
APCOM & ISCM  
11-14th December, 2013, Singapore 

 

1 
 

Simulations of Droplets falling on a solid surface Using Phase-Field Method 

T. Sakakiabara¹, *T.Takaki1, and M.Kurata2 
1Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, 

Japan. 
2Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata, Tokai-mura, Ibaraki, 319-1195, 

Japan. 

*Corresponding author: takaki@ kit.ac.jp 

Abstract 
Due to the accident involving the Fukushima-Daiichi nuclear power plants, it becomes necessary to 
construct a numerical scheme to precisely evaluate the process of meltdown, including phase 
transformation among solid, liquid and gas phases. In this study, we constructed a model for gas-
liquid two-phase flow with a high density ratio. We used the phase-field method to express a 
droplet of molten nuclear fuel flowing down a wall. By performing a dam break simulation using 
the developed model, we confirmed the model’s validity. We also performed a numerical 
simulation of a droplet falling down a solid surface with wettability. The wettability was modeled 
by setting the boundary condition of the phase-field variable. As a result, we confirmed that the 
developed model can express the typical characteristics of a falling droplet on a wall. 
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Introduction 
The development of a simulation model able to accurately evaluate the meltdown process was made 
urgent by the accident at the Fukushima-Daiichi nuclear power plants. This process includes phase 
changes, such as melting and solidification, as well as the falling down of molten material. In order 
to simulate gas-liquid two-phase flow including phase change, we needed to choose an interface 
tracking method. The volume of fluid (VOF) method (Tomiyama, Sou, Minamigawa and Sakagushi, 
1991; Minato, Ishida and Takamori, 2000; Tan, Aoki, Inoue and Yoshitani, 2011) and the level-set 
method (Olsson and Kreiss, 2005; Tan, Aoki, Inoue and Yoshitani, 2011) are widely used as 
interface tracking methods for gas-liquid two-phase flow. Since the VOF method uses a sharp 
interface, applying it to treat complicated morphologies is difficult. The level-set method requires 
re-initialization of the advection equation, leading to large calculation costs. Therefore, in this study 
we used the phase-field method as an interface tracking method. The phase-field method has 
multiple advantages; it can automatically construct an interface of complex shape and express 
interface migration simply by solving a time evolution equation. The biggest reason for applying 
the phase-field method in this study is that it enabled the expression of phase changes among gas, 
liquid and solid states using the multi-phase-field method. The purpose of this study was to 
construct the gas-liquid two-phase flow model which can express a falling droplet on a wall using 
the single phase-field method. 

Numerical model and calculation technique 

G o vern in g  eq u a tio n s  o f th e  tw o -p h a se  flo w  m o d e l 

In this study, we constructed a model to simulate gas-liquid two-phase flow with a high density 
ratio in order to express droplets falling on a solid surface. The phase-field method was used as an 
interface tracking method and was coupled with the Navier-Stokes equation for incompressible 
flows. In phase-field method, we used the Cahn-Hilliard equation with an advection term of 
conservation form, where the phase-field variable φ was regarded as a conserved quantity to keep a 
constant liquid volume. The phase-field variable φ was defined as 0 in the gas phase and 1 in the 
liquid phase, and it continuously and sharply changed from 0 to 1 in the interface region. The 
Navier-Stokes equation includes surface tension force and gravity force terms, considered body 



2 
 

force in previous work (Anderson, McFadden, and Wheeler, 1998; Inamuro, Ogata, Tajima and 
Konishi, 2004; Takada, Matsumoto, Matsumoto and Ichikawa, 2008; Borcia, Borcia and Bestehorn, 
2006; Borcia and Bestehorn, 2007). The governing equations of the gas-liquid two-phase flow 
model are 
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where u
  denotes the velocity vector; φM , phase-field mobility; η , chemical potential; a , the 

gradient coefficient; W , the energy barrier; ρ , density; p ,pressure; µ , viscosity; and g
 , the 

gravitational acceleration vector. The gradient coefficient a  and energy barrier W are related to 
physical properties by the following equations. 
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Here, δ denotes interface width; γ , the interface energy between gas and liquid; and b , the 
coefficient to be related to the interface ( 2.2≈b ). We assumed that the density ρ  and viscosity µ  
continuously changed in the interface region, with a change in the phase-field variable, according to 
following equations. 
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The subscripts v  and l  represent the gas and liquid phases, respectively. 
 

N u m er ica l sch em e  

The Cahn-Hilliard equation was solved by a perfectly explicit method. The Laplacian discretization 
of the phase-field variable and chemical potential was evaluated with a fourth-order central 
difference scheme. The advection term was evaluated with a third-order upwind scheme. Time 
integration was evaluated with a first-order forward difference scheme. The solution of the flow 
field was obtained using the SMAC method. The Poisson equation for pressure was discretized by a 
second-order scheme and the sparse matrix was solved using the SOR method. The diffusion term 
was evaluated with a second-order central difference scheme. The advection term and the time 
integration were calculated with the same scheme as the Cahn-Hilliard equation.  

Dam break problem 

The dam break problem is well-known for validity verification of gas-liquid two-phase flow 
calculation code. Therefore, in this study we confirmed the reliability of our calculation code using 
a two-dimensional calculation of this problem. The computational model of a water-air system is 
shown in Figure 1. The initial water column width a  and height an

2  were m1015.57 3−×=a  and 
m103.114 32 −×=an (aspect ratio 22 =n ); the same values were used in a previous experiment by 

Martine and Moyce (Martine and Moyce, 1952). The physical properties were as follows 
3kg/m1000=

l
ρ , sPa10137.1 3 ⋅×= −

l
µ , 3kg/m226.1=

v
ρ , sPa1078.1 5 ⋅×= −

v
µ , 23 J/m108.72 −×=γ , x∆= 4δ  and 
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( )sJ/m100.1 54 ⋅×= −
φM . The lattice number was set to 160160× . The lattice sizes, x∆  and y∆ , and the 

time increment t∆  were m1043.1 3−×=∆=∆ yx  and s1005.1 6−×=∆t . In all boundaries, we set the 
following conditions: 0=∇⋅ φn

 , 0=∇⋅ ηn
 ,  0=⋅ un

 and 0=∇⋅ pn
 , where n

  denotes the normal vector. 
Equation (8) represents a static contact angle of 90 degrees and Equation (9) represents the fact that 
fluids cannot pass through the wall boundaries. 
 

 
Figure 1.  Computational model for the dam break problem. 

 
Time variations of the front coordinate z  and height ξ  when the water column is broken by the 
gravity force are shown in Figure 2.  Here, z  , ξ  and respective times are nondimensionalized by 

azZ /= ,  agn tT
z

/= , ( )anH
2/ξ=  and agtT

h
/= . 

As shown in Figure 2(a), the front position moved more rapidly in the simulation than in the 
experiment. This is because the experiment was not perfectly two-dimensional even though it was 
performed in a thin region of the thickness dimension. In addition, the initial rectangular water 
column and its sudden breaking were difficult to express in the experiment. In Figure 2(b), the time 
variation of the height corresponds faithfully. Although there are some discrepancies between the 
numerical and experimental results, we see reasonable agreement between them and can thus 
confirm the reliability of our calculation code. 
 
 

 
(a) front                                                                    (b) height 

Figure 2.  Time variations of front and altitudinal contact lines in the dam break problem. 
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Droplet falling on a solid surface with wettability 

B o u n d a ry  co n d itio n s  fo r  w e tta b ility  

In order to give wettability to the boundary, we introduced an idea which implements the geometry 
shown in Figure 3. This model is different from that used in previous work (Briant, Papatzacos and 
Teomans, 2002); it directly gives wettability to the boundary. The contact angle θ  formed by the 
interface energy between solid and liquid and between liquid and gas (black vectors in Figure 3) is 
geometrically identical to the angle formed by the normal vector n

  of the wall and the outward 
interfacial normal vector φ−∇ (red vectors in Figure 3). Then, by calculating the inner product of the 
two red vectors, the boundary condition giving wettability to the left boundary is given by the 
following equation. 
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Figure 3.  Boundary condition of wettability. 
 

N u m er ica l co n d itio n s  a n d  re su lts  

We conducted the numerical simulation of a droplet falling down a solid surface with wettability. 
The leftmost part of Figure 4 shows the computational domain and initial condition. The velocity of 
the initial semicircular droplet was set to zero. The boundary condition of the phase-field variable 
on the left wall was set to the Neumann condition considered wettability given by Equation (16).We 
set the contact angle to 70=θ  °. The other boundary conditions were identical to those used for the 
simulation of the dam break problem in the previous section. The other parameters were also 
unchanged from the previous simulation, with the following exceptions: ( )sJ/m100.5 57 ⋅×= −

φM ,  
m100.5 5−×=∆=∆ yx and s1099.8 9−×=∆t . 
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Figure 4 shows the morphological changes of a droplet on a solid surface with wettability. The 
upper part of the droplet becomes thin and the lower part expands as time progress. The bottom and 
side of the droplet become flat. In the simulation, we assumed phase-field mobility. If we used a 
larger value, the droplet shape would tend to be round due to the influence of curvature. To perform 
quantitative simulation, we needed to accurately identify the value of phase-field mobility. Time 
variations of advancing and receding contact angles are shown in Figure 5. In the early stage of 
falling, the contribution from the boundary condition is larger than that from the gravity force. 
Therefore, the advancing and receding contact angles approached the static contact angle 70=θ  °. 
With time, because the contribution from the gravity force became larger, the advancing contact 
angle increased and the receding contact angle decreased to minimize the system energy. 
 
 

 
Figure 4.  Computational domain and morphological changes of droplet on a wall surface 

with wettability. 
 

 
 

Figure 5.  Time variations of advancing and receding contact angles. 



6 
 

Conclusions 

We constructed a model for gas-liquid two-phase flow with a high density ratio by using the phase-
field method. Using the two-dimensional dam break problem, we confirmed that our calculation 
code can reasonably simulate gas-liquid two-phase flow with a high density ratio. Next, we 
conducted a simulation of a droplet falling down a solid surface with wettability, where the 
wettability was modeled by setting the boundary condition of the phase field variable. It was 
observed that advancing and receding contact angles are changed by the contributions of the 
boundary condition and the external force. 
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