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Abstract

Solving acoustic problems governed by Helmholtz equation by standard finite 
method (FEM), the numerical dispersion error is not negligible when the wave 
increases due to the “overly-stiff” character of FEM. To overcome this numerical 
dispersion error, this paper uses the edge-based smoothed finite method (ES_FEM) to 
analyze the 2D exterior scattering problems. Linear triangle elements and is employed 
separately to mesh the 2D computational domain. Using gradient smoothing 
technology to build a relatively soft stiffness thus the numerical dispersion error can 
significantly decreased.  In addition, the gradient smoothing technology transfers 
domain integrals involving gradient of shape function to simple boundary integrals 
involving only shape function, which can reduce computing cost. In order to model 
exterior acoustic problems defined in unbounded domains, the unbounded domain is 
truncated by an artificial boundary on which the non-reflecting boundary condition is 
imposed to replace the Somerfield condition at infinite. Examples for exterior
scattering problems with known exact solutions are calculated to demonstrate the 
ES-FEM realization, result shows that the ES-FEM is also very accurate. Compared 
FEM calculation process and results, ES-FEM is more effective and could achieve 
much more accurate result in solving exterior acoustic problems, especially when 
number is large.

Keywords: Smoothed Finite Element Method, Acoustic Scattering, Unbounded 
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1. Introduction

Seeking for the numerical solution of acoustic problems governed by Helmholtz 
equation has been a widely concerned issue in numerical research which aims to
improve the computational accuracy and efficiency and applicability of the algorithm.
The analytical solution can be derived for simple acoustic problems, but it’s difficult 
to derive analytical solution when acoustic model is relatively complex. Thus it 
cannot avoid using numerical methods to solve engineering problems. In the past few 
decades, many numerical methods are extensively used to get approximate solution of 
acoustic problems (Abboud, 1990; Avorinde, 1990; Dokumacl, 1991; Givoli, 1989 and Gerdes,
2000), especially the standard finite element method (FEM) (Lonny, 2006 and Harari, 2004)
and boundary element method (BEM) (Burton, 1971; Colton, 1983 and Walsh, 2004). A 
known issue is that numerical method including FEM usually generate “numerical 
dispersion” error which cannot be neglected in high frequency range (the wave 
number k is large) (Suleau, 2000).

In order to eliminate the numerical dispersion error, researchers has proposed a series
of methods. In recent years, element-free technique has been widely used and 
developed. Belytschko et al., 1994 proposed the element-free Galerkin method 
(EFGM), but this method is also sensitive to dispersion error. Bouillard et al., 1998
improved EFGM and obtained higher accuracy and better convergence. Petersen et al. 



used high-order spectral element shape function to analyze acoustic problems, and it 
showed that this method lead to higher accuracy and stability as well as good 
computational efficiency (Petersen, 2006). Harari et al., 2004 applied stabilized finite 
element method to basic Galerkin form for Helmholtz equation and improved its 
stability. Although FEM has been widely used to solve acoustic problems, FEM 
solution shows the lower bound property due to the character of overly-stiff, and on 
the contrary, NS-FEM solution presents the upper bound property duo to its 
overly-soft character. In order to artificially control the character of the stiffness, 
α-FEM (Liu, 2008, 2009a) was proposed with a controlling factor (α) whose value 
varies between 0 and 1. 

In recent several years, smoothed finite element method (ES-FEM) was introduced by 
Liu et al., 2009b which combines FEM with strain smoothing techniques and it 
showed that ES-FEM can provide better accuracy and stability because ES-FEM
settled the “overly stiff” issue that standard FEM may face. At first, ES-FEM was
mainly used to solve solid mechanics problems like free and forced vibration (Dai, 
2007; Cui, 2010 and Nguyen, 2010). Result showed that ES-FEM obtained more accurate 
natural frequency than FEM and thus obtained more accurate stress and strain Later, 
ES-FEM was applied to solve acoustic problems and still behaves better than FEM.
Z.C.He et al., 2010 studied the coupled problems of structural-acoustic by ES-FEM 
and successfully alleviated the shear locking phenomenon. Z.CHe et al., 2009 also 
studied pure acoustic problems governed by Helmholtz equation and demonstrated
that ES-FEM achieved better result than FEM.

Since analysis of interior acoustic problems has been researched by SFEM, this paper 
pays attention on exterior acoustic problems and investigates if SFEM still behaves 
better than FEM. To solve acoustic problems in unbounded domain, an artificial
boundary is usually introduced to make the computational domain finite and impose 
certain condition on it. Keller and Givoili, 1988 derived an exact non-reflecting 
boundary condition (the Dirichlet-to-Neumann condition) in case that the artificial
boundary is a sphere. Berengers, 1994 proposed perfectly matched layer (PLM) 
method to solve Maxwell equation in unbounded domain. Local absorbing boundary 
condition (Wilcox, 1956) and infinite elements (Bettess, 1992) can also be applied to 
treat the artificial boundary. In this paper DtN boundary condition is used to deal with 
the artificial boundary.

In this paper, exterior acoustic problems are investigated by ES-FEM, and we further 
study the efficiency and accuracy of ES-FEM. The organization of this paper is as 
follows: section 2 is a briefly description of the computational model and a detailed 
introduction of ES-FEM formulation; section 3 is a comparison of ES-FEM to FEM 
in three aspects: the computing efficiency, the accuracy and the sensitivity to irregular
mesh; section 4 is a demonstration of ES-FEM in practical application; section 5 
shows the conclusions derived from the numerical results.

2. Basic theory of ES-FEM for acoustic problem

2.1 Governing equation

For ideal homogeneous fluid, the acoustic wave equation can be described as:
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where 2 represents the Laplace operator, c is the speed of acoustic wave and p is the

acoustic pressure. If the acoustic wave is further time-harmonic, Eq. (1) can be 
simplified as:



2 2 0p k p                                (2)

where k represents the wave number.

Consider the situation that a scattering object outlined by boundary 1 is located in 

an infinite domain , solve the scattering field when an incident wave passes by. The 
problem can be stated as: given boundary condition (such as particle vibration 

velocity or a description about the velocity) on 1 , find acoustic pressure p in domain

 such that:
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where nv ,  and  represent the normal velocity on boundary 1 , the angle 

frequency and the density of the fluid, respectively. Eq. (5) is the Sommerfeld 
radiation condition which guarantees the positive energy flux at infinity so that the 
solution is unique. However Eq. (5) is not practicable for numerical method because 
it requires the mesh to be infinitely vast. An alternative is to introduce an artificial

boundary 2 on which impose the following condition:

p n M p                  On 2         (6)

In Eq. (6), M is the Dirichlet to Neumann (DtN) map which describes the 

relationship between pressure p and its derivative. In 2-D problems when the 

artificial boundary is a circle, Givoli derived that M could be expressed as:
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2.2 Formulation of standard FEM

To get the weak formulation of Helmholtz equation, firstly multiply test function 

to Eq. (1):
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Then use Green’s theorem to integrate Eq. (8) by parts to obtain:
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Adding the boundary condition Eq. (4) and Eq. (6) to Eq. (9):
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Assuming both the acoustic pressure p and the test function w can be expressed 

approximately as
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where ip and iN represent the unknown nodal pressure and FEM shape function, 

respectively. Applying Eq. (11) to Eq. (10), the discretized system equation is finally 
obtained as the following matrix form:
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where K is the FEM stiffness matrix:
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M is the mass matrix:
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and F is the force matrix:
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Solving scattering problems, it is common to make the particle vibration velocity of 
the incident and scattered wave to meet certain conditions on surface of scatters, thus 
scattering problems is replaced by radiation problems. If the scattering object is rigid, 

it is granted that particle vibration velocity of the scattered wave sV is negative to 

that of the incident wave iV , namely s iV V  . When velocity is complex, 

 s iV conj V  , which means if the velocity angle phase of the incident wave at point 

A advances that at point B, so it is the same with the scattered wave.

2.3 Creation of Edge-Based smoothing domain and ES-FEM stiffness matrix

To solve the same acoustic problem, ES-FEM and FEM have exactly the same mass 
matrix、boundary matrix and force matrix，the only difference between them lies in 
the stiffness matrix .ES-FEM introduces the gradient smoothing technique which 



replaces the gradient component N with the smoothed item N , thus the ES-FEM 

stiffness matrix can be written as:
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Assuming the 2-D acoustic domain  has been divided into eN “no-overlap” and 

“no-gap” triangle elements i with nN nodes and egN edges, such that: 
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connect it with its neighbor nodes, therefore the sub-smoothing domain s
k for edge 

k is created. Thus the problem domain  can further be divided into egN

“no-overlap” and “no-gap” smoothing domains, such that: 
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acoustic pressure is smoothing the velocity. For the thk smoothing domain s
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smoothing velocity can be expressed as:
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In which  kW x x is the smoothing function by:
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where 
s
k

kV d


  is the area of smoothing domain of edge k . Substituting Eq. (18) 

into Eq. (17), the domain integration of velocity is transformed into the boundary 
integration of acoustic pressure:

  1 1
s
k k

k
k k

v x pd p nd
j V j V  

        �           (20)

The gradient smoothing acoustic pressure can be written as:
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where N is the total number of element surrounding the smoothing edge (for 

boundary edge 1N  , for inner edge 2N  ) and IB is the gradient smoothing 



matrix with  1 2I I IB b b . Substituting shape function into Eq. (20) and using one 

point Gauss integration method to get
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In which, k is the boundary of smoothing domain s
k , IN the shape function, 

bN the segment number of boundary k , GP
ix the midpoint of boundary segment, 

idn the unit outward vector, il the length of boundary segment.

Finally Eq. (17) can be written as:
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From above it can be found that: for FEM stiffness each node interacts only with the 
node belonging to the same element, which means the stiffness of each element is 
only distributed to the nodes belonging to it. In terms of ES-FEM stiffness, each node 
interacts not only with the node belonging to the same element, but also with the node 
belonging to its neighbor elements, which indicates that the stiffness of each element 
is distributed not only to the nodes belonging to it, but also to the nodes belonging to 
its neighbor elements. This special distribution increases the bandwidth of the 
stiffness matrix and seams to take more computation cost, but on the contrary 
ES-FEM introduces smoothing function to the domain integration and transfers it into 
simple boundary integration which greatly reduces the computation time. Besides that 
distribution is the way how ES-FEM softens the FEM stiffness and reduce numerical 
dispersion error caused by overly-rigid stiffness.

3. Numerical solution for 2D problems

In this section, an example with known exact solution is studied to analyze the 
computing efficiency，accuracy and mesh sensitivity of ES-FEM. Assume a rigid 
cylinder of infinite length is located in an unbounded domain, use both ES-FEM and 
FEM to solve the scattering pressure field when a plane wave passes by. The 
computation domain is the area surrounded by two circular boundary, one is the 
outline of the cylinder with radius a=0.2m and the other is the artificial boundary with 
radius R=1m. Assume the plane wave is propagating along the x-axis with the 
following formulation:

 expiP jkx                                  (23)

The exact solution of this scattering problem can be expressed by the following 
formulation:
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In Eq. (24), when n=0, 1n  otherwise 2n  , ( )nJ x and ( )nH x are Bessel 

function of the first and third (Hankel function) kind. 

3.1 Computing efficiency comparison

The main and the only difference of ES-FEM and FEM in solving the same problem 
is the global stiffness matrix. Therefor to evaluate the computing efficiency of 
ES-FEM and FEM is to compare their computing time on calculating the global 
stiffness matrix. It is common sense that differentiation and integration operator is 
much more time-costing than basic arithmetic operator such as addition and 
multiplication. Comparing to FEM, ES-FEM prevails in that ES-FEM does not need 
to perform differentiation even though the formulation has an item of N , because 
the smoothing technology is introduced to transform the domain integration of N
into boundary integration of N as shown in Eq. (19). Thus the integration of 
ES-FEM is one-dimensional while the integration of FEM is two-dimensional which 
also reveals the advantage of ES-FEM in computing cost.

Use ANSYS mesh generator to mesh the computation domain, and set the mesh 
size to get five different models with 576,1196,1620,2176 and 2660 nodes, each 
model being meshed by both T3 and Q4 element. The global stiffness matrix of both 
ES-FEM and FEM are programmed and computed by MATLAB whose version is 
MATLAB 2010 and the computing time result are listed in Table 1. Note that the 
main hardware equipment of the computer is as follows: Intel(R) Xeon(R) CPU 
E3-1230 V2 @ 3.30GHz, Intel(R) 7series /C 216 Chipset Family USB Enhanced 
Host Controller and ACPI x64-based PC.

It can be obviously observed from Table 1 that: (1) regardless of the element 
type, computing of both ES-FEM and FEM are linearly increasing with the total 
number of nodes; (2) for model of the same nodes, computing speed of ES-FEM is 
approximately 40 times faster than that of FEM in terms of T3 element, and1400 
times faster in terms of Q4 element; (3) the computing time of ES-FEM is less 
effected by element type than that of FEM. The detailed reason why ES-FEM 
computes faster than FEM lies in that: (1) ES-FEM does not need to perform 
differentiation or integration for both T3 and Q4 element; (2) for T3 element, FEM 
does not need to perform integration because N is constant; (3) for Q4 element, 
FEM needs to perform both differentiation and integration, and the integration is 
numerically solved by Gaussian integral with two Gauss points in each dimension. It 
can be concluded from above that ES-FEM behaves much better than FEM does in 
computing efficiency.
Table 1. Computing time of the global stiffness matrix using ES-FEM and FEM, 

T3 means triangular element and Q4 means quadrilateral element
Total node 

number
ES-FEM(T3)

(s)
FEM(T3)

(s)
ES-FEM(Q4)

(s)
FEM(Q4)

(s)

576 0.17 57.01 0.75 1034.28
1196 0.30 126.14 1.66 2254.13
1620 0.41 180.24 2.33 3325.81
2176 0.57 205.50 3.60 4955.62
2660 0.71 270.33 4.48 5250.75

3.2 Accuracy comparison

From last section it concludes that ES-FEM is more efficiency than FEM, this section 
focuses on the accuracy of ES-FEM. The accuracy of ES-FEM is investigated and the 
result comparison with FEM is mainly conducted in the following three aspects:



Firstly, for certain wave number, compare the numerical result of ES-FEM and FEM 
with the exact solution. To demonstrate scattering properties, pressures of nodes on 
artificial boundary are picked to be plotted in Fig.1, where (a), (b) and (c) are 
corresponding to low frequency ( ka  ), medium frequency ( 2ka  ) and high 
frequency ( 3ka  ). It is shown that both ES-FEM and FEM could achieve 
acceptable result on the whole and ES-FEM result is as same accurate as FEM result 
in terms of backward scattering. Besides, ES-FEM obtains more accurate result than 
FEM in terms of forward scattering, especially at petal-like corner. In order to 
demonstrate the accuracy of ES-FEM, special attention will be paid on forward 
scattering.
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Figure 1. Pressure distribution on artificial boundary at different wave number

Secondly, for certain scattering angle, how the scattering pressure varies with 
non-dimensional number is investigated and behavior of ES-FEM and FEM is 
observed. Nodes on artificial boundary at angle of 0°, 30°, 60°and 90°are 
picked to demonstrate the comparison which are plotted in Fig.2. It is shown that: (1) 



at low frequency band, numerical results of both ES-FEM and FEM are exactly the 
same as the exact solution; (2) at high frequency band, ES-FEM result is more close 
to exact solution than FEM result although error of both ES-FEM and FEM becomes 
larger as frequency increases.

Finally, separately observe the real part and the image part of the pressure result since 
the scattering field is complex. Pressures of nodes on artificial boundary at several
scattering angles are picked for the comparison and the results are listed in Table 2, 
Table 3 and Table 4.
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Figure 2. Pressure variation with wave number at certain scattering angle

It can be observed that both the real part and the image part of ES-FEM result 
pressure are very close to that of the exact solution in case of low frequency, medium
frequency and even high frequency. In terms of FEM result, the amplitude of pressure 
is close to the exact solution, but neither the real part nor the image part of the 
pressure is very close to the exact solution. It can be concluded that: (1) for ES-FEM, 
the real part, the image part and the amplitude of the result pressure are all very 



approximate to the exact solution; (2) for FEM, only the amplitude of the pressure is 
approximate to the exact solution while the real part and the image part of the 
pressure is less accurate than ES-FEM at low frequency and not stable at high 
frequency; (3) ES-FEM has better convergence and accuracy than FEM.

Table 2. Pressures of nodes on artificial boundary at different scattering angle 
when non-dimensional wave number ka  .

Scattering
angle

Exact
(Pa)

ES-FEM result
(Pa)

FEM result
(Pa)

0.00° 0.3265 + 0.4839i 0.3262 + 0.4861i 0.3036 + 0.4901i

10.25° 0.3222 + 0.4289i 0.3220 + 0.4306i 0.3023 + 0.4360i

20.51° 0.3093 + 0.2875i 0.3094 + 0.2881i 0.2974 + 0.2970i

30.75° 0.2505 - 0.0197i 0.2512 - 0.0214i 0.2562 - 0.0073i

39.87° 0.2589 + 0.0008i 0.2597 - 0.0008i 0.2636 + 0.0133i

50.13° 0.2162 - 0.0566i 0.2170 - 0.0585i 0.2236 - 0.0454i

60.38° 0.1616 - 0.0268i 0.1622 - 0.0282i 0.1664 - 0.0193i

70.63° 0.0971 + 0.0630i 0.0973 + 0.0625i 0.0963 + 0.0655i

79.75° 0.0350 + 0.1565i 0.0349 + 0.1568i 0.0287 + 0.1551i

90.00° -0.0352 + 0.2384i -0.0356 + 0.2392i -0.0459 + 0.2340i

Table 3. Pressures of nodes on artificial boundary at different scattering angle 
when non-dimensional wave number 2ka  .

Scattering
angle

Exact
(Pa)

ES-FEM
(Pa)

FEM
(Pa)

0.00° -0.6371 - 0.6103i -0.6361 - 0.6247i -0.4119 - 0.7495i

10.25° -0.5159 - 0.4272i -0.5151 - 0.4350i -0.3708 - 0.5489i

20.51° -0.2512 - 0.0955i -0.2504 - 0.0925i -0.2442 - 0.1727i

30.75° 0.1055 - 0.1056i 0.1081 - 0.1078i 0.1413 - 0.0632i

39.87° 0.0895 - 0.0718i 0.0918 - 0.0723i 0.1061 - 0.0380i

50.13° 0.1388 - 0.1727i 0.1419 - 0.1788i 0.2142 - 0.1125i

60.38° 0.1427 - 0.0627i 0.1448 - 0.0665i 0.1735 - 0.0152i

70.63° 0.0854 + 0.1619i 0.0854 + 0.1646i 0.0259 + 0.1732i

79.75° -0.0255 + 0.2620i -0.0272 + 0.2676i -0.1186 + 0.2405i

90.00° -0.1693 + 0.1676i -0.1718 + 0.1703i -0.2166 + 0.1170i

Table 4. Pressures of nodes on artificial boundary at different scattering angle 
when non-dimensional wave number 3ka  .

Scattering
angle

Exact
(Pa)

ES-FEM
(Pa)

FEM
(Pa)

0.00° 0.8957 + 0.6257i 0.8940 + 0.6713i - 0.0210 + 1.0468i

10.25° 0.4843 + 0.3266i 0.4766 + 0.3394i 0.0655 + 0.6087i

20.51° -0.0811 + 0.0316i -0.0972 + 0.0187i 0.0161 + 0.0076i

30.75° -0.0506 + 0.0036i -0.0518 + 0.0077i -0.0674 - 0.0604i

39.87° -0.0654 + 0.0632i -0.0693 + 0.0723i -0.1392 - 0.0521i

50.13° 0.0042 - 0.1933i 0.0138 - 0.2064i 0.2010 - 0.0575i

60.38° 0.1262 - 0.0857i 0.1374 - 0.0888i 0.1582 + 0.0755i



70.63° 0.0996 + 0.2164i 0.0997 + 0.2303i -0.1640 + 0.1747i

79.75° -0.1198 + 0.1812i -0.1278 + 0.1877i -0.2392 + 0.0023i

90.00° -0.2345 - 0.1232i -0.2412 - 0.1349i 0.03 - 0.2509i

3.3 Sensibility to irregular mesh

Since the computation domain boundary is curved, no mesh generator can produce 
100% equilateral triangle elements. Use element quality statistics to evaluate the 
irregularity of the whole mesh, and the quality of each element is evaluated by the 
following expression:

min3
Q




                                (25)

where min is the minimum inner angle of the triangle and Q is a number between 

0 and 1, 1 stands for equilateral triangle and 0 the worst element.

The original mesh data is automatically obtained by ANSYS mesh generator and the 
irregular mesh data is generated programmatically by the following expression:

c irx x x r                                    (26)

c iry y y r                                    (27)

where cr is a random number between -1.0 and 1.0 and ir is the irregularity 

degree whose value varies between 0 and 0.5. The larger value of ir brings about 

more irregular element distribution. Table 1 shows the element quality statistics of 

both original mesh data and the irregular mesh data varying with ir . Element quality 

statistics of original mesh and irregular mesh is listed in Table 5 from and it can be 
found that the percentage of worst element increases with irregularity degree while 
the percentage of best element decreases as expected.

Table 5. Element quality statistics with different irregularity degree ir

Q Percentage of worst element←---------------------------------→percentage of best element

0~0.1 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0

Orignal 

mesh
— — — — — 0.01% 6.88% 20.36% 35.38% 37.37%

ir =0.1 — — — — — 0.43% 10.77% 23.38% 34.78% 30.64%

ir =0.2 — — — 0.01% 0.51% 4.82% 15.31% 27.97% 33.02% 18.35%

ir =0.3 — — 0.01% 0.54% 3.64% 10.72% 20.17% 27.11% 26.54% 11.28%



ir =0.4 0.02% 0.10% 0.69% 2.94% 7.95% 15.34% 21.09% 24.20% 19.90% 7.77%

ir =0.5 0.19% 0.79% 2.88% 6.64% 10.79% 16.40% 20.31% 19.80% 16.28% 5.92%
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(a) Scattering angle is 0°           (b) scattering angle is 90°
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(c) Scattering angle is 180°
Figure 3. Local pressure error varies with the irregularity degree of mesh at 

certain scattering angle
In order to investigate the sensibility of ES-FEM, five models with irregularity varies 
between 0.1 and 0.5 are generated for computation and for each model both ES-FEM 
solution and FEM solution are computed for purpose of comparison. The study is 
performed at medium frequency when non-dimensional wave 2ka  , and local 
pressure error of node on artificial boundary at scattering angle of 0°, 90°and 
180°are calculated which are plotted in Fig.3. The pictures shows that: (1) ES-FEM 
has lower local pressure error than FEM on the whole; (2) local pressure error of 



ES-FEM changes only a little as irregularity degree increases, and achieves even less 
error when irregularity is 0.5 compared with result from original mesh;(3) local 
pressure error of FEM has more visible change than ES-FEM as irregularity degree 
increases, and in general local pressure error becomes larger as irregularity degree 
increases.

4. Exterior acoustic problem for 2D rudder

Form above it can be found that ES-FEM has more efficiency and accuracy than FEM 
in solving scattering problem by a circular object. In this section, pressure distribution
of a scattering field is studied by ES-FEM and FEM solution. The scattering field is 
formed by the outline of a 2D rudder and a circular artificial boundary with radius
R=3m. It is difficult to derivate the exact solution for this problem since the curve of 
the 2D rudder is complicated, and the FEM solution of a very fine mesh is taken as 
the reference solution. For sake of simplicity, assume the density of the fluid media is 
1000 kg/m3 and the wave velocity is 1500 m/s. The computation domain is meshed by 
linear triangular element with average mesh size h of 0.05 and 0.2m. The former 
mesh size generates 12970 nodes and 25451 elements, being used to compute 
reference solution. The latter mesh size generates 1575 nodes and 3007elements, 
being used to compute ES-FEM solution and FEM solution for comparison. 

The acoustic pressure distribution of the problem domain is plotted in Figure 4 when 
wave number k  , where (a), (b) and (c) are respectively obtained by FEM (12970 
nodes), ES-FEM (1575 nodes) and FEM (1575 nodes). Similarly, the acoustic 
pressure distribution in case of wave number 2k  and 3k  are plotted in Figure 
5 and Figure 6. From figure 4 it is found that both ES-FEM and FEM solution are 
very approximate to the reference solution when wave number satisfying “the rule of 
thumb”, which requires 1kh  guaranteeing the accuracy. From Figure 5 it is found 
that ES-FEM solution is obviously more close to the reference solution than FEM 
solution when wave number is approaching the limit value according to “the rule of 
thumb”. Figure 6 shows that ES-FEM solution is still acceptable comparing to 
reference solution even though the wave number breaks “the rule of thumb”, while 
FEM solution departs a lot from the reference solution. This numerical example 
illustrates that ES-FEM could achieve more accurate result than FEM using the same 
mesh and calculate higher frequency.



  
（a）Reference solution                 (a) Reference solution

  
        （b）ES-FEM solution                     (b) ES-FEM solution

  
(c) FEM solution                      (c) FEM solution

Figure 4. Pressure distribution when 
wave number k 

Figure 5. Pressure distribution when 
wave number 1.5k 



(a) Reference solution

  
(b) ES-FEM solution                (c) FEM solution

Figure 6. Pressure distribution when wave number 2k  .

5. Conclusions and discussions

In this paper, T3 element is used to investigate 2D exterior scattering problem. 
MATLAB program code for FEM and ES-FEM is written to calculate the scattering 
field generated by an infinitely-long cylinder and a 2D rudder. The computation 
efficiency, accuracy and sensibility to irregular mesh of ES-FEM are studied and its 
comparison to FEM is also made. Conclusions could be derived as follows:
(a) Solving 2D exterior acoustic problems, ES-FEM is more efficient than FEM in 

that ES-FEM creates no extra degrees of freedoms and transfers differentiation
and integration into simple arithmetic operator when computing global stiffness 
matrix.

(b) Comparing to analytical solution, both the global and local pressure results of 
ES-FEM is more accurate than that of FEM. Especially in high wave number, 
FEM result departs a lot from analytical solution while ES-FEM result is still 
accurate.



(c) ES-FEM is less sensitive to the mesh irregularity than FEM.
(d) For practical scattering problems, ES-FEM result is more accurate FEM result 

with the same mesh which suggests that ES-FEM is of great practical value for the 
future.
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