Thermo-mechanical modeling of laser-driven non-contact transfer printing

*Rui Li¹, Yuhang Li^{2,3}, Chaofeng Lü^{2,4}, Jizhou Song⁵, Reza Saeidpourazar^{6,7}, Placid M. Ferreira⁷, John A. Rogers^{6,7}, and Yonggang Huang²

¹State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China

²Departments of Civil & Environmental Engineering and Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

³School of Astronautics, Harbin Institute of Technology, Harbin 150001, China ⁴Department of Civil Engineering and Soft Matter Research Center, Zhejiang University, Hangzhou 310058, China

⁵Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA

⁶Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801, USA

⁷Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA

*Corresponding author: ruili19851985@yahoo.com

A thermo-mechanical model is developed to reveal the mechanisms of laser-driven non-contact transfer printing, which is an important emerging variant of transfer printing for materials assembly and micro-/nano-fabrication. The process involves laser-induced impulsive heating to initiate separation at the interface between a soft, elastomeric stamp and hard micro/nanomaterials (i.e. inks) due to a large mismatch of thermal expansion. The inks are then ejected from the stamp to a spatially separated receiving substrate, thereby accomplishing the printing. The temperature field and the energy release rate for interfacial delamination are obtained analytically, and a scaling law is established to identify two non-dimensional combinations of material and geometry parameters that control laser-driven non-contact transfer printing. Finite element method is used to validate the simple scaling law, which is useful to optimal design for transfer printing.

Keywords: Thermo-mechanical modeling, Laser-driven non-contact transfer printing, Heat conduction, Interfacial delamination