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Abstract 
Based on the continued fraction theory and the diagonalization procedure of the scaled boundary 
finite element method (SBFEM) for infinite acoustic fluid with uniform cross section, the high-
frequency and the doubly asymptotic continued fraction formulations were derived. These 
formulations were applied to analyze a transient response of infinite acoustic fluid with uniform 
cross section under upstream excitations. Based on the transient response, the stability and 
convergence of the continued fraction formulations were discussed. Numerical results showed the 
doubly asymptotic continued formulation converged much faster than the high-frequency continued 
fraction formulation to analytical solutions. Comparison of computational efficiency between the 
continued formulation and the dynamic mass matrix was made. Computational costs of the 
continued fraction formulation were much less than that of the dynamic mass matrix.   
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Introduction 
The infinite acoustic fluid with uniform cross section is often encountered in dam-reservoir 
interaction problems. To obtain the dam-reservoir interaction response, the infinite acoustic fluid 
was truncated into a near-field with arbitrary geometry in the vicinity of dam and a far-field with 
uniform cross section which extends to infinity. The near-field can be easily modeled by FEM or 
BEM et al, while the far-field with uniform cross section can be modeled by transmitting boundary 
conditions (Gogoi and Maity (2006)), BEM (Czygan and Estorff Von (2002)) and so on. An 
alternative to model a far field, the scaled boundary finite element method (SBFEM), was verified 
to model accurately and effectively unbounded medium problems (Wolf and Song (1996)).  
 
Based on the SBFEM formulation in displacement, Lin and his co-authors developed and applied 
the SBFEM to solve the semi-infinite acoustic fluid with uniform cross section problems in the 
frequency domain (Lin et al. (2007), Lin et al. (2010)), while Li and his co-authors improved the 
SBFEM for frequency problems of the semi-infinite acoustic fluid with uniform cross section (Fan 
and Li (2008), Li et al. (2008)), based on the SBFEM formulation in dynamic stiffness. In addition, 
based on the dynamic mass matrix, Li (2011) also applied the SBFEM to solve the transient 
analysis of the semi-infinite acoustic fluid with uniform cross section. Its results were very similar 
to solutions from other methods, but in the author’s experience, its computational efficiency was 
affected greatly by convolution integrals in the SBFEM. In order to improve the computational 
efficiency of SBFEM, a diagonalization formulation of SBFEM and a Bessel function to evaluate 
the dynamic stiffness of SBFEM were proposed by Li (2009) and Li (2012), respectively. Although 
these methods improved the SBFEM efficiency, they still need a convolution integral evaluation 
which results in the nonlinear increase of computational cost with analysis step number increasing. 
An alternative, a continued fraction formulation, was proposed by Prempramote et al. (2009), which 
can avoid the evaluation of convolution integral. Based on the continued fraction formulation and 
the SBFEM diagonalization formulation, this research derived the continued fraction formulation in 
matrix form of infinite acoustic fluid with uniform cross section.  
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SBFEM Formulation for Infinite Acoustic Fluid with Uniform Cross Section 

 
Figure 1. Infinite acoustic fluid with uniform cross section 

For an infinite acoustic fluid with uniform cross section of arbitrary geometry as shown in Figure 1 
only subjected to upstream excitations in x direction, the whole infinite acoustic fluid can be 
modeled by the SBFEM, which only needs the discretization of cross section of the infinite fluid. Its 
boundary conditions can refer to the reference (Li et al. (2008)). Ignoring effects of surface waves 
and absorption of side walls and bottom, its SBFEM formulation satisfies (Li (2009)) on the cross 
section 
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=−= 010022

n                                        (1) 
The symbols ( )ω∞S , Φ , nV are the dynamic stiffness matrix of infinite fluid after SBFEM 
discretization, velocity potential vector and equivalent normal velocity vector caused by upstream 
excitations, respectively. ω  is the excitation frequency. 0E , 2E , 0M  are SBFEM coefficient 
matrices, which were defined by Wolf and Song (1996). nV  is expressed as 
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T
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The symbol A  denotes the cross section. fN  is the shape function of acoustic fluid finite element. 

nv  is normal velocity. Using the diagonalization technique (Li (2009)), one has 
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where the square matrix X  is the eigenvector matrix and the matrix Λ  is the eigenvalue matrix of 
the eigenvalue equation (4); I , c , H  are the identity matrix, the sound speed in fluid and the height 
of cross section, respectively. 

Continued Fraction Formulation of Dynamic Stiffness Matrix  
According to the continued fraction theory (Prempramote et al. (2009)) based on the dynamic 
stiffness of semi-infinite layer with constant depth, the order HM  high-frequency continued fraction 
solution of Equation (3) is equivalent to 
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Substituting Equations (7, 8) into Equation (3) yields 
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In order to improve the accuracy of Equations (7, 8) in low frequency range, the residual term 
( )ω)1(

d
H +MY of Equation (8) is denoted as 
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Note that continued fraction formulations of Equations (7-17) are expressed in a matrix form. The 
formulations with 0L =M and 0L ≠M  are called a high-frequency and a doubly asymptotic 
continued fraction formulation, respectively. 

Time-Domain Formulation Based on Continued Fraction Formulation 
Re-writing Equation (1) yields 
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Substituting Equations (7, 8) into Equation (18) yields 
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(21), one has 
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where )1(
dLΦ  is an auxiliary variable and satisfies 
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Substituting Equation (14) into Equation (23) leads to 
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Combining Equations (18, 21, 22, 25), one has 
fzCzK =+ hh                                                          (27) 
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Equation (27) is the time-domain governing equation of infinite acoustic with uniform cross section 
based on the continued fraction formulation. 
 
Note that Equations (1-31) are applicable to two- and three-dimensional problems because its 
derivation process is independent of problem dimension. If the SBFEM coefficient matrices 0E , 2E , 

0M  are from two-dimensional or three-dimensional problems, Equations (1-31) are for two-
dimensional or three-dimensional problems. Therefore, these equations’ accuracy is only validated 
by two-dimensional problems in the following section. 

Numerical Examples 
Consider transient responses of vertical rigid dam-reservoir system shown in Figure 2 under 
horizontal (upstream) excitations shown in Figure 3, where the reservoir is full of acoustic fluid 
with uniform cross section, and the surface wave and reservoir bottom absorption are ignored. Its 
aim is to validate the accuracy of Equation (27). Reservoir water height 180=H , water density 

1000=ρ kg/m3, sound speed in water c=1438.656m/s. The reservoir was discretized by 10 three-
node SBFEM elements. 

 
Figure 2. Rigid vertical dam-reservoir system  

∞  H 

Rigid dam 



5 
 

0 2 4 6
-0.4

-0.2

0.0

0.2

0.4

time/s

a/
g

 

Figure 3. Horizontal accelerations (Left: Ramped; Right: El Centro) 

Figure 4 shows the pressure at the heel of dam obtained by different order HM  and LM  
continued fraction formulations under horizontal ramped acceleration shown in Figure 3. Time step 
increment is 0.005s. Results from high-frequency continued fraction formulation with 50H =M , 
100 were different with that obtained from dynamic mass matrix after the time 2.5s, while results 
from doubly asymptotic continued fraction formulation with 5LH == MM  and 10LH == MM  
were much more accurate, especially at late time, which showed that the doubly asymptotic 
continued formulation can obtain more accurate results than high-frequency continued fraction 
formulation. Figure 5 plots the pressure of dam's heel from the doubly asymptotic continued 
fraction formulation under horizontal El Centro acceleration shown in Figure 3. With the order 
increasing, results gradually tend to those from dynamic mass matrix. Results from dynamic mass 
matrix were almost similar to analytical solutions (Li (2009)). Figure 6 plots results from the doubly 
asymptotic continued fraction formulation with 10LH == MM  using different time step increments 
0.0002s and 0.005s. Results from 0.0002s are more accurate than those from 0.005s. Figures 4-6 
show that results from the continued fraction formulation become more and more similar to exact 
solution when time step increment becomes smaller and smaller and the order of doubly asymptotic 
continued fraction formulation becomes higher and higher, which validates the convergence of 
Equation 27. 
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Figure 4. Pressure at the heel of rigid vertical dam under ramped acceleration 
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Figure 5. Pressure at the heel of rigid vertical dam under El Centro acceleration 
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a) Ramped acceleration           b) El Centro acceleration  

Figure 6. Pressure at the heel of rigid vertical dam under different time increment  

Through solving eigenvalues of Equation (27), it can be found that real parts of eigenvalues are 
positive when HM  and LM  are greater than zero, which ensure Equation (27) is stable. When LM  
is equal to zero, real parts of eigenvalues of Equation (27) are zeros, which ensure Equation (27) is 
not divergent. Maybe that is why results from high-frequency continued fraction formulation are not 
convergent to analytical solutions.  

Table 1. Response computational time comparison 

Time step 1000 2000 5000 
Dynamic mass matrix, matrix dimension 20×20 0.35s 2.17s 25.25s 
Continued fraction formulation with ML=Mh=5, 

matrix dimension 240×240 0.07s 0.14s 0.34s 

Continued fraction formulation with ML=Mh=10, 
matrix dimension 440×440 0.28s 0.58s 1.38s 

Table 1 lists the response computational cost based on the dynamic mass matrix and the 
continued fraction formulation. Response computational time of dynamic mass matrix is only the 
time cost to evaluate the response based on convolution integral, not including the dynamic mass 
matrix evaluation time. The response computational cost of the continued fraction formulation is the 
time to solve Equation (27).  Table 1 shows the efficiency of the continued fraction formulation is 
much higher than that of the dynamic mass matrix, although the continued fraction formulation 
increase the dimension NN ×  of response solving matrix equation up to  
( ) ( )NMMNMM 22 LHLH ++×++ .                    

Conclusions 

The continued fraction formulation of infinite acoustic fluid with uniform cross section was derived, 
which is applicable to two- and three-dimensional problems. The formulation can accurately model 
the infinite acoustic fluid and its calculation efficiency is much higher than the convolution integral 
efficiency of SBFEM based on dynamic mass matrix. 
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