beams at the edges 𝑦 =
−𝑏

2
 and 𝑦 =

𝑏

2
 that is equal and 

opposite to the internal shear force acting on the plate. The four boundary conditions in (8) can be 

used to solve for the four arbitrary constants in (7).  
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 𝜕𝑤

𝜕𝑦
|
𝑦=±

𝑏

2

= 0  

𝐷 [
𝜕3𝑤

𝜕𝑦3
+ (2 − 𝜈)

𝜕3𝑤

𝜕𝑥2𝜕𝑦
] |

𝑦=
𝑏
2

= ((𝐸1𝐼1)𝑏  
𝜕4𝑤

𝜕𝑥4 ) |
𝑦=

𝑏
2
 

−𝐷 [
𝜕3𝑤

𝜕𝑦3
+ (2 − 𝜈)

𝜕3𝑤

𝜕𝑥2𝜕𝑦
] |

𝑦=−
𝑏
2

= ((𝐸2𝐼2)𝑏  
𝜕4𝑤

𝜕𝑥4 ) |
𝑦=−

𝑏
2
 

 

(8) 

 

In symmetric cases, i.e., where the plate’s geometric and material properties, boundary conditions, 

and loading are all symmetric with respect to the coordinate system, 𝐶𝑚 and 𝐷𝑚 have to be equal 

to zero, and (𝐸1𝐼1)𝑏 = (𝐸2𝐼2)𝑏. Thus, the  lateral deflection 𝑤(𝑥, 𝑦) in equation (7) can be reduced 

to equation (9), and the boundary conditions on the edges 𝑦 = ±
𝑏

2
 in (8) can be expressed in terms 

of equation (10):  

 

 

𝑤(𝑥, 𝑦) = ∑ [𝐴𝑚 cosh (
𝑚𝜋𝑦

𝑎
) + 𝐵𝑚 (

𝑚𝜋𝑦

𝑎
) sinh (

𝑚𝜋𝑦

𝑎
) + 𝑓𝑚(𝑦)]

∞

𝑚=1

sin (
𝑚𝜋𝑥

𝑎
) (9) 

 

 𝜕𝑤

𝜕𝑦
|
𝑦=

𝑏

2

= 0  

 

𝐷 [
𝜕3𝑤

𝜕𝑦3
+ (2 − 𝜈)

𝜕3𝑤

𝜕𝑥2𝜕𝑦
] |

𝑦=
𝑏
2

= ((𝐸1𝐼1)𝑏

𝜕4𝑤

𝜕𝑥4 ) |
𝑦=

𝑏
2
 

 

 

 

(10) 

 

When the BRP plate is subjected to a uniformly distributed load 𝑞(𝑥, 𝑦) = 𝑞𝑜, the particular solution 

𝑓𝑚(𝑦) can be calculated as in (11): 

 

 
𝑓𝑚(𝑦) = ∑

2𝑞𝑜𝑎4

𝐷𝑚5𝜋5

∞

𝑚=1

(1 − cos(𝑚𝜋))  𝑜𝑟  

𝑓𝑚(𝑦) = ∑
4𝑞𝑜𝑎4

𝐷𝑚5𝜋5

∞

𝑚=1,3,5…

 

(11) 

 

With the symmetric boundary conditions in equation (10), the constants 𝐴𝑚 and 𝐵𝑚 in equation (9) 

can be determined. The complete analytical linear solution of deflection for a Lévy plate with 

reinforced elastic beams is shown in equation (12), which will be used for the  non-linear analysis 

in this study. 

 

 

𝑤(𝑥, 𝑦) = ∑
1

𝐷
[𝑞𝑜𝑎4(

4

𝑚5𝜋5
+ 𝐴𝑚 cosh (

𝑚𝜋𝑦

𝑎
)

∞

𝑚=1

+ 𝐵𝑚 (
𝑚𝜋𝑦

𝑎
) sinh (

𝑚𝜋𝑦

𝑎
))sin (

𝑚𝜋𝑥

𝑎
)] 

(12) 
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where: 
𝐴𝑚 = −

4𝜆(
1

2
𝜋𝑏𝑚 cosh(𝛼𝑚)+𝑎 sinh(𝛼𝑚))

𝜋4𝑚4(𝜋𝑎𝜆𝑚 cosh(𝛼𝑚) sinh(𝛼𝑚)+
1

2
𝜋2𝑚2𝑏𝜆+2𝑎 cosh(𝛼𝑚)2−2𝑎)

  

 

(13a) 

 𝐵𝑚 =
8𝑎𝜆sinh (𝛼𝑚)

𝜋4𝑚4(2𝜋𝑎𝜆𝑚 cosh(𝛼𝑚) sinh(𝛼𝑚)+𝜋2𝑚2𝑏𝜆+4𝑎 cosh(𝛼𝑚)2−4𝑎)
  

 
(13b) 

 𝜆 =
(𝐸1𝐼1)𝑏

𝑎𝐷
, 𝛼𝑚 =

𝑚𝜋𝑏

2𝑎
  (13c) 

 

The Principle of Minimum Total Potential Energy  

 

The total work done 𝑊𝑞 performed by the distributed load acting on the plate can be calculated as: 

 

𝑊𝑞 =  ∫𝑞(𝑥, 𝑦)𝑤(𝑥, 𝑦)𝑑𝐴
𝐴

 (14) 

Thus, the total potential energy Π of the system can be expressed as:  

 

Π = 𝑈𝑏 + 𝑈𝑚 − 𝑊𝑞 (15) 

The shape functions chosen for the in-plane displacements, 𝑢𝑠 and 𝑣𝑠, respectively, and the lateral 

displacement 𝑤𝑠, are the functions that satisfy all the displacement boundary conditions for the 

BRP plate with symmetric conditions. For simplicity, the displacement functions can be assumed 

to have the form of (16a), (16b), and (16c). 

 𝑢 =  𝑢𝑠  𝐴0 

 

𝑢𝑠 = sin (
2𝜋𝑥

𝑎
) sin (

𝜋(𝑦 −
𝑏
2)

𝑏
) 

(16a) 

 

  

𝑣 =  𝑣𝑠 𝐵0 

 

𝑣𝑠 =  sin (
𝜋𝑥

𝑎
) sin (

2𝜋𝑦

𝑏
) 

(16b) 

  

𝑤 =  𝑤𝑠 𝐶0 

 

𝑤𝑠 = ∑
1

𝐷
[𝑞

𝑜
𝑎4(

4

𝑚5𝜋5
+ 𝐴𝑚 cosh (

𝑚𝜋𝑦

𝑎
)

∞

𝑚=1

+ 𝐵𝑚 (
𝑚𝜋𝑦

𝑎
) sinh (

𝑚𝜋𝑦

𝑎
))sin (

𝑚𝜋𝑥

𝑎
)] 

 

(16c) 

The shape function 𝑤𝑠 is the linear solution of the plate in equation (12), and 𝐴0, 𝐵0, and 𝐶0 are 

unknown coefficients to be computed. Also, note that choosing only three unknowns 𝐴0, 𝐵0, and 
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𝐶0  in the assumed displacement functions, besides offering simplicity, has been proven to be 

sufficient to maintain the accuracy of the deflections for the cases investigated in the current study. 

Substituting the assumed displacement functions 𝑢, 𝑣, and 𝑤 in (16a), (16b), and (16c) into the 

total potential energy equation (15), and applying the principle of minimum potential energy or 

extrema of the functional, implies that the first variation of the functional is equal to zero in (17). 

This yields a system of three coupled non-linear algebraic equations in terms of the unknowns 

𝐴0 ,  𝐵0 , and 𝐶0  that can be generated by imposing the conditions in (18) for the case of the 

symmetric BRP plates:  

 

δΠ = 0 (17) 

 
𝜕𝛱

𝜕𝐴0
= 0 , 

𝜕𝛱

𝜕𝐵0
= 0 , and 

𝜕𝛱

𝜕𝐶0
= 0 (18) 

The Groebner basis package in Maple 2020 can then be employed for computing the reduced 

Groebner bases, which comprise a set of decoupled algebraic equations based on the set of coupled  

non-linear algebraic equations generated from (18). Since the determination of the lateral 

displacement 𝑤 is the focus the present investigation, the decoupled Groebner basis equations can 

be manipulated to have a basis equation that contains only one unknown coefficient C0 which can 

be solved directly. Then, all other unknown coefficients can be determined by substituting C0 into 

the other basis equations. With all constants determined, the analytical solutions for all the 

displacements are solved, and detailed parametric studies can be performed.  

Results and Discussion 

Symbolic solutions have been obtained for an isotropic rectangular BRP plate using the 

methodology presented in the previous section. The lateral displacement function 𝑤(𝑥, 𝑦)  is 

expressed in terms of the constant coefficient C0 with the assumed shape function. C0 is a function 

of the plate properties 𝐸, 𝜈, 𝑡, 𝑎, and 𝑏, the properties of the elastic beams 𝐸1 and 𝐼1, and the lateral 

pressure 𝑞(𝑥, 𝑦) = 𝑞
𝑜
. The fully symbolic solution is too long in length to include in this paper. 

However, a complete set of calculations for C0 expressed as a function of pressure for a given BRP 

plate is presented as an example in Appendix A.  

For demonstration purposes, and to show the effectiveness and accuracy of the calculated 

deflections for the BRP plates derived from symbolic solutions, the deflections 𝑤 versus pressure 

load 𝑞0 are presented below for rectangular plates having 10, 16, 22-gauge duct wall thicknesses 

and three types of beam reinforcements. In every instance E = 29,500 𝑘𝑠𝑖, 𝜈 = 0.3. The pressure 

loads 𝑞0 are systematically varied from 1 to 36 inch w.g. for all the cases. Figures 3(a), (b) present 

a comparison of the lateral displacements obtained using linear and non-linear analysis of plates 

having dimensions of 30 x 30 (in.  in.) and 15 x 30 (in.  in.), respectively. The non-linear 

solutions are carried out using 1-term, 3-term, and 5-term series. The resulting solutions show that 

the 1-term solution is sufficient to predict the non-linear deflection of the plates. It can likewise be 
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observed that significant differences occur between the linear and non-linear solutions as the 

pressure load increases. 

(a) 

(b) 

Figure 3. Comparison of linear and non-linear behaviors of the BRP plates for 10-gauge 

duct wall thickness with various dimensions (W x L)  
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Figures 4.(a)-(d) show a comparison of the lateral displacements calculated using non-linear 

analytical and numerical analyses of 10-gauge plates with various aspect ratios. The non-linear 

analytical solutions with 1-term, 3-term, and 5-term series exhibit close agreement with the 

numerical results calculated by ANSYS. The percent errors for deflection are in the range of 0.12% 

to 3.5%. Figures 5 and 6 demonstrate similar conclusions for the 16-gauge and 22-gauge plates. 

The maximum percent error for the lateral displacement is less than 5.6%, which occurred in the 

22-gauge plates.  

(a) 

(b) 
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 (c) 

(d) 

Figure 4. Comparison of non-linear analytical and ANSYS solutions of the BRP plates  

for 10-gauge with various dimensions (W x L)  
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(a) 

(b) 

Figure 5. Comparison of non-linear analytical and ANSYS solutions of the BRP plates  

for 16-gauge with various dimensions (W x L)  
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(a) 

(b) 

Figure 6. Comparison of analytical non-linear and ANSYS solutions of the BRP 

plates for 22-gauge with various dimensions (W x L) 
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Conclusions and Recommendations  

Conclusions 

 

A general procedure of using Groebner basis methodology combined with the energy method has 

been developed for non-linear analysis of thin rectangular beam-reinforced plates (BRP) with 

opposite edges simply supported and the other two edges supported by elastic beams. The 

procedure is fully implemented in Maple 2020. An analytical expression was obtained for the large 

transverse deflection of the plate derived by the proposed methodology. Parametric studies were 

carried out for the cases with varying geometrical properties of the plate and beams. The predicted 

maximum lateral deflections versus distributed pressure loads obtained with the analytical 

expression were compared with numerical results generated by using ANSYS. The results were 

found to be in very good agreement for non-linear analysis, with percent errors ranging from 0.12% 

to 5.6% for the cases examined. It should be noted that the lateral displacement function given in 

equation (16c) contained only one parameter, i.e., 𝐶0. All unknown coefficients in the assumed in-

plane and out-of-plane displacement functions can be represented fully symbolically in terms of 𝐸, 

𝜈, 𝑡, 𝑎, 𝑏, 𝐼𝑏, and 𝐸𝑏. Since these fully symbolic expressions for 𝑢, 𝑣, and 𝑤 can be prohibitively 

lengthy, to illustrate basic concepts the example shown in Appendix A provides an analytical 

expression of plate deflection in terms of pressure load for one particular case. It also shows the 

advantage of the analytical solutions as a convenient design tool to obtain preliminary deformation 

predictions effectively. Moreover, the results obtained from the current study indicated that the 

computational method of Groebner bases provides a unique alternative, worthy of further 

investigation, and is potentially effective for analyzing similar problems occurring in various 

engineering applications.  

 

Recommendations 

 

It is recommended that the following work be carried out: i) the procedure developed in this study 

can be extended to various loading cases including temperature or moisture effects, ii) BRP plates 

supported by different elastic foundations should be considered, and iii) it would be beneficial to 

add elastic torsional boundary conditions to the current BRP plate model along the simply 

supported edges to account for the effects of vertical panels to improve the prediction for the 

performance of whole duct systems.  

 

Appendix A.  

Presented below is the coefficient 𝐶0, the maximum displacement at the center of the BRP plates 

as defined in equation (16c), with material and geometrical properties of the given BRP plate as 

follows: 

 
𝐸 = 29,500 𝑘𝑠𝑖, 𝜈 = 0.3,   (Aa)  

 𝑎 = 30 𝑖𝑛. , 𝑏 = 30 𝑖𝑛. , 𝑡 = 0.1265 𝑖𝑛. , 𝐼 = 0.1374 𝑖𝑛.4  (Ab) 
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The calculated 𝐶0 below is for  non-linear analysis as defined in (Aa) and (Ab). As shown, 𝐶0 is 

an analytical formula of uniformly distributed pressure load 𝑞0: 

C0 = 6.277237608*10^(-103)*(1.342763994*10^282*sqrt(1.207055258*10^47*q0^2 + 

4.126884867*10^45) + 4.665124767*10^305*q0)^(1/3)/q0 - 

1.225488228*10^101/(q0*(1.342763994*10^282*sqrt(1.207055258*10^47*q0^2 + 

4.126884867*10^45) + 4.665124767*10^305*q0)^(1/3)) 

 

Figure A1(a) demonstrates the deflection from analytical solution of the plate at a given load 𝑞0 = 

10 w.g. in three dimensional, and Figure A1(b) shows the deflection as a function of x along the 

center line of the plate at y = 0 using a 1-term series and a 5-term series. It can be seen that 1-term 

and 5-term solutions are fairly close.  

 
(a)           (b) 

 

Figure A1 The deformation of the BRP plate (30 x 30) under 𝒒𝟎 = 10 w.g.  

(a) in 3-D; (b) along the center line y = 0 with 1-term and 5-terms series 

 

Figure A2 shows comparisons among analytical linear and non-linear, and Ansys solutions for the 

maximum deflections in terms of pressure load 𝑞0 from 1 to 36 inch w.g. The analytical solution 

in (16c) is a solution in series, therefore, 1-term, 3-term, and 5-term analytical non-linear solutions 

are also presented in Figure A2 for the specified BRP plate. It is observed that the percent error for 

the analytical solution compared to ANSYS results is within a range from 0.12% to 2.10%. 
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Figure A2. Comparisons among linear, non-linear analytical, and ANSYS solutions  

As an example, the data files and the calculated percent error are included as follows:  

1. The maximum deflections calculated from the formula (1-term series) in (16c) for the 

pressures 𝑞0 ranging from 1 to 36 in. w.g.  

Wmax:=[ 0.0115, 0.0227, 0.0429, 0.0602, 0.0749, 0.0875, 0.0985, 0.1084, 0.1172, 0.1253, 0.1328, 

0.1397, 0.1461, 0.1522, 0.1579, 0.1634, 0.1685, 0.1735, 0.1782] 

2. The center deflections computed by ANSYS for the pressures 𝑞0 ranging from 1 to 36 in. 

w.g.  

FE data:= [0.0113, 0.0222, 0.0422, 0.0597, 0.0744, 0.0872, 0.0981, 0.1081, 0.1171, 0.1255, 0.1332, 

0.1403, 0.1465, 0.1527, 0.1586, 0.1642, 0.1696, 0.1747, 0.1797] 

3. The percent error for the center deflection for the pressure 𝑞0 from 1 to 36 in. w.g.  

Error%:= [2.10, 1.99, 1.67, 0.92, 0.71, 0.37, 0.42, 0.27, 0.12, -0.14, -0.32, -0.41, -0.22, -0.32, -0.42, 

-0.51, -0.62, -0.72, -0.83] 
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Abstract

We extended PDS-FEM for simulating thermal conduction, thermal induced mechanical de-
formation and cracking of brittle elastic materials with the long-term objective of simulating
high-power LASER induced cracking in large concrete bodies. Taking a variational approach,
we derived the governing matrix equations for simulating the above phenomena using higher-
order PDS-FEM (HO-PDS-FEM). Due to the involvement of extreme temperatures in the target
long-term application, both the radiative and convective boundary conditions are taken into ac-
count. Implementation of static and transient thermal conduction are verified comparing with
analytical solutions, and thermal induced cracking is validated by comparing with experimental
observations of quenching induced cracking in a thin plate. As a preliminary assessment, cut-
ting of concrete block using a high-power LASER is simulated using a high-resolution mesh,
and the resulting crack patterns on surfaces are qualitatively compared. The comparison pro-
duced a satisfactory agreement indicating the developed numerical model can be used study
cracking induced by concentrated high energy sources like LASERS.

Keywords: thermal induced cracking, higher order particle discretization scheme, LASER cut-
ting, verification and validation

Introduction

Advancement of technologies in the demolishing industry is necessary to address the problems
like lack of environmentally safe technologies to demolish large structures such as troubled
nuclear power plants, high-rises in congested commercial districts of modern cities[1, 2]. De-
molishing massive containment buildings of troubled nuclear power plants using conventional
technologies can release a large amount of radioactive dust to the air causing environmental
problems and further deteriorating public trust in nuclear power. Also, the demolishing industry
requires new technologies usable in limited spaces to remove high-rise buildings in congested
commercial centers of metropolis. High-power LASERs are promising ultra-low-level dust
and sound producing alternative to progressively cut and remove thick concrete walls of NPPs
and reinforced concrete (RC) structures in congested cities[1]. High-power LASERS have al-
ready been considered promising method for the removal of the skin of concrete components
exposed to radioactive materials, when demolishing NPPs [2]. However, the removal of 1∼2
mm top layer of concrete surfaces can produce a large amount of dust causing environmental
concerns. A much lesser radioactive dust producing and convenient approach is to cut the struc-
ture into large chunks using high-power LASERs, and to transport them to a safe location for
safe recycling[1, 3]. Also, cutting into large chunks is a very convenient approach to demolish
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high-rises in congested cities. Ability to transmit long distance via fiber optics provides high
flexibility, which is very attractive when working in congested cities and harmful environments.
Extensive studies have to be conducted to access the viability and safety of using high-power
LASERs to demolish large structures. While extensive experiments have to be conducted to
explore how to use LASERs to cut several meters thick concrete bodies, the objective of this
paper is to develop a numerical model to simulate extensive cracks in concrete induced by the
concentrated energy from high-power LASERs.

Research on thermal shock induced failure of brittle materials has been of interest to the re-
searchers for many decades for a range of problems like quenching of ceramics to the fire safety
of concrete structure. Geyer et al.[4] have done an experimental study on thermally induced
parallel-edge cracks due to contraction of boundary layers during the cooling of a brittle ma-
terial. Bourdin [5, 6] has studied the variational approach to model fracture and extended the
study to model crack propagation during glass quenching. Jiang et al.[7] have performed a se-
ries of experimental and numerical studies on cracking pattern in ceramics subjected to thermal
shocks. Several researchers have reproduced Jiang et al.’s experiment[8, 9, 10]. Chu et al.
[11] have proposed an evolution equation using elastic energy density functions and studied the
dynamic crack propagation in brittle materials using a thermo-mechanical coupled phase field
model. The primary objective of this study has been to enhance the thermal stress analysis tech-
niques conventionally used to model cracking phenomena, which are not efficient in modelling
cracking of bulk 3D bodies. Recent advancements in the classical finite element method such
as enriched/extended FEM [12, 13, 14] have made it possible to accurately evaluate the crack-
tip stress field. However, the techniques introduced by these advancements are substantially
tedious and introduce a substantial computation cost.

Since our long-term objective of this study is simulating high-power LASER induced crack-
ing in large concrete bodies, as the base numerical method we choose Particle Discretization
Scheme FEM (PDS-FEM) which provides numerically efficient treatments for modeling crack
propagation in large scale models. PDS-FEM[15, 16, 18, 19] is designed to exploit FEM’s accu-
racy in modeling continuum and particle based method’s efficiency in modeling discontinuities.
A unique feature of PDS is the use of conjugate domain tessellations in the FEM framework;
one tessellation (e.g., Voronoi) is used for approximating functions, and the other tessellation
(e.g., Delaunay) for approximating the corresponding derivatives. Within a tessellation element,
corresponding variables (i.e., function or derivatives) are approximated as a linear combinations
of a suitable base functions with compact support in the tessellation element. As explained in
the next section, this introduces numerous discontinuities which are exploited by PDS-FEM to
numerically efficiently model propagating cracks. PDS-FEM has been applied to simulate var-
ious crack propagation phenomena including quasi-static, dynamic, high strain rates, frictional
interfaces and material non-linearity [17, 18, 20, 21].

We present the implementation of HO-PDS-FEM to analyze heat conduction, thermal induced
deformations and cracking in brittle elastic solids with their verification and validation. Section
2 briefly outlines the mathematical background of HO-PDS and its implementation into the
FEM framework to simulate heat conduction, thermal induced mechanical deformations and
cracking. The verification of static and transient heat conduction, and the validation of the
thermal induced cracking are presented in the section 3. For the validation, we numerically
reproduced a quenching experiment by Jiang et al.[7] and compared numerically obtained crack
patterns with those from the experiment. Section 4 compares numerically and experimentally
obtained crack patterns in a 50cm×10cm×10cm concrete bar as a preliminary evaluation of the
developed numerical model. The article is finally wrapped up with a summary in section 5.
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Mathematical Background
Higher Order PDS

As mentioned in the introduction, PDS uses conjugate tessellation pair Voronoi and Delaunay
to approximate a function and its derivatives. HO-PDS-FEM approximates the corresponding
variable (i.e., functions or derivatives) within a given tessellation element as a linear combina-
tion of suitable base functions which have compact support in their corresponding tessellation
elements. As an example, let {xα} and {xβ} be mother points of a set of Voronoi and Delaunay
tessellation elements {Φα} and

{
Ψβ
}

, respectively. Then, a function f(x) and its derivatives
f,i = ∂f

∂xi
can be approximated as

f(x) ≈ fd(x) =
∑
α,n

fαnPαn (1)

∇f(x) ≈ gd(x) =
∑
β,m

gβmQβm, (2)

respectively. Here, {Pαn} = {1, .., (x− xα)n−1}φα(x), {Qβm} =
{

1, .., (x− xβ)m−1
}
ψβ(x).

By minimizing the L2-norm of the errors Ef =
∫

Ω(f(x) − fd(x))2 dv, and Eg =
∫

Ω(g(x) −
f,di (x))2 dv, the set of coefficients {fαn}s’ and {gβn}s’ can be determined as

fαn =
|Pα|∑
n=0

(Iαnn′)−1
∫

Φα
Pαn′

f(x)dv (3)

gβmi =
|Qβ |∑
m=0

wβmm
′
Nα∑
α=1

|Pα|∑
n=1

fαn
∫

Ψβ
(Pαn) ,iQβmdv

= wβmm
′
fαnhβαm

′n
i , (4)

where Iαnn′ =
∫

Φα P
αnPαn′dv, Jβmm′ =

∫
Ψβ Q

βmQβm′dv,wβmm′ =
(
Jβmm

′
)−1

, and hβαm
′n

i =∫
Ψβ Q

βm′
P,αni dv . Note that, in the rest of the paper, we use the Einstein’s summation notation

with respect to repeated subscripts or superscripts.

Modeling heat conduction

Consider a domain Ω occupied by a thermally isotropic solid, subjected to suitable boundary
conditions along the boundary ∂Ω. Thermal conduction of this domain is expressed by the
following strong form

ρcṪ −∇.q −H = 0, (5)

where q is the thermal flux vector, c is the specific heat of the material, T (xi, t) is the tem-
perature at a point xi ∈ Ω, t is the time, and H is the heat generated per unit volume at xi.
According to the Fourier’s model, the thermal flux vector for thermally isotropic material with
thermal conductivity κ is q = κ∇T .

Our PDS-FEM formulation for heat conduction is based on the following classical weak form
for heat conduction, where g(x) is an arbitrary function satisfying g(x̄) = 0 at x̄ ∈ ∂Ω, and n
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is the unit outward normal to ∂Ω.

W =
∫

Ω

(
ρc

dT
dt +∇.q −H

)
g(x)dv

=
∫

Ω

(
ρcṪ −H − q.∇g

)
g(x) dv +

∫
∂Ω

n.q g(x) d.s (6)

In the above, the last term, which represents boundary conditions, can be expressed it in terms
of radiative and convective boundary conditions as

∫
∂Ω

n.q g(x) ds =
∫
∂Ωq

gq̄ ds+
∫
∂Ωc

ghc (T − T∞) ds+
∫
∂Ωr

gσε
(
T 4 − T 4

∞

)
ds, (7)

where q̄ is the prescribed heat flux on ∂Ωq, T∞ is the temperature of the surrounding medium, hc
is the convective heat transfer coefficient, ε is the surface emissivity, and the Stefan-Boltzmann
constant σ = 5.67032 × 10−8Wm−2K−4. The last three integrals represents the thermal,
convective and radiative boundary conditions on ∂Ωq, ∂Ωc, and ∂Ωr, respectively. Additionally,
the essential boundary conditions T (x̄, t0) = T̄ are prescribed on ∂ΩT .

We approximate T using Voronoi tessellation as T ≈ ∑
α,n T

αnPαn and its derivative using
Delaunay tessellation as T,i≈

∑
β,m T

βm
i Qβm. According to Eq. 4, we can express the relation

between Tαn and T βmi as
T βmi = wβmm

′
Tαnhαβm

′n
i . (8)

Further, the variables H , q, and the parameters ρ, c are approximated using Voronoi tessella-
tion, while κ is approximated using Delaunay tessellation. Substituting these approximations
and g = gαnPαn to Eq. 6, we can obtain the HO-PDS-FEM approximation of the governing
equation as

0 =
(
ραcαIαnn

′)
Ṫαn

′ + K̂βαα′nn′
Tα

′n′ − Iαnn′
Hαn′

+Iαnn′

∂Ωq q̄
αn′ + Iαnn

′

∂Ωc h
α
c

(
Tαn

′ − Tαn′

∞

)
+Iα11

∂Ωrg
α1σεα

((
Tα1

)4
−
(
Tα1
∞

)4
)
, (9)

where the thermal conductivity matrix K̂βαα′nn′ = wβmm
′
hαβm̄ni κβδijh

α′βm̂n
i . For the sake of

simplicity, we approximated T 4 ≈ (Tα1Pα1)4.

Modeling mechanical and thermal induced deformation

When modeling the thermo-mechanical interactions, we consider only one-way coupling as-
suming the rate of mechanical deformation is too slow to produce any heat energy. Assume
that the material occupying the above considered domain Ω is linear elastic and subjected to
externally applied mechanical and thermal loading along the boundary ∂Ω. Let the initial tem-
perature of the domain be T (xi, t = 0) = T0, and ∆T = T − T0. We can express the thermal
induced strain εθij as
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εθij = α∆Tδij, (10)

where α is the coefficients of thermal expansion. For the sake of simplicity, we assume α to be
isotropic. The total strain εij consists of mechanical strain εMij and thermal strain εθij .

εij = 1
2 (ui,j + uj,i) = εMij + εθij. (11)

Since only εMij generates stress
σij = cijkl

(
εij − εθij

)
. (12)

Considering Lagrangian

L = 1
2

∫
ρu̇iu̇i − εijcijkl (εkl − 2α∆Tδkl) dv, (13)

and applying the Hamilton’s principle (i.e. δ
∫
Ldt = 0), we can obtain

∫
δuicijkl (εkl − α∆Tδkl)nj ds dt+

∫
δui

(
ρüi − cijkl (εkl − α∆Tδkl),j

)
dv dt = 0 (14)

In the above, the first term contains the natural boundary conditions, and the last contains the
desired strong form of the governing equations for deformation under thermal and mechanical
loading.

Substituting ui ≈
∑
α u

αn
i Pαn and ui,j ≈

∑
β u

βm
ij Q

βm to εij = 1
2 (ui,j + uj,i), εβmij and uαni can

be related as

εβmij = 1
2w

βmm′ (
hβαm

′n
j uαni + hβαm

′n
i uαnj

)
= wβmm

′
bβαm

′n
j uαni . (15)

Substituting the above approximated field variable into Eq. 14, it is straight forward to obtain
the governing linear set of equations for thermal induced mechanical deformations as;

0 =
(
Iαnn

′
ρα
)
üαn

′

i −Kβαnα′n′

ik uαn
′

k + wβmm
′
bβαm

′n
j cβijklε

θα′n′

kl Iβmα
′n′

(16)

where Iβmα′n′ =
∫

Ψ P
α′n′

Qβmdv, Kβαnα′n′

ik = wβmm
′
bβαmnj cβijklb

βαm′n′

l is the element stiffness
matrix. Note that repeated superscript β does not imply summation.

Modeling crack growth

The use of base functions with compact support within each Voronoi element produces numer-
ous discontinuities in any function approximation. It is the use of conjugate tessellation for
approximating derivatives which enables us to define bounded approximations for the deriva-
tives of this discontinuous function approximations. HO-PDS-FEM uses these discontinuties in
function approximation to numerically efficiently model propagating cracks or other discontinu-
ties. To elaborate, lets consider the Delaunay triangle with an infinitesimally thin neighborhood
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δΨβ

Ψβ

Figure 1: Infinitesimally thin neighborhood of any Voronoi boundary contains a disconti-
nuity.

δΨβ around the boundary of two neighboring Voronoi elements shown in Fig. 1. The term
hβαm

′n
j of Eq. 4 establishes the relation between the function and its derivatives, connecting the

discontinuous local function approximations over neighboring Voronoi elements. The evalua-
tion of hβαm

′n
j involves integrations over Ψβ and δΨβ as

hβαm
′n

j =
∫

Ψβ
QβmP,αn

′

j φαdv +
∫
δΨβ

QβmPαn′
φα,j dv. (17)

In the above, the last term represents the contribution to the derivatives from the discontinuities
of the function approximation along Voronoi boundaries. Using a conjugate tessellation (e.g.,
Delaunay) and utilizing the divergence theorem, PDS manages to find bounded contributions
from this discontinuity to the derivatives. Hence, one can model a discontinuity forming along
the boundary δΨβ by nullifying this last term, which is equivalent to dropping the contributions
to the derivative from the corresponding Voronoi boundary. Thus, all that is required to model
a propagating discontinuity in displacement and thermal fields is to drop the contributions from
any desired Voronoi boundaries and recalculate the corresponding element matrices. This PDS-
FEM’s numerical treatment to introduce a discontinuity does not require introduction of new
degrees of freedoms like in ordinary FEM, or complicated numerical treatments like in extended
FEM. The cost of this numerically light treatment for discontinuities is the lower accuracy of
crack tip stress or thermal gradient fields. However, as demonstrated in [16, 18], PDS-FEM
provides sufficient crack-tip accuracy for applications. This numerically light treatment enables
one to simulate growth of discontinuties in large scale 3D domains such as high-power LASER
induced cracking in large conceete structures.

Verification and Validation

This section presents the verification tests to check the correctness of the computer implementa-
tion, and a validation test to check the developed numerical scheme’s ability to reproduce ther-
mal induced cracking observed in the real-world. From here onward, PDS-FEM with the sets of
polynomial bases {Pαn} = {1}φα(x) and that with the sets

{
Qβm

}
= {1}ψβ(x) is referred as

the 0th-order PDS-FEM, and {Pαn} = {1,x− xα}φα(x), {Qβm} =
{

1, ..,x− xβ, (x− xβ)2
}
ψβ(x)

is referred as the 1st-order PDS-FEM.
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r1=2m

𝑇2
= 1000 K

𝑇1 = 300.15 K

(a) Circular hollow cylinder for the verifica-
tion of static heat conditions

(b) Spherical domain with convective boundary con-
dition for the verification of transient heat conditions

Figure 2: Problem settings for the verifications of the static and transient heat conduction.
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Figure 3: Accuracy and the rate of convergence for the static heat conduction test.

Verification of static heat conduction

We consider the circular hollow cylinder with inner radius 2m and outer radius 5m shown in Fig.
2a for the verification of static heat conduction. The temperature at the inner and outer surfaces
of the cylinder are set to 300.15K and 1000K. The values of Young’s Modulus, Poisson’s ratio
and thermal conductivity are 35 GPa, 0.20, 2.5 Wm−1K−1, respectively. The domain is modeled
with 2101201 tetrahedral elements and 375263 Voronoi elements.

Analytical and numerical solutions along radii shown in Fig. 3a indicate that the two solutions
are in good agreement, thus verifying the proposed scheme in quasi-static settings. Equation 18
shows the analytical solution for this problem from [23], where r is the distance from the center.

Further, the relative L2-norm of the error

√∫
(Tanalytical−Tnumerical)2dv√∫

(Tanalytical)2dv
shown in Fig. 3 confirms

that the numerical solutions produce expected rates of convergence. Specifically, the 0th-order
PDS-FEM produces the rate of convergence 1 and the 1st-order PDS-FEM produces that of 2.

(T1 − T ) ln(r2

r1
) = (T1 − T2) ln( r

r1
) (18)
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Figure 4: Accuracy and convergence of the transient thermal conduction test.

Verification of Transient Heat Conduction

For the verification of transient heat conduction, we use the spherical domain shown in Fig. 2b
with 5 cm radius. The Young’s modulus, Poisson’s ratio and density of the material are 35 GPa,
0.20, 2400 kgm−3, respectively. Thermal conductivity(k), convective heat transfer coefficient
(hc) and specific heat capacity(c) are 2.5 (Wm−1K−1), 12 (Wm−2 K−1 ) and 960 (Jkg−1K−1),
respectively. Convective boundary conditions are imposed using relation−κ∂T

∂r
= h(Tr,t−T∞),

the initial temperature is assumed to be 1000K, and the far-field temperature T∞ is set to be
300.15K. The domain is modeled with 92853 tetrahedral elements and 26186 Voronoi elements.
A forward Euler scheme has been employed for time integration with the time increment of
3.125 sec.

Our numerical results at different time steps are compared with the analytical solution given by
the following equation [22].

T (r, t)− T∞
Ti − T∞

=
∞∑
n=1

An
sin(λn r

ro
)

λn
r
ro

e−(λnr )2
αt, (19)

where An = 4(sinλn−λncosλn)
2λn−sin(2λn) , r is any point along a radius, and λn denotes the roots of the eigen

function 1−λncotλn = hr
k

. Figure 4a compares analytical and numerical solutions along a radial
direction, at a several time steps. The close agreement of the two solutions demonstrates that
our numerical implementation is accurate and maintains a high accuracy even after 8,960,000
time steps at intervals of 3.125 seconds. Further, the relative L2-norm of the error shown in
Fig. 4b indicates that the error is negligible and diminishes with time. Further, it shows that
the relative L2-norm of the error reduces when the domain is tessellated with finer elements.
The pair of number in the legend of Fig. 4b correspond to number of Voronoi and tetrahedral
elements, respectively.

Validation of thermal induced cracking

To validate the crack propagation functionality of the developed code, we numerically repro-
duced Jiang et al.’s quenching experiment[7] and compared the numerically and experimentally
obtained crack patterns, both qualitatively and quantitatively. In their experiment, Jiang et al.
heated a 1mm thick 99% Al2O3 plates of dimension 50 mm×10 mm×1 mm to different tem-
peratures and suddenly immersed it in a water bath at 20 ◦C (see Fig. 5). They repeated this
experiment 4 times with samples heated to T0 = 300◦C, 400◦C, 500◦C and 600◦C, and recorded
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Figure 5: 1mm thick Al2O3 plate subjected to convective boundary conditions.

the resulting crack patterns. In all their experiments, the top and bottom faces of dimensions
50×10 mm2 had been insulated such that convective heat loss occurred only from the surfaces
with 1 mm width.

We modeled the thin plate with 409900 tetrahedral elements and 136160 Voronoi elements, and
assigned convective boundary conditions on all the 1mm thick surfaces to mimic the loss of
heat to the water bath. Young’s modulus, Poisson’s ratio, density and surface energy density
of 99% Al2O3 are 370 GPa, 0.22, 3980 kgm−3 and 12.16 Jm−2, respectively [7]. Convective
heat transfer coefficient, specific heat capacity, thermal conductivity and coefficient of thermal
expansion are assumed to be 54500 Wm−2K−1, 880 Jkg−1K−1, 31 Wm−1K−1 and 7.5 ×10−6

K−1, respectively[7, 8].

Compared to the speed of stress waves, the propagation of heat is several orders of magnitudes
slower. Further, stress waves emitted by propagating thermal cracks carry a negligible amount
of energy. Hence, only the thermal diffusion (i.e., Eq. 9) is simulated as dynamic process, while
the mechanical deformation is simulated as a quasi-static process (i.e., the inertia term in Eq. 16
was neglected ). A forward Euler scheme with time increment 0.1 µs was used for simulating
the thermal diffusion.

Though J-integral based criterion is preferred in simulating crack propagation, we opted for
maximum principle stress based criterion due to its simplicity and lower numerical overhead.
Further, our use of parallel computing to reduce the computational time makes it somewhat
complicated to implement J-integral based criterion. Hence, all the crack propagation simula-
tions presented in this paper use principle stress based failure criterion (i.e., if the maximum
principle stress of an element is larger than the tensile strength of the material, the Voronoi
boundary with the normal closest to the maximum principle direction is broken as explained in
the previous section).

Figure 6 compares the numerically obtained crack patterns with those from Jiang et al.’s ex-
periment. The cracks grow perpendicular to the boundaries. It is clearly visible that higher
initial temperatures produces longer cracks and closer crack spacing. Qualitative comparisons
of length and spacing of the cracks show that the numerically obtained crack patterns are in
reasonably good agreement with those from the experiment.

To quantitatively compare the results from different samples, Jiang et al. have classified the
cracks into three groups as shorter cracks, middle cracks and longer cracks, according to the
criterion given in Table 1. Further, they have ignored the cracks shorter than 0.25 mm in the
observations of the T0 = 300◦C sample, and ignored the cracks shorter than 0.125 mm in the
remaining samples. We used the same classification and compared the numerically obtained
crack patterns with those from Jiang et al.’s experiment.

Statistics of the quantitative comparison shown in Fig. 7 show that the numerically obtained
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T Shorter Middle Longer
300◦C lcr ≤1.1 1.1< lcr <3.4 lcr ≥3.4
400◦C lcr ≤0.55 0.55< lcr <1.75 lcr ≥3.9
500◦C lcr ≤0.5 0.50< lcr <1.65 lcr ≥4.05
600◦C lcr ≤0.4 0.40< lcr <1.4 lcr ≥4.1

Table 1: Jiang et al.’s classification of cracks[7]. lcr is crack length.

(a) T = 300◦C (b) T = 400◦C

(c) T = 500◦C (d) T = 600◦C

Figure 6: Crack patterns after thermal shocks. (Upper figure is from simulation and lower
is from experiment.)

crack patterns are in reasonably good agreement with the experimental observations. This rea-
sonable agreement of both qualitative and quantitative comparisons demonstrate that the devel-
oped numerical model is capable of simulating thermal induced cracking of brittle materials.

Thermal Cracking of Concrete

As a preliminary assessment of the developed system’s fitness for simulating high-power LASER
induced cracking in bulk concrete, we numerically reproduced a LASER cutting experiment we
conducted at an industrial facility. Unlike the experiment reproduced in the previous section,
this experiment involves highly concentrated heat sources, radiative and convective boundary
conditions and heterogeneous materials. Further, it involves diffusion of water, evaporation and
condensation inside concrete capillaries. However, we did not include any of these water related
phenomena in the current study.

In this preliminary assessment, we consider an experiment conducted on an RC block with
dimensions 50 cm×10 cm×10 cm, and two reinforcement bars of diameter 36mm (see Fig. 8).
The numerical model consists of three materials; cement mortar, aggregates, and steel. The total
number of aggregates are determined according to their volume fraction in ordinary concrete.
Aggregates are assumed to be spherical inclusions of diameter 20mm and distributed randomly.
We used a highly refined model with 12 million Delaunay and 2 million of Voronoi elements.
These numbers are chosen such that a resulting Voronoi elements have a size of 3mm such that
a volume of a Voronoi element is closer to 3∼4 sand particles. We assume all the three materials
to be linear elastic, and Table 2 provides their mechanical and thermal properties. The surface
emissivity ε, surface energy and the convective heat transfer coefficient hc of the RC block are
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Figure 7: Statistics of the transient problem.

set to 0.9, 97.5 Jm−2 and 19.73 Wm−2K−1, respectively.

In the experiment, the high-power LASER melted the concrete in the vicinity of the LASER
beam, creating a 10∼15 mm wide cut through concrete block. The melted concrete flowed as a
highly viscous fluid. Due to the extreme conditions (above 2000◦C), it was impossible to take
any measurements of conditions inside the cut. The melting process makes it difficult to use
thermal flux boundary conditions. We made use of the fact that the concrete LASER contact
region always consists of melts of the material, and model the LASER beam as a straight thin
beam of 2 mm radius with temperature equal to the melting temperature of concrete. The red
line in Fig. 8 shows the position of the LASER beam at the start (i.e. t=0 s). This high
temperature zone is moved vertically through the sample at a speed of 6 mms−1 to mimic the
target LASER speed.

(a) different volume inclusions in the mesh (b) imposed boundary conditions

Figure 8: Geometric and boundary condition details for numerical simulation.
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Cement paste Aggregate Reinforcement
Young’s modulus E (GPa) 17.5 50 200

Poisson’s ratio ν 0.1 0.35 0.30
Density ρ (kgm−3) 2201 1076 8050

tensile strength σt (MPa) 2.25 3 400
Thermal conductivity k (Wm−1K−1) 2.43 2.75 50.2
Specific heat capacity c (Jkg−1K−1) 1040 850 510

Coefficient of thermal expansion α (K−1) 15 7 11

Table 2: Properties of concrete constituents

Results and Discussion

Figure 9 shows the simulated crack patterns, while Fig. 10 shows crack patterns obtained from
a set of experiments. Overall, the numerical crack pattern is in a reasonable agreement with the
experiment. The large cracks extending vertically through the sample up to the top surface are
clearly visible in both the numerical and experimental results (see Fig. 9(a), Fig. 10(a) and (b)).
In most of the experiments, we observed that these vertical cracks nearly split the sample into
two. Several large cracks, some of which even when reaching the top surface, are clearly visible
around the reinforcement bars both in the experiment and the simulation. These crack around
the reinforcements are induced due to the high thermal conductivity of reinforcement bars and
uneven thermal expansions of reinforcement bars and concrete. In the simulation, a significant
amount of cracks have appeared in the vicinity of the LASER beam due to the constant presence
of the heat source inducing high thermal stresses. Though not that many, a number of similar
cracks of hairline openings were observed in the experiment. It is further observed that concrete
has cracked along the horizontal line joining both reinforcement bars. However, such horizontal
cracks were observed only in the experiments with 4 reinforcement bars. Though fully grown
horizontal cracks were not observed in the samples with 2 reinforcement bars, initiation of such
cracks was visible near the reinforcement bars (see the vicinity of the left reinforcement of Fig.
10(b)).

The above is only a qualitative comparison based on naked eye observations of the sample
surface. Naked eye observations of surface cannot uncover any cracks within the sample and
even our observations may have failed to identify hairline cracks on the surface. Hence, in
the future, reliable quantitative comparisons have to be conducted by comparing the numerical
results with CT scans of the samples from the experiments.

Concluding Remarks

We presented an extension of HO-PDS-FEM to simulate heat conduction, thermal induced me-
chanical deformation of brittle elastic solids and cracking. Convective and radiative boundary
conditions are included in the formulation since the samples can be heated to extreme tem-
peratures (e.g. above 2000◦C) during the target high-power LASER cutting of concrete. Our
verification tests for static and transient heat conduction produced excellent agreement with
analytical solutions, demonstrating the accuracy of the implemented code. Simulations with
0th-order and 1st-order PDS-FEM produced the expected 1st-order and 2nd-order convergence
rates, respectively. Further, reproducing an experiment by Jiang et al., we validated that the
developed model could reproduce the real-world observations.

Crack patterns induced in an RC block by a moving high-power LASER beam was simulated as
a preliminary application of the developed numerical scheme. A high fidelity mesh (total of 12
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(a) cracks on top and left faces (b) cracks on the bottom and right faces

Figure 9: Simulated crack patterns in a RC sample due to a moving source of high tem-
perature.

(a) cracks on top surface (b) cracks around the reinforcements

Figure 10: Crack patterns observed in an experiment.

million elements) consisting of randomly distributed aggregates, steel reinforcement bars and
cement matrix is used with the aim of accurately capturing the crack patterns. Naked eye com-
parison shows that the simulated crack patterns (directions and locations) are in good agreement
with those of experiment. We plan to conduct quantitative evaluation of the numerical results
by comparing with the CT scans of the experimental samples.
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Abstract

We propose a novel algorithm for integrating the standard rate form of plasticity in which the
state variables are gradually returned onto the yield surface by a series of implicit plastic correc-
tion stages. Its features are discussed in relation to the Closest Point Projection Method (CPPM)
and the Cutting Plane Method (CPM). As in CPPM, it is straightforward to derive a consistent
tangent operator for the proposed method. Like in CPM, it uses the successive linearization
of the yield function about the current state to evaluate the state variables. The proposed inte-
gration method can be easily implemented in existing finite element analysis frameworks since
the required first and second order derivatives are similar to those required in CPPM. Several
numerical tests are performed using von Mises plasticity and linear hardening rules. Single ma-
terial point tests reveal that the proposed algorithm provides near identical stress remapping to
that of CPM and CPPM. For the classical perforated sheet benchmark with both linear isotropic
hardening and linear kinematic hardening, CPM, CPPM and the proposed methods produce
near identical results. For the combined hardening, a slight disparity between the results from
CPPM with the other two methods is observed. Further, the multi-element tests demonstrate
that the consistent tangent operator of the proposed method is on par with that of CPPM.

Keywords: plasticity; integrating the rate form; consistent tangent operator; von Mises;

1 Introduction

Recent advances in computing has made large scale simulations involving nonlinear analysis a
reality. Search for novel algorithms for nonlinear problems can contribute to optimally utilizing
the available computational resources by choosing suitable algorithm according to the simulated
phenomena and the computer hardware. One such nonlinear problem is classical plasticity.
Dependig on the required accuracy, involved phenomena, stability, parallel computing model,
etc. we can choose a suitable algorithm for integrating the rate-form of classical plasticity from
a number of algorithms available. Scalet and Auricchio [1] provides an excellent summary of
such classical and less classical methods used for stress integration.

Closest Point Projection Method (CPPM)[2] and the Cutting Plane Method (CPM)[3] are the
most popular classical algorithms used to predict the evolution of state variables such as stresses
and plastic internal variables. The earliest ideas about CPPM were set forth by Wilkins [2] and
subsequent contributions by several others have made this implicit algorithm, a very capable,
accurate, albeit a relatively computationally costly numerical integration scheme. The CPM
on the other hand, which was introduced by Ortiz and Simo [3], is an incomplete implicit al-
gorithm which follows the path of the steepest descent [4] to arrive at estimates for the state
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variables during plastic deformations. Summarily, it could be said that for state variable remap-
ping, CPPM is computationally costly due to its reliance on the second order derivatives for
stress integration procedure, and CPM, in this regard, is computationally inexpensive. CPPM
uses a residual based approach to estimate the remapped stresses while CPM utilizes succes-
sive linearization of the yield functions at the current state to estimate the plastic consistency
parameter, thereby updating the state variables.Though computationally expensive CPPM is
unconditionally stable, while computationally light CPM is not.

In this study, having observed these classical methods, an attempt has been made to introduce
an implicit numerical integration scheme for rate independent plasticity, in which the state vari-
ables are gradually returned onto the yield surface by a series of implicit plastic correction
stages. Similar to CPM, in the proposed method, the state variables are evaluated by the suc-
cessive linearization of the yield function about the current state. For state variables remapping,
the proposed scheme also require second order derivatives, like in CPPM. However, the solu-
tion strategy is marginally lower in terms of computational cost to that of CPPM, per iteration
basis, for state variables remapping excluding the evaluation of the consistent tangent operator.
On the other hand, the proposed framework requires iterative update of elasto-plastic tangent
operator during material point iterations unlike in CPPM, which is evaluated only once during
material point iterations. However, the overall computational efficiency depends not only on
the computational cost for each of the material point iterations, but also on the accuracy of
the elasto-plastic tangent operator and how accurate a prediction can be made regarding the
evolution of state variables during material point iterations.

A brief summary of the classical theory of plasticity [5, 6] which is the basis for all of the three
stress integration algorithms, CPPM, CPM and the proposed method is presented in section 2.
The stress integration algorithms and the elasto-plastic tangent operators of CPPM, CPM and
the proposed method and a comparison of their features is presented in section 3. In this paper,
von Misses plasticity is used to study the accuracy and the performance of the newly minted
proposed stress integration algorithm with its consistent tangent operator, in relation to CPPM
and CPM methods. The verification problems considered and the results with a comparison are
presented in section 4.

We use ḟ to denote the time derivative of the quantity f and when quantities are represented
with two superscripts separated by a comma, i.e. (.)p,k, the first superscript p denotes the state
whereas the second superscript k denotes the material point iteration.

2 Classical Flow Theory of Plasticity

We consider classical flow theory [5, 6] based rate independent infinitesimal elasto-plastic de-
formations of an isotropic continuum subjected to suitable Dirichlet and Neumann boundary
conditions prescribed as a function of time t ∈ R+. The linearized Green strain tensor for the
induced infinitesimal deformation field u is defined as

ε = ∇symu (2.1)

Following Coleman [7], the history dependence of stress is quantified as

σ = σ (ε,κ) , (2.2)

where the internal plastic variable κ consists of hardening parameters such as the size of the
yield surface (isotropic hardening) and translation direction of the yield surface (back stress
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in kinematic hardening). Further, we assume that that following assumptions of the classical
plasticity theory hold true.

1. Additive decomposition ε = εe+εp, where εe and εp are elastic and plastic contributions.

2. σ = C : εe, where C is the fourth order elastic tangent tensor. This implies

σ̇ = C : (ε̇− ε̇p) . (2.3)

3. The stress should always satisfy φ (σ,κ) ≤ 0, where φ (σ,κ) is a suitable convex scalar
function known as the yield criterion. Material behaves elastically when φ (σ,κ) < 0
and plastically when φ (σ,κ) = 0.

4. The evolution of ε̇p and κ̇ are defined by

ε̇p = λ̇m

κ̇ = λ̇A(σ,κ, εp)
(2.4)

where λ̇ (≥ 0) is the plastic consistency parameter,m = ∂ψ
∂σ

is the flow vector specifying
the direction of the plastic flow (where ψ is the plastic potential surface and for associa-
tive flow rules ψ = φ), and A(σ,κ, εp) is the generalized form of hardening modulus.
Furthermore, we can impose the consistency condition that λ̇φ̇ = 0 and Kuhn–Tucker
complementary conditions that λ̇ ≥ 0, φ ≤ 0, λ̇φ = 0 on the consistency parameter,
λ̇ and yield criterion, φ.

3 Stress Integration Algorithms and Elasto-plastic Tangent Operators

Due to their non-linear nature, numerical schemes are required to integrate the governing rate
forms of plasticity given by the Eqs. 2.3, and 2.4. Most of the available numerical methods
make different approximations for these rate forms to obtain numerical schemes with different
properties. In this section, we present the formulations of the widely used CPM and CPPM, and
a novel fully implicit return mapping stress integration algorithm in which the state variables
are gradually returned onto the yield surface by a series of implicit plastic correction stages.

For nonlinear finite element analysis using Newton-Raphson method, a material tangent opera-
tor is required to compute the element stiffness matrix. There are two tangent operators, such
as the continuum tangent operator and the consistent tangent operator. The continuum tangent
operator is constructed by making use of the satisfaction of the plastic consistency condition
stated in section 2, while the consistent tangent operator is consistent with the algorithm that
is used to compute the state variables. While the continuum tangent operator can be used as
the elastoplastic tangent modulus / operator in any numerical integration scheme, the consis-
tent tangent operator may not be available for some integration schemes. In this study, we also
present the formulation of a consistent tangent operator for the proposed algorithm. .

The non-linear nature of plastic deformation problems requires two levels of iterative solving us-
ing suitable numerical schemes; global-level iterations using a scheme such as Newton-Raphson
to determine displacement field of the domain, and material-level iterations to determine the re-
sulting state of stress using a scheme such as CPPM. In the following discussion, we assume that
we are at the (k+ 1)th material-level iteration of the (n+ 1)th load step (global-level iteration).
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3.1 Cutting Plane Method (CPM)

The main characteristic of CPM is that it express all the state variable as a function of the plastic
consistency parameter ∆λ (i.e., σ = σ(∆λ) and κ = κ(∆λ)) and linearizes φ with respect to
∆λ around the current state (i.e. σk and κk).

CPM approximates σk+1 and κk+1 as

σk+1 =

σe = σn + C : ∆ε if k = 0
σk −∆λC : mk if k > 0

κk+1 =

κn if k = 0
κk + ∂κ

∂∆λ

∣∣∣k δλ if k > 0,

(3.1)

and expresses φ as a function of state variables at unknown state as φ
(
σk+1 (∆λ) ,κk+1 (∆λ)

)
=

0. To iteratively solve this nonlinear function, CPM linearizes φk+1 around the the current state(
σk,κk

)
as

φk+1 ≈ φk +
 ∂φ

∂σ

∣∣∣∣∣
k

: ∂σ

∂∆λ

∣∣∣∣∣
k

+ ∂φ

∂κ

∣∣∣∣∣
k

: ∂κ

∂∆λ

∣∣∣∣∣
k
 δλ = 0. (3.2)

Accordingly, δλ is determined as

δλ =
 ∂φ
∂σ

∣∣∣∣∣
k

: C : mk − ∂φ

∂κ

∣∣∣∣∣
k

: ∂κ

∂∆λ

∣∣∣∣∣
k
−1

φk (3.3)

and the state variables are updated as

σk+1 = σk + ∂σ

∂∆λ

∣∣∣∣∣
k

δλ

κk+1 = κk + ∂κ

∂∆λ

∣∣∣∣∣
k

δλ.

(3.4)

The above two steps are repeated until a suitable convergence criteria are met. Figure 3.1a
depicts the stress return (mapping) during local (material level) iterations when CPM is used
for numerical integration.
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(a) CPM (b) CPPM (c) Proposed algorithm

Figure 3.1: Stress return mapping during CPM, CPPM and the numerical integration

The continuum tangent operator, which is generally used with CPM [4], is given by,

Cep = C− (C : m)⊗ (n : C)
n : C : m+ Kp , (3.5)

where n = ∂φ
∂σ

and Kp = − ∂φ
∂κ

: ∂κ
∂∆λ

. A consistent tangent operator was introduced later to
CPM by Starmen et al. [8] which is not considered in this paper.

3.2 Closest Point Projection Method (CPPM)

The earliest ideas pertaining to CPPM were suggested by Wilkins [2] for von Misses plasticity.
Since then, various extensions such as application to linear isotropic and kinematic hardening
[9], nonlinear hardening [10] have been added to CPPM. CPPM is well reputed for its accuracy,
robustness and stability [4]. In contrast to CPM, CPPM regards the σ, κ and∆λ as independent
variables.

CPPM is based on the following approximations for the rate forms given by Eqs. 2.3, and 2.4.

σk+1 =

σe = σn + C : ∆ε if k = 0
σe −∆λk+1C : mk+1 if k > 0

κk+1 =

κn if k = 0
κn + A

(
σk+1,κk+1, ∆λk+1

)
if k > 0

(3.6)

The above expressions are nonlinear since the right hand sides are expressed in terms of the
unknown state variables σk+1, κk+1 and ∆λk+1. CPPM obtains an iterative scheme to solve
these nonlinear equations based on the following residuals.

rk+1
σ = σk+1 −

[
σe −∆λk+1C : mk+1

]
rκ

k+1 = κk+1 −
[
κn + A

(
σk+1,κk+1, ∆λk+1

)]
(3.7)

rk+1
φ = φ

(
σk+1,κk+1, ∆λk+1

)
Taking Taylor expansion about the solution at kth iteration, ignoring higher order terms, and
setting the residuals r(.)

(
σk+1,κk+1, ∆λk+1

)
= 0, we can obtain the following linear set of

equations for δσ, δκ, and δλ, which are the incremental updates of σ, κ, and ∆λ, respectively.
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Note that we drop the superscripts and subscripts for convenience, and all the terms in the right
hand sides are evaluated at the solution of kth iteration. Here, Isym is the fourth order major
symmetric identity tensor.


δσ

δκ

δλ

 = −


Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ
C : m

−∂A
∂σ

Isym − ∂A
∂κ

− ∂A
∂∆λ

∂φ
∂σ

∂φ
∂κ

0


−1

rkσ
rkκ
rkφ

 (3.8)

Solving the above, we can incrementally update the state variables σk+1, κk+1 and ∆λk+1

as follows until requisite convergence criteria are met. Figure 3.1b depicts how the stress is
updated by the CPPM’s return mapping iterations.

σk+1 = σk + δσ
κk+1 = κk + δκ

∆λk+1 = ∆λk + δλ

(3.9)

Differentiating Eq. (3.6) and the yield criterion with respect to∆ε, we can obtain


∂σ
∂∆ε
∂κ
∂∆ε
∂∆λ
∂∆ε

 =


Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ
C : m

−∂A
∂σ

Isym − ∂A
∂κ

− ∂A
∂∆λ

∂φ
∂σ

∂φ
∂κ

0


−1 

C
0
0

 . (3.10)

The consistent tangent operator ∂σ
∂∆ε

for CPPM can be found by solving the above at the con-
verged state variables.

3.3 Proposed Method

As explained above, CPPM treats σ, κ and∆λ as independent variables, while CPM treats only
∆λ as the independent variable. Both the methods express φ as a function of the corresponding
independent state variables at the (k+ 1)th iteration, which are unknown. To solve the resulting
nonlinear equations, both the methods linearize sufficient number of fundamental expressions.
CPPM consisting of several independent variables, obtains three sets of linear equations by
linearizing the residues rσ and rκ given by Eq. 3.7 and φ, about σk, κk. On the other hand,
since CPM has only one variable, ∆λ, linearization of only φ about σk, κk produces sufficient
number of equations. CPM is known to be less stable, compared to the unconditionally stable
CPPM. While CPM uses a single constraint (equation) in the stress integration, the proposed
method imposes equal number of constraints to that of CPPM on the state variables and the
yield criterion by way of evaluating ∂σ

∂∆λ and ∂κ
∂∆λ of Eq. 3.2 at the unknown (k + 1)th state, in

addition to ∂φ
∂∆λ , thereby increasing the number of quantities evaluated at the unknown (k+1)th

state to that of CPM.

The proposed algorithm relies on the fact that the rates of stress (σ̇), back stress (α̇) and plastic
strain (ε̇p ) can be expressed as a function of λ̇ during plastic deformation. Expressing σ̇, α̇ and
ε̇pas a function of λ̇, we can obtain the following incremental forms of Eqs. (2.3), and (2.4).
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σk+1 =

σe = σn + C : ∆ε if k = 0
σk −∆λC : mk+1 if k > 0

κk+1 =

κn if k = 0
κk + A

(
σk+1 (∆λ) ,κk+1 (∆λ)

)
if k > 0

(3.11)

Using Taylor expansion, we obtain a first order approximation about the current state, (.)k for
the yield function φ

(
σk+1 (∆λ) ,κk+1 (∆λ)

)
= 0 as

φk+1 ≈ φk + ∂φ

∂∆λδλ

0 = φk +
 ∂φ

∂σ

∣∣∣∣∣
k

: ∂σ

∂∆λ + ∂φ

∂κ

∣∣∣∣∣
k

: ∂κ

∂∆λ

 δλ. (3.12)

The above expression for ∂φ
∂∆λ and the partial differentiation of Eqs. (3.11) and (3.12) with re-

spect to ∆λ provide the following linear set of equations which can be solved for the unknowns
∂σ
∂∆λ , ∂κ

∂∆λ
and ∂φ

∂∆λ .


∂σ
∂∆λ
∂κ
∂∆λ
∂φ
∂∆λ

 =


Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ
0

−∂A
∂σ

Isym − ∂A
∂κ

0
∂φ
∂σ

∂φ
∂κ

−1


−1 

−C : m
∂A
∂∆λ

0

 (3.13)

δλ = −
(
∂φ

∂∆λ

)−1

φk (3.14)

Once ∂φ
∂∆λ is found, δλ can be found using Eq. (3.14), and the state variables can be updated as

σk+1 = σk + ∂σ

∂∆λδλ

κk+1 = κk + ∂κ

∂∆λ
δλ

∆λ = 0 + δλ = δλ,

(3.15)

until suitable convergence criteria are met.

Comparison of Eqs. 3.8 and 3.13 shows that the components in their right hand sides are
identical, except the CPPM’s residuals. In that respect, each material-level iteration of CPPM
and the proposed method requires identical computational effort. The properties of the last
column and row of the Eq. (3.13) allow us to uncouple and solve the linear system as two
independent systems for

{
∂σ
∂∆λ

∂κ
∂∆λ

}T
and ∂φ

∂∆λ , which slightly reduces the computational
effort compared to CPPM.

The novel proposed algorithm preserves the characteristics of CPM that it successively lin-
earizes the yield function at the current state to first estimate plastic consistency parameter
using the derivatives of the state variables with respect to the plastic consistency parameter and
then update the state variables. A pseudo code for the proposed algorithm is given in Algo-
rithm 1, and Fig. 3.1c depicts the updating of stress during the return mapping iterations of the
proposed algorithm.
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Algorithm 1: A pseudo code of the proposed algorithm. η(.) is a suitable small number to
check the convergence of the quantity (.).
input :∆εn+1
output:∆εen+1: elastic portion of∆εn+1

κn+1: plastic internal variables
σn+1: state of stress after (n+ 1)th global-iteration
∂σ
∂∆ε

∣∣∣
n+1

: consistent tangent operator

// Elastic predictor
∆εen+1 = ∆εn+1; σ0 = σn + C : ∆εen+1; κ0 = κn;

if (φ (σ0,κ0) < 0) then // Check whether yielded
σn+1 = σ0; κn+1 = κ0; ∆εen+1 = ∆εn+1;
return;

else
// Initialize state variable for the iteration k = 1
∂σ
∂∆λ = −C : m0; ∂κ

∂∆λ
= ∂A

∂∆λ

∣∣∣0 ;

δλ =
(
∂φ
∂σ

∣∣∣0 : ∂σ
∂∆λ −

∂φ
∂κ

∣∣∣0 : ∂A
∂∆λ

)−1
φ (σ0,κ0) ;

σ1 = σ0 + ∂σ
∂∆λδλ; κ1 = κ0 + ∂κ

∂∆λ
δλ; ∆λ = 0 + δλ = δλ;

k = 1;

// Successively linearize φk+1 = φ(σk+1,κk+1) and update the state
variables

do  ∂σ
∂∆λ
∂κ
∂∆λ

 =
 Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ

−∂A
∂σ

Isym − ∂A
∂κ

−1  −C : m
∂A
∂∆λ

 ;

δλ = −
(
∂φ
∂σ

∣∣∣k : ∂σ
∂∆λ + ∂φ

∂κ

∣∣∣k : ∂κ
∂∆λ

)−1
φk;

// Update the state variables
σk+1 = σk + δσ; where δσ = ∂σ

∂∆λδλ;
κk+1 = κk + δκ; where δκ = ∂κ

∂∆λδλ;
∆λ = δλ;
k = k + 1; // increment the iteration index

while
((
φk ≤ ηφ

)
or (δσ < ησ) or (δκ < ηκ))

σn+1 = σk; κn+1 = κk;
return;
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Consistent Tangent Operator

By differentiating the set of equations given in Eq. (3.11) and the yield criterion with respect to
∆ε, we can obtain,


∂σ
∂∆ε

∣∣∣k+1

∂κ
∂∆ε

∣∣∣k+1

∂∆λ
∂∆ε

∣∣∣k+1

 =


Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ
C : m

−∂A
∂σ

Isym − ∂A
∂κ

− ∂A
∂∆λ

∂φ
∂σ

∂φ
∂κ

0


−1 

∂σ
∂∆ε

∣∣∣k
∂κ
∂∆ε

∣∣∣k
0

 (3.16)

The components of the inverted matrix in the right hand side are also evaluated using the state
variables obtained at the end of the (k + 1)thiteration (i.e., the latest completed material-level
iteration). The above recursive relation is repeatedly applied at the end of each material-level
iteration, and the ∂σ

∂∆ε
obtained at the end of converged material-level iteration is the consistent

tangent operator of the proposed algorithm.

While CPPM requires solving Eq. (3.10) only once at end of converged material-level itera-
tions, the proposed requires recursively solving Eq. (3.16) at the end of each material-level
iteration. This extra amount of computational effort is one major disadvantage of the proposed
method compared to CPPM. As it will be demonstrated in the next section, both the CPPM
and the proposed methods require the same number of global-level iterations indicating that the
consistent tangent operators of both the methods perform equally.

3.4 Comparison of the Proposed Algorithm with CPPM and CPM

From the formulation of the proposed integration scheme, we can establish the main features of
the proposed integration scheme as,

• All three stress integration algorithms are implicit in the sense that in all three algorithms
the unknown variables are evaluated at the unknown state.

• Uses satisfaction of implicit constitutive relations (Eq. (3.11) and φk+1 = 0) to arrive at an
estimate for the plastic consistency parameter in contrast to the residual based approach
used in CPPM. Successive linearization of the yield function around the current state
is used to estimate the plastic consistency parameter using the derivatives of the state
variables with respect to the plastic consistency parameter.

• Unlike in CPPM, the plastic consistency parameter is not continuously updated in the pro-
posed method. Like in CPM, the plastic consistency parameter is found at each iteration
separately and is not carried to the next iteration by additive updates.

• Like in CPPM, the first and second order derivatives of the yield surface and the plastic
potential surface are used during the stress integration whereas in CPM only the first order
derivatives are used.

• A consistent tangent operator is available for global iterations which has to be updated
iteratively unlike in CPPM where the consistent tangent operator is evaluated explicitly
at the end of successful convergence of the state variables. Therefore, the evaluation of
the consistent tangent operator in the proposed method at the end of each material level
iteration adds additional computational cost in comparison to CPPM.
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It is evident that there are key distinguishable features that separate the proposed integration
scheme from the veteran CPPM and CPM integration schemes. Further investigations are nec-
essary to establish the numerical stability and usability of the proposed scheme for generalized
plasticity models. In this paper, we consider the application of the proposed integration scheme
for limited use in the von Misses model.

4 Verification tests

In this section, the accuracy and convergence behaviour of the algorithm is assessed and com-
pared against CPPM and CPM, with two tests conducted using von Mises yield criterion. The
following form of the von Mises yield function is used in all of the numerical simulations pre-
sented in this section. Note that the Frobenius norm (‖.‖F ) of a second order arbitrary tensor,
A, is ‖A‖F =

√
A : A.

φ =
√

3
2 ‖s−α‖F − (σy,0 + AIe

p) (4.1)

Here, α is the back stress defined by Eq. (4.2) following Ziegler’s rule [11, 12],

α̇ = Ak (σ,α) ėp (σ −α) (4.2)

AK ,σy,0, and AI are kinematic hardening modulus (constant), initial yield stress, and isotropic
hardening modulus (constant). By virtue of setting different values for AK and AI , linear
kinematic hardening (AI = 0), linear isotropic hardening (AK = 0), and combined hardening
(AI , AK 6= 0) phenomena could be simulated. ep is the effective plastic strain which is a stress
integration algorithm dependent quantity and is defined as follows (here, ep is the deviatoric
part of plastic strain),

ep =
∫ t

0

√
2
3 ‖ė

p‖F dt (4.3)

For the proposed integration method, it follows from the incremental form representation of
plastic strain, εp,k+1 = εp +∆λmk+1, that (Here, d is the deviatoric part ofm),

ep,k+1 =

e
p
n if k = 0
epn +

√
2
3

∥∥∥ep,k +∆λdk+1
∥∥∥
F

if k > 0
(4.4)

Furthermore, we use the following incremental forms for back stress in each of the stress inte-
gration methods considered,

αk+1 =

αn if k = 0
αk + ∆λAK

σe

√
2
3

∥∥∥dk∥∥∥
F

Psd :
(
σk −αk

)
if k > 0,

CPM (4.5)

αk+1 =

αn if k = 0
αk + ∆λk+1AK

σe

√
2
3

∥∥∥dk+1
∥∥∥
F

Psd :
(
σk+1 −αk+1

)
if k > 0,

CPPM (4.6)

αk+1 =

αn if k = 0
AK

σe

√
2
3

∥∥∥ep,k +∆λdk+1
∥∥∥
F

Psd :
(
σk+1 −αk+1

)
if k > 0,

Proposed

(4.7)

ICCM2022, 25th-28th July 2022

195



Here, Psd = Isym − 1
3I ⊗ I is the fourth order isotropic tensor that converts any second-order

tensor into its symmetric-deviator form [13] and σe =
√

3
2 ‖s−α‖F .

Numerical tests are conducted for the following cases,

1. Single material point.

2. Uniaxial extension of a perforated sheet.

using all three stress integration algorithms CPPM, CPM, and the proposed method. The al-
gorithms were implemented in C++ with the matrix operations undertaken using the Eigen
library[14], a software library written in C++ for matrix computations.

4.1 Single material point

The accuracy of the proposed method is demonstrated using the semi-analytical solutions pro-
vided in Anandarajah [4] and Kim [15] for two problems, i.e., linear isotropic hardening and
combined hardening respectively. The two sets of material parameters used in the respective
problems are (Here, E is the modulus of elasticity and ν is the Poisson’s ratio),

1. Material 1: E = 200 GPa; ν = 0.3; AI = 20 GPa; AK = 0 MPa; σy,n = 0.25 GPa

2. Material 2: E = 2.4 GPa; ν = 0.2; AI = 70 MPa; AK = 30 MPa; σy,n = 300 MPa

For the linear isotropic hardening problem in Anandarajah [4] with the initial state, σn ={
0.1 0.05 0.075 0 0 0

}T
GPa and the applied strain increment,∆ε =

{
0.03 −0.028

0.01 0 00
}T

, Table 1 provides the remapped stresses obtained from the three numerical
integration schemes of interest. The results are compared against the semi-analytical solution
provided in Anandarajah [4] and the converged results obtained using CPPM by applying subin-
crements (using 1024 subincrements of the strain increment). The relative error in Table 1, ER,
defined by,

ER = ‖σnum − σref‖
‖σref‖

(4.8)

where σnum is the numerical integration result from the numerical integration without any
subincrementation and σref is the reference converged result obtained by applying CPPM using
subincrementation [16]. From the results, it is clear that no significant disparity exists between
the numerical integration results obtained from all three numerical integration schemes. Fur-
thermore, all stress integration algorithms took only a single material point iteration to produce
the following set of remapped results.
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Table 1: Remapped stresses comparison - Linear Isotropic Hardening (Units are in GPa)

Stress Integration Scheme
components Semi-Analytical Subincrements CPPM CPM Proposed

σ11 2.51333 2.51297 2.51333 2.51333 2.51333
σ22 1.53615 1.53596 1.53615 1.53615 1.53615
σ33 2.17552 2.17607 2.17552 2.17552 2.17552
σ12 0 0 0 0 0
σ13 0 0 0 0 0
σ23 0 0 0 0 0
ER 0.000185 - 0.000185 0.000185 0.000185

Kim [13] provides a combined hardening problem with σn =
{

300 0 0 0 0 0
}T

MPa

as the initial state and the applied strain increment,∆ε =
{

0.1 −0.02 −0.02 0 0 0
} T

.
Table 2 shows the remapped stresses obtained from the three stress integration algorithms in re-
lation to the semi-analytical solution provided in Kim [13] and the converged results obtained
using CPPM by applying subincrements (using 1024 subincrements of the strain increment).
From the results, it is evident that all three stress integration algorithms provide identical es-
timates for the remapped stresses. As in the previous case, here also only a single material
point iteration was utilized by each of the stress integration algorithms to produce the following
remapped stresses.

Table 2: Remapped stresses comparison - Combined Hardening (Units are in MPa)

Stress Integration Scheme
components Semi-Analytical Subincrements CPPM CPM Proposed

σ11 385.16129 385.16129 386.65972 386.65972 386.65972
σ22 77.41935 77.41935 76.67013 76.67013 76.67013
σ33 77.41935 77.41935 76.67013 76.67013 76.67013
σ12 0 0 0 0 0
σ13 0 0 0 0 0
σ23 0 0 0 0 0
ER 3.37× 10−14 - 0.004583 0.004583 0.004583

4.2 Uniaxial extension of a perforated sheet

The overall performance of the proposed integration scheme (specifically the consistent tangent
operator) is evaluated and compared with CPPM and CPM (with continuum tangent operator)
on an elastoplastic homogeneous thin square shaped perforated sheet. The square sheet mea-
sures 20 mm a side, a thickness of 1 mm with a central circular hole of radius 1 mm. Considering
the symmetry of the sheet, we model only a quarter of the sheet with the appropriate symmetric
boundary conditions (Fig. 4.1a). A structured mesh with 1024 × 3 8-node brick elements and
4356 nodes is used.

The sheet is subjected to a uniform distributed load of magnitude 400 N/mm2 applied perpen-
dicular to the top edge as shown in Fig. 4.1a according to the cyclic loading history given in
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Fig. 4.1b using load control. The total analysis time is 4.0 s with time step increments (∆t) of
0.1 s corresponding to 40 steps. We consider three three-dimensional problems using the same
mesh and boundary conditions, i.e., linear isotropic hardening, linear kinematic hardening, and
linear combined hardening. The set of material parameters used in the respective problems are
as follows,

1. Material 3: E = 206.9 GPa; ν = 0.29; AI = 10000 MPa; AK = 0 MPa; σy,0 = 450 MPa

2. Material 4: E = 206.9 GPa; ν = 0.29; AI = 0 MPa; AK = 10000 MPa; σy,0 = 450 MPa

3. Material 5: E = 206.9 GPa; ν = 0.29; AI = 5000 MPa; AK = 5000 MPa; σy,0 = 450
MPa

(a) Mesh and boundary conditions
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(b) Cyclic loading history Vs pseudo time

Figure 4.1: Three-dimensional perforated sheet.

We compare the three methods using the displacement measured at node A along the X - axis
direction(ux) during the loading and unloading cycles. We define time-step-wise percentage de-
viation (Er,dev%) metric as follows, which is used to illustrate the accuracy of a certain algorithm
with respect to the results from another reference stress integration algorithm.

Er,dev% = |dmethod − dref |
|dref |max

× 100% (4.9)

Here, dmethod is the displacement at a particular node obtained using the “method” (method
could be CPM, CPPM or Proposed) stress integration algorithm at a particular pseudo time step
where as dref is the displacement at the same node obtained using the reference method of stress
integration at a particular pseudo time step. |dref |max refers to the maximum absolute value of
displacement recorded at the same node obtained using the reference method from all the time
steps. All three stress integration implementations use the same convergence criteria for global
iterations and the local material point iterations.
4.2.1 Linear Isotropic Hardening and Linear Kinematic Hardening

Fig. 4.2a and Fig.4.3a depict the displacement vs load increment for linear isotropic harden-
ing and linear kinematic hardening conducted using material 3 and material 4 set parameters
respectively. All three stress integration methods give near identical results for both linear
isotropic hardening and linear kinematic hardening cases. This is evident from Fig. 4.2b and
Fig. 4.3b which show the percentage deviation with respect to results from CPPM for linear
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isotropic hardening and linear kinematic hardening respectively. Fig. 4.2c and Fig.4.3c depict
the number of iterations taken by each of the stress integration algorithms during global iter-
ations for linear isotropic hardening and linear kinematic hardening respectively. As you can
see, the the proposed scheme and CPPM have consumed the same number of global iterations
(102 iterations) for linear isotropic hardening case. For linear kinematic hardening case both the
proposed scheme and CPPM have utilized the same number of global iterations (136 iterations).
The CPM takes a considerably large number of global iterations for linear isotropic hardening
case (256 iterations) as well as for linear kinematic hardening case (351 iterations) to give the
same comparable results.
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Figure 4.2: Perforated sheet - Isotropic hardening
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Figure 4.3: Perforated sheet - Kinematic hardening

4.2.2 Combined Hardening

The displacement vs load increment variation for combined hardening conducted using material
5 set parameters is shown in Fig. 4.4a. Here, we can observe that CPM and the proposed method
follow near identical trajectories where as CPPM exhibits a significantly different trajectory
after the 19thload step. This is evident from Fig. 4.4b which shows the percentage deviation
with respect to results from CPPM. Fig. 4.4c exhibits the number of iterations taken by each
of the stress integration algorithms during global iterations. Here, we can observe that the the
proposed scheme and CPPM record the same number of global iterations (116 iterations) where
as CPM consumes a considerably large number of global iterations (287 iterations) to give the
same comparable results.
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Figure 4.4: Perforated sheet - Combined hardening

5 Summary and Concluding Remarks

In this paper, a novel implicit stress integration algorithm which consists of some of the prop-
erties of CPPM and CPM is presented. In fact, the first and second order derivatives in the
proposed stress are the same as that of CPPM (see Eq. (3.7) and Eq. (3.13)). The proposed im-
plicit algorithm, uses satisfaction of implicit constitutive relations and successive linearization
of the yield function around the current state to arrive at an estimate for the plastic consistency
parameter required to update the state variables, in contrast to to the residual based approach
used in CPPM. The successive linearization of the yield function about the current state to
evaluate the state variables is a feature that the proposed stress integration scheme shares with
CPM. However, the proposed method imposes equal number of constraints (equations) to that
of CPPM by way of evaluating the derivatives of the state variables and the yield criterion with
respect to the plastic consistency parameter in contrast to the single constraint (equation) used
by CPM in the stress integration procedure. Further, unlike in CPM, it is straightforward to
derive a consistent tangent operator for the proposed method.

Several verification tests are performed using the von Mises yield criterion to verify the pro-
posed stress integration scheme and compare its performance in relation to CPPM and CPM.
Single material point tests are performed to verify the accuracy of the stress integration proce-
dure whereas the multi-element tests are carried out to verify and evaluate the performance of
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the consistent tangent operator. In the context of von Misses model for material point iterations,
the following can be inferred,

• the stress integration results of the proposed algorithm are on par with the results from
CPPM and CPM for linear hardening rules.

• the computational cost associated with material point iterations (per iteration basis, when
evaluation of the consistent tangent operator is excluded) is lowest for CPM and highest
for CPPM where as the computational cost of the proposed scheme is marginally less than
CPPM. Since, only first order derivatives are required for CPM, it has the lowest compu-
tational cost. In the proposed scheme the number of linear simultaneous equations that
need to be solved per iteration is always one less than the number of linear simultaneous
equations that need to be solved for CPPM. This reduces the computational cost of the
proposed scheme marginally in comparison to CPPM.

In the context of von Misses model for global level iterations for linear hardening rules, the
following can be inferred,

• the accuracy of the global response results are on par with CPPM with the consistent
tangent operator and CPM with the continuum tangent operator.

• identical number of global level iterations to that of CPPM are required to obtain the
converged solutions. This implies that the consistent tangent operator obtained form the
proposed scheme is as good as the CPPM counterpart. CPM reporting the highest number
of global level iterations could be attributed to using the continuum tangent operator.

• the total computational cost per material point evaluation which includes the cost asso-
ciated with the stress integration as well as the consistent tangent operator evaluation, is
lowest for CPM and highest for the proposed scheme due to the iterative nature of the con-
sistent tangent operator of the proposed scheme. However, this disadvantage of solving
for the small (at most 13×13 for isotropic material) consistent tangent operator several
times during a material point iteration dwarfs in comparison to the advantage yielded
through the use of a consistent tangent operater at the global iterations due to second
order convergence.

From the results, it is evident that the proposed scheme is a viable alternative for elastoplastic
stress integration of von Mises plasticity as it provides comparable results to that of CPPM and
CPM. As the first and second order derivatives required in the stress integration procedure of the
proposed method are the same as that of CPPM, one can easily implement the proposed method
in existing finite element analysis frameworks. In the future, we plan to explore proposed
methods performance in simulating complex palsticty models like Drucker-Prager and Cam-
Clay.
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Abstract 

The model that considers the thermoelastic effect of heat conduction medium with three 
phase lags was proposed. This work introduces the modified bioheat transfer equation based 
on the three-phase-lag model and uses it to study the thermal behavior in living tissue. Due to 
thermoelastic effect, the governing equation of the problem involves the high-order time 
derivative of temperature. A hybrid numerical scheme based on the Laplace transform is 
proposed to solve the present problem. The influence of thermoelastic parameters on the 
behavior of heat transfer in tissue has been investigated. 

Keywords: Laplace transform, non-Fourier, three phase lag, thermoelasticity. 

Introduction 

The experimental data is more accessible and is helpful to establishing the reliable 
models of thermal behavior in living tissues for the development of medical technology. 
Various bioheat transfer models have been proposed. The Pennes model is the typical model 
and shows the infinite and rapid propagation of heat signals. The thermal wave (C-V) and the 
dual-phase-lag (DPL) models can be regarded as the most commonly used non-Fourier model. 
The thermal wave model shows the characteristic of finite propagation with a heat flux phase 
lag. In addition to the heat flux phase lag, the dual phase model defines the temperature 
gradient phase lag for the effect of micro-structural interactions. The values of the phase lags 
definitely impact the thermal response and dominate the model of bioheat transfer in tissues 
[1]. The non-Fourier models have been widely used in the analysis of biological heat transfer 
problems, such as radiofrequency/microwave ablation [2, 3], magnetic hyperthermia [4-7], 
laser therapy [8-10].  

Recently, Roy Choudhuri [11] introduced the three-phase-lag model of heat conduction 
in medium with the thermoelastic effect according to one of thermoelectricity models, which 
was released by Green and Naghdi [12, 13] and involves dissipation in general and admits 
thermoelastic waves. The basic equation of the three-phase-lag (DPL) model is 

 (1) 

which satisfies . v is the thermal displacement.  and T symbol the heat flux vector and 
temperature, respectively. q, T and v are the phase lags, heat flux vector, temperature 
gradient and thermal displacement gradient. t is time,  is the position vector, k is the thermal 
conductivity, and kv is the material constant characteristic of the model. It was assumed that kv 
> 0 and q > T > v  0 [11]. It is able to contain Fourier law, thermal wave model, and dual 
phase model of heat conduction at the same time. 

The relevant scholars [14-16] have also studied the problems of bio-heat transfer based 
on the DPL model. Kumar and Rai [14] presented the semi-analytical solution of the TPL 
model of bio-heat transfer. They found the phase lag of thermal displacement gradient has a 
significant effect on the temperature distribution in the tissue. Zhang et al. [15] presented a 
modified energy conservation equation and investigated the TPL thermal response in the skin 
with a constant surface temperature or the constant surface heat flux. Hobiny et al. [16] had 
the analytical solutions of the TPL model for the thermal responses of biologicals tissue with 
laser irradiation. The development of thermal therapy always requires more reasonable 
temperature distribution predictions. Therefore, this paper attempts to investigate the thermal 
behavior in tissue subjected to constant surface temperature using the TPL bioheat transfer 
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equation. A hybrid numerical scheme based on the Laplace transform is proposed to solve the 
present problem. 

Mathematical Formulation 

The development of the heat transport equations in the tissue was made based on Taylor 

series of the TPL model [11]. For constant physiological parameters, the first order expansion 

for q , T and v gets 

 

 
(2) 

For , Eq. (2) can be rewritten, respectively, as 

 

 

(3) 

Eqs. (4) and (5) can become to the DPL model of heat conduction as kv = 0 and get into 

the thermal wave model for kv = 0 and T = 0. And then, the case of kv = 0 and q = T = 0 

would make them to be the Fourier law. 

Considering the thermoelastic effect in tissue, the energy conservation equation of bio-

heat transfer can be written as [15] 

 

 
(4) 

where ρ is density, c is specific heat, and wb is the perfusion rate of blood. The temperature of 

blood Tb is kept at 37 
0
C. qm is the metabolic heat generation. qext is the external heating. 

The TPL equation of bio-heat transfer for temperature is obtained from Eqs. (3) and (4) 

by eliminating the heat flux q as 

 

 

 

 

(5) 

The present problem considers that the skin surface temperature could be kept constant 

as the skin contacts with a large steel plate at a high temperature. The assumption that tissue 

temperature approaches Tb deep in tissue x = L was made [17]. The boundary conditions are 

described  as 

 hTtT ),0(   and  bTtLT ),(  (6) 

and the initial conditions are 
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(7) 

Analytical Method 

Eq. (5) is rewritten in the definition of  = T − Tb as 

 

 

 

 

(8) 

The initial conditions become 

 

 
(9) 

The Laplace transform technique is used to transform the differential terms in equations 

(14) and (15) with the initial conditions (16) into 

 

 
(10) 

symbols the Laplace transform of . The definitions of  and f are 

 

 

(11) 

and 

 

 

(12) 

where s is the Laplace transform parameter of time t. 

The boundary conditions (6) in the terms of can be written, respectively, as 

 

 
(13) 

The current work divides the entire space domain into several sub-space domains. Eq. 

(17) in the jth sub-space domain can be written as 

                                         
f

dx

d
j

j
 

 ~
~

2

2

2

 for 1 ii xxx , j = i (14) 
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The analytical solution of Eq. (14) in the interval  1, ii xx  with the boundary conditions 

jiij x ,

~
)(

~
    and   

jiij x ,11

~
)(

~
    (15) 

 can be written as  

 

 

(16) 

where l denotes the length of sub-space domain or the distance between two neighboring 

nodes. 

The heat flux and temperature in the entire space domain are continuous is assumed, so 

 

 
(17) 

and 

 

 

(18) 

Substituting Eqs. (16) and (17) into Eq. (18) can obtain the discretized form at the ith 

node as 

 

 

(19) 

The discretized forms at the internal nodes and the boundary surfaces are rearranged as 

 

    FM 
~

 (20) 

where  M  is a matrix with the complex number s.  ~  and  F  are a column vector and 

represent the unknown nodal evaluation temperatures in the Laplace transform form and the 

forcing term, respectively. The physical value of the nodal temperature can be obtained from 

Eq. (20) with the Gaussian elimination algorithm and the numerical inversion of the Laplace 

transform [18]. 

Results and Discussion 

The values of the parameters used in the present work are set as q0 = 20 kW/m
2
 , Rd = 

0.0528, L = 9 mm, ρ = 1190 kg/m
3
 , c = 3600 J/kg·K, ρb = 1060 kg/m

3
, cb = 3770 J/kg·K, wb = 

1.87 × 10
−3 

s
−1

, k = 0.235 W/(m·K), and kv = 0.1 W/(m·K·s) . The values of the three phase 

lags would be assumed as the different values q = 16 s, T = 6 s, and v = 2 s. The skin surface 

temperature contacted with a large steel plate is Th = 80 
0
C. For comparison and discussion, 

some parameter values may be adjusted and noted in each figure.  

 

Figure 1 presents the temperature variation at x = L/4 for various values of v. The slight 

oscillation appears in the curves of temperature variation. It is seen that the amplitude 

decreases as v increases. This result implies that the thermoelastic effect would create the 

oscillation phenomenon in heat transfer.  
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Figure 1. Temperature variation at x = L/4 for various values of v. 

 

Figure 2 depicts the temperature variations with v = 0 at x = L/4 for various values of kv. 

It is observed that the temperature at x = L/4 closes to consensus after t = 100 s. However, the 

oscillation phenomenon is more obvious as the kv value increases for v = 0. At the same time, 

the oscillation phenomenon is also more obvious than that presented in Fig 1. This result 

implies that kv has a greater effect on the behavior of heat transfer than v.  

 

 
Figure 2. Temperature variations with v = 0 at x = L/4 for various values of kv. 
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The effect of the thermal displacement gradient lag v on the behavior of bioheat transfer 

is further explored. Figure 3 shows the temperature variations at x = L/4 with v = 2 s or v = 6 

s for various values of kv. As v = 6, the curves of temperature variation for kv = 0.1, 0.2, 0.3, 

and 0.4 have overlapped. However, minor discrepancies and oscillations can also be seen 

among the variation curves for v = 2. This result expresses that the main factor causing the 

oscillation phenomenon of heat transfer in tissue with thermoelastic effect should be the value 

of kv. Conversely, v suppresses the generation of oscillations. 

Figure 3. Temperature variations with v = 2 s or v = 6 s at x = L/4 for various values of kv. 

Figure 4. Temperature distribution at t = 50 s for various values of kv with q = 16 s, T = 6 s, 

and v = 0 s. 
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The effect of kv on the temperature distribution at t = 50 s is explored as shown in Fig. 4. 

The figure displays the effect of  kv  enhances the oscillation and reduces the propagation 

speed of thermal signal. Reduction of kv would raise the temperature.  

 

Figure 5 depicts the variation of temperature distribution over time. The thermal signal 

has not reached the boundary end x = L before t = 50 s. The place where the oscillation occurs 

moves forward in time. 

 

 
Figure 5. Temperature distribution at various times for q = 16 s, T = 6 s, and v = 0 s. 

 

Conclusions 

A numerical scheme based on the Laplace Transform method is proposed for solving the 

three-phase-lag bioheat transfer equation. The present results indicate that the thermoelastic 

effect would create the oscillation phenomenon in heat transfer. The temperature oscillation is 

depressed with increasing the value of v.  The effect of  kv  enhances the oscillation and 

reduces the propagation speed of thermal signal. Reduction of kv would raise the temperature. 
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Abstract  

Due to the importance of preventing the vertical fire spreading along with buildings, two fire 

inhibition methods were raised by the National Construction Code clause [1] C2.6(a) including 

vertical spandrel of at least 900 mm high or horizontal spandrel of at least 1100 mm deep. This 

project aims to answer the research question of whether vertical spandrel of 900 mm and 

horizontal construction of 1100 mm are equivalent in performance in inhibiting the vertical fire 

spreading under the effects of wind using fire dynamics simulator (FDS) simulations. The 

geometry of the simulations is modified from experimental works conducted by Oleszkiewicz 

[2] by adding an air opening on the back wall. The preliminary results show that by slightly 

increasing the front wind (the wind direction is normal to the front opening of the building) 

from 0 m/s to 0.5 m/s, the radiation heat transfer from the flame to the above floor is increased 

slightly, however, further increasing the front wind speed will reduce the radiative heat flux on 

the above floor, due to the blocking effect of the front wind. When the front wind speed 

increases to above 4 m/s, the flame is blocked within the room. When the side wind (the wind 

direction is parallel to the front opening of the building) is introduced, there is a slight increase 

in heat flux for the wind speed of 1~4 m/s. Based on the preliminary simulation results, it is 

found that for the wind conditions, fire load and building structure investigated in the paper, the 

performance of the 900 mm vertical spandrel is lower than the horizontal spandrels even for the 

horizontal spandrel of 500 mm.  

Introduction  

During numerous fire accidents within constructed buildings, hot smoke that was emitted from 

openings such as windows/doors of the incident floor can cause above floors to be inflamed as 

well. When the room on fire is under-ventilated, the fire caused by the unburned fuel will 

destroy the windows openings and spread along the exterior walls, and once the heat flux is 

sufficient enough, the flame height could exceed floor heights causing subsequent fire to spread 

between floors which will lead to significant damage to properties and loss of lives [4]. 

Therefore, preventing the vertical spreading of fire between floors via openings has been a 

major aspect of fire safety engineering [5]. As described in National Construction Code (NCC) 

clause C2.6(a) [1], there would be two possible approaches to preventing vertical fire spread. 

One of these two approaches is using a vertical spandrel of more than 900 mm in height. And 

the second approach is adding a horizontal construction which needs to project at least 450 mm 
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beyond the openings with a minimum depth of 1100 mm. NCC implies that those two options 

are alternatives to each other in terms of their efficacy in inhibiting fire spread. The previous 

study on the clauses using the computational fluid dynamics (CFD) code FDS simulations from  

[6] suggests that horizontal projection has better fire inhibition performance than vertical 

spandrel. However, the authors of  [6] only conducted the investigation based on a single 

defined opening geometry and three different heat release rates without consideration of the 

effect of other parameters, such as outdoor winds. Other similar papers analysing the 

performance of protection methods such as [7-11] also have significant limitations in their 

scope. Consequently, it becomes crucial for this project to understand the effect of outdoor 

winds on the fire inhibition performance difference between horizontal construction and 

vertical spandrel. This conclusion on the performance of fire inhibition methods could then 

potentially be used to verify the consistency of existing building code and even act as a 

guideline for future fire inhibition methods applied for multistorey buildings. 

This paper reports the preliminary results of the research on the performance of the vertical 

spandrel and the horizontal construction based on the Australia NCC requirement in inhibiting 

the vertical fire spreading under outdoor winds using fire dynamics simulator (FDS) 

simulations.  

Numerical methods and processes  

For this project, FDS version 6.7.7 [12] with Pyrosim pre-processor [13] is employed. 

According to the technical guide from [14], FDS solves the Naiver-Stokes equations to compute 

flow fields. Additionally, large eddy simulation (LES) is utilised to handle turbulence.  

The computation domain, which is modified from the experimental geometry described in [2] 

and simulation geometry elaborated in [11] is modeled in Pyrosim as shown in Figure 1. Please 

note that different from the geometry in [2], in this project, an additional air intake with 

dimensions of 5.4 m x 0.8 m is included at the back of the ground floor to ensure that there 

would be sufficient air supply throughout the simulation. The domain has an overall size of 7.2 

m x 11.2 m x 10.8 m whilst the construction locates in the middle of the domain has the 

dimensions of 6.4 m x 4.8 m x 10.4 m. The dimension of the domain was made sufficient for 

the plume to spread beyond the openings. The opening is located in the negative y-axis direction. 

The front opening for the ground floor has a dimension of 1.0 m x 2.7 m whilst regions above 

the front opening are sealed off for measurement. An additional air intake with dimensions of 

5.4 m x 0.8 m is included at the back of the ground floor to ensure that there would be sufficient 

air supply throughout the simulation. The thickness of the walls is defined as 0.1 m. The fire 

source is placed at the center of the room with a surface area of 9 m2. The height of the vertical 

spandrel is defined as 0.9 m. The depth of the horizontal construction is varied between 0.5 m 

and 1.3 m for parametric analysis. The full range of horizontal construction dimensions 

included for this project are described in table 1.   

In terms of meshing, a mesh size of 0.1 m is applied for the entire domain which leads to fine 

mesh resolution according to [13]. The mesh has a D*/dx ratio of approximately 22 which is 

slightly larger than the suggested value of ≥20 from Pyrosim [13].   
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Figure 1 (a): Overall domain for FDS simulation 

 

Figure 1 (b): Front view of computational domain with 0.9 m vertical spandrel 

Front wind 
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Figure 1 (c): Computational domain with 1.1 m horizontal spandrel 

For the boundary conditions, the six boundary surfaces of the overall mesh domain are modeled 

as vents which essentially act as openings to allow air to flow in and out of the domain. For the 

cases that include outdoor wind, the wind inlet is modelled as an air supply with a designated 

wind speed. The inert boundary condition is then applied for the spandrels included in the 

geometry which represents a smooth wall with fixed ambient temperature and emissivity of 0.9. 

The rest of the walls are defined as concrete walls. For the heat release rate of the burner, a 

constant total release rate per unit area of 900 kW/m2 is used. This results in an average heat 

release rate of 8.1 MW which is roughly maintained after the fire is fully developed. The fire 

will last for 1800s.  

Since this project aims to explore the effect of wind parameters, supply surface boundary 

conditions are applied at the inlet surface with designated flow speed. The variation of wind 

parameters included is described in Table 1. In Table 1, for wind direction, ‘Front’ means the 

wind direction is normal to the front opening of the building, while ‘Side’ means the wind 

direction is parallel to the front opening of the building. 

Table 1: Parameters investigated in the simulations.  

Horizontal Spandrel Size (m) Wind direction Wind speed (m/s) 

1.3, 1.1, 0.9, 0.7, 0.5 Front, Side 0.25, 0.5, 0.75, 1, 2, 3, 4, 5 

 

Results and discussion 

From Figure 2, it is evident that under the front wind of 1 m/s, the 0.9 m vertical spandrel has 

higher incident heat flux values on the above wall than those of the horizontal cases, indicating 

a lower performance in terms of preventing the vertical fire spread. Additionally, increasing the 

horizontal construction length would lead to better protection performance as well. As shown 

in Figure 3, by slightly increasing the front wind from 0 s/m to 0.5 m/s, the radiation heat 

transfer from the flame to the above floor is increased slightly. In other words, low front wind 

speeds (up to 0.5 m/s in this case) would reduce the effectiveness of the protection methods. 

However, for front winds with a speed over 1 m/s, increasing the wind speed would be 

beneficial in preventing vertical fire spread instead, as the heat flux values on the above wall 

decrease with increasing wind speed until it reaches a constant value of 0.43 kW/m2. Among 

the analysed protection methods shown in Figure 3, for low wind speeds up to 3 m/s, the 1.1 m 
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horizontal projection is more efficient in preventing fire spread than the other protection 

methods due to its lowest predicted heat flux received at the external wall of the above level.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Performance comparison between horizontal construction and vertical 

spandrel for the 1 m/s front wind 

 

Figure 3: Performance comparison between horizontal construction and vertical 

spandrel for the front wind with various speeds 

Temperature plots for 1.1 m horizontal construction are employed to explore the effect of 

increasing front wind speed on the performance of protection methods. As shown in Figure 4, 

by slightly increasing the front wind up to 0.5 m/s, the front wind (from the left-hand side of 

the figure) pushes the flame (which is indicated by the high-temperature zone) above the 
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horizontal construction toward the right-hand side, leading to radiation heat transfer from the 

flame to the above floor increased slightly. As the wind speed increases further to 1 m/s, the 

flame is pushed back toward the opening below the horizontal construction, decreasing the 

radiation on the above wall as shown in Figure 3. When the outdoor wind speed increase to 3 

m/s, the high-temperature region of over 500 °C is nearly blocked under the horizontal 

construction. Eventually, when the front wind increases to 5 m/s, the flame is completed 

blocked within the room, which justifies the lowest heat flux recorded in such conditions as 

shown in Figure 3.  

(a) 

 

(b) 

  

(c) 

 

(d) 

 

Figure 4: External Temperature plots for 1.1 m horizontal construction with different 

front wind speed (a) 0.5 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s. 

Temperature contours for spaces inside the structure are plotted to further develop the 

conjecture. As shown in Figure 5, at a lower front wind speed of 0.5 m/s, the flame travels 

vertically and then circulates around the ceiling. As the front wind speed increases to 2 m/s – 5 

m/s, high-temperature zones near the ground are pushed away towards the rear ventilation slot 

(the right-hand side of the figure), leading to the lower temperature being experienced at the 

front wall. Additionally, more outdoor air at 20 °C is introduced to the room at a higher wind 

speed, cooling down the room. 

In terms of the cases with a side wind, as shown in Figure 6, similar to the normal wind cases, 

the side wind with lower speeds would compromise the performance of protection methods as 

the heat flux values on the above wall are higher than those of heat flux with 0 m/s side wall. 

Additionally, increasing side wind speed from 3 m/s to 5 m/s, in this case, is beneficial for 

inhibiting vertical fire spread. However, unlike the previous cases, there is not a significant 

performance difference between the cases with 5 m/s side wind and the cases with 0 m/s side 
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wind. In terms of differences between protection methods, fluctuation in heat flux for vertical 

spandrel is the most severe out of all protection methods which indicates its protection 

capability is the most affected by the side wind out of all protection methods investigated. 

Interestingly, there are abrupt changes in the heat flux for the vertical spandrel case of 1 m/s 

shown in Figure 6. The causes of the high heat flux on the above wall are still unknown and are 

under investigation. Nevertheless, it does not affect the general trends and findings of the side 

wind cases reported in the paper.  

(a) (b) 

 

(c)  (d) 

Figure 5: Internal temperature plots for 1.1 m horizontal construction with different 

front wind speed (a) 0.5 m/s, (b) 2 m/s, (c) 3 m/s, (d) 5 m/s 

 

Figure 6: Performance comparison between horizontal construction and vertical 

spandrel for side winds with various speeds  
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Conclusions & Future work 

Based on the preliminary results, it is found that for the wind conditions (both the front wind 

and side wind conditions), fire load and building structure investigated in the paper, the 

performance of the 0.9 m vertical spandrel in preventing vertical fire spread is lower than the 

horizontal spandrels even for the horizontal spandrel of 0.5 m.  

By increasing the front wind from 0 m/s to 0.5 m/s, the radiation heat transfer from the flame 

to the outdoor wall surface above the opening is increased slightly, however, further increasing 

the front wind speed will reduce the radiative heat flux on the above floor, due to the blocking 

effect of the front wind. When the front wind speed increases to above 4 m/s, the flame is 

blocked within the room. Meanwhile, the changes in heat flux on the outdoor wall above the 

opening are much less significant for the various side wind speeds from 0 m/s to 5 m/s, partially 

due to the less significant blocking effects. Nevertheless, these results are only applicable to the 

investigated conditions.  

As part of future work, more simulations need to be run to establish systematic conclusions on 

performance comparison based on the exact minimal dimensions suggested by NCC clauses.  

Further efforts will be put into parametric studies where the effect of fire size, opening size, 

wind speed, and other environmental parameters will be accounted for. Eventually, as the final 

objective of the project, the simulation model will be applied to real-life scenarios.  

Acknowledgments 

The support from Australia Research Council (ARC) Industrial Transformation Training 

Centres (IC170100032) is acknowledged.  

References 

[1] Commonwealth of Australia and the States and Territories, The National Construction Code, Australian

Building Codes Board, 2019.

[2] I. Oleszkiewicz, Heat transfer from a window fire plume to a building facade, Paper (National Research Council

of Canada. Institute for Research in Construction); no. IRC-P-1662  (1989).

[3] M.A. Delichatsios, J. Ryan, N. Tian, J. Zhang, Vertical safe separation distance between openings in multi-

story buildings having a fire-resistant spandrel, MATEC web of Conferences, EDP Sciences, 2016, p. 04003.

[4] M.A. Delichatsios, J. Ryan, N. Tian, J. Zhang, Vertical safe separation distance between openings in multi-

storey buildings having a fire resistant spandrel, MATEC Web of Conferences 46 (2016) 04003.

[5] G. Hu, Research on the Fire of High-rise Residential Building Based on Pyrosim Numerical Simulation, IOP

Conference Series: Earth and Environmental Science 455 (2020) 012059.

[6] D. Weinert, W. Poh, Performance of horizontal projections in vertical separation of openings in external walls–

comparison with BCA solutions, Proceedings of the International Conference on Fire Safety Engineering, Gold

Coast, Australia, Citeseer, 2006.

[7] G. Hadjisophocleous, Q. Jia, Comparison of FDS Prediction of Smoke Movement in a 10-Storey Building with

Experimental Data, Fire Technology 45(2) (2009) 163-177.

[8] M. Nilsson, B. Husted, A. Mossberg, J. Anderson, R.J. McNamee, A numerical comparison of protective

measures against external fire spread, Fire and Materials 42(5) (2018) 493-507.

[9] A. Čolić, I.B. Pečur, Influence of Horizontal and Vertical Barriers on Fire Development for Ventilated Façades,

Fire Technology 56(4) (2020) 1725-1754.

[10] W. An, Q. Meng, R. Pan, H. Zhu, Influence of horizontal projection on upward flame spread over XPS thermal

insulation material, Fire and Materials 42(5) (2018) 527-536.

[11] P. McKeen, Z. Liao, The impact of horizontal projections on lateral fire spread in multi-unit residential

buildings - comparison of numerical and similarity correlations, Fire Safety Journal 126 (2021) 103441.

ICCM2022, 25th-28th July 2022

219



[12] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K. Overholt, Fire dynamics simulator-

-Technical reference guide, Sixth ed., National Institute of Standards and Technology, Gaithersburg, MD, [online],

2013.

[13] Thunderhead Engineering, Pyrosim User Manual, 2021. 

https://support.thunderheadeng.com/docs/pyrosim/2021-3/user-manual/. (Accessed 18/10/2021. 

[14] K. McGrattan, R. McDermott, M. Vanella, S. Hostikka, J. Floyd, Fire dynamics simulator--Technical

reference guide, Sixth ed., National Institute of Standards and Technology, Gaithersburg, MD, [online], 2013.

ICCM2022, 25th-28th July 2022

220

https://support.thunderheadeng.com/docs/pyrosim/2021-3/user-manual/


ICCM2022, 25th-28th July 2022

221

AUTHOR INDEX

Akram, Muhammad Naveed………………172
Chen, Jianfeng………………………………42
Chen, Xiao…………………………………220
Dharmasiri, M.A.K.M……………………..186
Ding, Xianghong……………………………52
Dong, Xiangwei…………………………….62
Du, Changcheng…………………………….42
Feng, Shijin…………………………………52
Fujita, Kohei……………………………….186
Han, Jun……………………………………101
Hori, Muneo………………………….172, 186
Huang, Zefeng……………………………..220
Ichimura, Tsuyoshi………………………...186
Idem, Stephen………………………….…..155
Ionescu, Daniela……………………………...1
Kameda, Toshihiro…………………….…..172
Kawahito, Yosuke…………………………172
Krasniqi, Erjon…………………………….123
Lal, Rajnesh…………………………………31
Lalith, Maddegedara…………………172, 186
Le, Toan Minh……………………….…….131
Li, Zengliang………………………….…….62
Li, Zhenquan………………………….…….31
Liu, Kuo-Chi………………………………204
Liu, Y. Jane………………………………..155
Mimura, K…………………………………118
Mo, Ziyong………………………….……..101
Nguyen Kien, Dung……………………...…82
Nguyen, Dong Anh…………………………76
Nguyen, The Hung………………………….76
Nicolin, Elia……………………………….172
Obiya, Hiroyuki……………………………123
Pal, Mahendra Kumar……………………..172
Peddieson, John……………………………155
Pensupa, Paowpat……………………….…131
Petrolito, Joe…………………………….……1
Rabczuk, Timon…………………………….82
Riku, Isamu………………………………..118
Rungamornrat, Jaroon……………………..131
Sun, Zhe…………………………………….13
Sutha, Arnut……………………………….146
Suwannasri, Thamonwan………………….146
Tangaramvong, Sawekchai………………..146

Tian, Zhao…………………………………220
Van, Thu Huynh……………………….…..146
Xu, Zi-kai…………………………….……..13
Yamashita, Shuhei…………………………123
Yang, Bi-ye…………………………………13
Yu, Ran……………………………………..62
Yuan, Hong………………………………..101
Zeng, Lan………………………………….101
Zhang, Gui-yong……………………………13
Zhang, Xi……………………………………13
Zhang, Zhi-fan………………………………13
Zhuang, Xiaoying……………………….…..82


	GPU Parallelization of solving pressure Poisson Eq
	Abstract
	1.Introduction
	2.Numerical method
	2.1 Basics of MPS method
	2.1.1 Governing equation
	2.1.2 Particle interaction model
	2.1.3 Boundary conditions
	2.1.3.1  Pressure Neumann condition on solid bound
	2.1.3.2  Laplacian operator compensation near soli
	2.1.3.3  Free surface particle identification

	2.1.4 Basic flow of the MPS approach

	2.2 Explicit solution of pressure Poisson equation
	2.2.1 Relaxed Jacobi

	2.2.2  2-D dam-break simulation

	3.GPU parallelision for MPS
	3.1 GPU parallel computing
	3.1.1 CUDA architecture

	3.1.2 CUDA programming mode
	3.2 GPU algorithm for solving pressure Poisson equ
	3.2.1 Row compression method (CSR)
	3.2.2 Introduction of GPU parallel algorithm for s

	3.3  2-D dam-break simulation
	3.3.1 Computational verification
	3.3.2 The solution acceleration ratio of different


	4.Conclusion
	ACKNOWLEDGEMENTS
	References:
	†Quan Chen1, *Zhe Zhang2, and DeAn Hu3
	Abstract
	References
	Welcome Message&Contents.pdf
	ORGANIZATION COMMITTEES
	TABLE OF CONTENTS

	Welcome Message&Contents.pdf
	ORGANIZATION COMMITTEES
	TABLE OF CONTENTS

	Welcome Message&Contents_new_July22.pdf
	ORGANIZATION COMMITTEES
	TABLE OF CONTENTS





ICCM2022, 25th-28th July 2022


221


AUTHOR INDEX


Akram, Muhammad Naveed………………172
Chen, Jianfeng………………………………42
Chen, Xiao…………………………………220
Dharmasiri, M.A.K.M……………………..186
Ding, Xianghong……………………………52
Dong, Xiangwei…………………………….62
Du, Changcheng…………………………….42
Feng, Shijin…………………………………52
Fujita, Kohei……………………………….186
Han, Jun……………………………………101
Hori, Muneo………………………….172, 186
Huang, Zefeng……………………………..220
Ichimura, Tsuyoshi………………………...186
Idem, Stephen………………………….…..155
Ionescu, Daniela……………………………...1
Kameda, Toshihiro…………………….…..172
Kawahito, Yosuke…………………………172
Krasniqi, Erjon…………………………….123
Lal, Rajnesh…………………………………31
Lalith, Maddegedara…………………172, 186
Le, Toan Minh……………………….…….131
Li, Zengliang………………………….…….62
Li, Zhenquan………………………….…….31
Liu, Kuo-Chi………………………………204
Liu, Y. Jane………………………………..155
Mimura, K…………………………………118
Mo, Ziyong………………………….……..101
Nguyen Kien, Dung……………………...…82
Nguyen, Dong Anh…………………………76
Nguyen, The Hung………………………….76
Nicolin, Elia……………………………….172
Obiya, Hiroyuki……………………………123
Pal, Mahendra Kumar……………………..172
Peddieson, John……………………………155
Pensupa, Paowpat……………………….…131
Petrolito, Joe…………………………….……1
Rabczuk, Timon…………………………….82
Riku, Isamu………………………………..118
Rungamornrat, Jaroon……………………..131
Sun, Zhe…………………………………….13
Sutha, Arnut……………………………….146
Suwannasri, Thamonwan………………….146
Tangaramvong, Sawekchai………………..146


Tian, Zhao…………………………………220
Van, Thu Huynh……………………….…..146
Xu, Zi-kai…………………………….……..13
Yamashita, Shuhei…………………………123
Yang, Bi-ye…………………………………13
Yu, Ran……………………………………..62
Yuan, Hong………………………………..101
Zeng, Lan………………………………….101
Zhang, Gui-yong……………………………13
Zhang, Xi……………………………………13
Zhang, Zhi-fan………………………………13
Zhuang, Xiaoying……………………….…..82







