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Abstract
The finite element method based on the complementary energy principle and its combination
with artificial neural networks is a worthwhile research topic. A new Base Force Element
Method (BFEM) model is proposed in this study, which can solve the problems of large
elastic deformation and finite strain in incompressible hyperelastic materials. The
complementary energy function of nonlinear elasticity has not yet been proposed. The
complementary energy function is replaced by a pre-trained Back-Propagation (BP) neural
network to establish the constitutive relationship. This makes it easy for finite strain problems
to be studied by the BFEM model. When the constitutive relationships of different
incompressible hyperelastic materials were described, only two parameters needed to be
changed. The governing equations of the BFEM model are general and concise, and its
derivation process does not involve an approximate representation of shape functions. The
calculation results of the examples indicate that the model has high accuracy. This new
numerical method fills the gap in using the complementary energy finite element method to
calculate the finite strain problem of incompressible hyperelastic materials.
Keywords: Complementary energy principle, BFEM, large elastic deformation, finite strain,
BP neural network, solid element
Introduction
When the nonlinear complementary energy variational principle is established by the second
type of Piola-Kirchhoff stress tensor, a coupling term containing force and displacement
appears in its integral term [1]. This makes it difficult for numerical methods based on the
complementary energy principle to solve geometric nonlinear problems. This difficulty is
overcome by the base force [2]. Traditional stress tensors can be replaced by base force to
describe the stress state at a certain point [3]. The coupling term is eliminated in the process
of establishing the complementary energy principle using base force. According to the
complementary energy principle of base force, a new finite element method - BFEM is
proposed [2]. This is a new way of calculating nonlinear solid mechanics. Recently, BFEM
has been used to accurately solve the large elastic deformation problems of trusses and
analyze the stability of beams [4, 5]. The constitutive relationship used in BFEM is still linear
and elastic, the research problems are still limited to the range of linear elastic materials.

Many scholars have proposed strain energy functions to characterize the constitutive
relationships of nonlinear elasticity [6-8]. However, the complementary energy function of
nonlinear elasticity has not yet been proposed. This makes it difficult to solve finite strain
problems using complementary energy finite element methods. The strain energy functions
are established based on the phenomenological method [9-11]. These functions are mostly
represented by strain invariants or principal tensile ratios. Similarly, can the complementary



energy function be represented by stress invariants or principal stress? The answer is yes
when the constitutive relationship is linear elastic. The linear complementary energy function
is obtained using the Legendre transformation. If the constitutive relationship is nonlinear
elastic, it is difficult to obtain the corresponding complementary energy function using the
Legendre transformation. This is because the constitutive relationship must be inverted during
the derivation of the complementary energy function, but the nonlinear constitutive
relationship may not be reversible [12, 13]. To avoid this difficulty, complementary energy
functions can be established through phenomenological methods. However, if the material is
replaced, it is necessary to fit and analyze the sample again, so the generality of this method is
poor. Neural networks have excellent data feature extraction capabilities [14-16], reducing the
cost of manual processing of samples. When the material is replaced, the neural network only
needs to be retrained based on different samples. Therefore, using constitutive relationships
formed by neural networks to establish the complementary energy principle of finite strain is
a general method.

To solve the finite strain problems of incompressible hyperelastic materials using
complementary finite element models, a BFEM based on constitutive relationships
established by BP neural networks is proposed. The premise of the complementary energy
function obtained by Legendre transformation is that the nonlinear constitutive relationship is
reversible. By using the BP neural network, the strain-stress relationship can be directly
obtained, avoiding the use of the Legendre transform. To provide training data to the BP
neural network, the test samples were inverted. The weights and biases are extracted from the
pre-trained BP neural network and substituted into the mathematical expression of the BP
neural network. The two unknown parameters in the element compliance matrix can be
predicted by this expression. In this way, the governing equations are complete and the finite
strain problems of incompressible materials can be solved.
BFEM model
Assuming that σ and τ are the Cauchy stress tensor and Piola stress tensor, respectively. These
stress tensors can be represented by the base force Ti as follows [2]:
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where Pi and Qi are the covariant vector bases of the initial configuration and the deformed
configuration, respectively, VP and VQ are the base volumes before and after deformation.
Assuming that the volume of an elastic body is represented by V, its boundary S can be
divided into Dirichlet boundary Su and Neumann boundary Sσ. Both boundaries satisfy the
conditions Su∪Sσ= S and Su ∩ Sσ= ∅. m is the unit normal vector on boundary Su and u is the
given displacement. The complementary energy principle of base force [17] is
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where i im  P m , and Wc is the complementary energy function. Since Ti and displacement
gradients ui are conjugated,
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where W is the strain energy function. Similar to the polar decomposition of deformation
gradients, ui can be divided into [18]
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where uid is the deformation displacement gradients, and uir is the rotation displacement
gradients. Therefore, formula (4) is divided into
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where Wcd is the deformed part of Wc, and Wcr is the rotating part of Wc. The complementary
energy principle of large elastic deformation represented by Ti is obtained by substituting
formula (6) into formula (3). It is worth noting that Wcd should be a specific expression rather
than the form presented by formula (6)1. For example, the Wcd of linear elastic materials can
be expressed by the first invariant J1 and the second invariant J2 of the stress tensor σ:

  2
2 1

1,
2 1

i
cdW J J

E
 


     

T , (7)

where θ is the rotation angle, v is the Poisson's ratio, and E is the Young’s modulus. Let us
assume that the Wcd of incompressible hyperelastic materials is

 1 2,cd cdW W J J  , (8)
where J1τ and J2τ are the first and second invariants of stress τ, respectively. The
complementary energy of the element is
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The average Piola stress of the element is
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where Ni is the covariant vector base of the intermediate configuration after rotation, Ni= Pi+
uir. According to the Gaussian theorem, formula (10) is rewritten as
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where T is the stress vector acting on boundary A, and N is the intermediate position vector of
the T action point. If the element is small enough, it can be approximately assumed that the
stress is evenly distributed on each surface. The area integral in formula (11) can be
eliminated:
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where α is the label of the surface of the element, and Nα = R·Pα is the intermediate position
vector of the midpoint in surface α. Formula (12) satisfies the Einstein summation convention.
According to formulas (10) and (12),
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Let us assume that the first and second invariants of stress τ are
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respectively. Therefore, the complementary energy form of elements is approximately
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where uαr is the rotating part of the displacement of the midpoint in surface α, and R is the
rotation tensor. According to the Gaussian theorem, formulas (3), (4), (6), (17), and (18), the
complementary function of an element is
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where u is the given displacement of the midpoint in surface α. The element surface force Tα

needs to meet the following constraint conditions:
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where Sαβ is the adjacent edge between elements. The Lagrange multiplier method is used to
relax the constraints (20)1. The modified complementary functional of elements is obtained:
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where L are Lagrange multipliers. The constraints (20)2 and (20)3 can be satisfied in
programming. If an elastic body is composed of n elements, the modified complementary
energy function is
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The stationary value is taken for formula (21) before assembly. The finite element governing
equations are
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where Cαβ is the compliance matrix. The complementary energy function, Cαβ, and ∂ e
cdW /∂θ of

linear elastic materials are specific. Although the complementary energy function of
hyperelastic materials is unknown, Cαβ and ∂ e

cdW /∂θ with unknown parameters can still be
derived according to the formula (17). According to the chain rule,
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where
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In formula (16),
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which makes 2 / 0TJ    in formula (27). The parameters w1t and w2t are functions with J1T

and J2T as basic unknowns. According to formula (24), it is not difficult to see that the element
compliance matrix derived from formula (17) is
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Because the complementary energy function e
cdW can take any form with J1T and J2T as

independent variables, formula (29) is a general expression for the element compliance matrix.
When selecting different materials, w1t and w2t only need to be changed. If
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Cαβ and ∂ e
cdW /∂θ are suitable for linear elastic materials.

BP neural network embedded in BFEM model
According to the derivation in Section 2, the parameters w1t and w2t are crucial for describing
the constitutive relationship. They are functions with J1T and J2T as basic unknowns:
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This mapping is described by a BP neural network, with J1T and J2T as inputs and w1t and w2t
as outputs. The expression for a BP neural network with n layers is
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where H(i,i-1) is the weight matrix, b(i,i-1) is the deviation vector, and fi is the activation function.
Their superscripts i and i-1 represent the layer number, i = 2,3... n. The activation function for
each layer is
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They enable the neural network to have nonlinear mapping ability. During the training process
of neural networks, the weight matrix and deviation vector of each layer are updated using the
gradient descent method until the error function is less than an acceptable error. If there are m
sets of reference data, the error function is
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where 1ˆ
k
tw and 2ˆ ktw are the predicted values of the neural network, and 1

k
tw and 2

k
tw are the

reference values. The training process of the BP neural network and the calculation process of
the BFEM model are shown in Fig. 1, and c is a set of weight matrices and deviation vectors
for each layer. When iteratively updating the basic unknowns, it is necessary to recalculate J1T
and J2T for each element to obtain the predicted values of w1t and w2t. The predicted values are
substituted into equation (23) to test whether the new basic unknowns satisfy the control
equations.



Figure 1. Training of BP Neural Network and BFEM solution flowchart

Example: stretching of a plate with a defect in the center
The top of the hyperelastic material plate with a defect in the center is subjected to a
uniformly distributed load P. Due to the symmetry of structure and force, half of the plate is
used for numerical research. The size, constraints, and mesh generation of the structure are
shown in Fig. 2. To provide data and make comparisons, the constitutive relationship of this
structure was established using the Mooney-Rivlin model [19]. This model is represented as

   1 1 2 23 3W C I C I    , (35)
where the parameter C1 is 0.805 MPa and C2 is 0.194 MPa. The training samples of the neural
network were obtained by further inverting the uniaxial stretching data (stretching ratio of 1-
6). A pre-trained BP neural network with 2 hidden layers and 7 neurons per layer is used to
establish a new constitutive relationship. The mean squared errors of the training set,
validation set, and test set are recorded in Fig. 3. It can be seen that the mean squared errors of
the three sets are close to 10-15, indicating good training results. Compare the vertical
displacement of points A and B (marked in Fig. 2) with the results of the CPS8R element in
Abaqus and record them in Fig. 4. The relative error of point A is 4.32%, and the relative
error of point B is 3.62% when P = 2 MPa.



Figure 2. Plate with center defect (1/2 part)

Figure 3. Mean squared error during the BP neural network training process



Figure 4. The vertical displacement of points A and B and the results of CPS8R element

As P increases, the stress of each element and the deformation contour are recorded in Fig. 5-
7. From these figures, it can be seen that there is a clear phenomenon of stress concentration
at the defect. In Fig. 5, there are higher stresses along the positive x-axis at the bottom of the
structure and near point C, and higher stresses along the negative x-axis near point B. In Fig. 6,
the stress σyy in the area from point C to point B gradually becomes smaller. In Fig. 7, the
direction of stress σxy is opposite at the upper and lower edges of the defect. The obvious
tensile deformation occurs on the overall structure, and the obvious rotation occurs on the
elements around the defect (such as the BC edge).

Figure 5. Stress σxx and deformation contour



Figure 6. Stress σyy and deformation contour

Figure 7. Stress σxy and deformation contour

Conclusions
A new BFEM based on the complementary energy principle is proposed, which can be used
to solve finite strain and finite deformation problems of incompressible hyperelastic materials.
The control equations for solid elements are derived by taking stationary values on
complementary energy functional. The control equation contains unknown parameters, and
the nonlinear mapping between variables and unknown parameters can be replaced by pre-
trained BP neural networks. The pre-trained BP neural network model is embedded into the
BFEM calculation process to simulate the mechanical response of incompressible hyperelastic
materials. The following conclusions were drawn:
1. In the derivation process, formulas are represented by tensors, with concise symbols and

easy programming calculations. The stress tensors involved are not approximated by
interpolation functions but are expressed using specific formulas composed of base force.

2. Due to the uncertainty of the specific form of the complementary energy function of
elements, any form with J1T and J2T as variables can be used. Therefore, the element
compliance matrix of hyperelastic materials proposed in this paper is a general expression.



3. The constitutive model of hyperelastic materials is replaced by a pre-trained BP neural
network. When BFEM is used to simulate different hyperelastic materials, only the
provided samples need to be modified and retrained.

4. The Mooney-Rivlin model is used to provide test samples in numerical calculations.
These samples are further inverted to obtain pre-trained BP neural networks. The
predicted parameters 1ˆ

k
tw and 2ˆ ktw are substituted into the general compliance matrix

expression for calculation. This enables BFEM to accurately simulate the mechanical
response characterized by the Mooney-Rivlin model, which also confirms the strong
universality of the compliance matrix expression.
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