Recent developments on dynamic fracture with peridynamics

Y.D. Ha

Department of Naval Architecture, Kunsan National University, Gunsan, Jeonbuk, 573-701, Republic of Korea.

Email: ydha@kunsan.ac.kr

In a brittle material, a crack propagates rapidly and may curve or split into several branches, which results in various complex phenomena. Significant effort have been made to model damage and failure in a brittle material but classical models cannot be very useful except in special situations. Peridynamic models have been able to capture/reproduce many essential characteristics of dynamic brittle fracture observed in experiments; crack branching, crack-path instability, successive branching, secondary cracking, etc. The models have been applied in dynamic fracture and damage in isotropic materials as well as fiber-reinforced composites and even in multi-layered glass induced by high velocity impact. The simulation results have shown that the peridynamic formulation is reliable for modeling dynamic fracture without special criteria for crack initiation and propagation.

Keywords: Dynamic Fracture, Crack Propagation, Crack Branching, Brittle Damage, Peridynamics