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Abstract 

Tangent Stiffness Method using strict geometrical stiffness gives perfect equilibrium 

solutions with convergence of unbalanced forces at all nodes. In case of deep beam or 

dense mesh division, Timoshenko beam elements show better convergence against to 

the huge load which causes extremely large displacement than Euler-Bernoulli beam 

elements. In this study, a numerical example of large displacement analyses for 3-D 

frame structure with finite rotation is shown, and the performance of Timoshenko 

beam elements is discussed when the flat rectangular cross section is applied. 

 

1 Introduction 

The tangent stiffness method (TSM), which defines the element behavior in the 

element coordinate, gives a useful algorithm for large deformational analysis of 2-D 

and 3-D frame structures. The superiority of this method is that strict equilibrium 

solutions can be obtained by convergence of unbalanced solution using strict 

geometrical compatibility. We applied this method to 3-D analysis considering the 

finite rotations and obtained an equilibrium path with extremely large displacement 

(H.Obiya, K.Ijima, N.Kawasaki, 2000; K.Abe, H.Obiya, K.Ijima, 2007). 

 

However, we defined the element force equation, which is a stiffness equation 

between the element edge forces and the element edge deformation, as linear based 

on Euler-Bernoulli beam. Therefore, in particular cases such as follows, we had 

problem of divergence of unbalanced forces when some elements have large 

deformations. 

1)  Cross section has extremely thin shape. 

2)  Number of mesh division exceeds a limit. 

For example, in the case of the simulation of folding a ring into a third size, the cross 

section should be thin to observe stable behavior, but the problem of 1) was a 

bottleneck. Furthermore, the linear element force equations would require dense mesh 

division for realization of accuracy, against to the problem of 2). 

 

In this study, we try two modifications of the element force equations as follows.  

1) To the direction around the strong axis, Timoshenko beam theory that consider 

shear deformation would be applied. This modification would ensure the stable 

convergence, even if in case that the element length becomes short and/or that 

cross section becomes deep. 
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2) To the direction around the weak axis, the non-linear theory that consider the 

movement of the distance between both ends caused by bending. 

This modification can give more accurate solutions than the linear element force 

equation, so we can expect the reduction of the number of mesh division. The 

numerical example in this paper shows the application of above two modifications 

can contribute the expansion of the coverage of TSM, thus a strict and robust 

algorithm for geometrical non-linear analysis can be realized. 
 

2 Element edge force 

 

2.1    Euler-Bernoulli beam and Timoshenko beam theory in small deformation 

Let an element constituted by a stable and statically determinate support condition as 

shown in Fig.1. Element edge forces consist of axial force N, edge moments Mi and 

Mj are independent to each other. The element force equation for Euler-Bernoulli is 

shown in Eq. (1) and Timoshenko beam is shown in Eq. (2) could be expressed as a 

linear equation. 

 

2.2   Nonlinear Element force equation considering movement of string length 

When setting up the element forces and the element deformations in a line element 

whose area of cross section and moment of inertia are A and I, respectively, the 

bending moments at the edges are written as 
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Fig.1 Element edge force and  

beam deformation in small 

deformation theory 

Fig.2  Element force edge and beam 

deformation in large deformation theory 
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in which, E  is Young’s modules. Rewriting Eq. (6) into simple form, its differential 

calculus is the following. 
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The axial force is proportionate to the difference between the curve length of the 

element and the nonstressed length. 
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in which Δ lb is the movement of string length which is distance between both 

element ends,  caused by bending. 
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Therefore, the axial force depends on the bending deformations, so Eq. (13) becomes 
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3 Numerical Example 

  

 

(a) (b) (c) 

,81,210 GPaGGPaE  Cross section: 1m×0.05m of rectangle 

Fig.3  Initial form and analytical procedure 

 

Fig.4 Accuracy of numerical solutions (Section aspect ratio:20) 

Fig.3 (a) shows the primary configuration of a cantilever beam, while Fig.3 (b) and 

(c) are the deformed sketch. In Fig.3 (a), compulsory rotational displacement around 

the v -direction is applied on the free edge of the cantilever beam. When 2  of 

rotational displacement is applied, the beam was deformed as Fig.3 (b) which results 

as a perfect circular shape. Further, when   of rotational displacement is applied on 

node of A-D to directions illustrated in Fig.3 (b), the beam deforms as Fig.3 (c), 

which exhibits a 3-layer circular shape with a third radius of primary. Fig.4 shows the 

ratio of rn/rt in which rn is radius of numerical solutions and rt is theoretical radius (rt 

= L / 6π), in case of linear (Eq.(1), (2)) and nonlinear element force equations 

(Eq.(16)). Section aspect ratio in this paper is b/h shown in Fig.4. When using Eq. 

(16) as the element force equation, highly accurate result was obtained with small 

number of mesh division. Further, the error of accuracy is almost equal to 0.1 percent 

with 24 mesh when applying nonlinear element force equation to the direction around 

weak axis. On the other hand, if the linear element force equation to the direction 

around weak axis is applied, it is unable to satisfy 0.1 percent of error even with 120 

meth. Therefore, it is clear that nonlinear element force equation of Eq. (16) ensures 

high accuracy with less mesh division and significantly more efficient than the linear 

element force equation of Eq. (1). 
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(a) Eq.(1) is applied to both axes 
(b) Eq.(1) is to weak axis and Eq.(2) 

(Timoshenko beam theory)is to strong axis 

  

(c) Eq.(1) is to strong axis and 

Eq.(16)(Nonlinear theory) is to weak axis 

(d) Eq.(2) is to strong axis and  

Eq.(16) is to weak axis 

Fig.5 Section aspect ratio and number of mesh division  

when a folding solution was obtained  

 

In Fig.5, in order to evaluate the performance of the element force equations defined 

in this study, we examined the influence of section aspect ratio and number of mesh 

division to convergence of unbalanced forces. Every dot is indicated when the 

“folded solution” in Fig.3 (c) had been obtained corresponding to the conditions of 

the section aspect ratio and the number of mesh division. Namely, the conditions 

where no dot is indicated could not achieve convergence. If Euler-Bernoulli beam 

theory (Eq. (1)) is applied to the direction around strong axis (Fig.5 (a), (c)), thin and 

flat cross section is not available especially in case of dense mesh division. Fig.5 (b) 

shows that application of Timoshenko beam theory (Eq. (2)) to the direction around 

strong axis is effective to thin and flat cross section. On the other hand, when the 

nonlinear element force equation considering the movement of string length (Eq. 

(16)) is applied, even rough mesh division can provide strict solutions, but thin and 

flat cross section seems to disturb convergence. 
 

4 Conclusion 

Based on the findings of this study, application of Timoshenko beam theory is 

effective to avoid divergence of unbalanced force in case of dense mesh division 

and/or thin rectangular cross section. Furthermore, to ensure highly accurate result 

when dealing with a large displacement analysis which consumes huge calculation 

cost, we can use the nonlinear element force equation considering the movement of 

string length on the weak axis. Consequently, the combination of the Timoshenko 
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beam theory and the nonlinear element force equation considering the movement of 

string length supplement the versatility and robustness of TSM. 
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