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Abstract 

Natural convection in nearshore waters induced by differential heating has significant biological 

and environmental impact. The present investigation is concerned with natural convection in a 

reservoir model induced by periodic thermal forcing at the water surface. A semi-analytical 

approach coupled with scaling analysis and numerical simulation is adopted to resolve the problem. 

The scales for temperature and flow velocity, as well as the time lag of flow response to the thermal 

forcing have been derived. These derived scales have been verified by results from numerical 

simulations. Flow response at different stages of the periodic forcing has been illustrated through 

snapshots of isotherms and streamlines. The phase delay of the flow response to the thermal forcing 

decreases as the length of period increases.  
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Introduction 

As the depth of water increases in the offshore direction, when subject to the same rate of daytime 

heating or nighttime cooling, the shallow water near shore experiences larger temperature variations 

than that that in offshore regions. This generates a horizontal temperature gradient that drives a 

circulation across shore, often referred to as a ‘thermal siphon’. Field observations (Adams and 

Wells, 1984; Monismith et al. 1990; 2006) have demonstrated the significance of this buoyancy 

driven flow in promoting water exchanges across shore. It is revealed that this thermal siphon plays 

the dominant role in driving cross-shore circulation in calm nearshore regions with limited wind-

driven or tidal circulation, substantially reducing the residence of nearshore water bodies.  

 

This convective circulation plays an important role in the transport of nearshore nutrients or 

pollutants (James and Barko, 1991; Niemann et al., 2004), and therefore has significant biological 

and environmental implications. These have motivated a series of theoretical investigations to 

quantify it. For the daytime heating case, the asymptotic solutions (Farrow & Patterson 1994) and 

scaling analysis (Lei and Patterson, 2002; Mao et al., 2009) provide important insight into natural 

convection induced by absorption of radiation. For the nighttime surface cooling case, Horsch and 

Stefan (1988) established an approximate relation between the flow rate and the Rayleigh number 

through numerical simulations and laboratory experiments. Later, through scaling analysis, detailed 

scaling has been derived for the cooling case (Lei and Patterson, 2005; Mao et al., 2010).  

 

All the above theoretical investigations have been conducted for constant thermal forcing. For the 

case of diurnally varying thermal forcing, the asymptotic solution (Farrow 2004) has been derived 

under the assumption that the daytime radiation energy and nighttime heat loss is uniformly 

distributed over the local water depth. A diurnal thermal forcing model more relevant to field 

situations was realized in the numerical simulations of Lei and Patterson (2006). However, no 
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scaling analysis is yet available for natural convection generated by diurnal thermal forcing. This 

has motivated the present study, which focuses on natural convection generated by periodic thermal 

forcing at the water surface.  

Model formulation 

A two-dimensional (2D) model with water depth 

varying with offshore distance is adopted to capture 

the basic mechanism of the cross-shore exchange flow. 

A 2D reservoir consisting of one section with a sloping 

bottom with a slope of A and the other section with a 

uniform depth is considered (Figure 1). With the 

Boussinesq assumption, the normalized 2D Navier-

Stokes and energy equations governing the flow and 

temperature evolution are written as:  
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where Pr and Ra are Prandtl number and Rayleigh number respectively, defined as: 

 3,Pr Ra g Th k      (5) 

The parameters g,  ,  ,   are the acceleration due to gravity, thermal diffusivity, kinematic 

viscosity and thermal expansion coefficient of the fluid at a reference temperature T0, respectively. 

The respective scales for the normalization are: the length scale x, y ~ h; the time scale t ~ 
2h 

 

; 

the velocity scale u, v ~ h
 

; and the pressure gradient scale px, py ~ 0g T  . The non-dimensional 

temperature   is defined as  0T T T . Temperature at the water surface 0yT   is varying 

periodically: 

0 0 sin(2 )yT T T t P     (6) 

The water surface is assumed to stress free ( 0u y   , v=0), whereas, the bottom is assumed 

adiabatic ( ˆ 0n   ) and no-slip (u=0, v=0). An open boundary condition is considered for the 

endwall ( 0u x   , v=0, 0x   ) with a backflow at the reference temperature T0. The water 

body is initially set to be stationary and isothermal.  

Theoretical analysis  

Under an isothermal water surface, the vertical temperature gradient is much larger than the 

horizontal temperature gradient, and therefore vertical conduction dominates over horizontal 

conduction. Initially, the flow velocity is small and, thus, convection is also small. If convection and 

h 

 y 

 x 
 0 

Figure 1 Sketch of the flow domain and 

the coordinate system. 
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horizontal conduction are neglected, the problem can be simplified as a one-dimensional conduction 

problem with a variable local water depth of Ax: 
2

2t y
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An isothermal water surface and an adiabatic bottom are specified by (8) and (9), respectively. 

Equation (9) is the leading order approximation of ˆ 0n  
 under the assumption of small bottom 

slope A. An isothermal initial condition is embodied in (10). The above equations can be solved 

through separation of variables, and the solution of (7-10) is  
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Given sufficient length of time, the exponential term approaches zero. n = 0 is the dominant term. 

Therefore the temperature can be simplified as:  
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The non-dimensional temperature   averaged over the local depth can be obtained from equation 

(12): 
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where   is the phase delay of the vertically-averaged temperature,  
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Following the same procedure described in Mao et al. (2012), a balance between buoyancy induced 

pressure gradient and viscous terms in the momentum equations yields the following scaling for 

velocity: 

5 4
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(15) 

The above derivation is conducted under the assumption that convection is negligible and therefore 

applies only to the conductive region. As revealed by Mao et al. (2009, 2010), even for high Ra 

number flow regime, there is a nearshore conductive subregion, and the scope of this subregion 

shrinks landward as Ra increases. In the following verification of the above scaling results, the data 

is selected within the nearshore conductive region.  

Numerical simulations   

The normalized equation (1)-(4) are solved numerically using a finite-volume method. The 

SIMPLE (semi-implicit method for pressure-linked equations) scheme is adopted for pressure-

velocity coupling; and the QUICK (quadratic upstream interpolation for convective kinematics) 
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scheme is applied for spatial derivatives. A second-order implicit scheme is applied for time 

discretization in calculating the transient flow.  

 

The simulation is conducted with a non-dimensional depth of 1, a bottom slope of A=0.1, a 

horizontal length of L = 20, and a fixed Prandtl number of Pr = 7. The section with a uniform depth 

is set to be of the same length as the sloping section. The numerical simulation is conducted for ten 

full thermal forcing cycles to minimize the start-up effect.  

Verification for scaling  

The verification of scaling results is conducted with respect to both the magnitude and the phase 

delay. The maximum velocity umax over the local depth is obtained for each x. Time series of umax is 

plotted in Figure 2(a, c) for different horizontal positions and different periods respectively. It is 

clear that the start-up effect is only noticeable within the first cycle. If there were no phase delay θ, 

the velocity would reach a maximum at the start of a cycle as indicated by the cosine sign in scaling 

(15). However, this maximum is delayed due to the phase lag. Phase lag obtained from simulation is 

plotted against the scaling result in figure 2(b, d), where a clear linear relation is identified, and 

therefore the dependency of phase lag on x and P predicted by scaling (15) is verified.  

 

Figure 2(a, c) shows that the maximum horizontal velocity within the cooling phase is smaller than 

that within the heating phase. During the heating phase, the circulation is clockwise with the surface 

layer flowing horizontally offshore and the bottom layer flowing up long the slope, and thus the 

maximum horizontal velocity umax is obtained within the surface layer (Mao et al. 2009). During the 

cooling phase, the circulation is anticlockwise and the surface layer flows landward and bottom 

layer flows down the slope (Mao et al. 2010), and therefore, umax is obtained within the bottom layer. 

As the intensity of thermal forcing during the cooling phase is the same as the heating phase, the 

absolute value of velocity is the same, but the direction is opposite. This reveals that the absolute 

value of u in the bottom layer is smaller than that in the surface layer. 

 

(a) (b) 

(c) (d) 

Figure 2 Verification of the phase delay θ in scaling (14), Ra = 10
4
. (a) Time series of umax at 

different x with P=0.25 (b) θ at different x from simulation versus scaling. (c) Time series of 

umax under different P with x = 1.0. (d) θ under different P from simulation versus scaling. 
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The dependency of the magnitude of umax on the period P, Ra and the horizontal position x predicted 

by scaling (15) is verified by the results of numerical simulations (Figure 3). Since the focus is on 

the magnitude, the effect of phase delay is minimized by selecting relatively large P and small x as 

scaling (14) suggests. Figure 3(a) shows the time series of the maximum horizontal velocity umax for 

various P, Ra and x.  It is clear that the amplitude of umax increases with Ra and x, and decreases 

with P. After normalization by scaling (15), simulation results collapse together (Figure 3b), 

confirming the dependency of the magnitude of umax on P, Ra and x.  

Flow response from simulation  

To illustrate the overall flow response over the entire domain, isotherms and streamlines obtained 

from simulation for Ra = 10
5
, P = 0.04 are plotted in figure 4 over a cycle. The times shown in this 

figure are relative to the beginning of the cycle. Details of flow response are described below.  

 

Before the start of the cycle (t = 0.00P), temperature at the water surface has been increasing for the 

last quarter of a cycle. Therefore, at the beginning of the cycle, a water surface layer is formed 

below the water surface (figure 4a). The isotherms in figure 4a suggest that a cool gravity current is 

expected to flow down the sloping bottom, which is confirmed in the streamlines in figure 4a, an 

anticlockwise flows is formed within the domain. The wavy feature in the streamlines is caused by 

the instability in the last quarter of a cycle. This effect of instability is counteracted by stratification 

caused by warm surface water at t = 0.10P as shown by the streamline in figure 4b. The isotherms 

of 4b suggest that the warm surface layer grows thicker. Compared to figure 4a, the horizontal 

temperature gradient which drives the flow is smaller in figure 4b and therefore flow velocity 

decreases as confirmed by the streamlines. At time t = 0.25P, the warm surface layer becomes even 

thicker, and the flow becomes even more stratified, as a result, the velocity continue to decrease as 

shown by the streamlines in figure 4c. Near the tip of flow domain, a conductive subregion is 

observed where the warm surface layer reaches the sloping bottom as shown by the isotherms. The 

negative horizontal temperature gradient near shore leads to a clockwise circulation as shown in the 

streamlines (figure 4c).  

 

From time t = 0.25P, temperature at the water surface starts to decrease, as a results, the warm 

surface layer disappears at t = 0.50P (Figure 4d). The surface layer becomes cooler than the layer 

below, which is potentially unstable. The clockwise flow expands to a larger scope as shown by the 

streamlines (figure 4d). After time t = 0.50P, temperature at the water surface continues to decrease, 

eventually lead to instabilities with cold thermal plumes plunging down the water surface at time t = 

0.75P (Figure 4e).   

(a) (b) 

Figure 3 Verification of the dependency of umax on x, P and Ra, (a) Time series of umax at various 

P, Ra and x obtained from simulation. (b) Simulation results normalized by scaling. 
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After t = 0.75P, temperature at the water surface starts to increase, as a results, the circulation at 

time t = 0.90P is less unstable with decreased intensity of plumes (figure 4f). When the cycle 

finishes at t = 1.00P, the plunging plumes disappear and flow becomes less unstable. The end of the 

cycle at t = 1.00P is also the start of the next cycle. Since simulation is conducted over 10 full 

thermal forcing cycles, the effect of start-up flow is minimized. Therefore, features of the isotherms 

and streamlines at the end of the cycle t = 1.00P (figure 4g) is the same as at the beginning of the 

cycle t = 0.00P (figure 4a).  

 

To quantify the intensity of horizontal exchange flow rate at a specified location x, the horizontal 

exchange rate Q(x) at position x is calculated for the 2D domain as:  

01
( ) | | ,

2 xh
Q x u dy


 

 

(16) 

where hx is the local water depth at the horizontal position x. The average volumetric horizontal 

flow rate Q is obtained by integrating Q(x) horizontally over a length of L:  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 4 Flow responses to periodic thermal forcing at the water surface (Ra = 10
5
, P = 0.04). 

Left: temperature contours. Right: streamlines. Dashed streamlines indicates clockwise flow. 
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Figure 5 plots the time series of Q for different periods with Ra = 10
6
. Time series of thermal 

forcing is shown in figure 5(a). The corresponding Q shown in figure 5(b-e) reveals that the length 

of period significantly affects the flow response. Given an isothermal domain, Q induced by surface 

heating (positive value in figure 5a) is expected to be much smaller than by surface cooling 

(negative value in figure 5a). During heating time, horizontal exchange is only induced by the 

horizontal temperature gradient near shore (figure 4c). During the cooling time, the thermal plumes 

induced by instability enhance the horizontal exchange rate significantly (figure 4e).  Therefore, if 

there is no inertia and the flow responds instantly to the thermal forcing, a low value of Q is 

expected for the heating phase and a high value for the cooling phase. However, the flow response 

is delayed due to inertia as shown in figure 5. For short period, the delay of response is most evident. 

As shown in figure 6 (a), at the start of heating phase (t = 0.00 P), the flow is still unstable for the 

short period (P = 0.004), whereas it becomes stable for the long period (P = 0.080) which has 

sufficient time to respond to the varying thermal forcing. As a result, the delay is minimized for the 

largest period (P = 0.08) in figure 5(e), where the low and the high value of Q correspond well with 

the heating and the cooling phase with only a slight time delay.  

(a) 

(b) 

(c) 

(d) 

(e) 

(a) 

(b) 

Figure 5 Flow response to periodic thermal forcing represented by the time series of Q for 

different period, Ra =10
6
. Plotted are (a) time series of thermal forcing. (b-e) are time 

series of Q. (b) P = 0.004 (c) P = 0.008 (d) P = 0.020 (e) P = 0.080 

Figure 6 Isotherms and streamlines at the beginning of the cycle, Ra = 10
6
.
 
(a) P = 0.004 

(b) P = 0.08. Left: temperature contours. Right: streamlines. 



8 

 

Conclusions  

The present investigation focuses on natural convection induced by periodic thermal forcing at the 

water surface in a reservoir model. Through coupled analytical solutions and scaling analysis, 

temperature and velocity scales for the near shore conductive region have been derived and verified 

by numerical simulations. The scaling quantifies the dependency of velocity on Ra, A, x, and P, and 

the dependency of phase delay on A, x and P.  

 

The flow response over the entire domain is revealed by isotherms and streamlines at different 

stages of the thermal forcing cycle. An effect of phase delay is observed and the details of flow 

response are analyzed. Time series of horizontal exchange rate Q for different lengths of period P 

reveals that the length of period affects flow response significantly. The phase delay of flow 

response resulting from inertia is most evident in the result of the shortest period. As the length of 

period increases, this delaying effect becomes less obvious. For sufficiently large period, the 

heating and cooling phase of the thermal forcing is characterized by low and high values of Q 

respectively.  
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