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Abstract 

Independent Component Analysis has recently been employed in structural damage detection and 
blind source separation to extract source signals and the unmixing matrix of the system from 
response signals. This novel method relies on the assumption that source signals are statistically 
independent. This paper looks at statistical independence, its measures and testing procedures. First 
the concepts of kurtosis, negentropy and mutual information are reviewed, followed by Bakirov’s 
measures of coefficient of statistical independence and distance correlation between two signals 
coupled with Hypothesis testing to avoid Type I and Type II error. Bakirov’s tests are 
nonparametric, simple to implement and do not require any approximation. Algorithms developed 
by Bakirov and associates to test the statistical independence of two arbitrary signals are reviewed. 
A case study using signals commonly found in vibration testing showed that Bakirov’s tests are 
both reliable and rigorous. They are then applied to investigate the effects of corrupted signals by 
various forms on the statistical independence and performance of fastICA, a popular independent 
component analysis algorithm.  

 

Keywords: Statistical independence, Bakirov’s dCov test, Independent component analysis, 

Structural damage detection, Multivariate statistics, Package “energy”, fastICA. 

Introduction 

Independent Component Analysis (ICA) is fundamentally a blind source separation method that 
seeks to separate underlying components from available data whether the data are in the form of 
sounds, images, vibration responses or financial share prices. Since 1990s, Independent Component 
Analysis has been of great interest to researchers in diversified areas of statistics, medical imaging, 
telecommunication and structural damage detection( Comon and Jutten, 2010, Hastie et al, 2008, 
Hyvӓrinen et al, 2001, Zang et al 2004). Essentially, ICA relies on response data collected by 
sensors, called mixture signals, and the assumption that the independent component sources, called 
source signals, are statistically independent, to extract the unknown source signals. Most of the 
studies require that there are as many sensors as there are independent components and that the 
system behaves linearly, but non-linear behavior and both under-determined and over-determined 
cases have also been solved. A well known case study is the so called cocktail party problem: 
identify speech by two speakers in a room by using sounds recorded by two microphones. A 
demonstration is given on http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi. 

 
ICA assumes that there is a relationship between S, the vector represents source signals, or 
underlying components and X, the vector represents mixture or response signals of the system to 
the source signals. In the simplest form, the relationship is linear and can be expressed as: X = AS, 
where X is available from sensors output, A is called the mixing matrix. W, the inverse of A is 
called the unmixing matrix. While both A or W and S have to be determined, ICA seeks the 
optimum solution out of all possible W such that the statistical independence of S is maximized. 
Naturally the product of A and W must be the identity matrix. In statistics, ICA is considered as 
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supervised learning which includes principal component analysis and factor analysis. It is also 
connected to the technique of projection pursuit in multivariate statistics (Hastie et al, 2008). This 
has led to many novel methods of medical diagnosis of neurology and image processing. The 
restriction that has been stated by Hyvӓrinen et al (2001) is that not both variables are normal or 
Gaussian random signals. First, let us look at the concept of statistical independence (SI) and 
different measures and tests to evaluate statistical independence (SI). 
 
Statistical Independence 
 
 Consider two scalar variables X and Y, X is said to be independent of Y if knowing the value of Y 
does not give any information on the value of X. This conceptual definition leads to the use of 
probability density function (pdf), a normalized histogram, of an event. When two events are 
studied, conditional probability, P(B|A), is defined as the probability that event B occurs given that 
event A occurs; and joint probability, P(A&B) is defined as the probability of both A and B occur. 
They are related by the rule P(B|A) = P(A&B)/P(A).  
 
Two events are statistically independent if P(B|A) = P(B). It then follows that if A and B are 
independent: P(A&B) = P(A).P(B). The joint probability can be found by constructing a 
contingency table, however it should be noted that marginal probabilities can be found from joint 
probability but the reverse is not true except in the case of statistical independence. This leads to the 
notion that two scalar variables X and Y are statistically independent if and only if their jpdf is a 
product of their individual pdf which are also called marginal pdf: 
 

pXY(x,y) = pX(x) . pY(y)      (1) 
 

In Eq. 1, x and y are particular values of variable X, Y respectively.  
 
Note that in Eq.1, cumulative distribution functions can replace the  respective probability density 
functions, as so do expected values of absolutely integrable functions of variables, including 
positive powers of x and y: 

E{g(x).h(y)} = E{g(x)}. E{h(y)}        (2) 
  E{xp yq} = E{xp} . E{yq)}                                      (3) 

 
Where operator E stands for expected value, p and q are positive integers. It follows from Eq. 3 that 
SI is more stringent requirement than un-correlatedness, as un-correlatedness requires only E{x.y} 
= E{x}. E{y}, i.e only for the case that both p and q equal 1. Thus statistical independence implies 
un-correlatedness but the reverse is not true, except for normal or Gaussian random variable. A 
simple example is given by Stone (2004), in which two simple pendulums swinging 900 out of 
phase, x = cos(t), y =  sin(t), giving correlation coefficient of zero, hence x and y are uncorrelated 
but they are statistically identical.  At the same time, variables describing physically independent 
phenomena are intuitively thought to be statistically independent but it is not generally true. 
 
Statistical Independence can also be defined in terms of characteristic functions of X and Y and 
their joint characteristic functions, where characteristic function of X is the inverse Fourier 
transform of its pdf and jpdf respectively, i.e. fX(t) = E{eitX} and fXY(t,s) = E{ei(Xt+Ys)}. Note that 
characteristic functions are complex. In a similar fashion as using pdf and jpdf: X and Y are 
statistically independent if:  
 

   fXY(t,s) = fX(t). fY(s)      (4) 
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In most engineering applications variables are obtained from random process without further 
knowledge of the joint distribution, hence the jpdf cannot be determined from marginal pdfs, unless 
statistical independence is assumed or implied.  
 
It must be noted that testing of the equality of the two sides of either of Eq. 1-4 highlights the basic 
concept of statistical hypothesis testing: a test must have hypotheses, the null and alternative 
hypothesis, a corresponding statistic and a measure of the reliability of the test. In other words the 
testing of Eq. 1 itself must be perceived in a probabilistic sense, not in a deterministic sense. This is 
to ensure not to commit Type I (rejecting true null hypothesis) and Type II error (accepting false 
null hypothesis).  
 
Probably the first paper on statistical independence was due to Wilks (1935). Most researchers of 
ICA argue that the mixtures, as a consequence of Central Limit Theorem, would be more gaussian 
than the sources. As a consequence, a heuristic assumption is that the sources would be more non-
Gaussian, hence the objective is seeking sources as variables of maximum non-Gaussianity, 
effectively using non-Gaussianity as a measure of statistical independence (Hyvӓrinen et al, 2001). 
Non-Gaussianity of a variable can be measured by kurtosis and negentropy. Kurtosis is defined as 
kurt(x) = E{x4} – 3(E{x2}) i.e. a normalized version of fourth moment of statistical distribution to 
make kurtosis of a normal or Gaussian random variable to be zero. Although simple to calculate, 
kurtosis is sensitive to outliers. The concept of entropy in Thermodynamics, representing the degree 
of being unstructured, unorganized, unpredictability, is also popular in Theory of Information. For a 
distribution Y, entropy of a variable is defined in terms of probability density function (pdf)  as 

H(y)=  - ( )log ( )p y p y dy . Negentropy J is then defined as J(y) = H(yGauss) – H(y), where yGauss is a 

Gaussian random variable of the same covariance matrix as y, which is shown by Information 
Theory to have the largest entropy among all random variables of equal variance. Thus negentropy 
is always non- negative. It is more involved to compute negentropy than kurtosis, and like kurtosis, 
it refers to only one variable and would fail as a measure of independence when one variable is a 
multiple of the other.  
 
In most engineering applications, the variable has a finite number of values, as a consequence 
kurtosis of variables, even of the same distribution model, would depend heavily on how many 
elements are taken into account. As an example  a variable was obtained by the Gaussian random 
generator in Matlab to yield a variable X of 1,000 elements, kurtosis was then found for varying 
number of elements from 100 to 1000. A typical result is shown in Table 1. 
 
Table 1: Kurtosis of variables of varying number of elements from a normal (Gaussian) 
random variable  
 
 
Element 
no 

100 200 300 400 500 600 700 800 900 1000 

kurtosis -.3049 -.1041 -.1139 .0774 .0048 .2558 .2273 .1708  .2210 .1999 
 
A more rigorous concept is mutual information of two variables X and Y defined as: 

 
( , )

( , ) ( , ) log
( ) ( )
XY

XY
y Y x X

p x y
I X Y p x y

p x p y 

 
  

 
     (5) 
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It can be seen that mutual information is zero when the two variables are independent and ICA aims 
to minimize the mutual information among candidates of the source signals.  Hyvӓrinen et al (2001) 
argued that this approach gives rigour to the more heuristic approach of using kurtosis and 
negentropy and is equivalent to method based on maximum likelihood estimation. However this 
measure of statistical independence also requires the knowledge of jpdf. Mutual information can be 
defined in terms of Shannon entropy, which can be further estimated (Comon and Jutten, 2010 ). 
 
Bakirov’s measures of statistical independence 
 
Bakirov and his associates published two papers, Bakirov et al (2006), Szekely et al (2007) 
addressing the needs to have measure of statistical independence that are non-parametric, that is 
independent of the statistical model that one has to assume otherwise. Such a measure has to be 
practical to implement and conform to requirements of statistical hypothesis testing: null and 
alternative hypothesis, a test statistic and a confidence indicator of the test. 

1. Coefficient of independence 
Bakirov, Rizzo and Szekely proposed a statistic In based on the idea of independence coefficient I, 
defined in terms of characteristic functions: 
 

2 2

( , ) ( ) ( )

(1 | ( ) | )(1 | ( ) | )

XY x Y

X Y

f t s f t f s
I

f t f s




 
      (6) 

In itself is defined for a finite subset of variable of n elements, based on various Euclidean norms, or 
“distances” of distributions of X, Y and of their joint distribution Z, hence does not require the joint 
characteristic function as I. However, the authors proved that in the limit, In tends to I and 0≤ In ≤ 1, 
where the sublimit 0 corresponds to statistical independence. 
 
Further, it is shown that for all confidence level ⍺ below 0.215, the null hypothesis H0 that X and Y 

are independent is rejected when 1(1 / 2)nnI     where ϕ-1is the inverse function of the 

cumulative distribution function of the standard normal distribution. This assertion would yield a 
parameter indicating the strength of the hypothesis testing, normally given by the p-value of the 
hypothesis testing. It is normally accepted that p-value less than 0.05, H0 would be rejected. The 
calculation of In is computing extensive for large n. 

2. Distance of covariance 
Szekely, Rizzo and Bakirov (2007)  proposed the concept of distance covariance, dCov  (X,Y) and 
distance correlation, dCor  R(X,Y), defined respectively as: 

2 2(X, Y )  ||f - f f ||XY X Y                         (7)

 
2

2

2 2

( , )
( , )

( ) ( )

X Y
R X Y

X Y


 

                   (8) 

It can be seen from Eq. 7 that dCov is directly related to the definition of statistical independence. 
Further, the authors proved that the right hand side of Eq. 7 does not need information on the joint 
characteristic function and can be calculated as the limit of: 

2
1 2 3(X, Y )  S 2n S S           (9) 

Where S1, S2 and S3 can be calculated in terms of Euclidean norms related to distributions of X, Y. 
Similar hypothesis testing with statistic 2 (X, Y )nn and p-value are also proposed. 

3. Implementation in R language 
The authors proposed two tests called mvI.test  and dcov.test. Both tests use the null and alternative 
hypotheses H0: p(x,y) = p(x).p(y), H1: p(x,y) ≠ p(x).p(y). They are implemented as options in the 
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module indep.test of the package “energy’” developed by Rizzo and Szekely in R language.  The 
mvI.test corresponds to the coefficient of independence and takes longer than the dCov.test, as 
many times as the number of elements which can be in thousands or more. These tests yield the p-
value of the null hypothesis test and it is widely accepted that H0 should be rejected if p-value < 
0.05. It should be noted that in statistical hypothesis test, p-value is viewed as a measure of the 
strength of the hypothesis test.  
 
In this paper, Bakirov’s dCov test is used to evaluate the statistical independence of source signals, 
measured by p-value of the test, before sending them to evaluate performance of ICA or to act as 
excitation signals in vibration testing or finite element simulation. 
 
Statistical independence testing of common signals used in vibration 
 
In this test, the interest is statistical independence of various excitation signals commonly used in 
vibration testing. Source signals of 1,000 elements were generated in Matlab, except that impact 
force signals were obtained in a vibration impact hammer test.  These signals were then paired and 
tested for statistical independence by Bakirov’s dCov test. Certainly if one signal is an exact copy 
or a multiple of the other, no matter what kind of signal, they would be tested dependent. The 
results are reported in Table 2. Typical plots of two signals for the case of sine-sawtooth pair and 
sinusoidal function  of different frequencies (and also amplitude and phase) are shown in Figure 1 
and 2. 
 
Table 2: Statistical Independence of pairs of signals of 1,000 elements 
	

Name	of	signal	pair dCov	p‐value
Unirandom, Unirandom (gemerated at different times) 0.660 
Unirandom, Sine 0.415 
Uirandom, Impact 0.635 
Impact, Sine 0.5 
Sine, Sine of different frequency 0.76 
Sine, periodic Sawtooth of different frequency 0.965 
Gaussian random, Gaussian random 0.815 
Impact, Impact sampled at different points of structures 0.015 
Unirandom (u), 5*u 0.005 
	
	

	
Figure	1:	Sine	and	sawtooth	signals	
	
	

	

	
	
Figure	2:	Sine	signals	of	different	frequencies	
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Inspection	of	Table	2	indicates	that	there	is	a	variety	of	combination	of	different	signals	that	
would	 be	 statistical	 independent,	 except	 when	 one	 is	 a	 multiple	 of	 the	 other,	 or	 both	 are	
impact	signals	obtained	from	the	same	hammer	tip‐structure	 impact	tests	even	if	 they	were	
sampled	 at	 different	 points	 of	 the	 structure.	 It	 should	 be	 noted	 that	 as	 far	 as	 statistical	
independence	 is	 concerned,	 for	 sinusoidal	 signals,	 difference	 in	 frequencies	 is	 important	
whereas	difference	in		amplitude	or	phase	are	not.	
	
Statistical independence testing of corrupted signals  

1. One signal partially corrupted by the other signal:  
Two	uniform	random	signals	were	generated	in	Matlab,	called	S1	and	S2,	of	different	ranges,	
each	of	1000	elements.	They	are	plotted	against	each	other	in	Figure	3,	showing	the	random	
nature	 of	 these	 two	 sources	 and	 their	 fast	 changing.	 The	 statistical	 independence	 of	 these	
signals	was	tested,	giving	p‐value	of	0.425,	indicating	that	they	are	statistically	independent.	
To	 avoid	 crowding,	 only	 the	 first	 100	 elements	 of	 S1	 and	 S2	 are	 plotted	 versus	 element	
number,	as	shown	in	Figure	4.	
	

	

	

 

Figure 3: Uniform random source S2 versus S1                              Figure 4: Plot of first 100 elements of S1 and S2 

Next S1 was kept unchanged, S2 was changed by a varying percentage e% of the source signal S1. 
The new S2 is designated S2*, i.e. S2*= S2 + e%.S1. These new sets of signals S1 and S2* were 
then tested for statistical independence by Bakirov’s dCov test. The following values of e% were 
investigated: 1, 2, 3, 4, and 10. The results are reported in Table 3,  

 
Table 3: Effect of e% corruption of one signal on the other 
 

e% 0 1 2 3 4 5 10 

p-value of 
dCov test 

0.425 0.555 0.43 0.185 0.045 0.005 0.005 

It can be seen from Table 3 that in this case, Bakirov’s dCov test of SI is very stringent: an addition 
of only 4% of S1 to S2 would make them not independent, 

2. Effect of random noise on statistical independence 
In this test, S1 was in the form of a sine wave and S2 was a sawtooth wave of equal amplitude of 
1.00, as shown in Figure 5. They were then corrupted by Gaussian random noise of increasing 
amplitude of 0.05, 0.10, 0.15, 0.20. A plot of corrupted signals at amplitude of 0.10 is shown in 
Figure 6. The signals are tested for statistical independence in a similar fashion. The results are 
shown in Table 4. 
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Figure	5:	Sine	and	sawtooth	signals	 	

Figure	 6;	 Corrupted	 sine	 and	 sawtooth	 signals	 by	
10%	gaussian	random	noise	

 
Table 4: Effect of corruption of both signals by gaussian random noise 
 
e% random noise 0 5 10 15 20 
p-value dCov test 1.00 1.00 0.965 0.855 0.510 

 
It was found that for the case of similar amplitude signals, Gaussian random noise, commonly 
exhibited by equipment used in vibration testing, does decrease the p-value of dCov test, but signals 
were still independent at 20% noise.  

3. Evaluation the performance of Independent Component Analysis 
As previously mentioned, Independent Component Analysis uses statistical independence as the 
objective function in searching for the blind sources from measured mixture signals. One popular 
algorithm is fastICA. Available in R, Matlab, C++ and Python programming, fastICA was 
developed by Marchini, Heaton and Ripley and can be downloaded from 
http://research.ics.aalto.fi/ica/fastica/. Basically it employs an approximation of negentropy as the 
objective function in searching of the unmixing matrix W under the constraints that W is an 
orthonormal matrix after the data has been centered, normalized and whitened. As the name implies 
it is a very fast algorithm, using fixed point iteration scheme for maximizing negentropy. It should 
be noted that the output of fastICA (source signals S, matrices A and W) are ambiguous as far as 
sign, scale and order are concerned. Here, the performance of fastICA was judged by the equality of 
A*W with the identity matrix of the same order. The signals used are S1 and S2* in Table 3. They 
were multiplied by a chosen A to yield the mixture signals which were then passed to fastICA for 
processing.  The results are reported in Table 5, where A0 is the mixing matrix corresponding to 
zero e%. It can be seen from Table 5 that up to adding 3% of S1 to S2, fastICA performed 
satisfactorily as far as the criterion of A*W = I is concerned,  as expected. This equality is still 
satisfied at 4% but the mixing matrix obtained at this p% value is very different from the previous 
ones. This is further highlighted by inspecting the values of the ratio of the determinants of A at e% 
cases to that of the 0% case which was designated as A0. At 4% the ratio was 0.0048 instead of 1. 
At 10%, p-value was 0.005, fastICA failed to give the complete solution and no results reported. 
	
Conclusions 
 
The notion of statistical independence is very important in the area of blind source separation, 
including independent component analysis. It is shown that the non-parametric tests developed by 
Bakirov and associates, especially dCov test, provide a good measure of statistical independence. It 
was found that many signals commonly used as excitation sources in vibration testing are 
statistically independent, except when one is a multiple of the other, sinusoidal functions of the 
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same frequency and impact signals sampled between the same hammer tip-structures in impact 
tests. The test was used to investigate effects of various sources of corruption on statistical 
independence: corruption of one signal by a small percentage of the other can affect enormously the 
statistical independence while corruption by random noise on both signals can be tolerated to a high 
level. It was also found that the statistical independence measured by p-value in dCov test is related 
to performance of fastICA, a popular package of ICA. It is recommended that Bakirov’ measures of 
statistical independence should be incorporated in an independent component analysis algorithm. 
 

Table 5: Results of effects of statistical independence on performance of fastICA 
 

e% dCov p-
value 

Mixing matrix A Unmixing matrix W A*W detA/detA0 

0 0.425 

‐8.33133  ‐7.69348 

‐18.4173  7.9057 
 

‐0.03809  ‐0.03707 

‐0.08873  0.04014 
 

1.0000   0.0000   
0.0000                1.0001 

1 

1 0.555 

7.865551  ‐8.01238 

‐7.50953  ‐18.7385 
 

0.090281  ‐0.0386 

‐0.03618  ‐0.0379 
 

1.0000          0.0001   
-0.0001               1.0000 

1 

2 0.43 

8.023941  7.693739 

18.73223  ‐7.90597 
 

0.03809 0.037068

0.090251 ‐0.03866
 

1.0000   0.0000   
-0.0000               1.0000 

1 

3 0.185 

‐7.87029  ‐7.69384 

‐18.8896  7.906206 
 

‐0.03809 ‐0.03707

‐0.09101 0.037919
 

1.0000     0.0000   
-0.0000               1.0000 

1 

4 0.045 

0.006301  0.99998 

0.99998  ‐0.0063 
 

0.006301  0.99998 

0.99998  ‐0.0063 
 

1.0000    0.0000  
0.0000                1.0000 

0.0048 
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