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Abstract 

This paper presents a numerical method to identify the intervals of thermal parameters for steady 
state convection-diffusion heat transfer problems when uncertainty of measurement is characterized 
by the interval. A two step strategy is suggested to estimate the lower and upper bounds of thermal 
parameters in the terms of central value and radius. A 2D numerical example is provided to verify 
the proposed approach. 
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1. Introduction 

Thermal parameter estimation is an important issue related with many engineering aspects 

(Rodriguez and Nicolau,2012;Liu and Xu,2000;Reverberi and Fabiano,2013), and is usually based 
on an assumption that measurement is deterministic. Unfortunately all measurements are 
indeterministic, and contain various uncertainties(Hugh and Steele,1999). Such uncertainties may 
result in fault results in the analysis process, and necessitate to take into account(Wang and 
Qiu,2010;Shome,1999).The point is how to estimate the uncertainty of thermal parameter caused by 
the measurement uncertainty. 
 
There are mainly three mathematical means to describe the uncertainty, including probabilistic 
method, fuzzy theory, and interval analysis(Rao and Berke,1997; Elishakoff,1998;Muhanna and 
Mullen,2001). The interval analysis does not require any prior knowledge or assumption of the 
uncertainty distribution inside their definition ranges as probability and fuzziness do, only the 
bounds of changes of the uncertain quantities are necessary(Jiang, Liu and Han,2008). As matter of 
fact, there were some previous reports concerned with the interval analysis in forward heat transfer 
problems. C.P. Sebastiao(pereiar,2004) presented an interval uncertainty assessment in 1-D thermal 
basin modeling via an Element-By-Element(EBE) technique, and provided good results in 
accordance with those given by the Mento Carlo and combinatorial methods. J.P. Li(Li and 
Chen,2009)employed a perturbation technique to acquire the lower and upper bounds of 
temperatures for the transient heat conduction problem with interval parameters. H.T. Yang(Xue 
and Yang,2013)developed two methods to estimate the bounds of temperatures by utilizing Taylor 
and Neumann expansion skills for convection-diffusion heat transfer problems when thermal 
parameters are uncertain and described by intervals. However by authors best knowledge, there 
seems no any report directly related to the interval estimation of thermal parameters for uncertain 
convection-diffusion heat transfer problems so far, although great achievement has been gained for 
the interval estimation of physical parameters in structural engineering(Wang and Qiu,2010;Jiang, 
Liu and Han,2008) and other aspects(Braems and Berthier,2000;Jorge,2004; Sergey and 
Nazin,2005). 
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This paper focuses on the interval estimation of thermal parameters for the steady state conduction-
diffusion heat transfer problem when the uncertainty of temperature measurements is characterized 
by intervals. Section 2 gives a brief description of numerical modeling of forward convection-
diffusion heat transfer problems with interval parameters; Section 3 presents a two step strategy to 
estimate interval bounds of thermal parameters when measurement temperature is  characterized by 
interval; Section 4 provides 2D numerical tests to verify the proposed approach; Section 5 reaches 
the conclusion. 

2. Numerical modeling of forward convection-diffusion heat transfer problems with interval 
parameters 

The governing equation of steady state convection-diffusion heat transfer problems is(Platten and 
Legos,1984) 
 

 
, ,i i ij j i

cu T k T Q   ,   Ωi x    (1) 

 
where T  stands for the temperature, c  and ijk  are heat capacity and thermal conductivity 

respectively, iu  refers to the vector of the fluid velocity, Q  is a volumetric heat source term, ix  is 

the vector of the coordinates, Ω  represents the space domain of the problem and subscript ,i j  
refers to a summation index( , 1, 2i j   for the 2D problem, , 1, 2,3i j   for the 3D problem). 
 
The boundary condition is given by 
 

 BT = T  1Γix     (2) 

 
 

 i ij , jn k T = q  2Γix     (3) 

 
where BT  and q  are prescribed functions, 1 2Γ Γ +Γ  represents the whole boundary of Ω , and in  

refers to the outward unit normal along 2Γ . 

 
Eqs. (1-3) can be formulated in a FEM form(Huebner and Thornton,1995) 
 

 KT P    (4) 
 

where T  refers to the general nodal vector of temperature. 
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N  stands for a matrix of shape functions.  
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Assume the thermal parameter vector = , , , ,
T

ij ik u c Q q  b  is an interval vector and is described 

by(Alefeid and Herzberger,1983;Moore,1979). 
 

 
,I c e      b b b b b    (7) 

 

 
  / 2c  b b b   Δ / 2 b b b   1,1e      (8) 

 

where cb  and Δb  represent the vectors of central value and radius of Ib , b  and b  refer to the 

lower and upper bounds vectors of Ib . 
 
Near the neighbor of cb , b can be described by  
 

 
c  b b b , δ Δ [ Δ ,Δ ]I  b b b b    (9) 

 
Utilizing the Taylor series expansion, the first order approximation of the solution of Eq. (4) can be 
written as(Qiu and Wang,2004) 
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where  
 

 ( )c cT T b     (11) 
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The lower and upper bounds of 
I

T  are estimated by 
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utilizing Eqs. (11) and (15), lower and upper bounds of temperatures can be estimated for the 
convection-diffusion heat conduction problem with interval parameters. 

3. Interval identification of thermal parameters 

Assume that the measurement temperature *T  is characterized by the interval via 
** , 

  
T T  where 

*T and 
*
T stand for lower and upper bounds of *T . The central value and radius of *T are given by 

 

 

* *
*

2
c 

T T

T ， 
* *

*

2


 

T T
T    (16) 

 

Using *T and 
*
T , the interval estimation of thermal parameters can be realized via the identification 

of cb  and b . 

 
The identification of cb andb is conducted by minimizing two 2L  norms defined by 
  

 
  2

*c c c  LT b T    (17) 

 

 
 

2*     L T b T    (18) 

 

where 
cT  and T  is given by Eqs. (11) and (15), L  is a matrix mapping the relationship of T  and 

the vector of measurement points. 
 
The above minimizations can be realized by the L-M (Levenberg—Marquardt) 
algorithm(Levenberg,1994). For a problem defined by 
 

 
   1

M in
2

 TF φ F φ    (19) 

 
the major procedure of L-M algorithm includes 
 

 Δ m+1 mφ φ φ    (20) 
 

  Δn  T TG G I = G F    (21) 

 
where TG  stands for the gradient matrix of  F  with respect to φ ,   is an non-negative damping 
factor, and I  refers to an identity matrix. 
 
When Δ φ  , the above iteration stops,   refers to an error tolerance. 

 
For Eq. (17) 
 

 
cφ b    (22) 
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*c c F LT T    (24) 

 
For Eq.(18) 
 

  φ b    (25) 
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*   F L T T    (27) 

 
Therefore the lower and upper bounds of thermal parameters are given by  
 

 
c  b b b    (28) 

 

 
c  b b b    (29) 

4. Numerical verification 

For the simplicity, all the computing parameters are assumed dimensionless. 
 
Consider an inverse 2D steady state convection-diffusion heat transfer problem in a 10  10 
rectangular domain which is meshed by 10×10 finite elements, as shown in Fig.1. 
 
The boundary condition is defined by  
 

 , 0 1T x y   , ( , 10) 0T x y   ,  

[0,4]
( 0, ) 1

y
T x y


  , 

(4,10]
( 0, ) 0

y
T x y


  , ( 10, ) 0T x y   

 

The effect of noisy data is taken into account in the form 

 

  * *1n  T T    (30) 

 

  * *
1n  T T    (31) 
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where *
nT  and 

*
nT  represents the vectors of lower and upper bounds of measured or stimulated 

temperature containing the noisy data,   is a random variable between -0.5~0.5,   refers to a noisy 
level. 
 

 
Figure 1 The FE mesh of the rectangular plate 

 

 
Case 1 

1cc  , cc c   , cos 30c
xu   , c

x xu u   , sin 30c
yu   , c

y yu u   ，   is defined as the degree 

of uncertainty. The intervals of xxk  and yyk  are to be identified.  

 
Tab. 1 exhibits the solutions with different initial guesses; Tab. 2 presents solutions with different 
arrangement of measuring points as shown in Fig2; Tab. 3 gives solutions at different noisy levels.  

 
Tab. 1. The effects of initial guesses on the results 

Identified 
parameters 

1 2 
Actual 
values 

Initial 
guesses 

Results of 
identification

Iterative 
steps 

Initial 
guesses

Results of 
identification 

Iterative 
steps 

c
xxk  0.1 0.6 6 5 0.6 9 0.6 

xxk  0.1 0.06 4 5 0.06 4 0.06 
c
yyk  0.1 0.5 6 5 0.5 9 0.5 

yyk  0.1 0.05 4 5 0.05 4 0.05 
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Tab. 2 The effect of different distribution of measuring points on the results 

Identified 
parameters 

Results of identification 
Actual values 25 measuring 

points 
15 measuring 

points 
10 measuring 

points 
c
xxk  0.6 0.6 0.6 0.6 

xxk  0.06 0.06 0.06 0.06 
c
yyk  0.5 0.5 0.5 0.5 

yyk  0.05 0.05 0.05 0.05 

 
 
 

Tab. 3. The effects of noisy data on the results 
Identified 
parameters 

 =1%  =5% 
Actual values 

Result Error(%) Result Error(%)
c
xxk  0.6041 0.68 0.5913 1.45 0.6 

xxk  0.0603 0.50 0.0593 1.17 0.06 
c
yyk  0.5078 1.56 0.4833 3.34 0.5 

yyk  0.0498 0.40 0.0504 0.80 0.05 

 

 
(a) 25 measuring points 

 
(b) 15 measuring points 
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(c) 10 measuring points 

Fig 2 Distribution of measuring points 
Case 2: 

1cc  , cc c   , 0.6c
xxk  , xx xxk k   , 0.6c

yyk  , yy yyk k   . The intervals of xu and yu  are to 

be identified.  
 
Tab. 4 and 5 exhibit solutions with different initial guesses and different arrangement of measuring 
points, Tab. 6 gives solutions at different noisy levels.  
 
Numerical tests indicate 
1. Initial guesses seems no impact on the solution, as shown in Tab. 1 and Tab. 4 where the largest 
ratio between initial guesses and true values is 10. The accurate intervals were identified with few 
iterative steps which shows the high efficiency of the presented method. 
2. Since the problem defined in the numerical test is homogeneous the variation of number and 
location of measuring points gives no impact on the solution, as shown in Tab. 2 and Tab.5, 
respectively. 
3. The proposed algorithm is not sensitive to noisy data when 5%  , the maximum relative error 
is 3.34% when 5%  . 
4. Only few iterations are required to obtain satisfactory results, as shown in Tab. 1 and Tab.4. 

 
Tab. 4. The effects of initial guesses on the results 

Identified 
parameters 

1 2 
Actual 
values

Initial 
guesses 

Results of 
identification

Iterative 
steps 

Initial 
guesses

Results of 
identification 

Iterative 
steps 

c
xu  0.1 0.866 12 5 0.866 6 0.866 

xu  0.1 0.086 4 5 0.086 4 0.086 
c
yu  0.1 0.5 12 5 0.5 6 0.5 

yu  0.1 0.05 4 5 0.05 4 0.05 

 
Tab. 5 The effect of different distribution of measuring points on the results 

Identified 
parameters 

Results of identification 
Actual values 25 measuring 

points 
15 measuring 

points 
10 measuring 

points 
c
xu  0.866 0.866 0.866 0.866 

xu  0.086 0.086 0.086 0.086 
c
yu  0.5 0.5 0.5 0.5 
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yu  0.05 0.05 0.05 0.05 

 
Tab. 6. The effects of noisy data on the results 

Identified 
parameters 

 =1%  =5% 
Actual values 

Result Error(%) Result Error(%)
c
xu  0.8714 0.54 0.8517 1.65 0.866 

xu  0.0869 1.05 0.0856 0.47 0.086 
c
yu  0.5041 0.82 0.4892 2.16 0.5 

yu  0.0504 0.80 0.0489 2.2 0.05 

 

Conclusions 

Since there seems no direct report concerned with the inverse convection-diffusion heat transfer 
problems when the uncertainty of temperature measurements is characterized by the interval, this 
paper attempts to present a numerical model to solve this kind of problem. In terms of central value 
and radius of interval, a two step strategy is suggested to estimate the lower and upper bounds of 
thermal parameters and fluid velocity. The L-M method is employed in the estimation procedure, 
and a numerical test is given to illustrate the advantages of the proposed algorithm with the 
consideration of initial guess, arrangement of measurement points, and data noise. 
 
The presented model is verified via some numerical tests, however due to the lack of actual 
uncertainty information either from experiment or industry (some of parameter is based on 
assumption) more efforts for the further model V&V are required. For the model application of 
industry, in addition to the numerical verification similar to this paper, the experiment based 
verification is particularly required. On the other hand we need collect sufficient message on the 
interval uncertainty from industry, such as the width of interval, noisy level, etc., and validate/verify 
the proposed model via some industry cases to secure the validity of identification results.         
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