VISCOELASTIC FLOW BEHAVIOUR MODELING OF NANOIMPRINTING

OF AMORPHOUS POLYMER

*X. Chen¹, H.Y.Y. Audrey², Y.C. Lam³ and Y.-M Deng¹

¹Faculty of Mechanical Engineering and Mechanics, Ningbo University, Zhejiang Province, China 315211 ² Environmental and Water Technology Centre of Innovation, Ngee Ann Polytechnic, Singapore 599489 ³The School of Aerospace and Mechanical Engineering, Nanyang Technological University, Singapore 639798

*Corresponding author: chenxing@NBU.EDU.CN

To gain an understanding and to predict the filling of cylindrical nano-cavities in the nanoimprinting process, visco-elastic polymer flow, with consideration of capillary phenomena, is modeled. The axisymmetrical time-dependent squeeze flow field is studied numerically and analytically using lubrication approximation. Simulated results track the evolution of the filling of a viscoelastic polymer in a cylindrical nano-cavity as the polymer is subjected to the combined squeezing action of the die and capillary force due to surface tension effect.

Keywords: Modeling, Viscoelastic, Nanoimprinting, Surface tension, Squeeze flow